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Abstract In this paper, a class of high-order central Hermite WENO (HWENO)
schemes based on finite volume framework and staggered meshes is proposed for
directly solving one- and two-dimensional Hamilton-Jacobi (HJ) equations. The
methods involve the Lax-Wendroff type discretizations or the natural continuous
extension of Runge-Kutta methods in time. This work can be regarded as an extension
of central HWENO schemes for hyperbolic conservation laws (Tao et al. J. Com-
put. Phys. 318, 222–251, 2016) which combine the central scheme and the HWENO
spatial reconstructions and therefore carry many features of both schemes. Gener-
ally, it is not straightforward to design a finite volume scheme to directly solve HJ
equations and a key ingredient for directly solving such equations is the reconstruc-
tion of numerical Hamiltonians to guarantee the stability of methods. Benefited from
the central strategy, our methods require no numerical Hamiltonians. Meanwhile, the
zeroth-order and the first-order moments of the solution are involved in the spatial
HWENO reconstructions which is more compact compared with WENO schemes.
The reconstructions are implemented through a dimension-by-dimension strategy
when the spatial dimension is higher than one. A collection of one- and two- dimen-
sional numerical examples is performed to validate high resolution and robustness
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of the methods in approximating the solutions of HJ equations, which involve linear,
nonlinear, smooth, non-smooth, convex or non-convex Hamiltonians.

Keywords Finite volume method · Central scheme · Hamilton-Jacobi equation;
Hermite WENO · Lax-Wendroff · Natural continuous extension (NCE) of
Runge-Kutta

Mathematics Subject Classification (2010) 65M60 · 35L65

1 Introduction

In this paper, we propose a class of finite volume central Hermite WENO (weighted
essentially non-oscillatory, C-HWENO) schemes for directly simulating one- and
two-dimensional Hamilton-Jacobi (HJ) equations:{

φt + H(∇xφ) = 0,
φ(x, 0) = φ0(x),

(1.1)

with suitable initial and boundary conditions and H is the Hamiltonian. Here (1.1)
can involve linear, nonlinear, smooth, non-smooth, convex or non-convex Hamiltoni-
ans. The HJ equations arise in various applications in science and engineering, such
as optimal control, geometric optics, image processing, seismic waves, crystal growth
and robotic navigation. In general the solutions of such equations are continuous
but may develop discontinuous derivatives in finite time regardless of the smooth-
ness of the initial and boundary data. To ensure the existence of the solution as well
as to single out the physical relevant solution, the concept of viscosity solution was
established mainly by Crandall, Evans and Lions [9, 10] for HJ equations.

There are various accurate and robust numerical methods for solving HJ equations.
Many methods are based on the close relation between HJ equations and conser-
vation laws. Note that by differentiating (1.1) with respect to x, one can obtain a
conservation system for ∇xφ,

(∇xφ)t + ∇xH(∇xφ) = 0

Hence successful numerical methods for conservation laws can be adapted for solv-
ing the HJ equations. Osher and Sethian [26] presented a second-order essentially
non-oscillatory (ENO) scheme, and Osher and Shu [27] constructed high-order ENO
schemes to solve the HJ equations. In [14], the original WENO with Runge-Kutta
time discretization schemes for HJ equations was proposed by Jiang and Peng. Later,
Qiu and Shu [29, 30] proposed the HWENO schemes based on Runge-Kutta and the
Lax-Wendroff time discretizations for HJ equations. Based on unstructured meshes,
Lafon and Osher [17] constructed ENO schemes for solving HJ equations. Zhang and
Shu [36], Li and Chan [21] further developed high-order WENO schemes for solving
two-dimensional HJ equations on triangular meshes. Besides, some finite element
methods for arbitrary triangular meshes were designed in [1, 2, 13, 19]. For a detailed
review of high-order numerical methods for HJ equations, we refer to the lecture
note [31].
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Moment-based central HWENO for HJ equations 1025

An alternative approach is solving HJ equations directly. Cheng and Shu pre-
sented DG methods to directly solve HJ equations for φ and a new Hamiltonian was
designed to keep stability of the method in [7]. Later, a new local DG method to
directly solve HJ equations was developed by Yan and Osher [34]. In [8], Cheng and
Wang also improved their early work by utilizing the Roe speed at the cell interface
and proposed an entropy fix by adding penalty terms based on structured and unstruc-
tured meshes. Recently, Zheng and Qiu [37] developed Hermite WENO schemes to
directly solve the HJ equations.

Based on the simplicity and robustness of central schemes, there are also many
high resolution central schemes for HJ equations analogous to ones for conservation
laws. Lin and Tadmor applied these central ideas to HJ equations in [22]. There, first-
and second-order staggered schemes were written in one and two dimensions. An L1

convergence of order one for this scheme was proven in [23]. Later, a second-order
semi-discrete scheme for HJ equations was introduced by Kurganov and Tadmor
[16]. Bryson and Levy developed in [4] new and efficient central schemes which were
first- and second-order accurate and were designed to scale well with an increasing
dimension for multidimensional HJ equations. After that, the third- and fifth-order
central schemes and the fifth-order semi-discrete central-upwind methods based
on WENO reconstructions for approximating the solutions of multidimensional HJ
equations were presented in [5] and [6], respectively. Recently, Li and Yakovlev [20]
proposed a central discontinuous Galerkin method to solve for the viscosity solutions
of HJ equations. It is well known that the reconstruction of numerical Hamiltonians
is the key ingredient to directly solve HJ equations in upwind methods and the main
advantage of the central scheme is requiring no (approximate) Riemann solvers or
numerical Hamiltonians. Motivated by this, the methods in this paper are formulated
in a central framework which leads to a simple formulation for the Hamiltonian.

The work in this paper is an extension of the C-HWENO methods for hyper-
bolic conservation laws in [33] to HJ equations. Like all WENO-type methods, the
C-HWENO methods are accurate and essentially non-oscillatory. We use the same
Hermite WENO (HWENO) spatial reconstructions as in [33] which are based on
the zeroth-order and first-order moments of the solution rather than the solution and
its derivative(s) in [32]. Compared with WENO schemes, one major advantage of
HWENO schemes is the compactness in the reconstruction. Using moments of the
solution itself is not new in HWENO reconstruction [11, 25], one novel aspect of our
strategy is to involve all the first-order moments, including the mixed-type moment
(see vwn

ij in Section 2.2), of the solution, when the spatial dimension is higher than
one. Working with such choice of the moments enables a dimension-by-dimension
procedure for the reconstructions, a core ingredient of the proposed methods. Since
our proposed schemes are of fully discrete, the time derivative term must also be
discretized. Motivated by WENO or HWENO schemes for HJ equations [28, 29],
we apply the Lax-Wendroff type discretizations [12, 18] for the time discretiza-
tions. Alternatively, we also apply the natural continuous extension of Runge-Kutta
methods [35] in time following the line of lots of central schemes.

The organization of this paper is as follows. In Section 2, we review and present
the construction and implementation of the proposed C-HWENO schemes based on
moments of the solution with Lax-Wendroff type time discretizations for the problem
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1026 Z. Tao, J. Qiu

(1.1) in one and two dimensions. The two-dimensional spatial reconstructions are
implemented in a dimension-by-dimension fashion. In Section 3, we review and
design the construction and implementation of the proposed C-HWENO schemes
with the natural continuous extension of Runge-Kutta methods as time discretiza-
tions, and the WENO reconstructions are used for the computation of flux of the
Runge-Kutta methods. In Section 4, we report on extensive numerical examples to
demonstrate the performance of the proposed schemes. Concluding remarks are given
in Section 5.

2 Central Hermite WENO schemes with Lax-Wendroff
time discretization

In this section we describe the framework of central Hermite WENO (HWENO)
schemes with fifth-order spatial reconstructions and Lax-Wendroff time discretiza-
tions for one- and two-dimensional Hamilton-Jacobi equations.

2.1 One-dimensional case

Consider the one-dimensional Hamilton-Jacobi equation
{

φt + H(φx) = 0,
φ(x, 0) = φ0(x).

(2.1)

The proposed numerical method will be defined on staggered meshes. For sim-
plicity of presentation, uniform meshes are used with the mesh size �x. Each cell
of the primal mesh is denoted as Ii = [xi−1/2, xi+1/2] with its cell center xi =
1
2 (xi−1/2 + xi+1/2); and each cell of the dual mesh is denoted as Ii+1/2 = [xi, xi+1]
with its cell center xi+1/2 = 1

2 (xi + xi+1). It will be seen that the primal and the dual
meshes will be used in a staggered fashion along the time direction in the proposed
scheme.

Multiplying a locally scaled polynomial x−xc

�x
of degree one to Eq. 2.1, we also

obtain a relation for the first-order moment of the solution,

φt

x − xc

�x
+ H(φx)

x − xc

�x
= 0 (2.2)

where xc is the center of the relevant mesh element. In particular, for a cell from the
primal mesh, we will take xc = xi with some i; for a cell from the dual mesh, we
will take xc = xi+1/2 with some i.

