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In this paper, we propose a class of high-order schemes for solving one- and two-
dimensional hyperbolic conservation laws. The methods are formulated in a central finite 
volume framework on staggered meshes, and they involve Hermite WENO (HWENO) 
reconstructions in space, and Lax–Wendroff type discretizations or the natural continuous 
extension of Runge–Kutta methods in time. Compared with central WENO methods, 
the spatial reconstruction used here is much more compact; and unlike the original 
HWENO methods, our proposed schemes require neither flux splitting nor the use of 
numerical fluxes. In the system case, local characteristic decomposition is applied in the 
reconstructions of cell averages to enhance the non-oscillatory property of the methods. 
The high resolution and robustness of the methods in capturing smooth and non-smooth 
solutions are demonstrated through a collection of one- and two-dimensional scalar and 
system of examples.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hyperbolic conservation laws arise in a wide range of applications in science and engineering, such as aerodynamics, 
meteorology and weather prediction, astrophysical modeling, multi-phase flow problems, and the study of explosion and 
blast waves. In general the exact solutions of such equations are not available, and they can also develop discontinuous 
features, e.g. shocks, compound waves, etc., regardless of the smoothness of the initial and boundary data. It has been an 
active and important research area to design accurate and robust methods for numerically simulating hyperbolic conserva-
tion laws.

In this paper, we design high-order central Hermite WENO (weighted essentially non-oscillatory, C-HWENO) schemes for 
solving one- and two-dimensional hyperbolic conservation laws{

ut + ∇ · f (u) = 0,

u(x,0) = u0(x),
(1.1)
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with suitable initial and boundary conditions. Here (1.1) can be scalar or a system, and it is often nonlinear. Our methods 
use Hermite WENO (HWENO) reconstructions as spatial discretizations, and Lax–Wendroff type discretizations or the natural 
continuous extension of Runge–Kutta methods as time discretizations, in a central finite volume formulation on staggered 
meshes. Compared with central WENO (C-WENO) schemes, one major advantage of C-HWENO schemes is the compactness 
in the spatial reconstruction. Compared with the original HWENO schemes, the proposed methods require neither flux 
splitting nor the use of numerical fluxes that are often exact or approximate Riemann solvers. When (1.1) is a system, local 
characteristic decomposition is applied in the reconstruction of cell averages to enhance non-oscillatory property of the 
schemes.

WENO schemes are high-order finite volume or finite difference methods widely used for hyperbolic conservation laws, 
with attractive property of maintaining both uniform high-order accuracy and an essentially non-oscillatory shock transition. 
They were designed based on the successful ENO (essentially non-oscillatory) schemes [7,29,30], and improve in robustness, 
smoothness of fluxes, better steady state convergence, accuracy in smooth region of the solutions, and efficiency. The first 
WENO scheme was constructed in [18] as a third-order finite volume method in one space dimension. In [9], third and 
fifth-order finite difference WENO schemes in multiple dimensions were constructed, with a general framework to design 
smoothness indicators and nonlinear weights. Finite difference WENO schemes of higher order accuracy (i.e. seventh- to 
eleventh-order) were proposed in [2], while the finite volume versions on structured and unstructured meshes were inves-
tigated in, e.g. [5,8,14,27,23]. In [27], a simple and effective technique for handling negative linear weights without a need 
to get rid of them was proposed, and this technique is also adopted in this paper. We refer to [28] for a detailed review of 
WENO schemes. It is known that higher order accuracy in a finite difference or finite volume framework relies on enlarging 
the stencil for reconstructions. To improve the compactness while keeping the accurate and non-oscillatory properties of the 
methods, a fifth-order finite volume HWENO scheme was proposed in [24] for one dimension, with a fourth-order one in 
[26,34] for two dimensions. The compactness of HWENO methods is achieved by evolving not only the solution but also its 
first spatial derivative(s), and they are both used in the high-order spatial reconstructions. Some other related earlier work 
includes [31,4,21].

Our proposed methods are also related to central schemes, which can be regarded as extensions of the classical Lax–
Friedrichs method [6]. A second-order central scheme was first developed in [22] by Nessyahu and Tadmor, and it requires 
neither numerical fluxes, that are exact or approximate Riemann solvers, nor flux splitting. For the system case, numerical 
tests show that local characteristic decomposition is also not needed. Motivated by the simplicity and robustness of the 
second-order central scheme, various high-order or semi-discrete versions as well as extensions to multiple dimensions 
were explored in [19,3,1,10–12,14,15,23]. In a series of recent papers, the ENO and WENO reconstruction techniques have 
been successfully integrated into the central framework. A one-dimensional central ENO (C-ENO) scheme was introduced 
in [3]. The third- and fourth-order C-WENO schemes were developed in [14–17] for one- and two-dimensional conservation 
laws. In [23], fifth- and ninth-order C-WENO schemes were constructed based on finite volume formulation on staggered 
meshes, and they used the natural continuous extension of Runge–Kutta methods in time. Numerical experiments in [23]
also demonstrate that the local characteristic decomposition is still necessary to control spurious oscillations when the 
order of accuracy is high, for both the central WENO schemes on staggered meshes and the upwind WENO schemes on 
non-staggered meshes.

When upwind type WENO schemes are used as spatial discretizations for solving hyperbolic conservation laws, they 
are often combined with explicit nonlinearly stable TVD Runge–Kutta time discretizations [29] following method of lines 
approaches. The schemes developed in the present work, on the other hand, are defined on staggered meshes, and they 
are more of fully discrete schemes themselves. For such methods, one can no longer directly apply the explicit nonlin-
early stable TVD Runge–Kutta methods to achieve high-order accuracy in time. Instead, we choose to use two other time 
discretizations: the Lax–Wendroff type discretizations, and the natural continuous extension of Runge–Kutta methods. The 
one-step one-stage Lax–Wendroff type time discretization, which is also called the Taylor type, is based on the idea of the 
classical Lax–Wendroff scheme [13]. It relies on converting the time derivatives in a temporal Taylor expansion of the solu-
tion into spatial derivatives by repeatedly using the governing equations and their differentiated forms. The original finite 
volume ENO schemes in [7] used this approach for the time discretization. In [25], a Lax–Wendroff time discretization pro-
cedure was developed for high-order finite difference WENO schemes. In contrast to upwind schemes, many fully discrete 
high-order central schemes [3,14–17,23] use Runge–Kutta methods with the aid of the natural continuous extension [33]
as time discretizations. The natural continuous extension of Runge–Kutta technique is based on standard Runge–Kutta time 
discretizations, and it provides approximations of comparable accuracy for the solutions at intermediate time over each time 
step. It works well with spatial discretizations defined on staggered meshes yet does not require much additional cost than 
standard Runge–Kutta methods.

The organization of this paper is as follows. In Section 2, we describe in detail the construction and implementation of 
C-HWENO schemes with Lax–Wendroff type time discretizations for one- and two-dimensional scalar and system equation 
(1.1). In Section 3, we present the construction and implementation of C-HWENO schemes with the natural continuous 
extension of Runge–Kutta methods as time discretizations, and the HWENO reconstructions here are similar to those in 
Section 2. In Section 4, extensive numerical examples are provided to demonstrate the performance of the proposed schemes 
for smooth and non-smooth examples in one and two dimensions. Concluding remarks are made in Section 5.
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2. Central Hermite WENO scheme with Lax–Wendroff time discretization

In this section we describe in detail the construction and implementation of the central HWENO schemes with Lax–
Wendroff time discretizations for one- and two-dimensional scalar and system conservation laws. In particular, a fifth-order 
spatial reconstruction is formulated for one dimension, and a fourth-order one is for two dimensions.

2.1. One-dimensional case

Consider the one-dimensional scalar conservation law{
ut + f (u)x = 0,

u(x,0) = u0(x).
(2.1)

Letting v = ux , and taking spatial derivative of (2.1), we obtain{
vt + (

f ′(u)v
)

x = 0,

v(x,0) = (
u0(x)

)
x.

(2.2)

The proposed numerical method will be formulated based on (2.1) and (2.2), and defined on staggered meshes. For sim-
plicity of presentation, uniform meshes are used with the mesh size �x. Each cell of the primal mesh is denoted as 
Ii = [xi−1/2, xi+1/2] with its cell center xi = 1

2 (xi−1/2 +xi+1/2); and each cell of the dual mesh is denoted as Ii+1/2 = [xi, xi+1]
with its cell center xi+1/2 = 1

2 (xi + xi+1). It will be seen that the primal and the dual meshes will be used in a staggered 
fashion along the time direction in the proposed schemes.

Our method starts with a Lax–Wendroff type temporal discretization. Let �t denote a time step. By a temporal Taylor 
expansion we obtain

q(x, t + �t) = q(x, t) + �tqt + �t2

2
qtt + �t3

6
qttt + · · · , q = u or v. (2.3)

If we want to obtain the kth-order accuracy in time, we need to approximate the first k time derivatives: ∂q
∂t , · · · , ∂(k)q

∂tk , 
q = u or v . In this paper, we will proceed up to the third-order accuracy in time, although the procedure can be extended 
directly to any other order.

Next we convert the temporal derivative terms in (2.3) into spatial ones by repeatedly using the governing equations 
(2.1) and (2.2):

ut = − f (u)x = − f ′(u)v, utt = −(
f ′(u)ut

)
x = − f ′′(u)vut − f ′(u)uxt,

uxt = − f ′′(u)(v)2 − f ′(u)vx, uttt = −(
f ′′(u)(ut)

2 + f ′(u)utt
)

x,

vt = −(
f ′(u)v

)
x = − f ′′(u)(v)2 − f ′(u)vx,

vtt = −(
f ′′(u)ut v + f ′(u)vt

)
x = −(

f ′′′(u)vut v + f ′′(u)(uxt v + ut vx + v vt) + f ′(u)vxt
)
,

vxt = −(
f ′′(u)(v)2 + f ′(u)vx

)
x = −(

f ′′′(u)(v)3 + 3 f ′′(u)v vx + f ′(u)vxx
)
,

vttt = −((
f ′′(u)ut v + f ′(u)vt

)
t

)
x = −(

f ′′′(u)(ut)
2 v + f ′′(u)(utt v + 2ut vt) + f ′(u)vtt

)
x. (2.4)

A third-order approximation of (2.3) can be rewritten as

u(x, t + �t) ≈ u(x, t) − �t Fx,

v(x, t + �t) ≈ v(x, t) − �tGx, (2.5)

with

F = f + �t

2
f ′(u)ut + �t2

6

(
f ′′(u)(ut)

2 + f ′(u)utt
)
,

G = f ′(u)v + �t

2

(
f ′′(u)ut v + f ′(u)vt

) + �t2

6

(
f ′′′(u)(ut)

2 v + f ′′(u)(utt v + 2ut vt) + f ′(u)vtt
)
, (2.6)

where all the time derivatives in (2.6) are replaced by spatial derivatives according to the relations in (2.4).
Now we apply the staggered central scheme strategy to (2.5). Suppose at t = tn , the approximations for the cell averages 

of the solution and its first derivative, denoted as {un
i } and {vn

i }, are available on the primal mesh, that is, ∀i,

un
i ≈ 1

�x

∫
Ii

u
(
x, tn)

dx, vn
i ≈ 1

�x

∫
Ii

v
(
x, tn)

dx.
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(a.1) We integrate (2.5) with t = tn over Ii+1/2, and approximate the cell averages of the solution and its first derivative 
with respect to the dual mesh at tn+1 = tn + �t as below,

un+1
i+1/2 = un

i+1/2 − �t

�x

[
F
(
u
(
xi+1, tn)) − F

(
u
(
xi, tn))]

, (2.7)

vn+1
i+1/2 = vn

i+1/2 − �t

�x

[
G
(
u
(
xi+1, tn), v

(
xi+1, tn)) − G

(
u
(
xi, tn)

, v
(
xi, tn))]. (2.8)

(a.2) We then integrate (2.5) with t = tn+1 over Ii , and continue to approximate the cell averages of the solution and its 
first derivative with respect to the primal mesh at tn+2 = tn+1 + �t ,

un+2
i = un+1

i − �t

�x

[
F
(
u
(
xi+1/2, tn+1)) − F

(
u
(
xi−1/2, tn+1))],

vn+2
i = vn+1

i − �t

�x

[
G
(
u
(
xi+1/2, tn+1), v

(
xi+1/2, tn+1)) − G

(
u
(
xi−1/2, tn+1), v

(
xi−1/2, tn+1))].

(a.3) Set n to be n + 2, and go to (a.1).

Note that the cell averages are defined and evolved in a staggered fashion with respect to the discrete time level n on two 
sets of meshes. The mesh switches back after two time steps.

