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Abstract In Zhu and Qiu (J Comput Phys 228:6957–6976, 2009), we system-
atically investigated adaptive Runge-Kutta discontinuous Galerkin (RKDG)
methods for hyperbolic conservation laws with different indicators, with an
objective of obtaining efficient and reliable indicators to obtain better perfor-
mance for adaptive computation to save computational cost. In this follow-up
paper, we extend the method to solve two-dimensional problems. Although
the main idea of the method for two-dimensional case is similar to that for
one-dimensional case, the extension of the implementation of the method to
two-dimensional case is nontrivial because of the complexity of the adaptive
mesh with hanging nodes. We lay our emphasis on the implementation details
including adaptive procedure, solution projection, solution reconstruction and
troubled-cell indicator. Extensive numerical experiments are presented to
show the effectiveness of the method.
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1 Introduction

In [22], we presented an h-adaptive Runge-Kutta discontinuous Galerkin
(RKDG) method using troubled-cell indicators for one-dimensional hyper-
bolic conservation laws. Numerical tests demonstrated the effectiveness of
the method in saving computational cost and improving solution quality when
proper troubled-cell indicators were used. In this paper, we extend the method
to solve the two-dimensional nonlinear hyperbolic systems of conservation
laws {

ut + f (u)x + g(u)y = 0, in � × (0, T],
u(x, y, 0) = u0(x, y), in �.

(1.1)

Here, the subscripts t, x and y denote partial differentiation with respect to
time and the spatial coordinates, and u, u0, f and g are m-vectors on the
problem domain � × [0, T].

A major development of the RKDG method for nonlinear time-dependent
hyperbolic conservation laws was carried out by Cockburn et al. in a series of
papers [3–7], in which a framework to solve these problems was established.
They adopted explicit, nonlinearly stable high order Runge-Kutta time dis-
cretizations [19], DG space discretizations with exact or approximate Riemann
solvers as interface fluxes and TVB (total variation bounded) nonlinear lim-
iter [18] to achieve nonoscillatory properties, and the method managed the
advantage of flexibility in handling complicated geometry, h-p adaptivity, and
efficiency of parallel implementation. We will briefly review this method in
Section 2. Detailed description of the method as well as its implementation
can be found in the review paper [8].

The solutions of nonlinear hyperbolic conservation laws often exhibit a wide
range of localized structures, such as shock waves, contact discontinuities, and
rarefaction waves. So it is desirable to use mesh refinement to cluster grid
cells in regions where they are most needed, for example, around shocks or
other regions where the solution has steep gradients or complicated structures.
For time-dependent problems this should be done in an adaptive manner. The
refined region has to move adaptively with the interesting structure.

The DG method is a class of finite element methods using completely
discontinuous piecewise polynomial space for the numerical solution and the
test functions, which makes it easy to handle h-adaptive strategies since the
mesh refining or coarsening can be done without taking into account the con-
tinuity restrictions through cell interfaces. To the best of our knowledge only
a few h-adaptive DG methods are available in literature for nonlinear time-
dependent hyperbolic conservation laws. We refer, for instance, to Flaherty et
al. [1, 10, 11, 17] and Dedner et al. [9]. We also refer to Hartmann and Houston
[12], where duality techniques were used for designing adaptive strategy. The
key point of the success of h-adaptive methods is the indicator to identify
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An h-adaptive RKDG method with troubled-cell indicator for 2D case 447

where the mesh should be refined and coarsened. In this paper, we use the
same h-adaptive strategy as in [22], i.e. use the ‘troubled-cell’ indicator to
identify where the mesh should be refined and coarsened. For DG method,
‘troubled cells’ are those cells which might need the limiting procedure; this
also means that discontinuities might appear in these cells. So a straightforward
strategy for the mesh adaptation is to refine the troubled cells and coarsen the
others. The detailed algorithm will be described in Section 3.1.

The present paper is organized as follows. Firstly in Section 2, we give a
brief review of RKDG method in two space dimensions. Then in Section 3, we
show the two-dimensional h-adaptive RKDG method and the implementation
details. After that in Section 4, we present a series of numerical results to
validate our adaptive algorithm. Finally, we give our concluding remarks in
Section 5.