Now we apply the staggered central scheme strategy to Eqs. 2.1 and 2.2. Suppose
at t = tn, the approximations for the first two moments of the solution, denoted as
{φn

i } and {vn
i }, are available on the primal mesh, that is, ∀i,

φ
n

i ≈ 1

�x

∫
Ii

φ(x, tn)dx, vn
i ≈ 1

�x

∫
Ii

φ(x, tn)
x − xi

�x
dx.
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Moment-based central HWENO for HJ equations 1027

(a.1) We integrate Eqs. 2.1 and 2.2 over [tn, tn+1] × [xi, xi+1], and approximate
the first two moments of the solution associated with the dual mesh at tn+1 =
tn + �t as below,

φ
n+1
i+1/2 = φ

n

i+1/2−
1

�x

∫ tn+1

tn

∫ xi+1

xi

H(φx(x, t))dxdt, (2.3)

vn+1
i+1/2 = vn

i+1/2−
1

�x

∫ tn+1

tn

∫ xi+1

xi

H(φx(x, t))
x−xi+1/2

�x
dxdt. (2.4)

All the terms on the right-hand side of Eqs. 2.3–2.4 will be reconstructed
based on {φn

i , v
n
i }i . For simplicity of notation, we still use φ in the above

relations, though it is no longer the exact solution.
(a.2) We then integrate Eqs. 2.1 and 2.2 over [tn+1, tn+2] × [xi−1/2, xi+1/2], and

continue to approximate the first two moments of the solution with respect to
the primal mesh at tn+2 = tn+1 + �t ,

φ
n+2
i = φ

n+1
i − 1

�x

∫ tn+2

tn+1

∫ xi+1/2
xi−1/2

H(φx(x, t))dxdt,

vn+2
i = vn+1

i − 1
�x

∫ tn+2

tn+1

∫ xi+1/2
xi−1/2

H(φx(x, t))
x−xi

�x
dxdt.

(a.3) Set n to be n + 2, and go to (a.1).

Note that the moments are defined and evolved in a staggered fashion with respect
to the discrete time level n on two sets of meshes. The mesh switches back after two
time steps.

The remaining of this section will be mainly devoted to the details to update from
tn to tn+1 according to Eqs. 2.3 and 2.4. Since we will propose a fifth-order central
HWENO (C-HWENO) method, with this in mind, we further approximate the spatial
integral in Eqs. 2.3 and 2.4 with the four-point Gauss-Lobatto quadrature formula,

φ
n+1
i+1/2 = φ

n

i+1/2 −
4∑

l=1

ωl

∫ tn+1

tn
H(φx(Gx

l , t))dt, (2.5)

vn+1
i+1/2 = vn

i+1/2 −
4∑

l=1

ωl

Gx
l − xi+1/2

�x

∫ tn+1

tn
H(φx(Gx

l , t))dt, (2.6)

where {ωl}4l=1 are Gauss-Lobatto quadrature weights

ω1 = ω4 = 1

12
, ω2 = ω3 = 5

12
,

and
Gx
1 = xi, Gx

2 = x
i+ 1

2−
√
5

10
, Gx

3 = x
i+ 1

2+
√
5

10
, Gx

4 = xi+1, (2.7)

are the Gauss-Lobatto quadrature points over the cell Ii+1/2 = [xi, xi+1]. In the
target cell Ii of the primal mesh, such quadrature points are denoted as

Gx,i = {x
i− 1

2+
√
5

10
, xi, x

i+ 1
2−

√
5

10
}.
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1028 Z. Tao, J. Qiu

If we consider the problem (2.1) with the piecewise initial data φ|Ii
= φ

n

i at
tn, under the assumption that the time step �t satisfies a CFL restriction �t ≤

Ccf l�x

maxi |H ′(φx(xi ,t
n))| with some constant Ccf l and H ′(φx(xi, t

n)) being the characteris-
tic speed of Eq. 2.1, the discontinuities starting at tn from x

i− 1
2
and x

i+ 1
2
will not

propagate to x∗ with x∗ ∈ Gx,i over a single time step �t , and therefore the solu-
tion of this problem restricted at x∗ with x∗ ∈ Gx,i , ∀i are smooth for t ∈ [tn, tn+1].
Motivated by this, the Hamiltonian function H(φx(x∗, t)) in Eqs. 2.5 and 2.6 can be
approximated by a temporal Taylor expansion at tn according to the following

H(φx(x∗, t))≈H(φx(x∗, tn))+(t−tn)
∂

∂t
H(φx(x∗, tn))+ (t−tn)2

2

∂2

∂t2
H(φx(x∗, tn)).

(2.8)
If we want to obtain the (k + 1)th-order accuracy in time, we need to approximate

the first k time derivatives: ∂
∂t

H, · · · , ∂k

∂tk
H . In this paper, we will proceed up to the

third-order accuracy in time, although the procedure can be extended directly to any
other order.

Plugging the relation (2.8) into Eqs. 2.5 and 2.6, this will lead to our actual update
formulations

φ
n+1
i+1/2 = φ

n

i+1/2 −
4∑

l=1

ωlF (φ(Gx
l , tn)), (2.9)

vn+1
i+1/2 = vn

i+1/2 −
4∑

l=1

ωlF (φ(Gx
l , tn))

Gx
l − xi+1/2

�x
, (2.10)

with

F =F(φ)=�tH+�t2

2

∂

∂t
H+�t3

6

∂2

∂t2
H =�tH+�t2

2
H ′φxt+�t3

6
(H ′′φ2

xt+H ′φxtt ),

(2.11)
Next we convert the temporal derivative terms of φ in Eq. 2.11 into spatial ones

by repeatedly using the governing equation (2.1):

φxt = (φt )x = −H ′(φx)φxx,

φxtt = (φtt )x = 2H ′′(φx)H
′(φx)φ

2
xx + (H ′(φx))

2φxxx.
(2.12)

Even though F(φ) is used throughout the presentation, one should keep in mind that
we indeed have F = F(φx, φxx, φxxx).

Specifically, to obtain the moments φ
n+1
i+1/2 and vn+1

i+1/2 on the dual mesh at the next

time tn+1 according to Eqs. 2.9 and 2.10, one will need to reconstruct at the current
time tn, ∀i,

(1) the moments φ
n

i+1/2, v
n
i+1/2 on the dual mesh, as well as

(2) the point value of q(x∗, tn), where q = φx, φxx , or φxxx , and x∗ ∈ Gx,i ,

based on the given data {φn

i , v
n
i }i .

On the other hand,

φ
n

i+1/2 ≈ 1

�x

∫ xi+1

xi

φ(x, tn)dx = 1

�x

∫ xi+1/2

xi

φ(x, tn)dx+ 1

�x

∫ xi+1

xi+1/2

φ(x, tn)dx.
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Moment-based central HWENO for HJ equations 1029

This implies that to approximate the moment φ
n

i+1/2, one would want to get the half-

cell moments: 1
�x

∫ xi+1/2
xi

φ(x, tn)dx and 1
�x

∫ xi+1
xi+1/2

φ(x, tn)dx. This is likewise for

the moment vn
i+1/2,

vn
i+1/2 ≈ 1

�x

∫ xi+1/2
xi

φ(x, tn)
x−xi+1/2

�x
dx + 1

�x

∫ xi+1
xi+1/2

φ(x, tn)
x−xi+1/2

�x
dx.

To reconstruct the half-cell moments and point values mentioned above, we pro-
pose a procedure by adopting the one-dimensional fifth-order accurate HWENO
reconstruction in central Hermite WENO methods for hyperbolic conservation laws
we developed previously. For more details we refer to [33], and shall not repeat it
here. This reconstruction is not only high-order accurate in the smooth regions but
also essentially non-oscillatory adjacent to the discontinuities. Compared with the
standard WENO schemes, the stencils in the reconstruction are more compact.

In addition, we need to reconstruct the point value of q(x∗, tn), where q =
φx, φxx , and φxxx . The reconstruction procedures of φx(x∗, tn), φxx(x∗, tn) are the
same as those in [33]. For the reconstruction of φxxx(x∗, tn), our numerical exper-
iments show that the following linear reconstruction from {φi, vi}i is sufficient to
provide an accurate and stable way to approximate φxxx(x∗). Let the quintic Hermite
polynomial Q(x) satisfy the following condition:

1

�x

∫
Ii+j

Q(x)dx = φi+j ,
1

�x

∫
Ii+j

Q(x)
x − xi+j

�x
dx = vi+j , j = −1, 0, 1.

Then the values of φxxx(x∗) are approximated by:

φxxx(x
1) ≈ Q′′′(x1) = 1

36�x3

[
(445 − 264

√
5)φi−1 + (−540 + 108

√
5)φi

+ (95 + 156
√
5)φi+1 + (2822 − 1248

√
5)vi−1

+ (1796 − 3192
√
5)vi + (−418 − 600

√
5)vi+1

]
,

φxxx(x
2) ≈ Q′′′(x2) = − 5

36�x3
(91φi−1−91φi+1+314vi−1+1556vi +314vi+1),

φxxx(x
3) ≈ Q′′′(x3) = − 1

36�x3

[
(95 + 156

√
5)φi−1 + (−540 + 108

√
5)φi

+ (445 − 264
√
5)φi+1 + (418 + 600

√
5)vi−1

+ (−1796 + 3192
√
5)vi + (−2822 + 1248

√
5)vi+1

]
,

where

x1 = x
i− 1

2+
√
5

10
, x2 = xi, x3 = x

i+ 1
2−

√
5

10
.

Remark 1 Following the current central scheme framework, in the Eqs. 2.9 and 2.10

to update φ
n+1
i+1/2 and vn+1

i+1/2, the Hamiltonian functions F are evaluated at x∗ with

x∗ ∈ Gx,i and the time tn. This requires the reconstructions of the point values of
φx, φxx, φxxx at x∗ based on moments {φn

i , v
n
i }i at the same time level. Since all

the related reconstructions involve stencils including the cell Ii , and x∗ are interior
points, these reconstructed point values are naturally single-valued. Therefore unlike
in upwind type methods, there is no need to use numerical Hamiltonian for F .
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2.2 Two-dimensional case

Consider the two-dimensional Hamilton-Jacobi equation
{

φt + H(φx, φy) = 0,
φ(x, y, 0) = φ0(x, y).

(2.13)

The proposed numerical method will be defined on staggered meshes. For sim-
plicity of presentation, uniform meshes are used with the meshsizes �x in the x

direction, and �y in the y direction. Each cell of the primal mesh is denoted as
Iij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] with its cell center (xi, yj ); and each cell of
the dualmesh is denoted as Ii+1/2,j+1/2 = [xi, xi+1]× [yj , yj+1] with its cell center
(xi+1/2, yj+1/2).