The remaining of this section will be mainly devoted to the details to update from tn to tn+1 according to (2.7) and (2.8). 
Specifically, to obtain the cell averages un+1

i+1/2 and vn+1
i+1/2 on the dual mesh at the next time tn+1 according to (2.7) and 

(2.8), one will need to reconstruct at the current time tn , ∀i,

(1) the cell averages un
i+1/2, vn

i+1/2 on the dual mesh, as well as
(2) the point value of q(xi, tn) at the mid-point xi of Ii , where q = u, v, vx , or vxx ,

based on the given data {un
i , vn

i }i . Recall that F and G are functions depending on u and the derivatives v , vx , vxx . On the 
other hand,

un
i+1/2 ≈ 1

�x

xi+1∫
xi

u
(
x, tn)

dx = 1

�x

xi+1/2∫
xi

u
(
x, tn)

dx + 1

�x

xi+1∫
xi+1/2

u
(
x, tn)

dx.

This implies that to approximate the cell average un
i+1/2, one would want to get the half cell averages 1

�x

∫ xi+1/2
xi

u(x, tn)dx

and 1
�x

∫ xi+1
xi+1/2

u(x, tn)dx. This is likewise for vn
i+1/2.

To reconstruct the half cell averages and point values mentioned above, we adapt the one-dimensional fifth-order ac-
curate HWENO reconstruction of Qiu and Shu [24], where only the function values at the end points of each cell were 
reconstructed. This reconstruction is not only high-order accurate but also essentially non-oscillatory. Compared with the 
standard WENO schemes, the stencils in the reconstruction are more compact. Next in steps 1–6, we will describe the re-
construction with great details, which is based on the cell averages {un

i , vn
i }i on the primal mesh at t = tn . One will see that 

the reconstructions discussed in steps 1–5 are HWENO-type, yet the one in step 6 is linear. Since the data before and after 
the reconstruction is all at the same time level tn , the superscript n will be omitted below, together with the dependence 
on the time t of u and v .

Step 1. A HWENO reconstruction of 1
�x

∫ xi
xi−1/2

u(x)dx from the cell averages {ui, vi}i .

We first introduce three “small” stencils S0 = {Ii−1, Ii}, S1 = {Ii, Ii+1}, S2 = {Ii−1, Ii, Ii+1}, one “large” stencil T =
{S0, S1, S2} = S2, and reconstruct three quadratic Hermite polynomials p0(x), p1(x), p2(x) on S0, S1, S2, respectively, and 
one quartic Hermite polynomial Q (x) on T , satisfying the following conditions,

1

�x

∫
Ii+ j

p0(x)dx = ui+ j, j = −1,0,
1

�x

∫
Ii−1

p′
0(x)dx = vi−1,

1

�x

∫
Ii+ j

p1(x)dx = ui+ j, j = 0,1,
1

�x

∫
Ii+1

p′
1(x)dx = vi+1,

1

�x

∫
Ii+ j

p2(x)dx = ui+ j, j = −1,0,1,

1

�x

∫
I

Q (x)dx = ui+ j, j = −1,0,1,
1

�x

∫
I

Q ′(x)dx = vi+ j, j = −1,1. (2.9)
i+ j i+ j
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To reconstruct 1
�x

∫ xi
xi−1/2

u(x)dx, we further compute the half cell averages of these polynomials over [xi−1/2, xi], and the 
results can be given explicitly in terms of the cell averages {ui, vi}i ,

1

�x

xi∫
xi−1/2

p0(x)dx = 1

4
ui−1 + 1

4
ui + �x

8
vi−1,

1

�x

xi∫
xi−1/2

p1(x)dx = 3

4
ui − 1

4
ui+1 + �x

8
vi+1,

1

�x

xi∫
xi−1/2

p2(x)dx = 1

16
ui−1 + 1

2
ui − 1

16
ui+1,

1

�x

xi∫
xi−1/2

Q (x)dx = 25

256
ui−1 + 1

2
ui − 25

256
ui+1 + 9�x

256
vi−1 + 9�x

256
vi+1. (2.10)

Now one can find the linear weights (or combination coefficients), denoted as γ0, γ1 and γ2, such that

1

�x

xi∫
xi−1/2

Q (x)dx = 1

�x

2∑
j=0

γ j

xi∫
xi−1/2

p j(x)dx

for all possible values of the cell averages of u and v over the stencil T . This requirement leads to

γ0 = 9

32
, γ1 = 9

32
, γ2 = 14

32
. (2.11)

With the linear weights, we combine the relatively lower order approximations, which are third-order accurate here, into a 
higher order approximation that is fifth-order accurate in our case.

An important ingredient of WENO-type methods for solving hyperbolic conservation laws with strong shocks or other 
discontinuities in the solutions is nonlinear weights, which are applied to control spurious oscillations. To obtain the non-
linear weights, we compute a smoothness indicator β j for each stencil S j ( j = 0, 1, 2), which measures how smooth the 
function p j(x) is in the target cell Ii . The smaller the smoothness indicator β j is, the smoother the function p j(x) is in the 
cell Ii . Following [9], the smoothness indicator β j is defined as below,

β j =
2∑

l=1

∫
Ii

�x2l−1
(

∂ l

∂xl
p j(x)

)2

dx, (2.12)

and it can be further given explicitly in terms of the cell averages of u and v for the convenience of the actual implemen-
tation,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β0 = (−2ui−1 + 2ui − �xvi−1)
2 + 13

3
(−ui−1 + ui − �xvi−1)

2,

β1 = (−2ui + 2ui+1 − �xvi+1)
2 + 13

3
(−ui + ui+1 − �xvi+1)

2,

β2 = 1

4
(−ui−1 + ui+1)

2 + 13

12
(−ui−1 + 2ui − ui+1)

2.

(2.13)

With the smoothness indicators {β j} j in (2.13) and the linear weights {γ j} j in (2.11), we can now compute the nonlinear 
weights ω j , j = 0, 1, 2,

ω j = ω j∑2
k=0 ωk

, where ωk = γk

(ε + βk)
2
, k = 0,1,2.

Here ε > 0 is a small constant to avoid the denominator to be zero. We use ε = 10−6 in all numerical examples in this 
paper.
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Finally, a fifth-order HWENO approximation for 1
�x

∫ xi
xi−1/2

u(x)dx is given as

1

�x

xi∫
xi−1/2

u(x)dx ≈ 1

�x

2∑
j=0

ω j

xi∫
xi−1/2

p j(x)dx,

where 1
�x

∫ xi
xi−1/2

p j(x)dx, j = 0, 1, 2 are given in (2.10).

In the target cell Ii , the right half cell average of u over [xi, xi+1/2] can be approximated based on the local conservation 
of u,

1

�x

xi+1/2∫
xi

u(x)dx ≈ ui − 1

�x

xi∫
xi−1/2

u(x)dx.

Step 2. A HWENO reconstruction of u(xi) from the cell averages {ui, vi}i .
In this step, the same stencils S0, S1, S2, T as in step 1 are used, together with the same constructed polynomials p0(x), 

p1(x), p2(x) and Q (x) in (2.9). The point value of these polynomials at xi can be expressed in terms of the cell averages,

p0(xi) = 1

12
ui−1 + 11

12
ui + �x

12
vi−1,

p1(xi) = 11

12
ui + 1

12
ui+1 − �x

12
vi+1,

p2(xi) = − 1

24
ui−1 + 13

12
ui − 1

24
ui+1,

Q (xi) = − 47

480
ui−1 + 287

240
ui − 47

480
ui+1 − 9�x

320
vi−1 + 9�x

320
vi+1.

The linear weights γ0, γ1, γ2 are chosen such that

Q (xi) =
2∑

j=0

γ j p j(xi)

for all possible values of the cell averages of u and v over the stencil T , and this requirement leads to

γ0 = −27

80
, γ1 = −27

80
, γ2 = 134

80
. (2.14)

Note that two linear weights are negative in (2.14), and the corresponding WENO-type approximation with such weights 
can be unstable. To avoid this, we follow the splitting technique developed in [27] to handle negative weights in WENO 
schemes. More specifically, we split the linear weights into two groups

γ̃ +
j = 1

2

(
γ j + 3|γ j|

)
, γ̃ −

j = γ̃ +
j − γ j, j = 0,1,2,

which can be shown to satisfy

γ̃ +
j = 2γ j, γ̃ −

j = γ j, for γ j > 0; γ̃ +
j = −γ j, γ̃ −

j = −2γ j, for γ j < 0.

We further scale the terms by introducing

σ± =
2∑

j=0

γ̃ ±
j , γ ±

j = γ̃ ±
j /σ±, j = 0,1,2.

For the linear weights in (2.14), this gives

σ+ = 161

40
, σ− = 242

80
,

γ +
0 = 27

322
, γ +

1 = 27

322
, γ +

2 = 134

161
, γ −

0 = 27

121
, γ −

1 = 27

121
, γ −

2 = 134

242
.

The HWENO reconstruction will be performed for each group by computing the nonlinear weights ω+
j and ω−

j , j = 0, 1, 2
separately, with the same smoothness indicators {β j} j as in (2.13),

ω±
j = ω±

j∑2 ω± , where ω±
k = γ ±

k

(ε + βk)
2
, k = 0,1,2.
k=0 k



154 Z. Tao et al. / Journal of Computational Physics 281 (2015) 148–176
The final HWENO reconstruction of u(xi) is now taken as a combination of the reconstructions using the two groups of 
weights

u(xi) ≈ σ+
2∑

j=0

ω+
j p j(xi) − σ−

2∑
j=0

ω−
j p j(xi).

In the adopted technique to treat negative linear weights, the key is to ensure that every stencil has a significant repre-
sentation in both positive and negative weight groups. Within each group, one still follows the standard HWENO idea of 
redistributing the weights subject to a fixed sum according to the smoothness of the approximations.

Step 3. A HWENO reconstruction of 1
�x

∫ xi
xi−1/2

v(x)dx from the cell averages {ui, vi}i .

In this step, the same stencils S0, S1, S2, T as in step 1 are used. We reconstruct three cubic Hermite polynomials p0(x), 
p1(x), p2(x) on S0, S1, S2, respectively, and one quintic Hermite polynomial Q (x) on T , satisfying

1

�x

∫
Ii+ j

p0(x)dx = ui+ j,
1

�x

∫
Ii+ j

p′
0(x)dx = vi+ j, j = −1,0,

1

�x

∫
Ii+ j

p1(x)dx = ui+ j,
1

�x

∫
Ii+ j

p′
1(x)dx = vi+ j, j = 0,1,

1

�x

∫
Ii+ j

p2(x)dx = ui+ j, j = −1,0,1,
1

�x

∫
Ii

p′
2(x)dx = vi,

1

�x

∫
Ii+ j

Q (x)dx = ui+ j,
1

�x

∫
Ii+ j

Q ′(x)dx = vi+ j, j = −1,0,1.

To reconstruct 1
�x

∫ xi
xi−1/2

v(x)dx, we further compute the half cell averages of the first derivative of these polynomials over 
[xi−1/2, xi], and the results can be given explicitly in terms of the cell averages {ui, vi}i ,

1

�x

xi∫
xi−1/2

p′
0(x)dx = − 3

4�x
ui−1 + 3

4�x
ui − 1

4
vi−1,

1

�x

xi∫
xi−1/2

p′
1(x)dx = 3

4�x
ui − 3

4�x
ui+1 + vi + 1

4
vi+1,

1

�x

xi∫
xi−1/2

p′
2(x)dx = − 1

8�x
ui−1 + 1

4�x
ui − 1

8�x
ui+1 + 1

2
vi,

1

�x

xi∫
xi−1/2

Q ′(x)dx = − 9

32�x
ui−1 + 9

16�x
ui − 9

32�x
ui+1 − 5

64
vi−1 + 1

2
vi + 5

64
vi+1. (2.15)

Just as in step 1, we next want to obtain the nonlinear weights ω j , j = 0, 1, 2, with which, a fifth-order HWENO recon-
struction can be given for 1

�x

∫ xi
xi−1/2

v(x)dx. To achieve this, we first find the linear weights, denoted as γ ′
0, γ ′

1 and γ ′
2, such 

that

1

�x

xi∫
xi−1/2

Q ′(x)dx = 1

�x

2∑
j=0

γ ′
j

xi∫
xi−1/2

p′
j(x)dx

for all possible values of the cell averages of u and v over the stencil T , and this leads to

γ ′
0 = 5

16
, γ ′

1 = 5

16
, γ ′

2 = 6

16
. (2.16)

We then compute the smoothness indicators β j , j = 0, 1, 2 as below

β j =
3∑

l=2

∫
�x2l−1

(
∂ l

∂xl
p j(x)

)2

dx.
Ii
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Since we are reconstructing the first derivative rather than the solution itself, the summation above starts from the second 
derivative to the rth derivative, where r is the degree of the polynomial p j(x). For the convenience of the actual implemen-
tation, the smoothness indicators {β j}2

j=0 can be further given in quadratic forms of the cell averages of u and v ,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β0 = 4
(
3(ui−1 − ui) + �x(vi−1 + 2vi)

)2 + 39
(
2(ui−1 − ui) + �x(vi−1 + vi)

)2
,

β1 = 4
(
3(ui − ui+1) + �x(2vi + vi+1)

)2 + 39
(
2(ui − ui+1) + �x(vi + vi+1)

)2
,

β2 = (ui−1 − 2ui + ui+1)
2 + 39

4
(ui+1 − ui−1 − 2�xvi)

2.