2 Review of RKDG method in two space dimensions

To define the RKDG method, we first discretize (1.1) in space using the
discontinuous Galerkin method. For simplicity, we do that for u being a scalar
(m = 1). If u is vector-valued, one simply proceeds in component way.

Given a triangulation Th of the domain �, we seek the approximate solution
uh(t) in the finite element space of discontinuous functions

Vk
h = {vh ∈ L∞(�) : vh|K ∈ P

k, ∀K ∈ Th}.
We multiply (1.1) by a test function v(x, y) ∈ Vk

h , integrate over cell K, and
integrate by parts:

d
dt

∫
K

u(x, y, t)v(x, y)dxdy −
∫

K
F(u) · ∇vdxdy +

∑
e∈∂K

∫
e

F(u) · ne,Kvds = 0

(2.1)
where F = ( f, g), and ne,K is the outward unit normal to the edge e. The
volume integral term

∫
K F(u) · ∇vdxdy can be computed either exactly or by a

numerical quadrature of sufficiently high order of accuracy. The line integral in
(2.1) is typically discretized by a Gaussian quadrature with sufficient accuracy

∫
e

F(u) · ne,Kvds ≈ |e|
q∑

l=1

ωl F(u(Gl, t)) · ne,Kv(Gl)

where F(u(Gl, t)) · ne,K is replaced by a monotone numerical flux. In this
paper, we use the simple Lax-Friedrichs flux

F(u(Gl, t))·ne,K ≈ 1
2

[
(F(u−(Gl, t))+F(u+(Gl, t)))·ne,K−α(u+(Gl, t)−u−(Gl, t))

]

where α is taken as an upper bound for the eigenvalues of the Jacobian in the
direction of ne,K, and u− and u+ are the values of u inside and outside the cell
K at the Gaussian point Gl.
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448 H. Zhu, J. Qiu

The semidiscrete scheme (2.1) is an ODE system. One discretizes it using
the total variation diminishing (TVD) Runge-Kutta time discretization intro-
duced in [19], which completes the definition of RKDG method.

3 Algorithm and implementation details

In this section we give the two-dimensional h-adaptive algorithm along with
its implementation details. We extend the one-dimensional h-adaptive RKDG
method in [22] to the two-dimensional case. The idea is similar for the two-
dimensional case. We still use the troubled-cell indicators to identify the
troubled cells and adapt the mesh by refining the troubled cells and coarsening
the others. But there is a big difference: hanging nodes are inevitable in the
two-dimensional local mesh refinement.

Note that we have not imposed any restrictions to the triangulation Th. In
fact, the RKDG procedure described in Section 2 is totally consistent with
irregular meshes, including meshes with hanging nodes. In this paper we adopt
rectangular meshes. So we restrict Th to rectangular mesh with hanging nodes
permitted, and restrict � to a domain that can be partitioned into uniform
rectangles.

Although the main idea of the method for two-dimensional case is similar
to that for one-dimensional case, the extension of the implementation of the
method to two-dimensional case is nontrivial because of the complexity of the
adaptive mesh with hanging nodes. In what follows we first give the algorithm
and then discuss the implementation issues.

3.1 Algorithm

The following flowchart illustrates the two-dimensional h-adaptive RKDG
method.

ALGORITHM Given the maximum refinement level LEV and the final
time T,

• Step 1. Partition the domain into uniform rectangles, compute the degrees
of freedom {u(l)

K (t0)} from the initial data u0(x, y), and set all cells’ initial
mesh level {levK(t0)} to be 0.

• Step 2. Suppose we have known the mesh Th(tn), the mesh level {levK(tn)}
and the degrees of freedom {u(l)

K (tn)} at time level tn. Do the troubled-cell
indicator procedure, mark every cell as a troubled cell or an untroubled
cell.

– For a troubled cell K, if its mesh level levK(tn) = LEV, do nothing.
If levK(tn) < LEV, divide it into four uniform rectangles and increase
the four new cells’ mesh level by one.

– For four untroubled cells which come from one dividing at some earlier
time level, merge them and decrease the new cell’s mesh level by one.
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Now we get the new mesh Th(tn+1) and the corresponding new mesh level
{levK(tn+1)}.

