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Abstract. In this paper, we investigate using the adaptive Runge-Kutta discontinuous
Galerkin (RKDG) methods with the modified ghost fluid method (MGFM) in conjunc-
tion with the adaptive RKDG methods for solving the level set function to simulate the
compressible two-medium flow in one and two dimensions. A shock detection tech-
nique (KXRCF method) is adopted as an indicator to identify the troubled cell, which
serves for further numerical limiting procedure which uses a modified TVB limiter
to reconstruct different degrees of freedom and an adaptive mesh refinement proce-
dure. If the computational mesh should be refined or coarsened, and the detail of the
implementation algorithm is presented on how to modulate the hanging nodes and
redefine the numerical solutions of the two-medium flow and the level set function on
such adaptive mesh. Extensive numerical tests are provided to illustrate the proposed
adaptive methods may possess the capability of enhancing the resolutions nearby the
discontinuities inside of the single medium flow region and material interfacial vicini-
ties of the two-medium flow region.
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1 Introduction

In general, algorithms proposed for solving the two-medium compressible flow consist
of two parts: One is to treat the material interface accurately and the other is the method
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for simulating the single medium fluid precisely. Kapila et al. [13] proposed an important
class of five-equation models to solve such two-medium problem. And then, Kreeft and
Koren [15] provided a new formulation based on Kapila’s model [13] for inviscid, non-
heat-conducting and compressible two-fluid flow. Some other references of five-equation
models for solving two-medium flow were found in [2,21,22,29]. A relatively crucial dif-
ficulty for simulating the compressible two-medium flow is the treatment of the moving
material interfaces and their immediate vicinities. In 1999, Fedkiw et al. [10] provided
a ghost fluid method (GFM) to treat the two-medium flow simulations. Essentially, the
GFM makes the interface ”invisible” during calculation by defining the ghost cell and
the ghost fluid. There are subsequent variants of the original GFM with other applica-
tions [1, 14]. But it is precisely the manner of treatment of the single medium across the
interface in the GFM that may cause numerical inaccuracy when there is a strong shock
wave interaction with the interface. Liu et al. presented a modified GFM (MGFM) [18–20]
to overcome this drawback of the original GFM.

On the other hand, we would like to mention the developing history of the famous
RKDG method which is used for solving the single medium fluid. In 1973, Reed and
Hill introduced the first discontinuous Galerkin (DG) method [27] in the framework of
neutron transport. A major development of the DG method was carried out by Cockburn
and Shu in a series of papers [4–8]. They employed the explicit, total variation diminish-
ing or strong stability preserving high order Runge-Kutta time discretizations [32] and
DG discretization in space with exact or approximate Riemann solvers as interface fluxes
and total variation bounded (TVB) limiter [30] to achieve non-oscillatory properties for
strong shocks. In [23, 24, 37], Qiu et al. investigated using DG methods with GFM and
MGFM for two-medium flow simulations.

As we known, the solutions of the two-medium flow might have numerous local
fluid structures including shock waves, contact discontinuities and rarefaction waves. So
we would like to use mesh refining and coarsening procedures to assemble cells in the
regions covering such fluid structures in an adaptive manner. The RKDG methods are
the finite element methods and easy to deal with an adaptive strategy since the mesh
refining and coarsening procedures can be applied without taking into account the con-
tinuity restrictions through cell’s interface (in single medium) or material interface (in
two-medium). Flaherty and his cooperators proposed a series of excellent works [3,9,28]
on studying parallel and adaptive finite element methods for simulating conservation
laws in single medium flow. Also, recently, Zhu and Qiu gave the procedures of the
adaptive RKDG methods for solving hyperbolic conservation laws in [35, 36].

In this paper, following the study of [24], we would like to investigate using the adap-
tive RKDG methods with the MGFM for solving the two-medium flow in one and two
dimensions. A shock detection technique called KXRCF method [16] is applied as a trou-
bled cell indicator to identify the cells where the mesh should be refined or coarsened,
and the detail of implementation procedures is presented on how to refine or coarse the
adaptive mesh with hanging nodes and redefine numerical solutions of the two-medium
flow and the level set function on such mesh. The organization of this paper is as follows:
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in Section 2 and Section 3, we review and use the RKDG methods with MGFM for solving
the two-medium flow, adopt the RKDG methods [12] for solving the level set function,
give the algorithms of advancing the adaptive procedures and redefine solutions of the
flow and level set function on the mesh in detail. Extensive numerical tests for simulating
the two-medium problems are present in Section 4 to verify these approaches’ viabilities.
Concluding remarks are then given in Section 5.

2 RKDG method with MGFM for two-medium flow simulations

in 1D

2.1 RKDG method in 1D

In this section, we consider the one dimensional hyperbolic conservation laws:

∂

∂t
U+

∂

∂x
f (U)≡ ∂

∂t





ρ
ρµ
E



+
∂

∂x





ρµ
ρµ2+p

µ(E+p)



=0. (2.1)

Here, ρ is the density, µ is the x-direction velocity, p is the pressure and E (total energy)
≡ ρe+ 1

2 ρµ2, where e is the specific internal energy per unit mass. For closure of the
system, the equation of state (EOS) is required. In this paper, the fluid is assumed to be
inviscid, non-heat-conducting and compressible. The γ-law used for gases is given as:

ρe=
p

γ−1
, (2.2)

and Tait’s EOS used for the water medium [10, 18] is expressed as:

ρe=
p+NB̄

N−1
, (2.3)

where B̄=B−A, N=7.15, A=105Pa, B=3.31×108Pa and ρ0=1000kg/m3 .