We multiply x−xc

�x
, y−yc

�y
, and x−xc

�x
y−yc

�y
, which are locally scaled linearly inde-

pendent polynomials of total degree one, to Eq. 2.13, and obtain the relations for the
first-order moments of the solution

φt
x−xc

�x
+ H(φx, φy)

x−xc

�x
= 0,

φt
y−yc

�y
+ H(φx, φy)

y−yc

�y
= 0,

φt
x−xc

�x
y−yc

�y
+ H(φx, φy)

x−xc

�x
y−yc

�y
= 0,

(2.14)

where (xc, yc) is the center of the relevant mesh element. In particular, for a cell from
the primal mesh, we will take (xc, yc) = (xi, yj ) for some i, j ; and for a cell from
the dual mesh, we will take (xc, yc) = (xi+1/2, yj+1/2) for some i, j .

Next we apply the staggered central scheme strategy to Eqs. 2.13 and 2.14 as in
one dimension. Suppose at t = tn, the approximations for the zeroth-order and the
first-order moments of the solution, denoted as {φn

ij }ij , {vn
ij }ij , {wn

ij }ij and {vwn
ij }ij ,

are available on the primal mesh, that is, ∀i, j ,

φ
n

ij ≈ 1

�x�y

∫
Iij

φ(x, y, tn)dxdy, vn
ij ≈ 1

�x�y

∫
Iij

φ(x, y, tn)
x − xi

�x
dxdy,

wn
ij ≈ 1

�x�y

∫
Iij

φ(x, y, tn)
y − yj

�y
dxdy,

vwn
ij ≈ 1

�x�y

∫
Iij

φ(x, y, tn)
x − xi

�x

y − yj

�y
dxdy.

(b.1) We integrate (2.13) and (2.14) over [tn, tn+1] × [xi, xi+1] × [yj , yj+1], and
approximate all the zeroth-order and the first-order moments of the solution

associated with the dual mesh at tn+1 = tn + �t , denoted as φ
n+1
i+1/2,j+1/2,

vn+1
i+1/2,j+1/2, w

n+1
i+1/2,j+1/2 and vwn+1

i+1/2,j+1/2, as follows,

φ
n+1
i+1/2,j+1/2 = φ

n

i+1/2,j+1/2

− 1

�x�y

∫ tn+1

tn

∫ xi+1

xi

∫ yj+1

yj

H(φx(x,y, t), φy(x,y, t))dxdydt,

(2.15)
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vn+1
i+1/2,j+1/2 = vn

i+1/2,j+1/2

− 1

�x�y

∫ tn+1

tn

∫ xi+1

xi

∫ yj+1

yj

H(φx(x, y, t), φy(x, y, t))

× x − xi+1/2

�x
dxdydt, (2.16)

wn+1
i+1/2,j+1/2 = wn

i+1/2,j+1/2

− 1

�x�y

∫ tn+1

tn

∫ xi+1

xi

∫ yj+1

yj

H(φx(x, y, t), φy(x, y, t))

× y − yj+1/2

�y
dxdydt, (2.17)

vwn+1
i+1/2,j+1/2 = vwn

i+1/2,j+1/2

− 1

�x�y

∫ tn+1

tn

∫ xi+1

xi

∫ yj+1

yj

H(φx(x, y, t), φy(x, y, t))

× x − xi+1/2

�x

y − yj+1/2

�y
dxdydt. (2.18)

All the terms on the right-hand side of Eqs. 2.15–2.18 will be reconstructed
based on {φn

ij , v
n
ij , w

n
ij , vwn

ij }ij . For simplicity of notation, we still use φ in
the above formulations, though it is no longer the exact solution.

(b.2) We then integrate Eqs. 2.13 and 2.14 over [tn+1, tn+2] × [xi−1/2, xi+1/2] ×
[yj−1/2, yj+1/2], and approximate the moments of the solution with respect
to the primal mesh at tn+2 = tn+1 + �t ,

φ
n+2
ij = φ

n+1
ij − 1

�x�y

∫ tn+2

tn+1

∫ xi+1/2
xi−1/2

∫ yj+1/2
yj−1/2

H(φx(x, y, t),

φy(x, y, t))dxdydt,

vn+2
ij = vn+1

ij − 1
�x�y

∫ tn+2

tn+1

∫ xi+1/2
xi−1/2

∫ yj+1/2
yj−1/2

H(φx(x, y, t),

φy(x, y, t))
x−xi

�x
dxdydt,

wn+2
ij = wn+1

ij − 1
�x�y

∫ tn+2

tn+1

∫ xi+1/2
xi−1/2

∫ yj+1/2
yj−1/2

H(φx(x, y, t),

φy(x, y, t))
y−yj

�y
dxdydt,

vwn+2
ij = vwn+1

ij − 1
�x�y

∫ tn+2

tn+1

∫ xi+1/2
xi−1/2

∫ yj+1/2
yj−1/2

H(φx(x, y, t),

φy(x, y, t))
x−xi

�x

y−yj

�y
dxdydt.

(b.3) Set n to be n + 2, and go to (b.1).

Note that the mesh switches back after two time steps.
From now on, we will focus on the update details from tn to tn+1. Since our

spatial reconstructions are fifth-order, we further approximate all the spatial integrals
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in Eqs. 2.15–2.18 with the four-point Gauss-Lobatto quadrature formula along each
direction,

φ
n+1
i+1/2,j+1/2 = φ

n

i+1/2,j+1/2 −
4∑

l=1

4∑
s=1

ωlωs

∫ tn+1

tn
H(φx(Gx

l ,Gy
s , t), φy(Gx

l ,Gy
s , t))dt, (2.19)

vn+1
i+1/2,j+1/2 = vn

i+1/2,j+1/2 −
4∑

l=1

4∑
s=1

ωlωs

Gx
l − xi+1/2

�x

∫ tn+1

tn
H(φx(Gx

l ,Gy
s , t), φy(Gx

l ,Gy
s , t))dt, (2.20)

wn+1
i+1/2,j+1/2 = wn

i+1/2,j+1/2 −
4∑

l=1

4∑
s=1

ωlωs

Gy
s − yj+1/2

�y

∫ tn+1

tn
H(φx(Gx

l ,Gy
s , t), φy(Gx

l ,Gy
s , t))dt, (2.21)

vwn+1
i+1/2,j+1/2 = vwn

i+1/2,j+1/2

−
4∑

l=1

4∑
s=1

ωlωs

Gx
l − xi+1/2

�x

Gy
s − yj+1/2

�y

∫ tn+1

tn
H(φx(Gx

l ,Gy
s , t), φy(Gx

l ,Gy
s , t))dt. (2.22)

where {ωl}4l=1 and {Gx
l }4l=1 are given in Section 2.1, and {Gy

s }4s=1 are Gauss-Lobatto
quadrature points over the cell [yj , yj+1]

Gy

1 = yj , Gy

2 = y
j+ 1

2−
√
5

10
, Gy

3 = y
j+ 1

2+
√
5

10
, Gy

4 = yj+1.

For the primal mesh Iij , the collection of such quadrature points is denoted as

G =
{
(x, y) : x ∈ Gx,i , y ∈ Gy,j , ∀i, j

}
, (2.23)

where Gx,i is given in Section 2.1, and Gy,j = {y
j− 1

2+
√
5

10
, yj , y

j+ 1
2−

√
5

10
}.

Suppose the solution at tn is piecewise constant with respect to the pri-
mal mesh, and the time step �t is chosen to satisfy the CFL restriction
�t ≤ Ccf l

(maxi,j |H1(xi ,yj ,tn)|/�x+maxi,j |H2(xi ,yj ,tn)|/�y)
with some constant Ccf l and

(H1(xi, yj , t
n), H2(xi, yj , t

n)) defined below (2.29) being related to the character-
istic speed of Eq. 2.13, one can expect the solution restricted at (x∗, y∗) ∈ G are
smooth with respect to t ∈ [tn, tn+1]. Under such assumption on the time step, the
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Hamiltonian function H(φx(x∗, y∗, t), φy(x∗, y∗, t)) in Eqs. 2.19–2.22 can be
approximated by a temporal Taylor expansion at tn according to the following

H(φx(x∗, y∗, t), φy(x∗, y∗, t)) ≈ H(φx(x∗, y∗, tn), φy(x∗, y∗, tn))
+ (t − tn) ∂

∂t
H(φx(x∗, y∗, tn), φy(x∗, y∗, tn))

+ (t−tn)2

2
∂2

∂t2
H(φx(x∗, y∗, tn), φy(x∗, y∗, tn)).

(2.24)
If we want to obtain the (k+1)th-order accuracy in time, we need to approximate the
first k time derivatives of H . Just as in one-dimensional case, we here only consider
a third-order discretization in time.

Plugging the relations (2.24) into Eqs. 2.19–2.22, this will lead to our actual update
formulations

φ
n+1
i+1/2,j+1/2=φ

n

i+1/2,j+1/2−
4∑

l=1

4∑
s=1

ωlωsF (φ(Gx
l ,Gy

s , tn)), (2.25)

vn+1
i+1/2,j+1/2=vn

i+1/2,j+1/2−
4∑

l=1

4∑
s=1

ωlωs

Gx
l −xi+1/2

�x
F(φ(Gx

l ,Gy
s , tn)), (2.26)

wn+1
i+1/2,j+1/2=wn

i+1/2,j+1/2−
4∑

l=1

4∑
s=1

ωlωs

Gy
s −yj+1/2

�y
F(φ(Gx

l ,Gy
s , tn)), (2.27)

vwn+1
i+1/2,j+1/2=vwn

i+1/2,j+1/2−
4∑

l=1

4∑
s=1

ωlωs

Gx
l −xi+1/2

�x

Gy
s −yj+1/2

�y

F(φ(Gx
l ,Gy

s , tn)). (2.28)

with
F = F(φ) = �tH + �t2

2
∂
∂t

H + �t3

6
∂2

∂t2
H

= �tH + �t2

2 (H1φxt + H2φyt )

+�t3

6 (H11φ
2
xt + 2H12φxtφyt + H22φ

2
yt + H1φxtt + H2φytt ).