• Step 3. Using L2 projection, project the degrees of freedom {u(l)
K (tn)} on the

mesh Th(tn) to the new mesh Th(tn+1).
• Step 4. Evolve the solution from tn to tn+1 by the RKDG procedure and

get {u(l)
K (tn+1)} on the mesh Th(tn+1).

• Step 5. If tn+1 < T, go to Step 2.

3.2 Basis and L2 projection

In order to simplify the implementation and calculation, we form the following
orthogonal basis for Vk

h

v i(i + 1)

2
+ j

(x, y) = Wi− j(x)W j(y), i = 0, . . . , k, j = 0, . . . , i,

which are tensor products of one-dimensional orthogonal basis of Legendre
polynomials

⎧⎪⎨
⎪⎩

W0(x) = 1,

Wl(x) = 1
2ll!

d l(x2 − 1)l

dxl
, l > 0.

Then the local orthogonal basis over cell K is given by

v
(K)

l (x, y) = vl

(
2(x − xK)

�xK
,

2(y − yK)

�yK

)
, l = 0, ..., Qk,

in which Qk = k(k + 3)/2, (xK, yK) is the center of rectangle K, and �xK and
�yK are lengths of K’s sides in the direction of x and y respectively. Now the
numerical solution uh(x, t) in the space Vk

h can be expressed as

uh(x, y, t)|K =
Qk∑
l=0

u(l)
K (t)v(K)

l (x, y) (3.1)

where u(l)
K (t)(l = 0, ..., Qk) are the degrees of freedom. Particularly, u(0)

K (t) is
the cell average of uh over K.

Let us now deduce the formulas of L2 projection. Suppose we have already
known uh on mesh Th(tn), and we need to determine the degrees of freedom
u(l)

K′(tn)(l = 0, ..., Qk) in the new cell K′ ∈ Th(tn+1). Let u
′
h denote the L2

projection of uh, it should satisfy the following equation

∫
K′

u
′
h|K′v

(K′)
l (x, y)dxdy =

∫
K′

uhv
(K′)
l (x, y)dxdy, l = 0, ..., Qk.
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Represent u
′
h|K′ using (3.1) and change the integral variables to get

u(l)
K′(tn) = 4

bl�xK′�yK′

∫
K′

uhv
(K′)
l (x, y)dxdy, l = 0, . . . , Qk (3.2)

where

bl =
∫ 1

−1

∫ 1

−1
(vl(x, y))2dxdy, l = 0, . . . , Qk

are constants. For uh is a piecewise polynomial, the integral in (3.2) can be
computed exactly.

Now we are ready to give the formulas of L2 projection. When four cells
K1, K2, K3, K4 are merged to a new cell K′ (see the left sketch in Fig. 1),
the new degrees of freedom computed by (3.2) are as follows when k = 2 (for
simplicity we drop the time variable).

u(0)

K′ = 1
4

(
u(0)

K1
+ u(0)

K2
+ u(0)

K3
+ u(0)

K4

)
,

u(1)

K′ = 3
8

(
−u(0)

K1
+ u(0)

K2
− u(0)

K3
+ u(0)

K4

)
+ 1

8

(
u(1)

K1
+ u(1)

K2
+ u(1)

K3
+ u(1)

K4

)
,

u(2)

K′ = 3
8

(
−u(0)

K1
− u(0)

K2
+ u(0)

K3
+ u(0)

K4

)
+ 1

8

(
u(2)

K1
+ u(2)

K2
+ u(2)

K3
+ u(2)

K4

)
,

u(3)

K′ = 5
16

(
−u(1)

K1
+ u(1)

K2
− u(1)

K3
+ u(1)

K4

)
+ 1

16

(
u(3)

K1
+ u(3)

K2
+ u(3)

K3
+ u(3)

K4

)
,

u(4)

K′ = 9
16

(
u(0)

K1
− u(0)

K2
− u(0)

K3
+ u(0)

K4

)
+ 3

16

(
−u(1)

K1
− u(1)

K2
+ u(1)

K3
+ u(1)

K4

)

+ 3
16

(
−u(2)

K1
+ u(2)

K2
− u(2)

K3
+ u(2)

K4

)
+ 1

16

(
u(4)

K1
+ u(4)

K2
+ u(4)

K3
+ u(4)

K4

)
,

u(5)

K′ = 5
16

(
−u(2)

K1
− u(2)

K2
+ u(2)

K3
+ u(2)

K4

)
+ 1

16

(
u(5)

K1
+ u(5)

K2
+ u(5)

K3
+ u(5)

K4

)
.