For simplicity, the original mesh is distributed into several cells Ii = [xi− ∆xi
2 ,xi+

∆xi
2 ]

with the cell sizes |Ii|=∆xi, cell centers xi, i=1,··· ,N. The DG solution as well as the test
function space is given by Vk

h ={p : p|Ii
∈Pk(Ii)} and is the polynomial space of degree at

most k on Ii. We adopt a local orthogonal basis over Ii, {v
(i)
l (x),l=0,1,··· ,k}, such as:

v
(i)
0 (x)=1, v

(i)
1 (x)=

x−xi

∆xi
, v

(i)
2 (x)=(

x−xi

∆xi
)2− 1

12
, ··· .

Then the numerical solution Uh(x,t) can be written as Uh(x,t) = ∑
k
l=0U

(l)
i (t)v

(i)
l (x), for

x∈ Ii and the degrees of freedom U
(l)
i (t) are the moments defined by U

(l)
i (t)= 1

∫

Ii
(v

(i)
l (x))2dx
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∫

Ii
Uh(x,t)v

(i)
l (x)dx,l=0,··· ,k. In order to determine the approximate solution, we evolve

the degrees of freedom U
(l)
i (t):

d

dt
U

(l)
i (t)=− 1

∫

Ii
(v

(i)
l (x))2dx

(

−
∫

Ii

f (Uh(x,t))
d

dx
v
(i)
l (x)dx+ f̂ (Ux,−

i+1/2,Ux,+
i+1/2)v

(i)
l

(

xi+
∆xi

2

)

− f̂ (Ux,−
i−1/2,Ux,+

i−1/2)v
(i)
l

(

xi−
∆xi

2

)

)

, l=0,··· ,k, (2.4)

where Ux,±
i+1/2=Uh(xi+

∆xi
2 ,t)x,± are the left and right limits of the discontinuous solution

Uh(x,t) at the cell interface xi+
∆xi
2 , and f̂ (U−,U+) is a monotone flux for the scalar case

and an exact or approximate Riemann solver for the system. In this paper, we use a
Gauss-Lobatto quadrature formula for solving the element integral in (2.4).

Now we would like to give the way of deciding Ux,±
i+1/2 precisely. We first use the

KXRCF method [16] as an indicator to detect the ”troubled cell”. We divide the boundary
of the target cell Ii into two parts: ∂I−i and ∂I+i , where the flow is into (µ·n<0) and out
of (µ·n> 0) Ii, respectively. Then the target cell Ii is identified as the ”troubled cell” on
condition that:

|
∫

∂I−i
(Uh(x,t)|Ii

−Uh(x,t)|Iiℓ
)ds|

h
k+1

2 |∂I−i |·||Uh(x,t)|Ii
||

>1, (2.5)

where h is the radius of the circumscribed circle in Ii, Iiℓ is neighbor of Ii on side of ∂I−i .
If there are strong shocks or contact discontinuities in the troubled cell, such meth-

ods might generate spurious oscillations in this cell, and a limiter is needed to control
spurious oscillations. For the purpose of constructing the slope-limiting operator on one
dimensional adaptive mesh to deal with such difficulties and control the numerical oscil-
lations, we present the procedure which is similar to [6, 8, 25, 30] and try to specify it in

detail as follows. For the sake of clarity, we denote U
(∗)
i =U

(∗)
i (t). Consider the adaptive

mesh depicted in Fig. 1, we reconstruct the freedoms of the solution on such detected
troubled cell:

Ux,−
i+1/2=U

(0)
i +Ũi=U

(0)
i +

k

∑
l=1

U
(l)
i v

(i)
l

(

xi+
∆xi

2

)

, (2.6)

Ux,+
i−1/2=U

(0)
i − ˜̃Ui=U

(0)
i −

(

−
k

∑
l=1

U
(l)
i v

(i)
l

(

xi−
∆xi

2

)

)

. (2.7)

These are modified by the standard minmod limiter:

Ũ
(mod)
i =m

(

Ũi,α1
xi+

∆xi
2 −xi

xi1 −xi
(U

(0)
i1

−U
(0)
i ), α2

xi+
∆xi
2 −xi

xi−xi2

(U
(0)
i −U

(0)
i2

)

)

,

˜̃U
(mod)
i =m

(

˜̃Ui,α1
xi−(xi− ∆xi

2 )

xi1 −xi
(U

(0)
i1

−U
(0)
i ), α2

xi−(xi− ∆xi
2 )

xi−xi2

(U
(0)
i −U

(0)
i2

)

)

,
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Ii2 Ii Ii1

xi2 xi xi1

Figure 1: The troubled cell Ii and its two neighboring cells in 1D.

where α1=2, α2=2 and m is given by

m(a1,··· ,an)=

{

s·min1≤j≤n |aj|, if sign(a1)= ···= sign(an)= s,
0, otherwise,

(2.8)

or the TVB modified minmod function:

m̃(a1,··· ,an)=

{

a1, if |a1|≤M∆x2
i ,

m(a1,··· ,an), otherwise,
(2.9)

where M>0 is a constant, which is depended on the problem.

Then we would like to deal with the problem of choosing the proper numerical mono-
tone flux f̂ (U−,U+) specified above. The HLLC flux (a modification of the HLL flux)
[33, 34] is used here. The HLLC flux is based on the approximate Riemann solver with
only three constant states separated by two waves while resolving the contact and shear
waves.

Finally the overall solutions for the computational domain are obtained by computing
different temporary time step for each medium flow and then choosing the smaller one as

the overall △t=minN
i=1

{CFL·∆xi

|µi|+ci

}

. And at each inner time step, the ordinary differential

equation (ODE) (2.4) Ut = L(U) is solved by using a Runge-Kutta time discretization
[31, 32], such as a total variation diminishing (TVD) Runge-Kutta method:











U(1)=Un+△tL(Un),

U(2)= 3
4Un+ 1

4 U(1)+ 1
4△tL(U(1)),

Un+1= 1
3 Un+ 2

3U(2)+ 2
3△tL(U(2)).