(2.29)
where Hi is the partial derivative of the Hamiltonian H with respect to ith argument
and Hij is the second partial derivative of H with respect to ith and j th arguments.

Again, we convert the temporal derivative terms of φ in Eq. 2.29 into spatial ones
by repeatedly using the governing equation (2.13):

φxt = −H1φxx − H2φxy, φyt = −H1φxy − H2φyy,

φxtt = (H 2
1 φxx + 2H1H2φxy + H 2

2 φyy)x

= 2H1H11φ
2
xx + 2H1H12φxyφxx + H 2

1 φxxx

+2φxy[(H11φxx + H12φxy)H2 + (H21φxx + H22φxy)H1] + 2H1H2φxxy

+2H2H21φxxφyy + 2H2H22φxyφyy + H 2
2 φxyy,

φytt = (H 2
1 φxx + 2H1H2φxy + H 2

2 φyy)y

= 2H1H11φxxφxy + 2H1H12φxxφyy + H 2
1 φxxy

+2φxy[(H11φxy + H12φyy)H2 + (H21φxy + H22φyy)H1] + 2H1H2φxyy

+2H2H21φxyφyy + 2H2H22φ
2
yy + H 2

2 φyyy,

(2.30)
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Even though F(φ) is used throughout the presentation, one should keep in mind that
we indeed have F = F(φx, φy, φxx, φxy, φyy, φxxx, φxxy, φxyy, φyyy).

To obtain themoments φ
n+1
i+1/2,j+1/2, v

n+1
i+1/2,j+1/2,w

n+1
i+1/2,j+1/2 and vwn+1

i+1/2,j+1/2

on the dual mesh at the next time tn+1 based on Eqs. 2.25–2.28, one will need to
reconstruct at the current time tn, ∀i, j ,

(1) the moments φ
n

i+1/2,j+1/2, vn
i+1/2,j+1/2, wn

i+1/2,j+1/2 and vwn
i+1/2,j+1/2 on

the dual mesh, as well as
(2) the point value of q(x∗, y∗, tn), where q = φx, φy, φxx, φxy, φyy, φxxx, φxxy ,

φxyy, or φyyy , and they are the function F in Eq. 2.29 actually depends on.
Here (x∗, y∗) ∈ G.

Just as in one dimension, to obtain the cell average φ
n

i+1/2,j+1/2, ∀i, j , one would
want to get the following four quarter-cell averages

1
�x�y

∫ xi+1/2
xi

∫ yj+1/2
yj

φ(x, y, tn)dxdy, 1
�x�y

∫ xi+1
xi+1/2

∫ yj+1/2
yj

φ(x, y, tn)dxdy,

1
�x�y

∫ xi+1/2
xi

∫ yj+1
yj+1/2

φ(x, y, tn)dxdy, 1
�x�y

∫ xi+1
xi+1/2

∫ yj+1
yj+1/2

φ(x, y, tn)dxdy.

(2.31)
This similarly goes to all the first-order moments.

To reconstruct the quarter-cell moments and point values mentioned above,
we use a dimension-by-dimension procedure and apply the one-dimensional fifth-
order accurate HWENO reconstruction in [33] and linear reconstruction for φxxx

in Section 2.1 multiple times. The dimension-by-dimension reconstruction greatly
improves the computational efficiency and ease of the implementation of high dimen-
sional cases. Such treatment is possible in our proposed work mainly due to the
inclusion of the mixed first-order moment vwn

ij .
We adopt the same reconstruction of the quarter-cell moments as in [33] and

we will not repeat it here. The difference between [33] and this paper is that
in [33] we need to reconstruct the point value of q(x∗, y∗, tn), where q =
u, ux, uy, uxx, uxy or uyy and u is the solution of hyperbolic conservation laws.
However, we need to reconstruct the point value of q(x∗, y∗, tn), where q =
φx, φy, φxx, φxy, φyy, φxxx, φxxy, φxyy, or φyyy in this paper. We will describe the
reconstruction of point values of the derivatives of the solution briefly. It is based on
the moments {φn

ij , v
n
ij , w

n
ij , vwn

ij }ij on the primal mesh at t = tn. The superscript n

will be omitted, together with the dependence on the time t .

Step 1. Along x direction, based on {φij , vij }ij , we reconstruct

1

�y

∫ yj+1/2

yj−1/2

p(x∗, y)dy, p = φ, φx, φxx, φxxx, x∗ ∈ Gx,i .

Step 2. Along x direction, based on {wij , vwij }ij , we reconstruct

1

�y

∫ yj+1/2

yj−1/2

p(x∗, y)
y − yj

�y
dy, p = φ, φx, φxx, φxxx, x∗ ∈ Gx,i .
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Step 3. Along y direction, based on

1

�y

∫ yj+1/2

yj−1/2

p(x∗, y)dy,
1

�y

∫ yj+1/2

yj−1/2

p(x∗, y)
y − yj

�y
dy,

p = φ, φx, φxx, φxxx, x∗ ∈ Gx,i

with all i, j , we reconstruct

q(x∗, y∗), q =φx, φy, φxx, φxy, φyy, φxxx, φxxy, φxyy, φyyy, (x∗, y∗)∈G.

Remark 2 Similar as in the one-dimensional case (see also Remark 1), with the cur-
rent central scheme framework, there is no need to use numerical Hamiltonian for F

as in upwind type schemes.

3 Central Hermite WENO schemes with natural continuous extension
of Runge-Kutta time discretization

Alternative to the Lax-Wendroff strategy, we apply in this section the natural con-
tinuous extension of Runge-Kutta (NCE-RK) time discretizations, to combine with
the central HWENO spatial discretizations in the framework of staggered meshes.
The use of NCE-RK methods permits one to compute accurate approximations for
the intermediate value of a solution to an ODE based on standard RK methods with
slight increase of the computational cost. Note that a standard RK method in general
only provides accurate approximations for the solution at discrete time tn for any n.

Below we will describe a fourth-order NCE-RK method which is used in this
paper. For more details about such time discretizations, one can refer to [3, 35].
Consider an ODE problem

{
y′(t) = F(t, y(t)),

y(t0) = y0,
(3.1)

and suppose yn is a given approximation to y(tn). One can then approximate y(tn+1)

at tn+1 = tn + �t by yn+1 with a standard four-stage fourth-order RK scheme as
follows.

yn+1 = yn + �t

4∑
i=1

biK
(i), (3.2)

where K(i) is an RK flux determined by

K(i) = F(tn + ci�t, Y (i)) with Y (i) = yn + ci�tK(i−1), i = 1, 2, 3, 4, (3.3)

and K(0) = 0. In addition, b1 = b4 = 1
6 , b2 = b3 = 1

3 , and c1 = 0, c2 = c3 = 1
2 ,

c4 = 1.
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A natural continuous extension of the RK scheme (3.2)–(3.3) further provides
an approximation of y(t) (and also its derivatives) with the same accuracy when
t ∈ [tn, tn+1]. This approximation is given specifically by

s(t)|t=tn+θ�t := yn + �t

4∑
i=1

Bi(θ)K(i), 0 ≤ θ ≤ 1,

where
B1(θ) = 2(1 − 4b1)θ3 + 3(3b1 − 1)θ2 + θ,

Bi(θ) = 4(3ci − 2)biθ
3 + 3(3 − 4ci)biθ

2, i = 2, 3, 4.

s(t) not only satisfies s(tn) = yn, s(tn+1) = yn+1, but also has the following
approximation properties,

max
tn≤t≤tn+�t

|y(l)(t) − s(l)(t)| = O(�t4−l), 0 ≤ l ≤ 4.

3.1 One-dimensional case

We use the same notation for the staggered meshes and the moments of a function
as in Section 2.1. Though the discussion below focuses on one time step, one would
want to keep in mind that the overall algorithm is still based on staggered meshes,
and it switches back and forth between the primal and dual meshes.

Suppose at t = tn, the approximations for the moments of the solution, namely
{φn

i }i and {vn
i }i , are available on the primal mesh.

We start our scheme based on Eqs. 2.5 and 2.6. As discussed in Section 2.1, if
the time step �t is chosen to satisfy a CFL restriction �t ≤ Ccf l�x

maxi |H ′(φx(xi ,t
n))| with

some constant Ccf l , the solution of this problem restricted at x∗ with x∗ ∈ Gx,i , ∀i

are smooth for t ∈ [tn, tn+1]. Motivated by this, the temporal Hamiltonian integrals
in the right of Eqs. 2.5–2.6 involve only smooth integrands and can be evaluated by
numerical quadrature with compatible accuracy. We apply the three-point Gaussian
quadrature formula and replace the temporal integral terms in Eqs. 2.5–2.6 according
to the following

∫ tn+1

tn
H(φx(x∗, t))dt ≈ �t

3∑
l=1

αlH(φx(x∗, tn + �tθl)). (3.4)

Here α1 = α3 = 5
18 , α2 = 4

9 are the quadrature weights, and θ1 = 1
2 −

√
15
10 , θ2 =

1
2 , θ3 = 1

2 +
√
15
10 are the quadrature points.