For k = 1, only the first three formulas are needed.

merge divide

K1 K2

K3 K4

K1 K2

K3 K4

K K

Fig. 1 Sketches of merging (left) and dividing (right) in the adaptive mesh
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When a cell K is divided into four subcells K
′
1, K

′
2, K

′
3, K

′
4 (see the right

sketch in Fig. 1), the new degrees of freedom for k = 2 can be computed by
setting

K
′
1 : K′ → K

′
1, λ1x = −1/4, λ1y = −1/4, λ2x = 1/2, λ2y = 1/2,

K
′
2 : K′ → K

′
2, λ1x = 1/4, λ1y = −1/4, λ2x = 1/2, λ2y = 1/2,

K
′
3 : K′ → K

′
3, λ1x = −1/4, λ1y = 1/4, λ2x = 1/2, λ2y = 1/2,

K
′
4 : K′ → K

′
4, λ1x = 1/4, λ1y = 1/4, λ2x = 1/2, λ2y = 1/2

in

u(0)

K′ = u(0)

K + 2λ1xu(1)

K + 2λ1yu(2)

K +
(

6λ2
1x + 1

2
λ2

2x − 1
2

)
u(3)

K

+4λ1xλ1yu(4)

K +
(

6λ2
1y + 1

2
λ2

2y − 1
2

)
u(5)

K ,

u(1)

K′ = λ2x

(
u(1)

K + 6λ1xu(3)

K + 2λ1yu(4)

K

)
,

u(2)

K′ = λ2y

(
u(2)

K + 2λ1xu(4)

K + 6λ1yu(5)

K

)
,

u(3)

K′ = λ2
2xu(3)

K ,

u(4)

K′ = λ2xλ2yu(4)

K ,

u(5)

K′ = λ2
2yu(5)

K (3.3)

where

λ1x = xK′ − xK

�xK
, λ2x = �xK′

�xK
,

λ1y = yK′ − yK

�yK
, λ2y = �yK′

�yK
.

For k = 1, one just sets u(3)

K = u(4)

K = u(5)

K = 0 in (3.3).

3.3 Solution reconstruction

For solving conservation laws with strong shocks in the solutions, a nonlinear
limiter is required in the RKDG method to detect discontinuities and control
spurious oscillations near such discontinuities. The limiter is composed of two
parts: one is to detect the discontinuous regions, the other is the solution
reconstruction which is to control the oscillations. Similar to [22], in this paper
troubled-cell indicators are used to detect the discontinuous regions as the first
part of limiter, and are also used to control mesh adaptation.

For the second part of limiter, the one-dimensional WENO (weighted
essentially nonoscillatory ) type reconstruction described in [22] is hard to
be extended for our two-dimensional algorithm because of the complexity of
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452 H. Zhu, J. Qiu

the two-dimensional adaptive mesh with hanging nodes. Specifically, different
cells may have different numbers of neighbors, different neighbors of a cell
may have different sizes and a cell may have different neighbors at different
time levels. The mesh varies not only in time, but also in space. And WENO
methodology is mesh dependent, which is why it is hard for us to design
inexpensive WENO based solution reconstruction. However, we find an easy
way to solve this problem. If a cell K needs solution reconstruction, we build
a local uniform mesh which consists of (2k + 1) × (2k + 1) cells with K in the
center. See an example in Fig. 2. We use these imaginary cells instead of the
real cells to reconstruct the solution in K. Since the imaginary local mesh is
uniformly rectangular, the WENO solution reconstruction introduced by Qiu
and Shu in [16] can be applied directly. The only problem left is to compute
the cell averages in the imaginary local mesh. This can be done easily for we
have already got the L2 projection formula (3.2).

Since both of the initial mesh and the imaginary local mesh are uniformly
rectangular, a cell K̃ in the imaginary local mesh coincides with (i) a real
cell (denoted by K), or (ii) a subcell of a real cell, or (iii) a union of several
real cells (denoted by K1, . . . , Km). In case (i), the cell averages of K̃ are
equal to the cell averages of K. In case (ii), the cell averages of K̃ can be
computed by the first formula in (3.3). In case (iii), from (3.2) we can derive

u(0)

K̃
=

(∑m
i=1 u(0)

Ki
SKi

)
/SK̃ where SKi and SK̃ denote the area of Ki and K̃

respectively.