(2.10)

2.2 RKDG method for level set advection equation and MGFM in 1D

The level set advection equation in one dimension is

φt+µφx =0. (2.11)

If we set η=φx and H(η)=µη, (2.11) is equivalent to the conservation law:

ηt+H(η)x =0. (2.12)
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For simplicity, the mesh is specified as before. The DG solution [12] as well as the test
function space is given by Vk−1

h ={p : p|Ii
∈Pk−1(Ii)} and the polynomial space of degree

at most k−1 on the cell Ii. We adopt the same local orthogonal basis over Ii, {v
(i)
l (x),l=

0,1,··· ,k−1} as before. Then the numerical solution ηh(x,t) in the space Vk−1
h can be

written as ηh(x,t)=∑
k−1
l=0 η

(l)
i (t)v

(i)
l (x), for x∈ Ii and the degrees of freedom η

(l)
i (t) are the

moments defined by

η
(l)
i (t)=

1
∫

Ii
(v

(i)
l (x))2dx

∫

Ii

ηh(x,t)v
(i)
l (x)dx, l=0,··· ,k−1.

In order to determine the approximate solution, we evolve the degrees of freedom η
(l)
i (t):

d

dt
η
(l)
i (t)=− 1

∫

Ii
(v

(i)
l (x))2dx

(

−
∫

Ii

H(ηh(x,t))
d

dx
v
(i)
l (x)dx+Ĥ(η−

i+1/2,η+
i+1/2)v

(i)
l

(

xi+
∆xi

2

)

−Ĥ(η−
i−1/2,η+

i−1/2)v
(i)
l

(

xi−
∆xi

2

)

)

, l=0,··· ,k−1, (2.13)

where η±
i+1/2 = ηh(xi+

∆xi
2 ,t)± are the left and right limits of the discontinuous solu-

tion ηh(x,t) at the cell interface xi+
∆xi

2 . In this paper, we use the Lax-Friedrichs flux

Ĥ(η−,η+)= H( η−+η+

2 )− 1
2 α(η+−η−), where α=maxη |H′(η)| with the maximum taken

over the interval of [min(η−,η+),max(η−,η+)]. The advection equation for the level set
function is updated together with the two-medium flow and △t is same as specified in
(2.10). For solving the ODE ηt = L(η), we also use the third order TVD Runge-Kutta
method [31] in (2.10). The DG method for (2.12) is satisfied by the derivative η=φx and
this determines φ for the target cell Ii up to a constant. One way that specified in [12] to
get the missing constant is used here by requiring that:

∫

Ii

(φt+H(φx))dx=0. (2.14)

Then the numerical solution φh(x,t) in the space Vk
h can be obtained in this way. The

limiting procedure is not used to solve for such level set advection equation.
In the MGFM-based algorithm, to define the ghost fluid states, a two-medium Rie-

mann problem is defined and exactly or approximately solved to predict the interface
status (Readers can refer to [17, 20] for detailed implementation). We would like to use
the interfacial treatment via the technique of the modified ghost fluid method [18–20]
coupled to the RKDG method for the single medium flow and introduce such method
briefly as below:

The two nonlinear characteristics intersecting at the interface for (2.1) are given as:

{

dpI

dt +ρILcIL
dµI

dt =0, along dx
dt =µI+cIL,

dpI

dt −ρIRcIR
dµI

dt =0, along dx
dt =µI−cIR,

(2.15)
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where ρIL , ρIR, cIL and cIR are the density and speed of sound to the two sides of the
material interface, µI and pI are the x-direction velocity and pressure at the interface.
Then by using a discretization procedure, we get

{ pI−pIL

ρ̂IL ĉIL
+(µI−µIL)=0,

pI−pIR

ρ̂IR ĉIR
−(µI−µIR)=0,

(2.16)

where ρ̂IL ĉIL and ρ̂IR ĉIR are the approximations of ρILcIL and ρIRcIR, respectively. And
µIL, µIR, pIL and pIR can be evaluated along the different characteristic lines. Then we use
(2.16) to solve a shock impacting on the interface. Since a reflected shock is not correctly
treated by the algorithm based on the original GFM. In such a situation, we have







pI−pL

ρL
I ρL(pI−pL)/(ρ

L
I −ρL)

+(µI−µL)=0,

pI−pR

ρR
I ρR(pI−pR)/(ρ

R
I −ρR)

−(µI−µR)=0,
(2.17)

where subscript L and R represent the status behind the incident shock and the status
ahead of the transmitted shock, respectively. So we can use (2.17) to predict the interface
condition. Specifically, for an interface located between cell i and i+1 at a time step tn,
we can solve equations via iteration and predict the interface condition for evaluating at
the next time step tn+1:







pI−pn
i−1

ρL
I ρn

i−1(pI−pn
i−1)/(ρ

L
I −ρn

i−1)
+(µI−µn

i−1)=0,

pI−pn
i+2

ρR
I ρn

i+2(pI−pn
i+2)/(ρ

R
I −ρn

i+2)
−(µI−µn

i+2)=0.
(2.18)

It provides the exact solution when a shock wave is reflected and can work very well for
two-medium flow simulation.

In such a MGFM-based algorithm, the level set technique is usually employed to cap-
ture the moving interface. A band of several grid cells as ghost cells are defined in the
vicinity of the interface. At the ghost cells, ghost fluid and the real fluid co-exist. Once
the ghost fluid cells and ghost fluid are defined for each medium, we can employ the
adaptive RKDG method to solve for the single medium containing both the real fluid
and ghost fluid cells.

2.3 The algorithm of adaptive method in 1D

Step 1.1. Partition the computing field into uniform cells as Ii = [xi− ∆xi
2 ,xi+

∆xi
2 ], i =

1,··· ,N. Use the initial conditions to get the degrees of freedom U
(l)
i (t0) and φ

(l)
i (t0),

l=0,··· ,k,i=1,··· ,N. And set the adaptive mesh level Ri(t0)=0,i=1,··· ,N at first.