(2.17)

With the smoothness indicators {β j} j in (2.17) and the linear weights {γ ′
j } j in (2.16), the nonlinear weights ω j , j =

0, 1, 2, can be computed,

ω j = ω j∑2
k=0 ωk

, where ωk = γ ′
k

(ε + βk)
2
, k = 0,1,2.

Finally, a fifth-order HWENO approximation for 1
�x

∫ xi
xi−1/2

v(x)dx is given as

1

�x

xi∫
xi−1/2

v(x)dx ≈ 1

�x

2∑
j=0

ω j

xi∫
xi−1/2

p′
j(x)dx.

In the target cell Ii , the right half cell average of v over [xi, xi+1/2] can be approximated based on the local conservation 
of v ,

1

�x

xi+1/2∫
xi

v(x)dx ≈ vi − 1

�x

xi∫
xi−1/2

v(x)dx.

Step 4. A HWENO reconstruction of v(xi) from the cell averages {ui, vi}i .
In this step, we use the same stencils S0, S1, S2, T and the same constructed polynomials p0(x), p1(x), p2(x), Q (x) as 

in step 3. The point values of the first derivative of these polynomials at xi can be expressed in terms of the cell averages,

p′
0(xi) = − 1

2�x
ui−1 + 1

2�x
ui − 1

4
vi−1 + 3

4
vi,

p′
1(xi) = − 1

2�x
ui + 1

2�x
ui+1 + 3

4
vi − 1

4
vi+1,

p′
2(xi) = 1

8�x
ui−1 − 1

8�x
ui+1 + 5

4
vi,

Q ′(xi) = 27

64�x
ui−1 − 27

64�x
ui+1 + 19

192
vi−1 + 79

48
vi + 19

192
vi+1.

The linear weights γ ′
0, γ ′

1, γ ′
2 can be determined by requiring

Q ′(xi) =
2∑

j=0

γ ′
j p′

j(xi)

for all possible values of the cell averages of u and v over the stencil T , and this leads to

γ ′
0 = −19

48
, γ ′

1 = −19

48
, γ ′

2 = 86

48
. (2.18)

There are two negative linear weights in (2.18). Following the procedure provided in step 2, we get

σ ′ + = 105

24
, σ ′ − = 162

48
,

γ ′ +
0 = 19

210
, γ ′ +

1 = 19

210
, γ ′ +

2 = 86

105
, γ ′ −

0 = 38

162
, γ ′ −

1 = 38

162
, γ ′ −

2 = 86

162
.

The HWENO reconstruction will be performed for each group by computing the nonlinear weights ω+
j and ω−

j , j = 0, 1, 2
separately, with the same smoothness indicators {β j} j as in (2.17),

ω±
j = ω±

j∑2 ω± , where ω±
k = γ ′±

k

(ε + βk)
2
, k = 0,1,2.
k=0 k
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The final HWENO reconstruction of v(xi) is now obtained as

v(xi) ≈ σ ′ +
2∑

j=0

ω+
j p′

j(xi) − σ ′ −
2∑

j=0

ω−
j p′

j(xi).

Step 5. A HWENO reconstruction of vx(xi) from the cell averages {ui, vi}i .
In this step, we use the same stencils S0, S1, S2, T and the same constructed polynomials p0(x), p1(x), p2(x), Q (x) as in 

step 3. The point values of the second derivative of these polynomials at xi can be expressed in terms of the cell averages,

p′′
0(xi) = 6

�x2
ui−1 − 6

�x2
ui + 2

�x
vi−1 + 4

�x
vi,

p′′
1(xi) = − 6

�x2
ui + 6

�x2
ui+1 − 4

�x
vi − 2

�x
vi+1,

p′′
2(xi) = 1

�x2
ui−1 − 2

�x2
ui + 1

�x2
ui+1,

Q ′′(xi) = 5

2�x2
ui−1 − 5

�x2
ui + 5

2�x2
ui+1 + 3

4�x
vi−1 − 3

4�x
vi+1.

The linear weights γ ′′
0 , γ ′′

1 , γ ′′
2 are determined by requiring

Q ′′(xi) =
2∑

j=0

γ ′′
j p′′

j (xi)

for all possible values of the cell averages of u and v over the stencil T , and this leads to

γ ′′
0 = 3

8
, γ ′′

1 = 3

8
, γ ′′

2 = 2

8
. (2.19)

We then compute the smoothness indicators β j , j = 0, 1, 2 as below

β j = �x5
∫
Ii

(
∂3

∂x3
p j(x)

)2

dx.

Since we are reconstructing the second derivative rather than the solution itself, the smoothness indicator β j only depends 
on the third derivative of the cubic polynomial p j(x). For the convenience of the actual implementation, the smoothness 
indicators {β j}2

j=0 can be further given in terms of the cell averages of u and v ,⎧⎪⎪⎨
⎪⎪⎩

β0 = 36
(
2(ui−1 − ui) + �x(vi−1 + vi)

)2
,

β1 = 36
(
2(ui − ui+1) + �x(vi + vi+1)

)2
,

β2 = 9(ui+1 − ui−1 − 2�xvi)
2.

(2.20)

With the smoothness indicators {β j} j in (2.20) and the linear weights in (2.19), we can compute the nonlinear weights ω j , 
j = 0, 1, 2,

ω j = ω j∑2
k=0 ωk

, where ωk = γ ′′
k

(ε + βk)
2
, k = 0,1,2.

The final HWENO reconstruction for vx(xi) is now obtained as

vx(xi) ≈
2∑

j=0

ω j p′′
j (xi).

Step 6. A linear reconstruction of vxx(xi) from the cell averages {ui, vi}i .
We start with the same stencils S0, S1, S2, T and the same constructed polynomials p0(x), p1(x), p2(x), Q (x) as in 

step 3. Recall that HWENO reconstructions are based on nonlinear weights which depend on the smoothness indicators. 
We here want to reconstruct the third derivative of the solution, and this will require computing the fourth-derivative (and 
above) of the constructed polynomials p0(x), p1(x), p2(x) which are only cubic. Apparently, this will not lead to an effective 
smoothness indicator. Fortunately, our numerical experiments show that the following linear reconstruction is sufficient to 
provide an accurate and stable way to approximate vxx(xi),

vxx(xi) ≈ Q ′′′(xi) = − 45

4�x3
ui−1 + 45

4�x3
ui+1 − 11

4�x2
vi−1 − 17

�x2
vi − 11

4�x2
vi+1.

Here again, Q (x) is from step 3.
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Remark 1. Following the current central scheme framework, in Eqs. (2.7)–(2.8) to update un+1
i+1/2 and vn+1

i+1/2, the flux func-
tions F and G are evaluated at xi and the time tn . This requires the reconstructions of the point values of u, v , vx , vxx at 
xi based on cell averages {un

i , vn
i }i at the same time level. Since all the related reconstructions (see step 2 and steps 4–6) 

involve stencils including the cell Ii , and xi is an interior point, these reconstructed point values are naturally single-valued. 
Therefore unlike in upwind type methods, there is no need to use numerical fluxes for F and G .

Finally in this section, we will briefly discuss the system case. For the systems of conservation laws, such as the Euler 
equations of gas dynamics, each of the HWENO or linear reconstructions in steps 1–6 could be performed for the unknown 
solution component by component. Alternatively this can be performed based on the local characteristic decomposition, 
which often provides better performance of the schemes yet computationally is more costly. It is usually noted in the 
literature that such local characteristic decomposition is unnecessary for central schemes. However, most of the referred 
schemes are second-order, or at most third-order accurate. Qiu and Shu [23] pointed out that the WENO schemes involving 
componentwise reconstructions may become more oscillatory with the increase of the accuracy order, and this was observed 
for both the central WENO schemes on staggered meshes and standard WENO schemes on non-staggered meshes. In order 
to effectively control the spurious oscillations and to enhance the numerical stability, we follow the idea in [23]: we apply 
the local characteristic decomposition during the reconstructions of half cell averages in step 1 and step 3 based on {ui, vi}i . 
All the remaining reconstructions, which are for point values, are still implemented through a componentwise procedure.

From the method formulation point of view, when one converts the second and higher order time derivatives to spatial 
derivatives in the system case, one needs to work with terms such as f ′(u) (a Jacobian matrix), f ′′(u) (a 3D “matrix”, 
a tensor), f ′′′(u) (a 4D “matrix”, again a tensor). This can become very involved. We have used MATLAB Symbolic Math 
Toolbox to assist with the derivation of the proposed methods.

2.2. Two-dimensional case

Consider the two-dimensional scalar conservation law{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y).
(2.21)

Letting v = ux , w = u y , and taking spatial derivatives of (2.21), we obtain{
vt + (

f ′(u)v
)

x + (
g′(u)v

)
y = 0,

v(x, y,0) = (
u0(x, y)

)
x,

(2.22)

{
wt + (

f ′(u)w
)

x + (
g′(u)w

)
y = 0,

w(x, y,0) = (
u0(x, y)

)
y .

(2.23)

The proposed numerical method will be formulated based on (2.21)–(2.23), and defined on staggered meshes. For simplicity 
of presentation, uniform meshes are used with the meshsizes �x in the x direction, and �y in the y direction. Each cell of 
the primal mesh is denoted as Ii j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] with its cell center (xi, y j); and each cell of the dual
mesh is denoted as Ii+1/2, j+1/2 = [xi, xi+1] × [y j, y j+1] with its cell center (xi+1/2, y j+1/2).

Our method starts with a Lax–Wendroff type temporal discretization. Let �t denote a time step. By a temporal Taylor 
expansion we obtain

q(x, y, t + �t) = q(x, y, t) + �tqt + �t2

2
qtt + �t3

6
qttt + · · · , q = u, v, or w. (2.24)

In order to obtain the kth-order accuracy in time, we need to approximate the first k time derivatives of u, v and w . Just as 
in one-dimensional case, we here only consider a third-order discretization in time.

We again use the governing equations (2.21)–(2.23) to convert time derivatives of u, v and w into spatial ones, the 
resulted relations are given in Appendix A. A third-order approximation of (2.24) can be written as

u(x, y, t + �t) ≈ u(x, y, t) − �t(Fx + G y),

v(x, y, t + �t) ≈ v(x, y, t) − �t(P x + Q y),

w(x, y, t + �t) ≈ w(x, y, t) − �t(Hx + R y), (2.25)

with

F = f + �t

2
f ′(u)ut + �t2

6

(
f ′′(u)(ut)

2 + f ′(u)utt
)
,

G = g + �t
g′(u)ut + �t2 (

g′′(u)(ut)
2 + g′(u)utt

)
,

2 6
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P = f ′(u)v + �t

2

(
f ′′(u)ut v + f ′(u)vt

) + �t2

6

(
f ′′′(u)(ut)

2 v + f ′′(u)(utt v + 2ut vt) + f ′(u)vtt
)
,

Q = g′(u)v + �t

2

(
g′′(u)ut v + g′(u)vt

) + �t2

6

(
g′′′(u)(ut)

2 v + g′′(u)(utt v + 2ut vt) + g′(u)vtt
)
,

H = f ′(u)w + �t

2

(
f ′′(u)ut w + f ′(u)wt

) + �t2

6

(
f ′′′(u)(ut)

2 w + f ′′(u)(utt w + 2ut wt) + f ′(u)wtt
)
,

R = g′(u)w + �t

2

(
g′′(u)ut w + g′(u)wt

) + �t2

6

(
g′′′(u)(ut)

2 w + g′′(u)(utt w + 2ut wt) + g′(u)wtt
)
.

Now we apply the staggered central scheme strategy to (2.25) as in one dimension. Suppose at t = tn , the approximations 
for the cell averages of the solution and the scaled cell averages of the first derivatives, denoted as {un

ij}i j , {vn
i j}i j , and {wn

ij}i j

are available on the primal mesh, that is, ∀i, j,

un
ij ≈ 1

�x�y

∫
Ii j

u
(
x, y, tn)

dxdy,

vn
i j ≈ 1

�y

∫
Ii j

v
(
x, y, tn)dxdy, wn

ij ≈ 1

�x

∫
Ii j

w
(
x, y, tn)dxdy.