3.4 Troubled-cell indicators

Qiu and Shu gave a considerably detailed review of various troubled-cell
indicators in [15]. These troubled-cell indicators were used by us in [22] to
design the one-dimensional h-adaptive RKDG method, and we compared the
performance of these indicators. The numerical tests in [22] showed that the

Fig. 2 The imaginary local
uniform mesh of K (dotted
lines) when k = 2

K
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indicator based on the shock-detection technique introduced by Krivodonova
et al. [13] (we termed it as KXRCF indicator) was the most efficient and
reliable. In this paper, we would like to focus on this indicator.

The KXRCF troubled-cell indicator works in the following way. Partition
the boundary of a cell K into two portions ∂K− and ∂K+, where the flow
is into (	v · 	n < 0, 	n is the normal vector to ∂K) and out of (	v · 	n > 0) cell K,
respectively. Cell K is identified as a troubled cell, if∣∣∫

∂K−(uh|K − uh|Kn)ds
∣∣

h
k+1

2
K

∣∣∂K−∣∣‖uh|K‖
> 1

where hK is the radius of the circumscribed circle in cell K, Kn is the neighbor
of K on the side of ∂K− and the norm is based on the maximum norm taken at
the integration quadrature points.

4 Numerical results

In this section we provide a series of numerical examples to illustrate the
good behavior of the two-dimensional h-adaptive RKDG method described
in Section 3. Attention has not been paid to the issue of time discretization
efficiency, so global time steps are used in Runge-Kutta method, which are
proportional to the smallest cell size at each time level. Study of local time-
stepping scheme for the method is the subject of future work.

In all examples, we only plot the results obtained with a particular choice of
initial mesh and with LEV = 4 because of space limitation. We have verified
with the aid of successive refinements of initial mesh, that in all cases, the
approximations are numerically convergent.

Example 4.1 In this first example we consider the nonlinear scalar Burgers
equation in two dimensions

ut +
(

u2

2

)
x
+

(
u2

2

)
y

= 0

with the following initial conditions (ICs)

IC-1: u(x, y, 0) =

⎧⎪⎪⎨
⎪⎪⎩

0.1, x > 0, y > 0,

2.5, x < 0, y > 0,

1.1, x < 0, y < 0,

1.5, x > 0, y < 0,

IC-2: u(x, y, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1.1, x > 0, y > 0,

3.1, x < 0, y > 0,

2.1, x < 0, y < 0,

0.1, x > 0, y < 0.
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454 H. Zhu, J. Qiu

We plot the contours and mesh at t = 0.8 in Figs. 3 and 4. These figures
clearly indicate that almost all the mesh refinements are at the discontinuities
and our adaptive strategy is effective in identifying and following important
features such as shocks. We use very few cells and get very sharp shocks.

Example 4.2 Two-dimensional Euler equations for Riemann problem [2, 14].
We solve the two-dimensional Euler equations of gas dynamics

∂

∂t

⎛
⎜⎜⎝

ρ

ρu
ρv

E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv

u(E + p)

⎞
⎟⎟⎠ + ∂

∂y

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p
v(E + p)

⎞
⎟⎟⎠ = 0 (4.1)

x

y

-1 0 1 2 3
-1

0

1

2

3

x

y

-1 0 1 2 3
-1

0

1

2

3

x

y

-1 0 1 2 3
-1

0

1

2

3

x

y

-1 0 1 2 3
-1

0

1

2

3

Fig. 3 Burgers equation for Riemann problem with IC-1, 40×40 initial mesh, 15 equally spaced
contours (top) from 0.249 to 2.351 and the mesh (bottom) at t = 0.8, k = 1 (left) and k = 2 (right)
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x

y

-1 0 1 2 3
-1

0

1

2

3

x

y

-1 0 1 2 3
-1

0

1

2

3

x

y

-1 0 1 2 3
-1

0

1

2

3

x

y

-1 0 1 2 3
-1

0

1

2

3

Fig. 4 Burgers equation for Riemann problem with IC-2, 40×40 initial mesh, 15 equally spaced
contours (top) from 0.286 to 2.913 and the mesh (bottom) at t = 0.8, k = 1 (left) and k = 2 (right)

in which ρ, E and p represent the density, total energy and pressure, and u
and v are the velocity components in the x- and y-directions, respectively. The
system is completed by the equation of state

p = (γ − 1)