Step 1.2. Suppose at time tn, the degrees of freedom U
(l)
i (tn), φ

(l)
i (tn), l=0,··· ,k,i=1,··· ,N

and the adaptive mesh level Ri(tn),i=1,··· ,N are given. We apply KXRCF method as an
indicator to detect ”troubled cells”.
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Step 1.2.1. Suppose Ii0 is a ”troubled cell”: if Ri0(tn)< R, divide it into two equal size
small children cells, increase such children cells’ mesh level by 1, and redefine the degrees
of freedom of Uh(x,tn) and φh(x,tn) on these cells (specified in the following Subsection
2.5); if Ri0(tn)=R, do nothing.

Step 1.2.2. If all children cells are not identified as ”troubled cells”, merge them into their
parent cell and decrease such parent cell’s mesh level by 1, and redefine the degrees of
freedom of Uh(x,tn) and φh(x,tn) on this cell (specified in the following Subsection 2.5).

By doing so, we obtain a new adaptive mesh with different mesh level Ri(tn+1), i=
1,··· ,N.

Step 1.3. Redefine the new degrees of freedom of Uh(x,tn) and φh(x,tn) over the whole
computation region on the new adaptive mesh.

Step 1.4. Evolve the solutions of the two-medium flow and level set function from tn to
tn+1 by the methodologies specified in Subsection 2.1, Subsection 2.2 and Subsection 2.3

to obtain the degrees of freedom U
(l)
i (tn+1) and φ

(l)
i (tn+1), l=0,··· ,k,i=1,··· ,N.

Step 1.4.1. Compute the time step ∆t.

Step 1.4.2. Obtain the new location of the material interface via computing the level set
function by using the RKDG methods [12].

Step 1.4.3. Compute for different single medium flow by using RKDG methods coupled
with MGFM which offers the technique of interface treatment.

Step 1.4.4. Obtain the new time level’s solutions according to the new location of the
interface.

Step 1.5. If tn+1 is less than the final time, go to Step 1.2..

2.4 Redefine Uh(x,t) and φh(x,t) on the adaptive mesh

If the flagged cell A (”troubled cell”) is restricted into two smaller cells B1 and B2, which
are depicted in Fig. 2, the numerical conservative variable of Uh(x,t) and the numerical
level set function φh(x,t) denoted on cell A should be remapped to the new cells of B1

and B2. The methodology can be expressed as:

(U
(0)
Bj

(t),··· ,U(k)
Bj

(t))T =M−1(b0,··· ,bk)
T, M=(msq)(k+1)×(k+1),

msq=
∫

IBj

v
(A)
s (x)v

(Bj)
q (x)dx, bs =

∫

IBj

Uh
A(x,t)v

(Bj)
s (x)dx,

(φ
(0)
Bj

(t),··· ,φ(k)
Bj
(t))T =M−1(b0,··· ,bk)

T, bs=
∫

IBj

φh
A(x,t)v

(Bj)
s (x)dx, s,q=0,··· ,k, j=1,2.

If the children cells B1 and B2 are not detected as ”troubled cells” any more, and
should be merged into the parent cell A, the numerical conservative variable of Uh(x,t)
and the numerical level set function φh(x,t) denoted on A should be remapped from
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A

B1 B2

Figure 2: The topological map of parent and children cells in 1D.

those variables specified on cells B1 and B2. And the methodology adopted here can be
expressed as below:

(U
(0)
A (t),··· ,U(k)

A (t))T =M−1(b0,··· ,bk)
T, M=(msq)(k+1)×(k+1),

msq=
∫

IA

v
(A)
s (x)v

(A)
q (x)dx, bs =

2

∑
j=1

∫

IBj

Uh
Bj
(x,t)v

(A)
s (x)dx,

(φ
(0)
A (t),··· ,φ(k)

A (t))T =M−1(b0,··· ,bk)
T, bs =

2

∑
j=1

∫

IBj

φh
Bj
(x,t)v

(A)
s (x)dx, s,q=0,··· ,k.

3 RKDG method with MGFM for two-medium flow simulations

in 2D

3.1 RKDG method in 2D

In this section, we consider the two dimensional hyperbolic conservation laws:

∂

∂t
U+

∂

∂x
f (U)+

∂

∂y
g(U)≡ ∂

∂t









ρ
ρµ
ρν
E









+
∂

∂x









ρµ
ρµ2+p

ρµν
µ(E+p)









+
∂

∂x









ρν
ρµν

ρν2+p
ν(E+p)









=0. (3.1)

Here, ρ is the density, µ is the x-direction velocity, ν is the y-direction velocity, p is the
pressure and E (total energy)≡ρe+ 1

2 ρ(µ2+ν2), where e is the specific internal energy per
unit mass.

It is assumed that the mesh is distributed into several cells Ii=[xi− ∆xi
2 ,xi+

∆xi
2 ]×[yi−

∆yi

2 ,yi+
∆yi

2 ], with cell sizes |Ii|=∆xi∆yi and cell centers (xi,yi), i=1,··· ,N. We now give

the new test function space Vk
h ={p:p|Ii

∈Pk(Ii)} as the polynomial space of degree at most

k on the cell Ii. We adopt a local orthogonal basis over Ii, {v
(i)
l (x,y), l=0,1,··· ,K; K= 1

2(k+

1)(k+2)−1}, such as: v
(i)
0 (x,y)=1, v

(i)
1 (x,y)= x−xi

∆xi
, v

(i)
2 (x,y)= y−yi

∆yi
, v

(i)
3 (x,y)=( x−xi

∆xi
)2− 1

12 ,

v
(i)
4 (x,y)= (x−xi)(y−yi)

∆xi∆yi
, v

(i)
5 (x,y)= ( y−yi

∆yi
)2− 1

12 ,··· . Then the numerical solution Uh(x,y,t)
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in the space Vk
h can be written as Uh(x,y,t) =∑

K
l=0U

(l)
i (t)v

(i)
l (x,y), for (x,y)∈ Ii and the

degrees of freedom U
(l)
i (t) are the moments defined by

U
(l)
i (t)=

1
∫

Ii
(v

(i)
l (x,y))2dxdy

∫

Ii

Uh(x,y,t)v
(i)
l (x,y)dxdy, l=0,··· ,K.