(b.1) We integrate (2.25) with t = tn over Ii+1/2, j+1/2, and approximate the cell averages of the solution and the scaled cell 
averages of the first derivatives with respect to the dual mesh at tn+1 = tn + �t , denoted as un+1

i+1/2, j+1/2, vn+1
i+1/2, j+1/2

and wn+1
i+1/2, j+1/2, respectively, and this is given below.

un+1
i+1/2, j+1/2 = un

i+1/2, j+1/2 − �t

�x�y

[ y j+1∫
y j

(
F
(
u
(
xi+1, y, tn)) − F

(
u
(
xi, y, tn)))dy

]

− �t

�x�y

[ xi+1∫
xi

(
G
(
u
(
x, y j+1, tn)) − G

(
u
(
x, y j, tn)))

dx

]
, (2.26)

vn+1
i+1/2, j+1/2 = vn

i+1/2, j+1/2

− �t

�y

[ y j+1∫
y j

(
P
(
u
(
xi+1, y, tn)

, v
(
xi+1, y, tn)) − P

(
u
(
xi, y, tn), v

(
xi, y, tn)))dy

]

− �t

�y

[ xi+1∫
xi

(
Q

(
u
(
x, y j+1, tn), v

(
x, y j+1, tn)) − Q

(
u
(
x, y j, tn)

, v
(
x, y j, tn)))dx

]
, (2.27)

wn+1
i+1/2, j+1/2 = wn

i+1/2, j+1/2

− �t

�x

[ y j+1∫
y j

(
H

(
u
(
xi+1, y, tn)

, w
(
xi+1, y, tn)) − H

(
u
(
xi, y, tn), w

(
xi, y, tn)))

dy

]

− �t

�x

[ xi+1∫
xi

(
R
(
u
(
x, y j+1, tn), w

(
x, y j+1, tn)) − R

(
u
(
x, y j, tn)

, w
(
x, y j, tn)))dx

]
. (2.28)

(b.2) We then integrate (2.25) with t = tn+1 over Ii j , and approximate the cell averages of the solution and the scaled cell 
averages of the first derivatives with respect to the primal mesh at tn+2 = tn+1 +�t , denoted as un+2

i j , vn+2
i j and wn+2

i j , 
respectively. The formulations are omitted here due to the similarity to (2.26)–(2.28).

(b.3) Set n to be n + 2, and go to (b.1).

Note that the mesh switches back after two time steps.
From now on, we will focus on the update details from tn to tn+1. For the two-dimensional case, we will propose a 

fourth-order central HWENO method. With this in mind, we further approximate all the line integrals in (2.26)–(2.28) with 
the two-point Gaussian quadrature formula, and this will lead to our actual update formulations.
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un+1
i+1/2, j+1/2 = un

i+1/2, j+1/2 − �t

2�x

[
F n

i+1, jl
+ F n

i+1, jr
− F n

i, jl
− F n

i, jr

]
− �t

2�y

[
Gn

il, j+1 + Gn
ir , j+1 − Gn

il, j − Gn
ir , j

]
, (2.29)

vn+1
i+1/2, j+1/2 = vn

i+1/2, j+1/2 − �t

2

[
Pn

i+1, jl
+ Pn

i+1, jr
− Pn

i, jl
− Pn

i, jr

]
− �t�x

2�y

[
Q n

il, j+1 + Q n
ir , j+1 − Q n

il, j − Q n
ir , j

]
, (2.30)

wn+1
i+1/2, j+1/2 = wn

i+1/2, j+1/2 − �t�y

2�x

[
Hn

i+1, jl
+ Hn

i+1, jr
− Hn

i, jl
− Hn

i, jr

]
− �t

2

[
Rn

il, j+1 + Rn
ir , j+1 − Rn

il, j − Rn
ir , j

]
. (2.31)

Here

il = i + 1

2
−

√
3

6
, ir = i + 1

2
+

√
3

6
,

jl = j + 1

2
−

√
3

6
, jr = j + 1

2
+

√
3

6
, (2.32)

and the notation pn
r,s in (2.29)–(2.31) is for the point value p(xr, ys, tn) of a function p. When r or s is not an integer, xr or 

ys should be understood as a natural linear interpolation of {xi}i or {y j} j with respect to the subindex.
To obtain the cell averages un+1

i+1/2, j+1/2, and the scaled cell averages vn+1
i+1/2, j+1/2 and wn+1

i+1/2, j+1/2 on the dual mesh at 
the next time tn+1 based on (2.29)–(2.31), one will need to reconstruct at the current time tn , ∀i, j,

(1) the cell averages un
i+1/2, j+1/2, and the scaled cell averages vn

i+1/2, j+1/2, wn
i+1/2, j+1/2 on the dual mesh, as well as

(2) the point value of q(xr, ys, tn), where q = u, v, w, vx, v y, vxx, vxy, v yy, wx, w y, wxx, wxy , or w yy , and they are the func-
tions F , G , P , Q , H and R depend on. Here (xr, ys) is some interior point of the primal mesh, coming from the Gaussian 
quadrature nodes in each cell, and the collection of such points is denoted as

G = {
(xi, y

j− 1
2 +

√
3

6
), (xi, y

j+ 1
2 −

√
3

6
), (x

i− 1
2 +

√
3

6
, y j), (x

i+ 1
2 −

√
3

6
, y j), ∀i, j

}
. (2.33)

Just as in one dimension, to obtain the cell average un
i+1/2, j+1/2, ∀i, j, one would want to get the following four quarter 

cell averages

1

�x�y

xi∫
xi−1/2

y j∫
y j−1/2

u
(
x, y, tn)dxdy,

1

�x�y

xi+1/2∫
xi

y j∫
y j−1/2

u
(
x, y, tn)

dxdy,

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j

u
(
x, y, tn)dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j

u
(
x, y, tn)

dxdy. (2.34)

This similarly goes to the scaled cell averages.
To reconstruct the quarter cell averages and point values mentioned above, we adapt the two-dimensional fourth-order 

accurate HWENO reconstruction of Zhu and Qiu [34], where only function values at some points located on the edges of 
each cell were reconstructed. Next in steps 1–3, the reconstruction will be described, and it is based on the (scaled) cell 
averages {un

ij, vn
i j, wn

ij}i j on the primal mesh at t = tn . The superscript n will be omitted, together with the dependence on 
the time t of u, v and w . To assist with the presentation, we relabel the cell Ii j and its neighboring cells as I1, · · · , I9 as 
shown in Fig. 1. Note that Ii j is now I5.

Step 1. A HWENO reconstruction of 1
�x�y

∫ xi
xi−1/2

∫ y j
y j−1/2

u(x, y)dxdy from the (scaled) cell averages {uij, vij, wij}i j .

We first introduce eight “small” stencils

S1 = {I1, I2, I4, I5}, S2 = {I2, I3, I5, I6},
S3 = {I4, I5, I7, I8}, S4 = {I5, I6, I8, I9},
S5 = {I1, I2, I3, I4, I5, I7}, S6 = {I1, I2, I3, I5, I6, I9},
S7 = {I1, I4, I5, I7, I8, I9}, S8 = {I3, I5, I6, I7, I8, I9},
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Fig. 1. New labels of the cell Ii j and its neighboring cells.

and reconstruct quadratic polynomials p1(x, y), · · · , p8(x, y) on S1, · · · , S8, respectively. They all approximate the solution u, 
and satisfy

1

�x�y

∫
Ik

pn(x, y)dxdy = uk,
1

�y

∫
Ikx

∂ pn(x, y)

∂x
dxdy = vkx ,

1

�x

∫
Iky

∂ pn(x, y)

∂ y
dxdy = wky , (2.35)

with

n = 1, k = 1,2,4,5, kx = 4, ky = 2; n = 2, k = 2,3,5,6, kx = 6, ky = 2;
n = 3, k = 4,5,7,8, kx = 4, ky = 8; n = 4, k = 5,6,8,9, kx = 6, ky = 8;

and

1

�x�y

∫
Ik

pn(x, y)dxdy = uk, (2.36)

with

n = 5, k = 1,2,3,4,5,7; n = 6, k = 1,2,3,5,6,9;
n = 7, k = 1,4,5,7,8,9; n = 8, k = 3,5,6,7,8,9.

To combine the quadratic polynomials above to obtain a higher order approximation of fourth-order accuracy for a quarter 
cell average of u over [xi− 1

2
, xi] × [y j− 1

2
, y j], the linear weights γ1, · · · , γ8 are chosen to ensure

1

�x�y

xi∫
xi−1/2

y j∫
y j−1/2

u(x, y)dxdy = 1

�x�y

8∑
n=1

γn

xi∫
xi−1/2

y j∫
y j−1/2

pn(x, y)dxdy (2.37)

for any polynomial u of degree at most 3. Here, one should understand that uk , vk and wk on the right side of (2.35)–(2.36)
are from the same polynomial u.

It is not hard to see that (2.37) holds for any polynomial u of degree at most 2 if 
∑8

n=1 γn = 1, as each individual 
pn(x) reconstructs a quadratic polynomial exactly. There are four more constraints on γ1, · · · , γ8 from requiring (2.37) to 
hold for u = x3, x2 y, xy2 and y3, respectively. Subject to these five constraints listed above, we determine the linear wights 
γ1, · · · , γ8 by minimizing 

∑8
n=1(γn)2. The obtained linear weights γ1, · · · , γ8 turn out to be positive.

Similar to the one-dimensional case, smoothness indicators {βn}n are needed to compute the nonlinear weights for the 
non-oscillatory HWENO reconstruction. Each smoothness indicator βn measures how smooth the function pn(x) is in the 
target cell Ii j . The smaller the smoothness indicator βn is, the smoother the function pn(x) is in Ii j . As in [8], the following 
smoothness indicator is taken,
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βn =
2∑

|l|=1

|Ii j||l|−1
∫
Ii j

(
∂ |l|

∂xl1∂ yl2
pn(x, y)

)2

dxdy,

where l = (l1, l2) and |l| = l1 + l2. With the smoothness indicators and the linear weights, we can get the nonlinear weights 
ωn, n = 1, · · · , 8,

ωn = ωn∑8
k=1 ωk

, where ωk = γk

(ε + βk)
2
, k = 1, · · · ,8.

Finally, a fourth-order HWENO approximation is reconstructed for a quarter cell average of u,

1

�x�y

xi∫
xi−1/2

y j∫
y j−1/2

u(x, y)dxdy ≈ 1

�x�y

8∑
n=1

ωn

xi∫
xi−1/2

y j∫
y j−1/2

pn(x, y)dxdy.

Following the similar procedure, one can reconstruct the other quarter cell averages in (2.34). In actual implementation, one 
only needs to reconstruct three quarter cell averages in the target cell Ii j , and the fourth one can be computed based on 
the local conservation. For example, once the first three in (2.34) are available, the fourth one can be obtained as

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j

u(x, y)dxdy ≈ uij − 1

�x�y

( xi∫
xi−1/2

y j∫
y j−1/2

u(x, y)dxdy

+
xi+1/2∫
xi

y j∫
y j−1/2

u(x, y)dxdy +
xi∫

xi−1/2

y j+1/2∫
y j

u(x, y)dxdy

)
.

The reconstructions of the point values u(x∗, y∗) with (x∗, y∗) ∈ G can be proceeded similarly, and the details are omitted 
here. One can refer to [26] for the related details of reconstructing the point values of u on edges of a cell.

Step 2. A HWENO reconstruction of 1
�y

∫ xi
xi−1/2

∫ y j
y j−1/2

v(x, y)dxdy from the (scaled) cell averages {uij, vij, wij}i j .

In this step, the same stencils S1, · · · , S8 as in step 1 of this section are used. We first construct four cubic polynomials 
pn(x, y) on Sn , n = 1, · · · , 4, which approximate the solution u and are determined by the following,

1

�x�y

∫
Ik

pn(x, y)dxdy = uk,
1

�y

∫
Ikx

∂ pn(x, y)

∂x
dxdy = vkx ,

1

�x

∫
Iky

∂ pn(x, y)

∂ y
dxdy = wky ,

with

n = 1, k = 1,2,4,5, kx = 1,4,5, ky = 1,2,5; n = 2, k = 2,3,5,6, kx = 3,5,6, ky = 2,3,5;
n = 3, k = 4,5,7,8, kx = 4,5,7, ky = 5,7,8; n = 4, k = 5,6,8,9, kx = 5,6,9, ky = 5,8,9.