(
E − 1

2
ρ

(
u2 + v2))

with gas constant γ = 1.4. The initial conditions are:

IC-1: (ρ, u, v, p)T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.5313, 0, 0, 0.4)T, x > 0.5, y > 0.5,

(1, 0.7276, 0, 1)T, x < 0.5, y > 0.5,

(0.8, 0, 0, 1)T, x < 0.5, y < 0.5,

(1, 0, 0.7276, 1)T, x > 0.5, y < 0.5,
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IC-2: (ρ, u, v, p)T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.1, 0, 0, 1.1)T, x > 0.5, y > 0.5,

(0.5065, 0.8939, 0, 0.35)T, x < 0.5, y > 0.5,

(1.1, 0.8939, 0.8939, 1.1)T, x < 0.5, y < 0.5,

(0.5065, 0, 0.8939, 0.35)T, x > 0.5, y < 0.5.

We show the results in Figs. 5 and 6. We can see from the figures that in
all cases, fine meshes (whose mesh levels are greater than zero) are used at or
near the discontinuities while coarsest meshes (whose mesh levels are equal to
zero) are used in smooth regions. The meshes fulfill our expectations and the
shocks are well resolved.

Example 4.3 Forward facing step problem [20]. This is a standard test problem
for high resolution schemes. The problem starts with a uniform, right-going
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Fig. 5 Euler equations for Riemann problem with IC-1, 80×80 initial mesh, 30 equally spaced
density contours (top) from 0.54 to 1.70 and the mesh (bottom) at t = 0.25, k = 1 (left) and k = 2
(right)
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Fig. 6 Euler equations for Riemann problem with IC-2, 80×80 initial mesh, 30 equally spaced
density contours (top) from 0.505 to 1.922 and the mesh (bottom) at t = 0.25, k = 1 (left) and
k = 2 (right)

Mach 3 flow in a wind tunnel of 3 units long and 1 unit wide which contains a 0.2
units high step located 0.6 units from the left-hand end of the tunnel. Reflecting
boundary conditions are used along the walls of the tunnel, and inflow and
outflow boundary conditions are applied on the left and right boundaries,
respectively. The problem is run until a simulation time of 4.0.

The corner of the step is a singularity, which leads to an erroneous entropy
layer at the downstream bottom wall, as well as a spurious Mach stem at the
bottom wall. But we do not modify our scheme near the corner because the
artifacts will decrease when the corner singularity is better resolved [7], which
can be automatically achieved by the adaptive algorithm in this paper. See the
numerical results in Fig. 7 as an illustration. The figure also shows that the
shocks are captured very well, and so is the upper slip line from the triple point
in the k = 2 case.

Example 4.4 Shock passing a backward facing corner (diffraction). This prob-
lem has been used in [7, 21]. In the computation, negative density and/or
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Fig. 7 Forward facing step problem, 120×40 initial mesh, 30 equally spaced density contours from
0.32 to 6.15 and the mesh at t = 4, k = 1 (upper two) and k = 2 (lower two)

pressure may appear below and to the right of the corner. We use the same
positivity correction procedure as in [7] to avoid blow-ups. The computational
domain is the union of [0, 1] × [6, 11] and [1, 13] × [0, 11]. A pure right-
moving shock of Mach 5.09 is initially positioned at x = 0.5, 6 < y < 11. The
undisturbed air ahead of the shock has a density of 1.4 and a pressure of
1. The boundary conditions are inflow at x = 0, 6 < y < 11, reflective at the
walls 0 < x < 1, y = 6 and x = 1, 0 < y < 6, and outflow at the remainder. The
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density contours and the mesh at t = 2.3 are presented in Fig. 8. We observe
from the figures that the adaptive method generates finest mesh along the
shocks and uses coarse mesh in the smooth region. As a result, shocks are
captured sharply and efficiently.