In order to determine the approximate solution, we evolve the degrees of freedom U
(l)
i (t):

d

dt
U

(l)
i (t)=− 1

∫

Ii
(v

(i)
l (x,y))2dxdy

{

−
∫

Ii

f (Uh(x,y,t))
∂

∂x
v
(i)
l (x,y)dxdy

−
∫

Ii

g(Uh(x,y,t))
∂

∂y
v
(i)
l (x,y)dxdy+

∫ yi+
∆yi

2

yi−
∆yi

2

[

f (Uh(xi+
∆xi

2
,y,t))v

(i)
l

(

xi+
∆xi

2
,y
)

− f
(

Uh
(

xi−
∆xi

2
,y,t
))

v
(i)
l

(

xi−
∆xi

2
,y
)

]

dy

+
∫ xi+

∆xi
2

xi−
∆xi

2

[

g
(

Uh
(

x,yi+
∆yi

2
,t
))

v
(i)
l

(

x,yi+
∆yi

2

)

−g
(

Uh
(

x,yi−
∆yi

2
,t
))

v
(i)
l

(

x,yi−
∆yi

2

)

]

dx

}

, l=0,··· ,K. (3.2)

In (3.2) the second and third integral terms can be computed either exactly or by
a suitable numerical quadrature accurate to at least min{O(∆x2k+2

i ), O(∆y2k+2
i )}. The

fourth and fifth integral terms can also be computed by suitable numerical quadratures,
but the flux functions f and g would need to be replaced by monotone numerical fluxes
(or approximate Riemann solvers in the system case) because they are computed at cell
interfaces in these four terms. The semi-discrete scheme (3.2) is discretized in time by a
nonlinearly stable Runge-Kutta time discretization (2.10).

For the purpose of constructing the slope-limiting operator on two dimensional adap-
tive mesh, we also present the procedure which is similar to [6,8,25,30] and try to specify
it in detail as follows. When it is the ordinary adaptive mesh, the cell Ii has some dif-
ferent size neighboring cells at the left side (Ilℓ , ℓ= 1,··· ,nl), right side (Irℓ , ℓ= 1,··· ,nr),
bottom side (Ibℓ , ℓ=1,··· ,nb) and top side (Itℓ , ℓ=1,··· ,nt), respectively. These formulas
are rewritten as:

Ũ
x,(mod)
i =m

(

Ũx
i ,min

(

α1
xi+

∆xi
2 −xi

xr1
−xi

,··· ,αnr

xi+
∆xi
2 −xi

xrnr
−xi

)(

∑
nr

ℓ=1U
(0)
rℓ |Irℓ |

∑
nr

ℓ=1 |Irℓ |
−U

(0)
i

)

,

min

(

α1
xi+

∆xi
2 −xi

xi−xl1

,··· ,αnl

xi+
∆xi
2 −xi

xi−xlnl

)(

U
(0)
i −

∑
nl

ℓ=1U
(0)
lℓ

|Ilℓ |
∑

nl

ℓ=1 |Ilℓ |

)

)

,
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˜̃U
x,(mod)
i =m

(

˜̃Ux
i ,min

(

α1
xi−(xi− ∆xi

2 )

xr1
−xi

,··· ,αnr

xi−(xi− ∆xi
2 )

xrnr
−xi

)(

∑
nr

ℓ=1U
(0)
rℓ |Irℓ |

∑
nr

ℓ=1 |Irℓ |
−U

(0)
i

)

,

min

(

α1
xi−(xi− ∆xi

2 )

xi−xl1

,··· ,αnl

xi−(xi− ∆xi
2 )

xi−xlnl

)(

U
(0)
i −

∑
nl

ℓ=1U
(0)
lℓ

|Ilℓ |
∑

nl

ℓ=1 |Ilℓ |

)

)

,

Ũ
y,(mod)
i =m

(

Ũ
y
i ,min

(

α1
yi+

∆yi

2 −yi

yt1
−yi

,··· ,αnt

yi+
∆yi

2 −yi

ytnt
−yi

)(

∑
nt

ℓ=1U
(0)
tℓ

|Itℓ |
∑

nt

ℓ=1 |Itℓ |
−U

(0)
i

)

,

min

(

α1
yi+

∆yi

2 −yi

yi−yb1

,··· ,αnb

yi+
∆yi

2 −yi

yi−ybnb

)(

U
(0)
i −

∑
nb

ℓ=1U
(0)
bℓ

|Ibℓ |
∑

nb

ℓ=1 |Ibℓ |

)

)

,

˜̃U
y,(mod)
i =m

(

˜̃U
y
i ,min

(

α1
yi−(yi− ∆yi

2 )

yt1
−yi

,··· ,αnt

yi−(yi− ∆yi

2 )

ytnt
−yi

)(

∑
nt

ℓ=1U
(0)
tℓ

|Itℓ |
∑

nt

ℓ=1 |Itℓ |
−U

(0)
i

)

,

min

(

α1
yi−(yi− ∆yi

2 )

yi−yb1

,··· ,αnb

yi−(yi− ∆yi

2 )

yi−ybnb

)(

U
(0)
i −

∑
nb

ℓ=1U
(0)
bℓ

|Ibℓ |
∑

nb

ℓ=1 |Ibℓ |

)

)

,

where all α∗ are set to be 2 in our numerical simulation.