We then construct four more quadratic polynomials pn(x, y) on Sn , n = 5, · · · , 8, which approximate v = ux and satisfy

1

�y

∫
Ikx

pn(x, y)dxdy = vkx ,

with

n = 5, kx = 1,2,3,4,5,7; n = 6, kx = 1,2,3,5,6,9;
n = 7, kx = 1,4,5,7,8,9; n = 8, kx = 3,5,6,7,8,9.

In order to obtain a fourth-order approximation for the solution u, the approximations to the derivative of u only need
to be third-order accurate. From the definitions of {pn(x, y)}n , one can easily see that each of the following

1

�y

xi∫
x

y j∫
y

∂ pn(x, y)

∂x
dxdy, n = 1, · · · ,4,

1

�y

xi∫
x

y j∫
y

pn(x, y)dxdy, n = 5, · · · ,8
i−1/2 j−1/2 i−1/2 j−1/2



162 Z. Tao et al. / Journal of Computational Physics 281 (2015) 148–176
provides a fourth-order approximation of 1
�y

∫ xi
xi−1/2

∫ y j
y j−1/2

v(x, y)dxdy for the smooth function u (here v = ux), so does any 

convex combination of these eight quantities. In this paper, we choose the simple linear weights γxn = 1
8 , n = 1, · · · , 8. As 

for the smoothness indicators, we follow [26,34] and take

βn =
2∑

|l|=1

|Ii j||l|
∫
Ii j

(
∂ |l|

∂xl1∂ yl2

∂

∂x
pn(x, y)

)2

dxdy, n = 1, · · · ,4,

βn =
2∑

|l|=1

|Ii j||l|
∫
Ii j

(
∂ |l|

∂xl1∂ yl2
pn(x, y)

)2

dxdy, n = 5, · · · ,8,

where l = (l1, l2) and |l| = l1 + l2. With the smoothness indicators and the linear weights, we can compute the nonlinear 
weights ωn , n = 1, · · · , 8,

ωn = ωn∑8
k=1 ωk

, where ωk = γxk

(ε + βk)
2
, k = 1, · · · ,8.

Now we are ready to reconstruct a fourth-order HWENO approximation for a scaled quarter cell average of v ,

1

�y

xi∫
xi−1/2

y j∫
y j−1/2

v(x, y)dxdy ≈ 1

�y

xi∫
xi−1/2

y j∫
y j−1/2

[
4∑

n=1

ωn
∂ pn(x, y)

∂x
+

8∑
n=5

ωn pn(x, y)

]
dxdy.

The reconstructions of the other scaled quarter cell averages are similar. Just as in step 1, in practice, one only needs to 
reconstruct any three scaled quarter cell averages of v in the target cell Ii j , and the fourth one can be obtained based on 
the local conservation.

The reconstructions of the point values q(x∗, y∗) with q = v, vx, v y, vxx, vxy, v yy and (x∗, y∗) ∈ G can be proceeded 
similarly, and one can refer to [34] for the related details of reconstructing the point values of v on edges of a cell. We here 
only point out the differences. To approximate the point values of vx and v y , the difference is in the smoothness indicators. 
In particular, for vx(x∗, y∗), we take

βn =
∑
|l|=1

|Ii j|2
∫
Ii j

(
∂

∂xl1∂ yl2

∂2

∂x2
pn(x, y)

)2

dxdy, n = 1, · · · ,4,

βn =
∑
|l|=1

|Ii j|2
∫
Ii j

(
∂

∂xl1∂ yl2

∂

∂x
pn(x, y)

)2

dxdy, n = 5, · · · ,8,

and for v y(x∗, y∗), we take

βn =
∑
|l|=1

|Ii j|2
∫
Ii j

(
∂

∂xl1∂ yl2

∂2

∂x∂ y
pn(x, y)

)2

dxdy, n = 1, · · · ,4,

βn =
∑
|l|=1

|Ii j|2
∫
Ii j

(
∂

∂xl1∂ yl2

∂

∂ y
pn(x, y)

)2

dxdy, n = 5, · · · ,8,

where l = (l1, l2) and |l| = l1 + l2. To approximate vxx, vxy, v yy at (x∗, y∗), the linear weights rather than the nonlinear 
weights are used in the final reconstructions.

Step 3. A HWENO reconstruction of 1
�x

∫ xi
xi−1/2

∫ y j
y j−1/2

w(x, y)dxdy from the (scaled) cell averages {uij, vij, wij}i j .

In this step, the same stencils S1, · · · , S8 as in step 1 of this section are used. We first construct four cubic polynomials 
pn(x, y) on Sn , n = 1, · · · , 4, which approximate the solution u and are determined by the following

1

�x�y

∫
Ik

pn(x, y)dxdy = uk,
1

�y

∫
Ikx

∂ pn(x, y)

∂x
dxdy = vkx ,

1

�x

∫
Iky

∂ pn(x, y)

∂ y
dxdy = wky ,

with
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n = 1, k = 1,2,4,5, kx = 1,4,5, ky = 1,2,5; n = 2, k = 2,3,5,6, kx = 3,5,6, ky = 2,3,5;
n = 3, k = 4,5,7,8, kx = 4,5,7, ky = 5,7,8; n = 4, k = 5,6,8,9, kx = 5,6,9, ky = 5,8,9.

We then construct four more quadratic polynomials pn(x, y) on Sn , n = 5, · · · , 8, which approximate w = u y and satisfy

1

�x

∫
Iky

pn(x, y)dxdy = wky ,

with
n = 5, ky = 1,2,3,4,5,7; n = 6, ky = 1,2,3,5,6,9;
n = 7, ky = 1,4,5,7,8,9; n = 8, ky = 3,5,6,7,8,9.

In order to obtain a fourth-order approximation for the solution u, the approximations to the derivative of u only need
to be third-order accurate. From the definitions of {pn(x, y)}n , one can easily see that each of the following

1

�x

xi∫
xi−1/2

y j∫
y j−1/2

∂ pn(x, y)

∂ y
dxdy, n = 1, · · · ,4, ; 1

�x

xi∫
xi−1/2

y j∫
y j−1/2

pn(x, y)dxdy, n = 5, · · · ,8

provides a fourth-order approximation of 1
�x

∫ xi
xi−1/2

∫ y j
y j−1/2

w(x, y)dxdy for the smooth function u, again here w = u y . In this 

paper, we choose the simple linear weights γyn = 1
8 , n = 1, · · · , 8. As for the smoothness indicators, we take

βn =
2∑

|l|=1

|Ii j||l|
∫
Ii j

(
∂ |l|

∂xl1∂ yl2

∂

∂ y
pn(x, y)

)2

dxdy, n = 1, · · · ,4,

βn =
2∑

|l|=1

|Ii j||l|
∫
Ii j

(
∂ |l|

∂xl1∂ yl2
pn(x, y)

)2

dxdy, n = 5, · · · ,8,

where l = (l1, l2) and |l| = l1 + l2. With the smoothness indicators and the linear weights, we can compute the nonlinear 
weights ωn , n = 1, · · · , 8,

ωn = ωn∑8
k=1 ωk

, where ωk = γyk

(ε + βk)
2
, k = 1, · · · ,8.

Now we are ready to reconstruct a fourth-order HWENO approximation for a scaled quarter cell average of w ,

1

�x

xi∫
xi−1/2

y j∫
y j−1/2

w(x, y)dxdy ≈ 1

�x

xi∫
xi−1/2

y j∫
y j−1/2

[
4∑

n=1

ωn
∂ pn(x, y)

∂ y
+

8∑
n=5

ωn pn(x, y)

]
dxdy.

The reconstructions of the other scaled quarter cell averages are similar. Again, one of the scaled quarter cell average in the 
target cell Ii j can be computed from the others based on the local conservation.

The reconstructions of the point values q(x∗, y∗) with q = w, wx, w y, wxx, wxy, w yy and (x∗, y∗) ∈ G can be proceeded 
similarly, and one can refer to [34] for the related details of reconstructing the point values of w on edges of a cell. We 
here only point out the differences. To approximate the point values of wx and w y , the difference is in the smoothness 
indicators. In particular, for wx(x∗, y∗), we take

βn =
∑
|l|=1

|Ii j|2
∫
Ii j

(
∂

∂xl1∂ yl2

∂2

∂x∂ y
pn(x, y)

)2

dxdy, n = 1, · · · ,4,

βn =
∑
|l|=1

|Ii j|2
∫
Ii j

(
∂

∂xl1∂ yl2

∂

∂x
pn(x, y)

)2

dxdy, n = 5, · · · ,8,

and for w y(x∗, y∗), we take

βn =
∑
|l|=1

|Ii j|2
∫
Ii j

(
∂

∂xl1∂ yl2

∂2

∂ y2
pn(x, y)

)2

dxdy, n = 1, · · · ,4,

βn =
∑
|l|=1

|Ii j|2
∫
I

(
∂

∂xl1∂ yl2

∂

∂ y
pn(x, y)

)2

dxdy, n = 5, · · · ,8,
i j
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where l = (l1, l2) and |l| = l1 + l2. To approximate wxx, wxy, w yy at (x∗, y∗), the linear weights rather than the nonlinear 
weights are used in the final reconstructions.

Remark 2. Similar as in the one-dimensional case (see also Remark 1), with the current central scheme framework, there is 
no need to use numerical fluxes for F , G , P , Q , H and R as in upwind type schemes.

Finally in this section, we briefly discuss the system case. Just as in one dimension, to reduce the spurious oscillations 
and enhance the numerical stability, we apply the local characteristic decomposition during the reconstructions of the 
quarter cell averages for u, v , w based on {uij, vij, wij}i j . The reconstructions of the point values are still implemented 
through a componentwise procedure. Note that for the system case in two dimensions, there are two flux functions f (u)

and g(u). In the reconstructions of quarter cell averages, it is not obvious to know the direction along which the information 
is propagating locally. In our simulation, we adopt the strategy that we first perform the reconstruction based on the local 
characteristic information provided by f (u) and g(u), respectively. The final approximation is then given by an arithmetic 
average of these two reconstructions. Again to assist with the derivation of the proposed methods, MATLAB Symbolic Math 
Toolbox is used.

3. Central Hermite WENO scheme with natural continuous extension of Runge–Kutta time discretization

Alternative to the Lax–Wendroff strategy, we apply in this section the natural continuous extension of Runge–Kutta 
(NCE-RK) time discretizations to combine with the central HWENO spatial discretizations in the framework of staggered 
meshes. The use of NCE-RK methods permits one to compute accurate approximations for the intermediate value of a 
solution to an ODE based on standard RK methods with slight increase of the computational time. Note that a standard RK 
method only provides accurate approximations for the solution at discrete time tn for any ∀n.

Below we will describe a fourth-order NCE-RK method which is used in this paper. For more details about such time 
discretizations, one can refer to [33,3]. Consider an ODE problem{

y′(t) = F
(
t, y(t)

)
,

y(t0) = y0,
(3.1)

and suppose yn is a given approximation to y(tn). One can then approximate y(tn+1) at tn+1 = tn + �t by yn+1 with a 
standard four-stage fourth-order RK scheme as follows.

yn+1 = yn + �t
4∑

i=1

bi K (i), (3.2)

where K (i) is an RK flux determined by

K (i) = F
(
tn + ci�t, Y (i)) with Y (i) = yn + ci�t K (i−1), i = 1,2,3,4, (3.3)

and K (0) = 0. In addition, b1 = b4 = 1
6 , b2 = b3 = 1

3 , and c1 = 0, c2 = c3 = 1
2 , c4 = 1.

A natural continuous extension of the RK scheme (3.2)–(3.3) further provides an approximation of y(t) (and also its 
derivatives) with the same accuracy when t ∈ [tn, tn+1]. This approximation is given specifically by

s(t)|t=tn+θ�t := yn + �t
4∑

i=1

Bi(θ)K (i), 0 ≤ θ ≤ 1,

where

B1(θ) = 2(1 − 4b1)θ
3 + 3(3b1 − 1)θ2 + θ,

Bi(θ) = 4(3ci − 2)biθ
3 + 3(3 − 4ci)biθ

2, i = 2,3,4.

s(t) not only satisfies s(tn) = yn , s(tn+1) = yn+1, but also has the following approximation properties,

max
tn≤t≤tn+�t

∣∣y(l)(t) − s(l)(t)
∣∣ = O

(
�t4−l), 0 ≤ l ≤ 4.