Based on Eqs. 2.5–2.6 and 3.4, one can compute the moments of the solution,

namely {φn+1
i+1/2}i and {vn+1

i+1/2}i , with respect to the dual mesh at t = tn+1. To achieve
this, one only needs to obtain accurate approximations for

φ
n

i+1/2, v
n
i+1/2, φx(x∗, tn + �tθl), l = 1, 2, 3, x∗ ∈ Gx,i , ∀i, (3.5)

and the remainder of this subsection will be devoted to the related details.
Recall at tn, {φn

i , v
n
i }i are available. We can first reconstruct the staggered

moments {φn

i+1/2}i and {vn
i+1/2}i associated with the dual mesh in Eq. 3.5 based on

the same fifth-order HWENO procedure as in Section 2.1.
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In order to approximate the point values φx(x∗, tn + �tθl), l = 1, 2, 3, x∗ ∈
Gx,i , ∀i in Eq. 3.5, we will apply the fourth-order NCE-RK method to the auxiliary
ODE problem (3.1) starting from t = tn at each x∗ ∈ Gx,i , with any i, where

y(t) = φx(x∗, t), F (t, y) = −Hx(φx)|(x∗,t) ≈ −RHx (φx)|(x∗,t). (3.6)

Here the operator RHx in Eq. 3.6 is to reconstruct Hx at x∗, which can be computed
by the same WENO strategy as fx in [33].

More specifically, one needs to evaluate the corresponding K(i), i = 1, 2, 3, 4,
used in Eqs. 3.2–3.3 as follows.

(c.1) To evaluate K(1), we reconstruct the point values of φx(x∗, tn) based on
the given moments {φn

i , vn
i }i on the primal mesh which has already been

discussed in [33]. The operator RHx is chosen such that Hx(x∗, tn) is
reconstructed by a WENO strategy used in [33].

(c.2) Once K(l) for some l ≥ 1 is available, then Y (l+1) can be computed based
on Eq. 3.3. This will provide approximations for φx(x∗, tn + cl+1�t). Now
the operator RHx in Eq. 3.6 is chosen such that Hx(x∗, tn + cl+1�t) is
reconstructed using a WENO strategy.

(c.3) With K(l), l = 1, 2, 3, 4, one can now follow the NCE-RK procedure to
obtain accurate approximations for the point values of φx in Eq. 3.5.

3.2 Two-dimensional case

We use the same notation for the staggered meshes and the moments of a function,
as well as the fifth-order HWENO spatial reconstruction as in Section 2.2. Again, the
discussion will focus on the algorithm over one time step.

Suppose at t = tn, the approximations for the moments of the solu-
tion, namely {φn

ij , v
n
ij , w

n
ij , vwn

ij }ij , are available on the primal mesh. We start
the two-dimensional case based on Eqs. 2.19–2.22. Following the idea in
Section 2.2, if the time step �t is chosen to satisfy the CFL restriction �t ≤

Ccf l

(maxi,j |H1(xi ,yj ,tn)|/�x+maxi,j |H2(xi ,yj ,tn)|/�y)
with some constant Ccf l , one can expect

the solution restricted at (x∗, y∗) ∈ G are smooth with respect to t ∈ [tn, tn+1]. Under
such assumption on the time step, we further apply the three-point Gaussian quadra-
ture formula and replace the temporal integral terms in Eqs. 2.19–2.22 according to
the following numerical quadrature

∫ tn+1

tn
H(φx(x∗, y∗, t), φy(x∗, y∗, t))dt ≈ �t

3∑
l=1

αlH (φx(x∗, y∗, tn + �tθl),

φy(x∗, y∗, tn + �tθl)
)
,

(3.7)

where α1 = α3 = 5
18 , α2 = 4

9 , and θ1 = 1
2 −

√
15
10 , θ2 = 1

2 , θ3 = 1
2 +

√
15
10 .

Based on Eqs. 2.19–2.22 and 3.7, one can compute the moments of the solution,
namely

{φn+1
i+1/2,j+1/2, v

n+1
i+1/2,j+1/2, w

n+1
i+1/2,j+1/2, vwn+1

i+1/2,j+1/2}ij ,
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associated with the dual mesh at t = tn+1. To achieve this, one only needs to obtain
accurate approximations for

pn
i+1/2,j+1/2, q(x∗, y∗, tn + �tθl),with p = φ, v,w, vw, q = φx, φy,

and (x∗, y∗) ∈ G, l = 1, 2, 3, ∀i, j (3.8)

and the remainder of this subsection will be devoted to the related details.
Recall at tn, {φn

ij , v
n
ij , w

n
ij , vwn

ij }ij are available. We can first reconstruct the

staggered moments {φn

i+1/2,j+1/2, v
n
i+1/2,j+1/2, w

n
i+1/2,j+1/2, vwn

i+1/2,j+1/2}ij in
Eq. 3.8 based on the same fifth-order HWENO procedure described in [33]. In order
to approximate the point values q(x∗, y∗, tn + �tθl) with q = φx, φy , (x∗, y∗) ∈ G,
l = 1, 2, 3 in Eq. 3.8, we will apply the fourth-order NCE-RKmethod to the auxiliary
ODE problem (3.1) starting from t = tn at each (x∗, y∗), where

y(t) =
{

φx(x∗, y∗, t),
φy(x∗, y∗, t), F (t, y) =

{ −Hx(φx, φy)|(x∗,y∗,t) ≈ −RHx (φx, φy)|(x∗,y∗,t),−Hy(φx, φy)|(x∗,y∗,t) ≈ −RHy (φx, φy)|(x∗,y∗,t).

(3.9)
Here the operators RHx and RHy are to reconstruct Hx and Hy at (x∗, y∗)

respectively, and they are evaluated by the sameWENO strategy as fx and gy in [33].
Then, one can evaluate the corresponding K(i), i = 1, 2, 3, 4 used in Eqs. 3.2-3.3

as follows.

(d.1) To evaluate K(1), we reconstruct the point values of q(x∗, y∗, tn), q =
φx, φy based on the given moments {φn

ij , v
n
ij , w

n
ij , vwn

ij }ij on the primal
mesh which is used in Section 2.2. The operators RHx and RHy are chosen
such that Hx(x∗, y∗, tn) and Hy(x∗, y∗, tn) are reconstructed by the WENO
procedure discussed in [33].

(d.2) Once K(l) for some l ≥ 1 is available, then Y (l+1) can be computed
based on Eq. 3.3. This will provide approximations for q(x∗, y∗, tn +
cl+1�t), q = φx, φy . Again, The operators RHx and RHy are chosen such
that Hx(x∗, y∗, tn + cl+1�t) and Hy(x∗, y∗, tn + cl+1�t) are reconstructed
by the same procedure as in (d.1).

(d.3) With K(l), l = 1, 2, 3, 4, one can now follow the NCE-RK procedure to
obtain accurate approximations for the point values of φx and φy in Eq. 3.8.

Remark 3 For the two-dimensional example 4.14 in Section 4, we notice that the
Hamiltonian H depends on not only the first derivatives φx, φy, but also the second
derivatives φxx, φxy, φyy . There will be more terms (three two-dimensional second
spatial derivatives) for y(t), and three more two-dimensional second derivatives of
H for F(t, y) in Eq. 3.9 are needed by the similar reconstruction strategy.

4 Numerical examples

In this section, we will report a set of numerical experiments to illustrate the high-
order accuracy and the robustness of the proposed methods to simulate one- and two-
dimensional HJ equations (1.1). The solutions can be smooth or have discontinuous
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derivative. The numerical results are obtained by the proposed fifth-order central
HWENO scheme with the third-order Lax-Wendroff method (C-HWENO5-LW3) or
with the fourth-order NCE-RKmethod (C-HWENO5-NCERK4) in time for both one
and two dimensions. Uniform meshes with N elements and Nx × Ny elements are
used in one and two dimensions, respectively.

The time step �t is dynamically chosen. In particular, in one-dimensional scalar
case, we take

�t = Ccf l

�x

maxi |H ′(φx(xi, t))| ,

and in two-dimensional scalar case, we have

�t = Ccf l

(maxi,j |H1(xi, yj , t)|/�x + maxi,j |H2(xi, yj , t)|/�y)
,

and they are computed numerically at each discrete time level.
The CFL numberCcf l is taken as 0.2 for non-smooth tests. For accuracy test cases,

in order to ensure the spatial errors dominate, we should take �t = O(�x5/4), for
simplicity, we take Ccf l = 0.05, and this can ensure �t = O(�x5/4) for all test
cases in this paper.

In addition, the L1 and L∞ errors are defined as below. Suppose the final time is
T . In one-dimensional case, assuming x ∈ [a, b] and each cell of the mesh of the
form Ii, i = 1, · · · , N , we take

||e(·, T )||L1 = 1

b − a

N∑
i=1

∣∣∣∣φi(T ) − 1

�x

∫
Ii

φ(x, T )dx

∣∣∣∣�x

= 1

N

N∑
i=1

∣∣∣∣φi(T ) − 1

�x

∫
Ii

φ(x, T )dx

∣∣∣∣ ,

||e(·, T )||L∞ = max
1≤i≤N

∣∣∣∣φi(T ) − 1

�x

∫
Ii

φ(x, T )dx

∣∣∣∣ ,
and in two-dimensional case, assuming x ∈ [a, b], y ∈ [c, d] and each cell of the
mesh of the form Iij , i = 1, · · · , Nx, j = 1, · · · , Ny , we have

||e(·, ·, T )||L1 = 1
(b−a)(d−c)

Nx∑
i=1

Ny∑
j=1

∣∣∣φij (T ) − 1
�x�y

∫
Iij

φ(x, y, T )dxdy

∣∣∣�x�y

= 1
NxNy

Nx∑
i=1

Ny∑
j=1

∣∣∣φij (T ) − 1
�x�y

∫
Iij

φ(x, y, T )dxdy

∣∣∣ ,
||e(·, ·, T )||L∞ = max1≤i≤Nx,1≤j≤Ny

∣∣∣φij (T ) − 1
�x�y

∫
Iij

φ(x, y, T )dxdy

∣∣∣ .
4.1 Accuracy tests with smooth solutions

We first test the accuracy of the proposed schemes when the solutions are smooth.
The problems can be linear, nonlinear, convex or non-convex in one and two
dimensions.
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Example 4.1 We consider the one-dimensional linear advection equation,

φt + φx = 0 (4.1)

with the initial condition φ(x, 0) = sin(πx), and a 2-periodic boundary condition.
The solutions are run up to t = 2, i.e. after one period by the schemes. In Table 1
we present the L1 and L∞ errors and numerical orders of accuracy for C-HWENO5-
LW3 and C-HWENO5-NCERK4 schemes. One can see that both schemes achieve
their designed fifth-order accuracy.