Example 4.5 Double Mach reflection problem [20]. This is again a standard
test problem for high resolution schemes. We use exactly the same setup as
in [20]. This problem is governed by the two-dimensional Euler equations
(4.1). The computational domain is [0, 4] × [0, 1], although only part of it,
[0, 3] × [0, 1] is shown. The reflecting wall lies at the bottom of the compu-
tational domain starting from x = 1

6 . Initially a right-moving Mach 10 shock is
positioned at x = 1

6 , y = 0, making a 60◦ angle with the x-axis. The undisturbed
air ahead of the shock has a density of 1.4 and a pressure of 1. On the left
and right boundaries, the inflow and outflow boundary conditions are used,
respectively. For the bottom boundary, the reflective boundary condition is
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Fig. 8 Shock diffraction problem, 130×110 initial mesh, 20 equally spaced density contours (top)
from 0.066227 to 7.0668 and the mesh (bottom) at t = 2.3, k = 1 (left) and k = 2 (right)

Author's personal copy



460 H. Zhu, J. Qiu

applied at the wall and the exact post-shock condition is used for the rest.
Boundary conditions at the top correspond to the exact motion of a Mach 10
shock. The problem is run till a simulation time of 0.2 is reached.

We present the density contours and the mesh in Fig. 9, and show the more
detailed zoomed-in figures around the double Mach stem in Fig. 10. Again
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Fig. 9 Double Mach reflection problem, 240×60 initial mesh, 30 equally spaced density contours
from 1.5 to 22.7 and the mesh at t = 0.2, k = 1 (upper two) and k = 2 (lower two)
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Fig. 10 Double Mach reflection problem, zoomed-in region around the double Mach stem,
240×60 initial mesh, 30 equally spaced density contours (top) from 1.5 to 22.7 and the mesh
(bottom) at t = 0.2, k = 1 (left) and k = 2 (right)

we can see that the shocks are well captured. When k = 2, fine details of the
complicated flow structure under the triple Mach stem are captured too.

To gain a better understanding of the effectiveness of the adaptive strategy
in this work, for all the cases above we show the corresponding mesh data
in Table 1, including (a) N0: number of initial cells; (b) T DT: total dividing

Table 1 Mesh data

Case N0 k T DT NT N̄ PR

Example 4.1, IC-1 1600 1 4.4E+4 8104 8366.5 2.04
2 5.9E+4 9814 10024.8 2.45

Example 4.1, IC-2 1600 1 6.3E+4 5836 6595.3 1.61
2 1.3E+5 7165 9795.8 2.39

Example 4.2, IC-1 6400 1 4.9E+5 51613 42980.6 2.62
2 4.1E+6 119092 95290.1 5.82

Example 4.2, IC-2 6400 1 6.0E+5 64450 50569.1 3.09
2 3.2E+6 142348 93856.8 5.73

Example 4.3 4032 1 2.3E+6 46515 45698.5 4.43
2 6.2E+7 160785 123959.2 12.01

Example 4.4 13700 1 1.4E+6 59657 40664.4 1.16
2 4.8E+6 109952 62337.4 1.78

Example 4.5 14400 1 2.4E+6 79227 59661.5 1.62
2 2.5E+7 257298 260783.7 7.07
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times; (c) NT : number of cells at the final time level; (d) N̄: average number
of cells, defined by N̄ = (

∑T OT
q=0 Nq)/T OT where Nq is the number of cells at

the q-th time level and T OT is the total number of time levels; and (e) PR:
the percentage ratio of N̄ to the number of cells if a fully refined mesh was
used, i.e. PR = 100N̄/(4LEV N0). Total merging times T MT is not shown in
the table as it can be calculated by T MT = T DT − (NT − N0)/3.

In the table we can see that all the values of PR are far less than 100, which
means that our adaptive algorithm needs much less cells than the one adopting
fixed mesh provide that they produce comparable solutions. As a result, our
adaptive algorithm has the advantage of saving the computational cost and
improving the solution quality.

5 Concluding remarks

In this paper, the one-dimensional h-adaptive RKDG method using troubled-
cell indicators developed in [22] is extended to the two-dimensional case.
The idea of the extension is straightforward, and we lay the emphasis on
the numerical implementations. Numerical results of classical test problems
show the capability of our adaptive method in identifying and following the
important features such as shocks and complicated structures.
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