3.1. One-dimensional case

We use the same notation for the staggered meshes and the cell averages of functions, as well as the fifth-order HWENO 
spatial reconstruction as in Section 2.1. Though the discussion below focuses on one time step, one would want to keep in 
mind that the overall algorithm is still based on staggered meshes, and it switches back and forth between the primal and 
dual meshes.
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Suppose at t = tn , the approximations for the cell averages of the solution and its first derivative, namely {un
i }i and {vn

i }i , 
are available on the primal mesh. We integrate (2.1)–(2.2) over [tn, tn+1] × [xi, xi+1] and get

un+1
i+1/2 = un

i+1/2 − 1

�x

tn+1∫
tn

[
f
(
u(xi+1, t)

) − f
(
u(xi, t)

)]
dt,

vn+1
i+1/2 = vn

i+1/2 − 1

�x

tn+1∫
tn

[
g
(
u(xi+1, t), v(xi+1, t)

) − g
(
u(xi, t), v(xi, t)

)]
dt, (3.4)

where g(u, v) = f ′(u)v . If we consider the problem (2.1)–(2.2) with the piecewise initial data (u, v)|Ii = (un
i , vn

i ) at tn , under 
the assumption that the time step �t satisfies a CFL restriction �t ≤ 1

2
�x

max | f ′(u)| , the discontinuities starting at tn from 
xi− 1

2
and xi+ 1

2
will not propagate to xi over a single time step �t , and therefore the solutions of this problem restricted 

at xi , ∀i are smooth for t ∈ (tn, tn+1). Motivated by this, the temporal integration in (3.4) can be further approximated 
using numerical quadratures with compatible accuracy. To match the fifth-order HWENO reconstruction to be used in the 
spatial discretization, we apply the three-point Gaussian quadrature formula and replace the temporal integral terms in (3.4)
according to the following

tn+1∫
tn

f
(
u(xi, t)

)
dt ≈ �t

3∑
l=1

αl f
(
u
(
xi, tn + �tθl

))
,

tn+1∫
tn

g
(
u(xi, t), v(xi, t)

)
dt ≈ �t

3∑
l=1

αl g
(
u
(
xi, tn + �tθl

)
, v

(
xi, tn + �tθl

))
. (3.5)

Here α1 = α3 = 5
18 , α2 = 4

9 , and θ1 = 1
2 −

√
15

10 , θ2 = 1
2 , θ3 = 1

2 +
√

15
10 are the weights and quadrature points.

Based on (3.4) and (3.5), one can compute the cell averages of the solution and its derivative, namely {un+1
i+1/2}i and 

{vn+1
i+1/2}i , with respect to the dual mesh at t = tn+1. To achieve this, one only needs to obtain accurate approximations for

un
i+1/2, vn

i+1/2, u
(
xi, tn + �tθl

)
, v

(
xi, tn + �tθl

)
, l = 1,2,3, ∀i, (3.6)

and the remainder of this subsection will be devoted to the related details.
Recall at tn , {un

i , vn
i }i are available. We can first reconstruct the staggered cell averages {un

i+1/2}i and {vn
i+1/2}i in (3.6)

based on the same fifth-order HWENO procedure described in Section 2.1. In order to approximate the point values u(xi, tn +
�tθl), v(xi, tn + �tθl), l = 1, 2, 3, ∀i in (3.6), we will apply the fourth-order NCE-RK method to the auxiliary ODE problem 
(3.1) starting from t = tn at each xi with any i, where

y(t) =
{

u(xi, t)
v(xi, t),

F (t, y) =
{− f ′(u)v|xi

− f ′′(u)v2 − f ′(u)vx|xi ≈ − f ′′(u)v2 − f ′(u)Rvx |xi .
(3.7)

More specifically, one needs to evaluate the corresponding K (i) , i = 1, 2, 3, 4 used in (3.2)–(3.3). Here the operator Rvx in 
(3.7) is to reconstruct vx at xi , and it will be specified.

To evaluate K (1) , we reconstruct the point value of y(tn), namely u(xi, tn) and v(xi, tn), based on the given cell averages 
{un

i , vn
i }i on the primal mesh. The operator Rvx is chosen such that vx(xi, tn) is also reconstructed from the same set 

of cell averages. These reconstructions have already been discussed in Section 2.1 as steps 2, 4, 5. Once K (l) for some 
l ≥ 1 is available, then Y (l+1) can be computed based on (3.3). This will provide approximations for u(xi, tn + cl+1�t) and 
v(xi, tn + cl+1�t) for all i. Now the operator Rvx in (3.7) is chosen such that vx(xi, tn + cl+1�t) is reconstructed based on 
these approximated point values {u(xi, tn + cl+1�t), v(xi, tn + cl+1�t)}i using a HWENO strategy similar to the step 5 in 
Section 2.1, see also [17,23] for more details. With K (l) , l = 1, 2, 3, 4, one can now follow the NCE-RK procedure to obtain 
accurate approximations for the point values of u and v in (3.6).

3.2. Two-dimensional case

We use the same notation for the staggered meshes and the cell averages of functions, as well as the fourth-order 
HWENO spatial reconstruction as in Section 2.2. Again, the discussion will focus on the algorithm over one time step.
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Suppose at t = tn , the approximations for the cell averages of the solution and its first derivative, namely {un
ij, vn

i j, wn
ij}i j , 

are available on the primal mesh. We integrate (2.21)–(2.23) over [tn, tn+1] × [xi, xi+1] × [y j, y j+1] and get

un+1
i+1/2, j+1/2 = un

i+1/2, j+1/2

− 1

�x�y

[ tn+1∫
tn

y j+1∫
y j

(
f
(
u(xi+1, y, t)

) − f
(
u(xi, y, t)

))
dydt

]

− 1

�x�y

[ tn+1∫
tn

xi+1∫
xi

(
g
(
u(x, y j+1, t)

) − g
(
u(x, y j, t)

))
dxdt

]
, (3.8)

vn+1
i+1/2, j+1/2 = vn

i+1/2, j+1/2

− 1

�y

[ tn+1∫
tn

y j+1∫
y j

(
p
(
u(xi+1, y, t), v(xi+1, y, t)

) − p
(
u(xi, y, t), v(xi, y, t)

))
dydt

]

− 1

�y

[ tn+1∫
tn

xi+1∫
xi

(
q
(
u(x, y j+1, t), v(x, y j+1, t)

) − q
(
u(x, y j, t), v(x, y j, t)

))
dxdt

]
, (3.9)

wn+1
i+1/2, j+1/2 = wn

i+1/2, j+1/2

− 1

�x

[ tn+1∫
tn

y j+1∫
y j

(
h
(
u(xi+1, y, t), w(xi+1, y, t)

) − h
(
u(xi, y, t), w(xi, y, t)

))
dydt

]

− 1

�x

[ tn+1∫
tn

xi+1∫
xi

(
r
(
u(x, y j+1, t), w(x, y j+1, t)

) − r
(
u(x, y j, t), w(x, y j, t)

))
dxdt

]
, (3.10)

where

p(u, v) = f ′(u)v, q(u, v) = g′(u)v, h(u, w) = f ′(u)w, r(u, v) = g′(u)w.

Since a fourth-order HWENO spatial reconstruction will be used, we further apply the two-point Gaussian quadrature for-
mula to approximate the spatial integration in (3.8)–(3.10) and obtain

un+1
i+1/2, j+1/2 ≈ un

i+1/2, j+1/2 − 1

2�x

tn+1∫
tn

(
f i+1, jl (t) + f i+1, jr (t) − f i, jl (t) − f i, jr (t)

)
dt

− 1

2�y

tn+1∫
tn

(
gil, j+1(t) + gir , j+1(t) − gil, j(t) − gir , j(t)

)
dt, (3.11)

vn+1
i+1/2, j+1/2 ≈ vn

i+1/2, j+1/2 − 1

2

tn+1∫
tn

(
pi+1, jl (t) + pi+1, jr (t) − pi, jl (t) − pi, jr (t)

)
dt

− �x

2�y

tn+1∫
tn

(
qil, j+1(t) + qir , j+1(t) − qil, j(t) − qir , j(t)

)
dt, (3.12)

wn+1
i+1/2, j+1/2 ≈ wn

i+1/2, j+1/2 − �y

2�x

tn+1∫
tn

(
hi+1, jl (t) + hi+1, jr (t) − hi, jl (t) − hi, jr (t)

)
dt

− 1

2

tn+1∫
n

(
ril, j+1(t) + rir , j+1(t) − ril, j(t) − rir , j(t)

)
dt. (3.13)
t
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Here the notation pr,s(t) in (3.11)–(3.13) is for the point value of p(xr, ys, t) of a function p, with il , ir , jl , jr given in (2.32). 
The collection of the related points is denoted as G

G = {
(xi, y j), (xi, y

j− 1
2 +

√
3

6
), (xi, y

j+ 1
2 −

√
3

6
), (x

i− 1
2 +

√
3

6
, y j), (x

i+ 1
2 −

√
3

6
, y j), ∀i, j

}
. (3.14)

If the time step �t is chosen to satisfy the CFL restriction �t ≤ Ccfl
(max | f ′(u)|/�x+max |g′(u)|/�y)

with some constant Ccfl , one 
can expect p(x∗, y∗, t), with (x∗, y∗) ∈ G and p = u, v, w , are smooth with respect to t ∈ (tn, tn+1). Under such assumption 
on the time step, we further apply the three-point Gaussian quadrature formula and replace the temporal integral terms in 
(3.11)–(3.13) according to the following

tn+1∫
tn

s(·, t)dt ≈ �t
3∑

l=1

αl s
(·, tn + �tθl

)
, s = f , g, p,q,h, r, (3.15)

where α1 = α3 = 5
18 , α2 = 4

9 , and θ1 = 1
2 −

√
15

10 , θ2 = 1
2 , θ3 = 1

2 +
√

15
10 .

Based on (3.8)–(3.15), one can compute the cell averages of the solution and its derivative, namely {un+1
i+1/2, j+1/2,

vn+1
i+1/2, j+1/2, wn+1

i+1/2, j+1/2}i j , with respect to the dual mesh at t = tn+1. To achieve this, one only needs to obtain accurate 
approximations for

pn
i+1/2, j+1/2, p

(
x∗, y∗, tn + �tθl

)
, with p = u, v, w and (x∗, y∗) ∈ G, l = 1,2,3, ∀i, j (3.16)

and the remainder of this subsection will be devoted to the related details.
Recall at tn , {un

ij, vn
i j, wn

ij}i j are available. We can first reconstruct the staggered cell averages {un
i+1/2, j+1/2, vn

i+1/2, j+1/2,

wn
i+1/2, j+1/2}i j in (3.16) based on the same fourth-order HWENO procedure described in Section 2.2. In order to approximate 

the point values p(x∗, y∗, tn + �tθl) with p = u, v, w and (x∗, y∗) ∈ G , l = 1, 2, 3 in (3.16), we will apply the fourth-order 
NCE-RK method to the auxiliary ODE problem (3.1) starting from t = tn at each (x∗, y∗), where

y(t) =
⎧⎨
⎩

u(x∗, y∗, t)
v(x∗, y∗, t)
w(x∗, y∗, t),

F (t, y) =
⎧⎨
⎩

−( f (u)x + g(u)y)|(x∗,y∗)
−(p(u, v)x + q(u, v)y)|(x∗,y∗)
−(h(u, w)x + r(u, w)y)|(x∗,y∗).

(3.17)

More specifically, one needs to evaluate the corresponding K (i) , i = 1, 2, 3, 4 used in (3.2)–(3.3). In actual implementation, 
F (t, y) is further replaced by

F (t, y) =
⎧⎨
⎩

−( f ′(u)v + g′(u)w)|(x∗,y∗)
−( f ′′(u)v2 + f ′(u)Rvx + g′′(u)w v + g′(u)Rv y )|(x∗,y∗)
−( f ′′(u)v w + f ′(u)Rwx + g′′(u)w2 + g′(u)Rw y )|(x∗,y∗),

(3.18)

and the operator Rvx in (3.18) is to reconstruct vx at (x∗, y∗), and it will be specified. Similar convention goes to Rv y , Rwx

and Rw y .
To evaluate K (1) , we reconstruct the point value of y(tn), namely p(x∗, y∗, tn) (p = u, v, w), based on the given cell 

averages {un
ij, vn

i j, wn
ij}i j on the primal mesh. The operator Rq (q = vx, v y, wx, w y) is chosen such that q(x∗, y∗, tn) is also 

reconstructed from the same set of cell averages. Such reconstructions are used in Section 2.2. Once K (l) for some l ≥ 1
is available, then Y (l+1) can be computed based on (3.3). This will provide approximations for p(x∗, y∗, tn + cl+1�t) (p =
u, v, w). Now the operator Rq (q = vx, v y, wx, w y) in (3.18) is chosen such that q(x∗, y∗, tn +cl+1�t) is reconstructed based 
on the point values {p(xi, y j, tn + cl+1�t), p = u, v, w}i j using a fourth-order HWENO strategy similar to that in Section 2.2. 
With K (l) , l = 1, 2, 3, 4, one can now follow the NCE-RK procedure to obtain accurate approximations for the point values of 
u, v, w in (3.16).