Example 4.2 We consider the one-dimensional Burgers equation, which is scalar and
nonlinear,

φt + (φx + 1)2

2
= 0 (4.2)

with the initial condition φ(x, 0) = − cos(πx), and a 2-periodic boundary condition.
When t = 0.5/π2 the derivative of solution is still smooth, and the L1 and L∞
errors and numerical orders of accuracy are presented in Table 2 for C-HWENO5-
LW3 and C-HWENO5-NCERK4 schemes. We can see that both schemes achieve
their designed fifth-order accuracy with comparable errors.

Example 4.3 We consider the following nonlinear scalar one-dimensional Hamilton-
Jacobi equation

φt − cos(φx + 1) = 0 (4.3)

with a non-convex Hamiltonian. The initial condition is set to be φ(x, 0) =
− cos(πx), with a 2-periodic boundary condition. We compute the result up to
t = 0.5/π2.

The L1 and L∞ errors and numerical orders of accuracy are reported in Table 3 for
C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both schemes achieve their

Table 1 The linear advection equation φt + φx = 0, with φ(x, 0) = sin(πx), and a periodic bound-
ary condition. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 2. L1 and L∞ errors and orders of
accuracy

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 6.78E-02 9.49E-02 6.94E-02 9.68E-02

20 3.11E-03 4.45 4.92E-03 4.27 3.16E-03 4.46 4.96E-03 4.29

40 9.47E-05 5.04 1.78E-04 4.79 9.69E-05 5.03 1.81E-04 4.78

80 3.03E-06 4.96 5.83E-06 4.94 3.06E-06 4.98 5.88E-06 4.94

160 9.74E-08 4.96 1.84E-07 4.99 9.64E-08 4.99 1.82E-07 5.01

320 3.16E-09 4.95 5.89E-09 4.96 3.01E-09 5.00 5.65E-09 5.01

640 1.13E-10 4.80 1.95E-10 4.92 9.38E-11 5.00 1.64E-10 5.10
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Table 2 Burgers equation φt + (φx + 1)2/2 = 0, with φ(x, 0) = − cos(πx), and a periodic boundary
condition. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 0.5/π2. L1 and L∞ errors and orders of
accuracy

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.35e-02 2.37e-02 1.35e-02 2.37e-02

20 6.70e-04 4.33 2.31e-03 3.36 6.72e-04 4.33 2.32e-03 3.36

40 3.04e-05 4.46 1.70e-04 3.76 3.05e-05 4.46 1.71e-04 3.76

80 1.18e-06 4.69 1.03e-05 4.04 1.18e-06 4.69 1.03e-05 4.05

160 3.88e-08 4.93 4.17e-07 4.63 3.85e-08 4.94 4.17e-07 4.63

320 1.22e-09 4.99 1.41e-08 4.89 1.23e-09 4.97 1.42e-08 4.88

640 3.71e-11 5.04 3.89e-10 5.18 3.77e-11 5.03 3.91e-10 5.18

designed fifth-order accuracy with comparable errors. For this example and example
4.5, there are some fulctuations in numerical orders (especially for the L∞ order)
when the mesh is not very fine. The accuracy approaches the fifth-order eventually.

Example 4.4 We consider the nonlinear scalar Burgers equation in two dimensions

φt + (φx + φy + 1)2

2
= 0 (4.4)

with the initial condition φ(x, y, 0) = − cos(π(x+y)/2), and a 4-periodic boundary
condition in each direction. When t = 0.5/π2 the solution is still smooth.

The L1 and L∞ errors and numerical orders of accuracy are presented in Table 4
for C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both schemes achieve
their designed fifth-order accuracy with comparable errors.

Table 3 One-dimensional nonlinear problem with the non-convex Hamiltonian H(φx) = − cos(φx + 1),
with φ(x, 0) = − cos(πx), and a periodic boundary condition. C-HWENO5-LW3 and C-HWENO5-
NCERK4. t = 0.5/π2. L1 and L∞ errors and orders of accuracy

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 2.92E-03 7.24E-03 2.92E-03 7.30E-03

20 3.05E-04 3.26 9.26E-04 2.97 3.10E-04 3.23 9.44E-04 2.95

40 2.09E-05 3.87 1.26E-04 2.88 2.10E-05 3.88 1.30E-04 2.86

80 1.46E-06 3.84 1.37E-05 3.20 1.45E-06 3.86 1.37E-05 3.25

160 7.67E-08 4.25 2.00E-06 2.77 7.61E-08 4.25 2.03E-06 2.75

320 2.61E-09 4.88 8.92E-08 4.49 2.61E-09 4.87 8.94E-08 4.50

640 5.52E-11 5.56 1.19E-09 6.23 5.52E-11 5.56 1.19E-09 6.23
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Table 4 Burgers equation φt +(φx +φy +1)2/2 = 0, with φ(x, y, 0) = − cos(π(x+y)/2), and periodic
boundary conditions. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 0.5/π2. L1 and L∞ errors and
orders of accuracy

Nx × Ny C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 2.21e-02 5.44e-02 2.21e-02 5.45e-02

20 × 20 1.26e-03 4.13 3.71e-03 3.87 1.27e-03 4.13 3.72e-03 3.87

40 × 40 6.11e-05 4.37 2.98e-04 3.64 6.13e-05 4.37 2.98e-04 3.64

80 × 80 2.37e-06 4.69 1.79e-05 4.06 2.37e-06 4.69 1.79e-05 4.06

160 × 160 7.74e-08 4.94 7.95e-07 4.49 7.71e-08 4.94 7.97e-07 4.49

320 × 320 2.42e-09 5.00 2.65e-08 4.91 2.42e-09 4.99 2.65e-08 4.91

640 × 640 7.09e-11 5.09 6.80e-10 5.28 7.15e-11 5.08 6.81e-10 5.28

Example 4.5 We here consider the following nonlinear scalar two-dimensional
Hamilton-Jacobi equation

φt − cos(φx + φy + 1) = 0 (4.5)

with a non-convex Hamiltonian. The initial condition is set to be φ(x, y, 0) =
− cos(π(x + y)/2), with a 4-periodic boundary condition in each direction. We
compute the result until t = 0.5/π2.

The L1 and L∞ errors and numerical orders of accuracy are reported in Table 5
for C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both schemes achieve
their designed fifth-order accuracy with comparable errors.

Table 5 Two-dimensional nonlinear problem with the non-convex Hamiltonian H(φx, φy) = − cos(φx +
φy + 1), with φ(x, y, 0) = − cos(π(x + y)/2), and periodic boundary conditions. C-HWENO5-LW3 and
C-HWENO5-NCERK4. t = 0.5/π2. L1 and L∞ errors and orders of accuracy

Nx × Ny C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 6.76e-03 1.36e-02 6.78e-03 1.37e-02

20 × 20 4.37e-04 3.95 1.52e-03 3.16 4.42e-04 3.94 1.55e-03 3.14

40 × 40 3.69e-05 3.57 2.11e-04 2.85 3.70e-05 3.58 2.15e-04 2.85

80 × 80 2.43e-06 3.92 1.99e-05 3.41 2.42e-06 3.93 2.04e-05 3.40

160 × 160 1.44e-07 4.08 2.68e-06 2.89 1.44e-07 4.08 2.71e-06 2.91

320 × 320 4.30e-09 5.07 1.11e-07 4.59 4.29e-09 5.06 1.11e-07 4.61

640 × 640 9.41e-11 5.51 2.32e-09 5.58 9.42e-11 5.51 2.33e-09 5.58
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4.2 Test cases with discontinuous derivatives

We now test the performance of the proposed methods in terms of their resolution
and non-oscillatory property when solving problems with discontinuous derivatives.

Example 4.6 We consider the same one-dimensional linear equation (4.1) and the
periodic boundary condition as in Example 4.1 but with non-smooth initial data
φ(x, 0) = φ0(x − 0.5), where

φ0(x) = −(

√
3

2
+9

2
+2π

3
)(x+1)+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 cos( 3πx2

2 ) − √
3,

3
2 + 3 cos(2πx),
15
2 − 3 cos(2πx),
28+4π+cos(3πx)

3 + 6πx(x − 1),

−1≤ x<− 1
3 ,

− 1
3 ≤ x < 0,

0 ≤ x < 1
3 ,

1
3 ≤ x < 1.

(4.6)
We present the numerical solutions at t = 2 and t = 8 with N = 100 mesh elements.
In Fig. 1, the solutions of C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes
are plotted, together with the exact solutions. We can see that both schemes lead to
results with good resolution.

Example 4.7 We consider the same one-dimensional Burgers equation (4.2) as in
Example 4.2 with the same initial and boundary conditions, except that we now
present the numerical solutions at t = 3.5/π2 when discontinuous derivative has
already appeared in the solution. The Hamiltonian is nonlinear and convex. In Fig. 2,
the solutions of C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes are plotted,
together with the exact solution. The mesh is uniform with N = 80 elements. We can
see that both schemes give good results for this problem.