3.2 RKDG method for level set advection equation and MGFM in 2D

The level set advection equation in two dimensions is

φt+µφx+νφy=0. (3.3)

If set η=φx, ζ=φy and H(η,ζ)=µη+νζ, (3.3) is equivalent to the conservation laws:
{

ηt+H(η,ζ)x =0,

ζt+H(η,ζ)y =0.
(3.4)

The mesh is specified as before. We give the same test function space Vk−1
h = {p : p|Ii

∈
Pk−1(Ii)} as the polynomial space of degree at most k−1 on the cell Ii. We adopt the

same local orthogonal basis over Ii, {v
(i)
l (x,y), l = 0,1,··· ,K̂; K̂= 1

2 k(k+1)−1} as before.

Then the numerical solutions ηh(x,y,t) and ζh(x,y,t) in the space Vk−1
h can be written as

ηh(x,y,t)=∑
K̂
l=0η

(l)
i (t)v

(i)
l (x,y) and ζh(x,y,t)=∑

K̂
l=0ζ

(l)
i (t)v

(i)
l (x,y), for (x,y)∈ Ii and the

degrees of freedom η
(l)
i (t) and ζ

(l)
i (t) are the moments defined by

η
(l)
i (t)=

1
∫

Ii
(v

(i)
l (x,y))2dxdy

∫

Ii

ηh(x,y,t)v
(i)
l (x,y)dxdy, l=0,··· ,K̂,

ζ
(l)
i (t)=

1
∫

Ii
(v

(i)
l (x,y))2dxdy

∫

Ii

ζh(x,y,t)v
(i)
l (x,y)dxdy, l=0,··· ,K̂.
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In order to determine the approximate solutions, we evolve the degrees of freedom η
(l)
i (t)

and ζ
(l)
i (t):

d

dt
η
(l)
i (t)=− 1

∫

Ii
(v

(i)
l (x,y))2dxdy

(

−
∫

Ii

H(ηh(x,y,t),ζh(x,y,t))
∂

∂x
v
(i)
l (x,y)dxdy

+
∫ yi+

∆yi
2

yi−
∆yi

2

(

H
(

ηh
(

xi+
∆xi

2
,y,t
)

,ζh
(

xi+
∆xi

2
,y,t
))

v
(i)
l

(

xi+
∆xi

2
,y
)

−H
(

ηh
(

xi−
∆xi

2
,y,t
)

,ζh
(

xi−
∆xi

2
,y,t
))

v
(i)
l

(

xi−
∆xi

2
,y
)

)

dy

)

, l=0,··· ,K̂, (3.5)

and

d

dt
ζ
(l)
i (t)=− 1

∫

Ii
(v

(i)
l (x,y))2dxdy

(

−
∫

Ii

H(ηh(x,y,t),ζh(x,y,t))
∂

∂y
v
(i)
l (x,y)dxdy

+
∫ xi+

∆xi
2

xi−
∆xi

2

(

H
(

ηh
(

x,yi+
∆yi

2
,t
)

,ζh
(

x,yi+
∆yi

2
,t
))

v
(i)
l

(

x,yi+
∆yi

2

)

−H
(

ηh
(

x,yi−
∆yi

2
,t
)

,ζh
(

x,yi−
∆yi

2
,t
))

v
(i)
l

(

x,yi−
∆yi

2

)

)

dx

)

, l=0,··· ,K̂. (3.6)

Then the third order TVD Runge-Kutta method (2.10) is used to solve for the ODE and
the high order accurate RKDG method could be obtained both in space and time. The
DG method for (3.4) is satisfied by requiring the derivatives η=φx and ζ=φy, and these
determine φ for the target cell Ii up to a constant when k= 1. But we also find (3.5) and
(3.6) have more equations than the number of degrees of the freedom for the solutions
when k>1 and then use least square sense:

∫

Ii

(φx−η)2+(φy−ζ)2dxdy= min
∀ϕ∈Pk(Ii)

∫

Ii

(ϕx−η)2+(ϕy−ζ)2dxdy, (3.7)

which is specified in [12] to get the missing constant by requiring that:
∫

Ii

(φt+H(φx,φy))dxdy=0. (3.8)

Thus, the numerical solution φh(x,y,t) in the space Vk
h can be obtained in this way.

The MGFM-based RKDG method is extended to two dimensional two-medium flow
and a two-medium Riemann problem in the normal direction of the interface is defined
by following exactly the same way as described in [18–20]. The defined Riemann problem
is also solved by using the exact or approximate Riemann problem solver. The predicted
interface density, normal velocity and pressure are then used to replace the flow density,
normal velocity and pressure at the cells of interface located and extended to the ghost
fluid cells.
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3.3 The algorithm of adaptive method in 2D

Step 2.1. Partition the computing field into uniform cells as Ii = [xi− ∆xi
2 ,xi+

∆xi
2 ]×[yi−

∆yi

2 ,yi+
∆yi

2 ], i= 1,··· ,N. Use the initial conditions to get the degrees of freedom U
(l)
i (t0)

and φ
(l)
i (t0), l=0,··· ,K,i=1,··· ,N. And set the adaptive mesh level Ri(t0)=0,i=1,··· ,N

at first.

Step 2.2. Suppose at time tn, the degrees of freedom U
(l)
i (tn), φ

(l)
i (tn), l=0,··· ,K,i=1,··· ,N

and the adaptive mesh level Ri(tn),i=1,··· ,N are given. We apply KXRCF method as an
indicator to detect ”troubled cells”.

Step 2.2.1. Suppose Ii0 is a ”troubled cell”: if Ri0(tn)< R, divide it into four equal size
small children cells, increase such children cells’ mesh level by 1, and redefine the de-
grees of freedom of Uh(x,y,tn) and φh(x,y,tn) on these cells (specified in the following
Subsection 3.5); if Ri0(tn)=R, do nothing.

Step 2.2.2. If all children cells are not identified as ”troubled cells”, merge them into their
parent cell and decrease such parent cell’s mesh level by 1, and redefine the degrees of
freedom of Uh(x,y,t) and φh(x,y,t) on this cell (specified in the following Subsection 3.5).