The algorithms discussed above can be extended to the system of conservation laws, see also Section 2.

4. Numerical examples

In this section, we will present a set of numerical experiments to illustrate the high-order accuracy and the robustness 
of the proposed methods to simulate one- and two-dimensional scalar or a system of hyperbolic conservation laws. The 
solutions can be either smooth or non-smooth. In one dimension, the numerical results are obtained by the proposed 
fifth-order central HWENO scheme with the third-order Lax–Wendroff method (C-HWENO5-LW3) or with the fourth-order 
NCE-RK method (C-HWENO5-NCERK4) in time. A uniform mesh with N elements is used. In two dimensions, the results 
are by the proposed fourth-order central HWENO scheme with the third-order Lax–Wendroff method (C-HWENO4-LW3) or 
with the fourth-order NCE-RK method (C-HWENO4-NCERK4) in time. A uniform mesh with Nx × N y elements is used.
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Fig. 2. Boundary cells for primal mesh (left) and dual mesh (right).

Table 1
The linear advection equation ut + ux = 0, with u(x, 0) = sin(πx), and a periodic boundary condition. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 2. 
L1 and L∞ errors and orders of accuracy.

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 2.92e-001 4.83e-001 2.92e-001 4.83e-001
20 1.85e-002 3.98 2.66e-002 4.18 1.85e-002 3.98 2.66e-002 4.18
40 6.85e-004 4.76 1.10e-003 4.60 6.85e-004 4.76 1.10e-003 4.60
80 2.11e-005 5.02 3.69e-005 4.90 2.11e-005 5.02 3.69e-005 4.90

160 6.34e-007 5.06 1.14e-006 5.02 6.34e-007 5.06 1.14e-006 5.02
320 1.89e-008 5.07 3.52e-008 5.02 1.89e-008 5.07 3.52e-008 5.02
640 5.60e-010 5.08 1.04e-009 5.08 5.60e-010 5.08 1.04e-009 5.08

The time step �t is dynamically chosen. In particular, in one-dimensional scalar case, we take

�t = Ccfl
�x

max | f ′(u)| ,
and in two-dimensional scalar case, we have

�t = Ccfl

(max | f ′(u)|/�x + max |g′(u)|/�y)
.

The CFL number Ccfl is taken as 0.25 for one-dimensional tests, and 0.2 for two-dimensional ones except for some accuracy 
tests when the time step needs to be adjusted properly to ensure the spatial errors dominate. In the system case, f ′(u) and 
g′(u) above are replaced by the eigenvalue of the Jacobian of f (u) and g(u), respectively, with the largest absolute value.

To apply boundary conditions, we introduce ghost cells for both the primal and dual meshes. For the primal mesh, the 
boundary of the physical domain coincides with the boundary of computational cells, and we define ghost cells outside of 
the physical domain (see left figure in Fig. 2). For the dual mesh, the boundary of the physical domain is located within the 
computational cells and ghost cells are introduced as shown in right figure of Fig. 2. The solutions in ghost cells are then 
given based on the boundary conditions, such as inflow/outflow, reflective, or periodic boundary conditions (see numerical 
examples below).

4.1. Accuracy tests with smooth solutions

We first validate the accuracy of the proposed schemes when the solutions are smooth. The conservation law can be 
linear, nonlinear, scalar, or system in one and two dimensions.

Example 4.1. We consider the one-dimensional linear advection equation,

ut + ux = 0 (4.1)

with the initial condition u(x, 0) = sin(πx), and a 2-periodic boundary condition. The schemes are run up to t = 2, and the 
CFL number Ccfl = 0.01. In Table 1 we present the L1 and L∞ errors and numerical orders of accuracy for C-HWENO5-LW3 
and C-HWENO5-NCERK4 schemes. One can see that both schemes achieve their designed fifth-order accuracy with almost 
the same errors.
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Table 2
Burgers equation ut + (u2/2)x = 0, with u(x, 0) = 0.5 + sin(πx), and a periodic boundary condition. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 0.5/π . 
L1 and L∞ errors and orders of accuracy.

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.19e-002 3.77e-002 1.19e-002 3.77e-002
20 1.68e-003 2.82 1.21e-002 1.64 1.68e-003 2.82 1.21e-002 1.64
40 1.24e-004 3.76 1.10e-003 3.46 1.24e-004 3.76 1.10e-003 3.46
80 5.64e-006 4.46 5.18e-005 4.41 5.64e-006 4.46 5.18e-005 4.41

160 2.22e-007 4.67 2.11e-006 4.62 2.22e-007 4.67 2.09e-006 4.63
320 6.59e-009 5.07 7.69e-008 4.78 6.70e-009 5.05 7.48e-008 4.80
640 1.78e-010 5.21 1.50e-009 5.68 1.57e-010 5.42 1.61e-009 5.54

Table 3
Euler equations, with ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1, and periodic boundary conditions. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 2. 
L1 and L∞ errors and orders of accuracy of density ρ .

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.75e-002 2.73e-002 1.75e-002 2.73e-002
20 9.42e-004 4.22 1.47e-003 4.22 9.40e-004 4.22 1.47e-003 4.22
40 2.94e-005 5.00 5.42e-005 4.76 2.94e-005 5.00 5.42e-005 4.76
80 8.68e-007 5.08 1.67e-006 5.02 8.66e-007 5.09 1.67e-006 5.02

160 2.63e-008 5.04 5.18e-008 5.01 2.61e-008 5.05 5.15e-008 5.02
320 7.95e-010 5.05 1.43e-009 5.18 7.75e-010 5.07 1.40e-009 5.20
640 2.32e-011 5.10 3.83e-011 5.22 2.07e-011 5.23 3.50e-011 5.32

Example 4.2. We consider the one-dimensional Burgers equation, which is scalar and nonlinear,

ut +
(

u2

2

)
x
= 0 (4.2)

with the initial condition u(x, 0) = 0.5 + sin(πx), and a 2-periodic boundary condition. When t = 0.5/π the solution is still 
smooth, and the L1 and L∞ errors and numerical orders of accuracy are presented in Table 2 for C-HWENO5-LW3 and 
C-HWENO5-NCERK4 schemes. We can see that both schemes achieve their designed fifth-order accuracy with comparable 
errors. We take the CFL number Ccfl = 0.1.

Example 4.3. We consider the one-dimensional nonlinear system of Euler equations

ut + f (u)x = 0 (4.3)

with

u = (ρ,ρv, E)T , f (u) = (
ρv,ρv2 + p, v(E + p)

)T
.

Here ρ is the density, v is the velocity, E is the total energy, p is the pressure which is related to the conservative quantities 
through the relation E = p

γ −1 + 1
2 ρv2, and γ = 1.4. The initial condition is set to be ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, 

p(x, 0) = 1, with a 2-periodic boundary condition. The exact solution is ρ(x, t) = 1 + 0.2 sin(π(x − t)), v(x, t) = 1, and 
p(x, t) = 1. We compute the solution up to t = 2 with the CFL number Ccfl = 0.1. The L1 and L∞ errors and numerical 
orders of accuracy for the density ρ are shown in Table 3 for C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both 
schemes achieve their designed fifth-order accuracy with comparable errors.

Example 4.4. We consider the nonlinear Burgers equation in two dimensions

ut +
(

u2

2

)
x
+

(
u2

2

)
y
= 0 (4.4)

with the initial condition u(x, y, 0) = 0.5 + sin(π(x + y)/2), and a 4-periodic boundary condition in each direction. When 
t = 0.5/π the solution is still smooth. The L1 and L∞ errors and numerical orders of accuracy are presented in Table 4
for C-HWENO4-LW3 and C-HWENO4-NCERK4 schemes, with Ccfl = 0.2. Both schemes achieve their designed fourth-order 
accuracy with comparable errors.

Example 4.5. We here consider the nonlinear system of Euler equations in two dimensions

Ut + f (U )x + g(U )y = 0 (4.5)
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Table 4
Burgers equation ut + (u2/2)x + (u2/2)y = 0, with u(x, y, 0) = 0.5 + sin(π(x + y)/2), and periodic boundary conditions. C-HWENO4-LW3 and C-
HWENO4-NCERK4. t = 0.5/π . L1 and L∞ errors and orders of accuracy.

Nx × N y C-HWENO4-LW3 C-HWENO4-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 3.32e-002 8.33e-002 3.32e-002 8.33e-002
20 × 20 3.60e-003 3.21 2.37e-002 1.81 3.60e-003 3.21 2.37e-002 1.81
40 × 40 4.02e-004 3.16 2.70e-003 3.13 4.02e-004 3.16 2.69e-003 3.13
80 × 80 2.09e-005 4.27 1.75e-004 3.95 2.09e-005 4.27 1.75e-004 3.95

160 × 160 1.10e-006 4.25 9.61e-006 4.19 1.10e-006 4.25 9.54e-006 4.20

Table 5
Euler equations, with ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1, and periodic boundary conditions. C-HWENO4-LW3 
and C-HWENO4-NCERK4. t = 2. L1 and L∞ errors and orders of accuracy of density ρ .

Nx × N y C-HWENO4-LW3 C-HWENO4-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 1.12e-001 1.72e-001 1.12e-001 1.72e-001
20 × 20 6.44e-003 4.12 1.01e-002 4.09 6.65e-003 4.07 1.05e-002 4.03
40 × 40 1.95e-004 5.05 3.30e-004 4.94 1.93e-004 5.11 3.27e-004 5.01
80 × 80 7.05e-006 4.79 1.23e-005 4.75 6.85e-006 4.82 1.21e-005 4.76

160 × 160 2.49e-007 4.82 4.64e-007 4.73 2.34e-007 4.87 4.43e-007 4.77

with

U = (ρ,ρu,ρv, E)T , f (U ) = (
ρu,ρu2 + p,ρuv, u(E + p)

)T
,

g(U ) = (
ρv,ρuv,ρv2 + p, v(E + p)

)T
.

Here ρ is the density, (u, v)T is the velocity, E is the total energy, p is the pressure which is related to the conservative 
quantities through the relation E = p

γ −1 + 1
2 ρ(u2 + v2), and γ = 1.4. The initial condition is set to be ρ(x, y, 0) = 1 +

0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1, with a 2-periodic boundary condition in each direction. 
The exact solution is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − (u + v)t)), u(x, y, t) = 0.7, v(x, y, t) = 0.3, and p(x, y, t) = 1. We 
compute the solution up to t = 2 with the CFL number Ccfl = 0.2. The L1 and L∞ errors and numerical orders of accuracy 
of density ρ are reported in Table 5 for C-HWENO4-LW3 and C-HWENO4-NCERK4 schemes. Both schemes achieve their 
designed fourth or higher order accuracy with comparable errors.

4.2. Test cases with non-smooth solutions

We now test the performance of the proposed methods in terms of their resolution and non-oscillatory property when 
solving problems with non-smooth features, such as shocks, rarefaction, or contact discontinuity, in their solutions.

Example 4.6. We consider the same one-dimensional nonlinear Burgers equation (4.2) as in Example 4.2 with the same 
initial and boundary conditions, except that we now present the numerical solutions at t = 1.5/π after a shock forms. In 
Fig. 3, the solutions of C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes are plotted, together with the exact solution. 
The mesh is uniform with N = 80 elements. We can see that both schemes lead to non-oscillatory shock transitions in the 
solutions.

Example 4.7. We here consider a one-dimensional nonlinear non-convex scalar Buckley–Leverett problem

ut +
(

4u2

4u2 + (1 − u)2

)
x
= 0 (4.6)

with the initial condition: u = 1 when − 1
2 ≤ x ≤ 0 and u = 0 elsewhere. The computational domain is [−1, 1], with constant 

boundary conditions applied to both ends. The solution is computed up to t = 0.4. The exact solution contains shock, 
rarefaction, and a contact discontinuity. We remark that some high-order schemes may fail to converge to the correct 
entropy solution for this problem. In Fig. 4, the solutions of C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes are shown 
with N = 80 mesh elements, together with the exact solution. One can see both schemes capture the correct entropy 
solution well, with good resolutions for all the major features in the solution.

Example 4.8. We solve the one-dimensional Euler equations (4.3) with a Riemann initial condition for the Lax problem

(ρ, v, p) = (0.445,0.698,3.528) for x ≤ 0, (ρ, v, p) = (0.5,0,0.571) for x > 0.
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Fig. 3. Burgers equation in one dimension. u(x, 0) = 0.5 + sin(πx). t = 1.5/π and N = 80. Solid line: exact solution; square: C-HWENO5-LW3; plus: C-
HWENO5-NCERK4.