Example 4.8 We consider the same one-dimensional nonlinear equation (4.3) as in
Example 4.3 with the same initial and boundary conditions, except that we now
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Fig. 1 Linear equation in one dimension. t = 2 (left) and t = 8 (right) with N = 100. Solid line: exact
solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4
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Fig. 2 Burgers equation in one dimension. φ(x, 0) = − cos(πx). t = 3.5/π2 and N = 80. Solid line:
exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4

present the numerical solutions at t = 1.5/π2 when discontinuous derivative has
already appeared in the solution. The problem involves a non-convex Hamiltonian.
In Fig. 3, the solutions of C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes
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C-HWENO5-NCERK4+

Fig. 3 Problem with the non-convex Hamiltonian H(φx) = − cos(φx + 1). t = 1.5/π2 and N = 80.
Solid line: exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4
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Fig. 4 Riemann problem with the non-convex Hamiltonian H(φx) = 1
4 (φ2

x − 1)(φ2
x − 4). t = 1 and

N = 80. Solid line: exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4

are shown with N = 80 mesh elements, together with the exact solution. We can see
that both schemes capture non-smooth features in the solution with good resolution.

Example 4.9 We consider the one-dimensional Riemann problem with a non-convex
Hamiltonian

{
φt + 1

4 (φ
2
x − 1)(φ2

x − 4) = 0, −1 < x < 1,
φ(x, 0) = −2|x|. (4.7)

This is a demanding test case, for many schemes have poor resolutions or could even
converge to a non-viscosity solution for this case. In Fig. 4, we plot the solutions at
t = 1 by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes withN = 80 mesh
elements, together with the exact solution. We can observe that both schemes show
good resolution for this problem.

Example 4.10 We solve the same two-dimensional Burgers equation (4.4) as in
Example 4.4 with the same initial and boundary conditions, except that we now
present the numerical solutions at t = 1.5/π2 when the discontinuous deriva-
tive has already appeared in the solution. In Fig. 5, we show the contours and
surfaces of the computed solutions on a 40 × 40 mesh by C-HWENO5-LW3
and C-HWENO5-NCERK4 schemes. Both schemes have good resolution for this
problem.
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Fig. 5 Burgers equation in two dimensions. t = 1.5/π2 and Nx × Ny = 40 × 40. The contour (left) and
surface (right) of solutions computed by C-HWENO5-LW3 (top) and C-HWENO5-NCERK4 (bottom)

Example 4.11 The two-dimensional Riemann problem with a non-convex Hamilto-
nian {

φt + sin(φx + φy) = 0, −1 ≤ x, y < 1,
φ(x, y, 0) = π(|y| − |x|). (4.8)

We compute up to t = 1. In Fig. 6, the contours and surfaces of the com-
puted solutions are presented on an 80 × 80 mesh by C-HWENO5-LW3 and
C-HWENO5-NCERK4 schemes. We observe good resolution for both schemes.

Example 4.12 A problem from optimal control

{
φt +sin(y)φx +(sin(x)+sign(φy))φy − 1

2 sin(y)2−(1−cos(x))=0, −π ≤ x, y < π,
φ(x, y, 0) = 0.

(4.9)
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Fig. 6 Two-dimensional Riemann problem with a non-convex Hamiltonian H(φx, φy) = sin(φx + φy).
t = 1 and Nx × Ny = 80 × 80. The contour (left) and surface (right) of solutions computed by C-
HWENO5-LW3 (top) and C-HWENO5-NCERK4 (bottom)

with the periodic boundary condition, see [27]. We compute up to t = 1. In Fig. 7,
the surfaces of the solutions and the optimal control ω = sin(φy) are reported on
a 60 × 60 mesh by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Good
resolution is observed with both schemes.

Example 4.13 A two-dimensional Eikonal equation with a non-convex Hamiltonian,
which arises in geometric optics [15], is given by

{
φt +

√
φ2

x + φ2
y + 1 = 0, 0 ≤ x, y < 1,

φ(x, y, 0) = 1
4 (cos(2πx) − 1)(cos(2πy) − 1) − 1.

(4.10)

with the periodic boundary condition. We compute up to t = 0.6. In Fig. 8, We
present the contours and surfaces of the computed solutions on an 80 × 80 mesh by
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Fig. 7 The optimal control problem. t = 1 and Nx × Ny = 60 × 60. The surface of solutions (left) and
the optimal control ω = sin(φy) (right) computed by C-HWENO5-LW3 (top) and C-HWENO5-NCERK4
(bottom)

C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both schemes show good
resolution to approximate the solution with comparable results.

Example 4.14 A problem of a propagating surface [26] is governed by
{

φt − (1 − εK)
√

φ2
x + φ2

y + 1 = 0, 0 ≤ x, y < 1,

φ(x, y, 0) = 1 − 1
4 (cos(2πx) − 1)(cos(2πy) − 1).

(4.11)

where K is the mean curvature defined by

K = −φxx(1 + φ2
y) − 2φxyφxφy + φyy(1 + φ2

x)

(1 + φ2
x + φ2

y)
3
2

,

and ε is a small constant. A periodic boundary condition is used.
In Fig. 9, We present the results of ε = 0 (pure convection) and ε = 0.1 on

a 60 × 60 mesh by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. The
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Fig. 8 Eikonal equation (4.10) with a non-convex Hamiltonian H(φx, φy) =
√

φ2
x + φ2

y + 1. t = 0.6 and

Nx × Ny = 80 × 80. The contour (left) and surface (right) of solutions computed by C-HWENO5-LW3
(top) and C-HWENO5-NCERK4 (bottom)

surfaces at t = 0 for ε = 0 and for ε = 0.1, and at t = 0.1 for ε = 0.1, are shifted
downward in order to show the detail of the solution at later time. Both schemes show
good resolution to approximate the solution with comparable results.

Example 4.15 We solve the two-dimensional Eikonal equation

φt +
√

φ2
x + φ2

y = 1. (4.12)

(1) We consider the case of the computational domain being [0, 1]2 \ [0.4, 0.6]2.
For the inner boundary cells inside [0.4, 0.6]2, we impose the exact solution
that is minus distance function to the inner boundary. On the other hand, we
impose free outflow boundary conditions on the outer boundary. The initial
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Fig. 9 Propagating surface. Nx × Ny = 60 × 60. ε = 0 (left) and ε = 0.1 (right) computed by C-
HWENO5-LW3 (top) and C-HWENO5-NCERK4 (bottom)

condition is taken as φ0(x, y) = max{|x−0.5|, |y−0.5|}−0.1. The steady state
solution should give us a function that is equal to distance of the point to the
inner boundary. In Fig. 10, we plot the contours and surfaces of the numerical
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Fig. 10 Steady state solution of the two-dimensonal Eikonal equation (4.12): case (1).Nx ×Ny = 40×40.
The contour (left) and surface (right) of solutions computed by C-HWENO5-LW3 (top) and C-HWENO5-
NCERK4 (bottom)

steady state solution with 40 × 40 mesh elements by C-HWENO5-LW3 and
C-HWENO5-NCERK4 schemes.

(2) We consider this example with a point source condition. Namely, we take the
inner boundary to be the center point (0.5,0.5). In this case, we use the exact
distance function to the center point for φ in the center cells. For the primal
mesh, we have one center cell and (0.5,0.5) is the center point of this cell. For
the dual mesh, we have four center cells and (0.5,0.5) is one of the corner grid
points of these four cells. The outer boundary conditions are the same as for the
previous case. The initial condition is taken as φ0(x, y) = max{|x − 0.5|, |y −
0.5|}. In Fig. 11, we plot the contours and surfaces of the numerical steady state
solution with 39 × 39 mesh elements by C-HWENO5-LW3 and C-HWENO5-
NCERK4 schemes. We can see that both schemes obtain very good resolution
to the viscosity solution in both cases.
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Fig. 11 Steady state solution of the two-dimensonal Eikonal equation (4.12): case (2).Nx ×Ny = 39×39.
The contour (left) and surface (right) of solutions computed by C-HWENO5-LW3 (top) and C-HWENO5-
NCERK4 (bottom)

5 Concluding remarks

In this paper, we design a new class of high-order central Hermite WENO schemes
for directly solving HJ equations in one- and two-dimension. The methods use
Hermite WENO reconstruction based on moments of the solution as spatial dis-
cretizations, and Lax-Wendroff type methods or the natural continuous extension of
Runge-Kutta methods as time discretizations, in a central finite volume framework
on staggered meshes. Our schemes evolve in time the moments of the solution rather
than the solution and its derivative(s) for the spatial reconstruction, meanwhile having
the advantage of being compact. Due to the inclusion of the mixed first-order moment
vwn

ij , one major advantage of our schemes is that the two-dimensional HWENO spa-
tial reconstruction can be implemented through a dimension-by-dimension strategy.
In other words, the proposed HWENO spatial reconstructions in one dimension are
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employed directly in two or higher dimensions, and lead to an easier multidimen-
sional simulations. In addition, a key ingredient for directly solving HJ equations is
the reconstruction of numerical Hamiltonians to guarantee the stability of methods.
Benefited from the central strategy, our methods require no numerical Hamiltonians
which makes the schemes simpler. Our schemes combine the HWENO spatial recon-
structions and the central scheme and therefore carry many features of both schemes.
Instead of working with staggered meshes, the proposed spatial reconstructions can
also be applied to the central finite volume schemes defined on two overlapping
meshes [24].

Acknowledgments The research was partially supported by NSFC grant 11571290 and NSAF grant
U1630247.

Appendix A

When we apply the central Hermite WENO scheme with Lax-Wendroff time dis-
cretization in Section 2.2 to solve the two-dimensional example 4.14 in Section 4,
one can see that the Hamiltonian H of this example depends on not only the first
derivatives φx, φy, but also three second derivatives φxx, φxy, φyy . If we still con-
vert time derivatives into spatial ones as in Eq. 2.30, this can become very involved.
Alternatively, following the idea in [28, 29], we use the following Lax-Wendroff pro-
cedure which produces the best balance between cost reduction and ensuring ENO
properties for the reconstruction.