By doing so, we obtain a new adaptive mesh with different mesh level Ri(tn+1),i =
1,··· ,N.

Step 2.3. Redefine the new degrees of freedom of Uh(x,y,tn) and φh(x,y,tn) over the
whole computation region on the new adaptive mesh.

Step 2.4. Evolve the solutions of the two-medium flow and level set function from tn to
tn+1 by the methodologies specified in Subsection 3.1, Subsection 3.2 and Subsection 3.3

to obtain the degrees of freedom U
(l)
i (tn+1) and φ

(l)
i (tn+1), l = 0,··· ,K, i = 1,··· ,N. The

latter procedures are similar to Step 1.4.1.–Step 1.4.4.

Step 2.5. If tn+1 is less than the final time, go to Step 2.2.

3.4 Redefine Uh(x,y,t) and φh(x,y,t) on the adaptive mesh

If the flagged cell A (”troubled cell”) is restricted into four smaller cells B1, B2, B3 and
B4, which are depicted in Fig. 3, the numerical conservative variable of Uh(x,y,t) and the
numerical level set function φh(x,y,t) denoted on cell A should be remapped to such new
cells. The methodology can be expressed as:

(U
(0)
Bj

(t),··· ,U(K)
Bj

(t))T =M−1(b0,··· ,bK)
T, M=(msq)(K+1)×(K+1),

msq=
∫

IBj

v
(A)
s (x,y)v

(Bj)
q (x,y)dxdy, bs =

∫

IBj

Uh
A(x,y,t)v

(Bj)
s (x,y)dxdy,

(φ
(0)
Bj

(t),··· ,φ(K)
Bj

(t))T =M−1(b0,··· ,bK)
T,

bs =
∫

IBj

φh
A(x,y,t)v

(Bj)
s (x,y)dxdy, s,q=0,··· ,K, j=1,2,3,4.
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A

B1 B2

B3B4

Figure 3: The topological map of parent and children cells in 2D.

If the children cells B1, B2, B3 and B4 are not detected as ”troubled cells” any more, and
should be merged into the parent cell A, the numerical conservative variable of Uh(x,y,t)
and the numerical level set function φh(x,y,t) denoted on cell A should be remapped
from such children cells. And the methodology can be expressed as below:

(U
(0)
A (t),··· ,U(K)

A (t))T =M−1(b0,··· ,bK)
T, M=(msq)(K+1)×(K+1),

msq=
∫

IA

v
(A)
s (x,y)v

(A)
q (x,y)dxdy, bs =

4

∑
j=1

∫

IBj

Uh
Bj
(x,y,t)v

(A)
s (x,y)dxdy,

(φ
(0)
A (t),··· ,φ(K)

A (t))T =M−1(b0,··· ,bK)
T,

bs=
4

∑
j=1

∫

IBj

φh
Bj
(x,y,t)v

(A)
s (x,y)dxdy, s,q=0,··· ,K.

4 Numerical tests

In this Section, the results of the numerical tests for the gas-gas and gas-water flows by the
adaptive RKDG methods with MGFM described in Section 2 and Section 3 are presented.
For simplicity, the CFL number is set to be 0.18 for third order RKDG methods in one
and two dimensions. In these tests, the units for the density, velocity, pressure, length
and time are kg/m3, m/s, Pa, m and s, respectively. All the computations are run on the
computer cluster, 2850 Xeon CPU@3.4 GHz with 4 GB ram. In all of the 1D cases, the
initial coarsest uniform mesh is set as equal 100 cells in the computing field. In 2D case,
the initial uniform mesh is set as equal 35×30 cells in the computing field.

Example 4.1. The Euler equations (2.1) are considered in this problem and the following
Riemann initial conditions are given as:

(ρ,µ,p,γ)T =







(1.3333,0.3535
√

105,1.5×105,1.4)T, x≤0.05,
(1,0,105,1.4)T , 0.05< x≤0.5,
(3.1538,0,105,1.249)T , x>0.5.

(4.1)
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Table 1: Example 4.1. The computing times and the final cells subject to the different adaptive and uniform
meshes.

adaptive level R 1 2 3

adaptive cells 116 133 164

time (second) 7.53 16.24 28.09

uniform cells 200 400 800

time (second) 11.45 36.01 120.29

The computing times and the final cells subject to the adaptive and uniform meshes are
given in Table 1. The computed density, velocity and pressure at t= 0.0017 against the
exact solutions and the trajectories of the adaptive meshes with the TVB constant of M=
20 are plotted in Fig. 4. The initial material interface is set at x∗(0) = 0.5 and the initial
mesh for adaptive method is 100 uniform cells. The final mesh number for adaptive
method with adaptive level R=3 is 164. The location of the material interface is captured
correctly in this test case. The computed results are oscillatory free at the neighborhood
of the material interface for the density, velocity and pressure. From the trajectories of
adaptive meshes, it is seen that meshes are refined along trajectories of discontinuity of
the solution (shock, contact discontinuity) as expected. The computational results by two
types of the adaptive RKDG methods for solving the two-medium flow and the level set
advection equation are better than those with 200 cells and are comparable to those with
400 and 800 cells on uniform meshes.

Example 4.2. This is a gas-water shock tube problem with very high pressure in the
gaseous medium. The initial conditions are:

(ρ,µ,p,γ)T =

{

(1270,0,8×108 ,1.4)T, x≤0.5,
(1000,0,105,7.15)T , x>0.5.