Fig. 4. The Buckley–Leverett problem. t = 0.4 and N = 80. Solid line: exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4.

The computational domain is [−5, 5], with inflow/outflow boundary conditions applied to left/right ends. The schemes 
are run up to t = 1.3. In Fig. 5, we plot the computed density ρ with N = 200 mesh elements by C-HWENO5-LW3 and 
C-HWENO5-NCERK4 schemes, together with the exact solution. One can see that both schemes render equally good non-
oscillatory shock transitions for this problem.

Remark 3. For the Riemann problems such as Example 4.8, and the next two Examples 4.9 and 4.10, the initial cell average 
of the derivative of the solution is assigned as

v0
i = 1

�x

xi+1/2∫
xi−1/2

v(x,0)dx = 1

�x

(
u0(xi+1/2) − u0(xi−1/2)

)
.

Example 4.9. The non-smooth examples we have presented so far contain simple smooth regions in the solutions, for 
which capturing the shock sharply with non-oscillatory transitions is the main focus and usually a good second-order 
non-oscillatory scheme would give satisfactory results. The examples presented here are mainly to demonstrate the non-
oscillatory properties of the proposed high-order schemes. A high-order scheme would be more advantageous when the 
solution contains both shocks and complex smooth structures. One such example is the Shu–Osher problem, which de-
scribes shock interacting with entropy waves [30]. This example is modeled by the one-dimensional Euler equations (4.3)
with a moving Mach-3 shock interacting with sine waves in density, i.e. initially
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Fig. 5. The Lax problem. t = 1.3 and N = 200. Density ρ . Solid line: exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4.

Fig. 6. The shock density wave interaction problem. t = 1.8 and N = 400. Density ρ . Solid line: reference solution; square: C-HWENO5-LW3; plus: C-
HWENO5-NCERK4.

(ρ, v, p) = (3.857143,2.629369,10.333333) for x < −4,

(ρ, v, p) = (1 + σ sin 5x,0,1) for x ≥ −4.

The computational domain is [−5, 5], and the boundary conditions are taken to the same as the initial data. Here we take 
σ = 0.2. In Fig. 6, we plot the computed density ρ at t = 1.8 by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes with 
N = 400 mesh elements, together with a reference solution obtained by the fifth-order finite difference WENO scheme [9]
with 16 000 grid points, we further zoom in the oscillatory region of the solution between x = 0.5 and x = 2.5. One can see 
that this example very well demonstrates the good resolution of the proposed methods to resolve smooth features in the 
solution as well as the non-oscillatory nature of the methods to capture discontinuities.

Example 4.10. We here consider the interaction of blast waves, modeled by the one-dimensional Euler equations (4.3) with 
the initial condition

(ρ, v, p) = (1,0,1000) for 0 ≤ x < 0.1,

(ρ, v, p) = (1,0,0.01) for 0.1 ≤ x < 0.9,

(ρ, v, p) = (1,0,100) for 0.9 ≤ x.

The computational domain is [0, 1], with reflecting boundary conditions applied to both ends, see [7,32]. In Fig. 7, we plot 
the computed density ρ at t = 0.038 by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes with N = 800 mesh elements, 
together with a reference solution obtained by the fifth-order finite difference WENO scheme [9] with 16 000 grid points. 
We can see that both schemes give equally good resolution for this problem.
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Fig. 7. The interaction of blast waves problem. t = 0.038 and N = 800. Density ρ . Solid line: reference solution; square: C-HWENO5-LW3; plus: C-
HWENO5-NCERK4.

Fig. 8. Burgers equation in two dimensions. u(x, y, 0) = 0.5 + sin(π(x + y)/2). t = 1.5/π and Nx × N y = 80 × 80. A slide of the solution (left) at x = y, 
solid line: exact solution; square: C-HWENO4-LW3; plus: C-HWENO4-NCERK4. The surface of solution computed by C-HWENO4-LW3 (middle) and C-
HWENO4-NCERK4 (right).

Example 4.11. We solve the same two-dimensional Burgers equation (4.4) as in Example 4.4 with the same initial and 
boundary conditions, except that we now present the numerical solutions at t = 1.5/π after a shock forms. In Fig. 8, we 
plot a slice of the computed solution at x = y on an 80 × 80 mesh by C-HWENO4-LW3 and C-HWENO4-NCERK4 schemes, 
together with the exact solution. The surfaces of the solutions computed by C-HWENO4-LW3 and C-HWENO4-NCERK4 
schemes are also shown. Both schemes render good non-oscillatory shock transitions for this problem.

Example 4.12. We here consider the example of double Mach reflection, which is originally from [32] and modeled by the 
two-dimensional Euler equations (4.5). The computational domain is [0, 4] × [0, 1]. The reflecting wall lies at the bottom, 
starting from x = 1

6 . Initially a right-moving Mach-10 shock is positioned at x = 1
6 , y = 0 and makes a 60◦ angle with x-axis. 

For the bottom boundary, the exact post-shock condition is imposed for the part from x = 0 to x = 1
6 , and a reflective 

boundary condition is used for the rest. At the top boundary, the flow values are set to describe the exact motion of a 
Mach-10 shock. Post-shock and pre-shock conditions are imposed for the left and right boundary conditions, respectively. 
We compute up to t = 0.2. We use three different uniform meshes, with 240 × 60, 480 × 120, 960 × 240 mesh elements. 
We only show the results with 960 × 240 mesh elements to save space. In Fig. 9, the density contour plots are presented 
in the region of [0, 3] × [0, 1] by C-HWENO4-LW3 and C-HWENO4-NCERK4 schemes, respectively. Both schemes show good 
resolution to approximate the solution with comparable results. All contour plots are with 30 equally-spaced contour lines 
for the density from 1.5 to 22.7.

Example 4.13. Our final example is about a Mach-3 wind tunnel with a step. It is from [32] and modeled by the two-
dimensional Euler equations (4.5). The setup of the problem is as follows. The wind tunnel is 1 length unit wide and 3 
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Fig. 9. Double Mach reflection problem. t = 0.2 and Nx × N y = 960 × 240. C-HWENO4-LW3 (top) and C-HWENO4-NCERK4 (bottom). 30 equally spaced 
density contours from 1.5 to 22.7.

Fig. 10. Forward step problem. t = 4 and Nx × N y = 480 ×160. C-HWENO4-LW3 (top) and C-HWENO4-NCERK4 (bottom). 30 equally spaced density contours 
from 0.54 to 6.15.

length units long. The step is 0.2 length units high and is located 0.6 length units from the left end of the tunnel. The 
problem is initialized by a right-going Mach-3 flow. Reflective boundary conditions are applied along the walls of the tun-
nel, and inflow/outflow boundary conditions are applied at the entrance/exit. The corner of the step is a singular point and 
we treat it based on the assumption of a nearly steady flow in the region near the corner. We compute up to t = 4. We 
use three different uniform meshes, with 120 × 40, 240 × 80, 480 × 160 mesh elements. Again, we only show the results 
with 480 × 160 mesh elements to save space. In Fig. 10, the density contour plots are presented by C-HWENO4-LW3 and C-
HWENO4-NCERK4 schemes, respectively. Both schemes show good resolution to approximate the solution with comparable 
results. All contour plots are with 30 equally-spaced contour lines for the density from 0.54 to 6.15.
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Remark 4. For both Examples 4.12 and 4.13, the initial cell averages of the derivatives of the solutions are simply taken as 
zero, namely, v0

i j = 0, w0
i j = 0.

5. Concluding remarks

In this paper, we design high-order central Hermite WENO schemes for solving one- and two-dimensional linear and 
nonlinear hyperbolic conservation laws. The methods use Hermite WENO reconstruction as spatial discretizations, Lax–
Wendroff type methods or the natural continuous extension of Runge–Kutta methods as time discretizations in a central 
finite volume framework on staggered meshes. Our schemes have the advantages of being compact in reconstruction and 
requiring no flux splitting or numerical fluxes. In the system case, local characteristic decomposition is applied in the re-
construction of cell averages to achieve better non-oscillatory properties of the schemes.

The spatial reconstructions proposed in this work can be directly applied to the central finite volume schemes on two 
overlapping meshes [20], that evolve two sets of numerical approximations for cell averages of the solution and its first 
derivative(s), defined on both meshes at the same discrete times. Central schemes on staggered meshes as in our current 
work are computationally more efficient due to the halved total number of degrees of freedom. On the other hand, central 
schemes on two overlapping meshes were introduced to reduce the large numerical dissipation of the central schemes on 
staggered meshes when the time step size is very small compared to the spatial mesh size, and they can also be formulated 
as semi-discrete methods hence can be easily combined with the commonly used nonlinearly stable TVD Runge–Kutta time 
discretizations [29] following method of lines approaches.
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Appendix A

In two-dimensional case, one can use the governing equations (2.21)–(2.23) to convert time derivatives, up to the third-
order accuracy, of u, v and w into spatial ones as below.

ut = − f (u)x − g(u)y = −(
f ′(u)v + g′(u)w

)
,

utt = −(
f ′(u)ut

)
x − (

g′(u)ut
)

y = −(
f ′′(u)vut + f ′(u)uxt + g′′(u)wut + g′(u)u yt

)
,

uxt = −(
f ′′(u)(v)2 + f ′(u)vx + g′′(u)v w + g′(u)wx

)
,

u yt = −(
f ′′(u)w v + f ′(u)v y + g′′(u)(w)2 + g′(u)w y

)
,

uttt = −(
f ′′(u)(ut)

2 + f ′(u)utt
)

x − (
g′′(u)(ut)

2 + g′(u)utt
)

y,

vt = −(
f ′(u)v

)
x − (

g′(u)v
)

y = −(
f ′′(u)(v)2 + f ′(u)vx + g′′(u)w v + g′(u)v y

)
,

vtt = −(
f ′′(u)ut v + f ′(u)vt

)
x − (

g′′(u)ut v + g′(u)vt
)

y

= −(
f ′′′(u)vut v + f ′′(u)(uxt v + ut vx + v vt) + f ′(u)vxt

)
− (

g′′′(u)wut v + g′′(u)(u yt v + ut v y + w vt) + g′(u)v yt
)
,

vxt = −(
f ′′(u)v v + f ′(u)vx + g′′(u)w v + g′(u)v y

)
x

= −(
f ′′′(u)(v)3 + f ′′(u)(vx v + 2v vx) + f ′(u)vxx

)
− (

g′′′(u)v w v + g′′(u)(wx v + w vx + v v y) + g′(u)vxy
)
,

v yt = −(
f ′′(u)v v + f ′(u)vx + g′′(u)w v + g′(u)v y

)
y

= −(
f ′′′(u)w(v)2 + f ′′(u)(v y v + v v y + w vx) + f ′(u)vxy

)
− (

g′′′(u)(w)2 v + g′′(u)(w y v + 2w v y) + g′(u)v yy
)
,

vttt = −(
f ′′′(u)(ut)

2 v + f ′′(u)(utt v + 2ut vt) + f ′(u)vtt
)

x

− (
g′′′(u)(ut)

2 v + g′′(u)(utt v + 2ut vt) + g′(u)vtt
)

y,

wt = −(
f ′(u)w

) − (
g′(u)w

) = −(
f ′′(u)v w + f ′(u)wx + g′′(u)(w)2 + g′(u)w y

)
,
x y
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wtt = −(
f ′′(u)ut w + f ′(u)wt

)
x − (

g′′(u)ut w + g′(u)wt
)

y

= −(
f ′′′(u)vut w + f ′′(u)(uxt w + ut wx + v wt) + f ′(u)wxt

)
− (

g′′′(u)wut w + g′′(u)(u yt w + ut w y + w wt) + g′(u)w yt
)
,

wxt = −(
f ′′(u)v w + f ′(u)wx + g′′(u)w w + g′(u)w y

)
x

= −(
f ′′′(u)(v)2 w + f ′′(u)(vx w + 2v wx) + f ′(u)wxx

)
− (

g′′′(u)v(w)2 + g′′(u)(wx w + w wx + v w y) + g′(u)wxy
)
,

w yt = −(
f ′′(u)v w + f ′(u)wx + g′′(u)w w + g′(u)w y

)
y

= −(
f ′′′(u)w v w + f ′′(u)(v y w + v w y + w wx) + f ′(u)wxy

)
− (

g′′′(u)(w)3 + g′′(u)(w y w + 2w w y) + g′(u)w yy
)
,

wttt = −(
f ′′′(u)(ut)

2 w + f ′′(u)(utt w + 2ut wt) + f ′(u)wtt
)

x

− (
g′′′(u)(ut)

2 w + g′′(u)(utt w + 2ut wt) + g′(u)wtt
)

y .
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