Recall that based on Eqs. 2.25-2.29, one will need to reconstruct at the current
time tn, ∀i, j ,

(1) the moments φ
n

i+1/2,j+1/2, vn
i+1/2,j+1/2, wn

i+1/2,j+1/2 and vwn
i+1/2,j+1/2 on

the dual mesh, as well as
(2) the point value of F(x∗, y∗, tn) with (x∗, y∗) ∈ G. Note that F = �tH +

�t2

2
∂
∂t

H + �t3

6
∂2

∂t2
H .

The staggeredmomentsφ
n

i+1/2,j+1/2, v
n
i+1/2,j+1/2,w

n
i+1/2,j+1/2 and vwn

i+1/2,j+1/2
on the dual mesh are reconstructed by the same procedure as in Section 2.2. The
remainder is to approximate the point value of F(x∗, y∗, tn). More specifically, we

need to approximate the point values of H, ∂
∂t

H and ∂2

∂t2
H at (x∗, y∗, tn). Since the

data before and after the reconstruction is all at the same time level tn, the superscript
n will be omitted below, together with the dependence on the time t .

Step 1: A reconstruction for H(φx, φy, φxx, φxy, φyy) at (x∗, y∗).
The reconstruction of point values of q(x∗, y∗), where q = φx, φy,

φxx, φxy, or φyy are the same as in Section 2.2. Then we can get the
approximation of H(φx, φy, φxx, φxy, φyy) as well as φt at (x∗, y∗)

φt |(x∗,y∗) = −H(φx, φy, φxx, φxy, φyy)|(x∗,y∗).
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Fig. 12 One-dimensional
Gauss-Lobatto points in the
cells {Ii−1/2, Ii+1/2}

71 2 3 4 5 6

Ii+1Ii-1 Ii

Step 2: A reconstruction for the first temporal derivative of H(φx, φy, φxx,

φxy, φyy) at (x∗, y∗).
According to the Hamiltonian H in example 4.14, we have

∂

∂t
H(φx, φy, φxx, φxy, φyy) = H1φxt+H2φyt+H3φxxt+H4φxyt+H5φyyt ,

where H1 and H2 are functions depend on φx, φy, φxx, φxy and φyy , while
H3, H4 and H5 are functions depend on φx and φy . In order to reconstruct
∂
∂t

H , we only need to reconstruct φxt , φyt , φxxt , φxyt and φyyt which are
given as below.
We first consider one-dimensional case. Suppose we have primal mesh

{Ii}i and dual mesh {Ii+1/2}i . For any given i, consider all the Gauss-
Lobatto quadrature points in the cells Ii−1/2 and Ii+1/2, relabeled as
p1, · · · , p7, namely

p1 = xi−1, p2 = x
i− 1

2−
√
5

10
, p3 = x

i− 1
2+

√
5

10
, p4 = xi,

p4 = xi, p5 = x
i+ 1

2−
√
5

10
, p6 = x

i+ 1
2+

√
5

10
, p7 = xi+1.

Note that the points p1, · · · , p7 are interior points with respect to the primal
mesh, see Fig. 12.
Let gn denote the point value of a function g at point pn, namely, gn =

g(pn), n = 1, · · · , 7. We introduce a simple one-dimensional fourth-order
“central” difference formula to approximate the first derivative gx(pn) with
n = 3, 4, 5 in the target cell Ii

gx(p3) = 1
�x

[
(4

√
5−6)
11 g1 − (

√
5 − 1)g2 − (5+√

5)
4 g3

+(
√
5 + 1)g4 − (5

√
5+9)
44 g5

]
,

gx(p4) = 1
2�x

[
(
√
5−2)g2−(

√
5 + 2)g3+(

√
5 + 2)g5−(

√
5 − 2)g6

]
,

gx(p5) = 1
�x

[
(5

√
5+9)
44 g3 − (

√
5 + 1)g4 + (5+√

5)
4 g5

+(
√
5 − 1)g6 − (4

√
5−6)
11 g7

]
,

(A.1)

as well as a one-dimensional third-order “central” difference formula to
approximate the second derivative gxx(pn) with n = 3, 4, 5 in the target
cell Ii

gxx(p3) = 1
�x2

[
(5 − 3

√
5)g1 + 10g2 − 20g3 + (5 + 3

√
5)g4

]
,

gxx(p4) = 1
2�x2

[
(15 − 7

√
5)g2 + (15 + 7

√
5)g3

−60g4 + (15 + 7
√
5)g5 + (15 − 7

√
5)g6

]
,

gxx(p5) = 1
�x2

[
(5 + 3

√
5)g4 − 20g5 + 10g6 + (5 − 3

√
5)g7

]
.

(A.2)
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Fig. 13 Two-dimensional
Gauss-Lobatto quadrature nodes
in G located within Iij
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Back to our two-dimensional situation. We will apply the above “central”
difference formulation multiple times based on a dimension-by-dimension
procedure and relabel the Gauss-Lobatto quadrature points in the cell Iij as
p1

ij , · · · , p9
ij as shown in Fig. 13 to assist with the presentation,

p1
i,j = (x

i− 1
2+

√
5

10
, y

j− 1
2+

√
5

10
), p2

i,j = (xi , y
j− 1

2+
√
5

10
), p3

i,j = (x
i+ 1

2−
√
5

10
, y

j− 1
2+

√
5

10
),

p4
i,j = (x

i− 1
2+

√
5

10
, yj ), p

5
i,j = (xi , yj ), p

6
i,j = (x

i+ 1
2−

√
5

10
, yj ),

p7
i,j = (x

i− 1
2+

√
5

10
, y

j+ 1
2−

√
5

10
), p8

i,j = (xi , y
j+ 1

2−
√
5

10
), p9

i,j = (x
i+ 1

2−
√
5

10
, y

j+ 1
2−

√
5

10
).

By applying the formulation (A.1) along x direction,

• we reconstruct {φxt (p
1
i,j ), φxt (p

2
i,j ), φxt (p

3
i,j )}ij based on

{
φt (p

2
i−1,j ), φt (p

3
i−1,j ), φt (p

1
i,j ), φt (p

2
i,j ), φt (p

3
i,j ), φt (p

1
i+1,j ), φt (p

2
i+1,j )

}
ij

;

• we reconstruct {φxt (p
4
i,j ), φxt (p

5
i,j ), φxt (p

6
i,j )}ij based on

{
φt (p

5
i−1,j ), φt (p

6
i−1,j ), φt (p

4
i,j ), φt (p

5
i,j ), φt (p

6
i,j ), φt (p

4
i+1,j ), φt (p

5
i+1,j )

}
ij

;

• and we reconstruct {φxt (p
7
i,j ), φxt (p

8
i,j ), φxt (p

9
i,j )}ij based on

{
φt (p

8
i−1,j ), φt (p

9
i−1,j ), φt (p

7
i,j ), φt (p

8
i,j ), φt (p

9
i,j ), φt (p

7
i+1,j ), φt (p

8
i+1,j )

}
ij

.

φxxt can be computed following the similar procedure by the formulation
(A.2) based on φt .

By applying the formulation (A.1) along y direction,

• we reconstruct {φyt (p
1
i,j ), φyt (p

4
i,j ), φyt (p

7
i,j )}ij based on

{
φt (p

4
i,j−1), φt (p

7
i,j−1), φt (p

1
i,j ), φt (p

4
i,j ), φt (p

7
i,j ), φt (p

1
i,j+1), φt (p

4
i,j+1)

}
ij

;
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• we reconstruct {φyt (p
2
i,j ), φyt (p

5
i,j ), φyt (p

8
i,j )}ij based on

{
φt (p

5
i,j−1), φt (p

8
i,j−1), φt (p

2
i,j ), φt (p

5
i,j ), φt (p

8
i,j ), φt (p

2
i,j+1), φt (p

5
i,j+1)

}
ij

;

• and we reconstruct {φyt (p
3
i,j ), φyt (p

6
i,j ), φyt (p

9
i,j )}ij based on

{
φt (p

6
i,j−1), φt (p

9
i,j−1), φt (p

3
i,j ), φt (p

6
i,j ), φt (p

9
i,j ), φt (p

3
i,j+1), φt (p

6
i,j+1)

}
ij

.

φyyt can be computed following the similar procedure by the formulation
(A.2) based on φt .

Next, based on φxt (x∗, y∗), (x∗, y∗) ∈ G, we can also apply formu-
lation (A.1) to approximate φxyt (x∗, y∗) along y direction similar as the
reconstruction of φyt .

Finally, we can get the approximation for the first temporal derivative of
H as well as φtt at (x∗, y∗)

φtt |(x∗,y∗) = − ∂

∂t
H(φx, φy, φxx, φxy, φyy)|(x∗,y∗)

= −(H1φxt + H2φyt + H3φxxt + H4φxyt + H5φyyt )|(x∗,y∗).

Step 3: A reconstruction for the second temporal derivative of H(φx, φy, φxx,

φxy, φyy) at (x∗, y∗) .
We also have

∂2

∂t2
H(φx, φy, φxx, φxy, φyy) = (H1φxt +H2φyt +H3φxxt +H4φxyt +H5φyyt )t

= (H11φxt + H12φyt + H13φxxt + H14φxyt+H15φyyt )φxt + H1φxtt+(H21φxt + H22φyt + H23φxxt + H24φxyt+H25φyyt )φyt + H2φytt+(H31φxt + H32φyt )φxxt + H3φxxtt+(H41φxt + H42φyt )φxyt + H4φxytt+(H51φxt + H52φyt )φyyt + H5φyytt ,

where H1, H2, H11, H12, H21 and H22 are functions depend on
φx, φy , φxx, φxy and φyy , while H3, H4, H5, H13, H14, H15, H23, H24,

H25, H31, H32, H41, H42, H51 and H52 are functions depend on φx

and φy . In order to reconstruct ∂2

∂t2
H , we only need to reconstruct

φxtt , φytt , φxxtt , φxytt and φyytt which can be obtained based on φtt

following the same procedure as in step 2 given above.
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