(4.2)

The computing times and the final cells subject to the adaptive and uniform meshes are
given in Table 2. The computed density, velocity and pressure at t = 0.00016 against
the exact solutions and the trajectories of the adaptive meshes with the TVB constant
of M = 20 are plotted in Fig. 5. The initial material interface is set at x∗(0) = 0.5 and
the initial mesh for adaptive method is 100 uniform cells. The final mesh number for

Table 2: Example 4.2. The computing times and the final cells subject to the different adaptive and uniform
meshes.

adaptive level R 1 2 3

adaptive cells 112 141 167

time (second) 4.59 11.87 31.74

uniform cells 200 400 800

time (second) 27.98 62.18 143.66
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Figure 4: Example 4.1. Top to bottom: density, velocity, pressure and the trajectories of adaptive meshes.
t= 0.0017. Line: exact solution; squares: numerical solution on adaptive mesh; plus signs: numerical solution
on uniform mesh. Left to right: adaptive mesh against uniform mesh with 200, 400 and 800 cells, respectively.
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Figure 5: Example 4.2. Top to bottom: density, velocity, pressure and the trajectories of adaptive meshes.
t=0.00016. Line: exact solution; squares: numerical solution on adaptive mesh; plus signs: numerical solution
on uniform mesh. Left to right: adaptive mesh against uniform mesh with 200, 400 and 800 cells, respectively.
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adaptive method with adaptive level R= 3 is 167. We can verify that the location of the
material interface is captured correctly. The computed results are oscillatory free at the
neighborhood of the interface for the density, velocity and pressure. The computational
results by adaptive method are better than those with 200 cells and are comparable to
those with 400 and 800 cells.

Example 4.3. We greatly increase the energy of the explosive gaseous medium with the
initial conditions given as:

(ρ,µ,p,γ)T =

{

(1630,0,7.81×109 ,1.4)T, x≤0.5,
(1000,0,105,7.15)T , x>0.5.

(4.3)

The computing times and the final cells subject to the adaptive and uniform meshes are
given in Table 3. The computed density, velocity and pressure at t= 0.0001 against the
exact solutions and the trajectories of the adaptive meshes with the TVB constant of M=
20 are plotted in Fig. 6. The initial material interface is set at x∗(0) = 0.5 and the initial
mesh for adaptive method is 100 uniform cells. The final mesh number for adaptive
method with adaptive level R= 3 is 117. It is observed that the location of the material
interface is captured precisely. The computed results are oscillatory free at the vicinities
of the material interface for different physical variables. From the trajectories of adaptive
meshes, we can also see that the meshes are refined along trajectories of discontinuity of
the solution. It can be seen again that the computational results by adaptive method are
better than those with 200 and 400 cells on uniform mesh and are comparable to those
with 800 cells.

Table 3: Example 4.3. The computing times and the final cells subject to the different adaptive and uniform
meshes.

adaptive level R 1 2 3

adaptive cells 106 114 117

time (second) 6.02 11.23 20.58

uniform cells 200 400 800

time (second) 16.02 63.32 235.51

Example 4.4. In this example, we study a planar underwater shock interacting with a
gas bubble in an open domain. Similar problems have been studied in [11]. We examine
an initial Mach 1.653 underwater shock wave makes impact on a gas bubble. The non-
dimensional initial conditions are:

(ρ,µ,ν,p,γ)T =







(1000,0,0,1,7.15)T , x>−1.2,
(1176.3333,1.1692,0,9120,7.15)T , x≤−1.2,

(1,0,0,1,1.4)T ,
√

x2+y2<1,

(4.4)
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Figure 6: Example 4.3. Top to bottom: density, velocity, pressure and the trajectories of adaptive meshes.
t= 0.0001. Line: exact solution; squares: numerical solution on adaptive mesh; plus signs: numerical solution
on uniform mesh. Left to right: adaptive mesh against uniform mesh with 200, 400 and 800 cells, respectively.



J. Zhu and J. Qiu / J. Math. Study, 47 (2014), pp. 250-273 269

-4 -3 -2 -1 0 1 2 3
X

-3

-2

-1

0

1

2

3

Y

water1

gas

water2

Figure 7: Example 4.4. The schematic diagram.

and the level set function φ=
√

x2+y2−1, where φ≤0 represents the gas and φ>0 rep-
resents the water. We use the original uniformed mesh of 35×30 cells over the computa-
tional region [−4,3]×[−3,3] and the schematic diagram is shown in Fig. 7. The density is
plotted at t=0.06, 0.19, 0.357, 0.481 and the adaptive mesh graphs to the RKDG method
with TVB constant of M = 1 are plotted in Figs. 8 and 9. Again, very complex physics
occurs in this problem especially when a jet forms and bubble collapses in the very late
stage. Our computations stopped just before the bubble collapses. In the earlier stage,
the shock refraction on the bubble surface is regular initially but transits into an irregular
type after the incident shock past over a critical angle [11].

5 Concluding remarks

In this paper, the adaptive RKDG methods with MGFM are applied to solve for the two-
medium flow in one and two dimensions. We first use the KXRCF method [16] as an
indicator to detect the troubled cell, then apply the modified TVB minmod-type limiter
to reconstruct the freedoms of the solution inside of such cell, adopt RKDG methods
for solving the level set function [12] and do the mesh adapting procedure. At each
time step, a new adaptive rectangular mesh is obtained by splitting the troubled cell into
smaller children cells (refining procedure) or merging all children cells into their parent
cell (coarsening procedure) and obtain associated solutions of the two-medium flow and
level set function on the new adaptive mesh for further computations. The proposed
methodologies are able to provide a sharp real interface location and still with reasonable
solution for the whole domain with very limited oscillations nearby the discontinuities
in an adaptive manner. Extensive numerical results for two-medium flow are provided
to show that the adaptive methodologies are stable and robust subject to many different
initial conditions.
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Figure 8: Example 4.4. Top to bottom: 30 equally spaced density contours from 38 to 1147, from 38 to 1147,
from 40 to 1146 and from 38 to 1146. Top to bottom: t= 0.06, 0.19, 0.357, 0.481. Left to right: adaptive
mesh level R=1, R=2 and R=3. TVB constant: M=1. Original mesh: 35 × 30 cells.
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Figure 9: Example 4.4. Mesh. Top to bottom: t=0.06, 0.19, 0.357, 0.481. Left to right: adaptive mesh level
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