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In this paper, a compact and high order ADER (Arbitrary high order using DERivatives) scheme 
using the simple HWENO method (ADER-SHWENO) is proposed for hyperbolic conservation laws. 
The newly-developed method employs the Lax-Wendroff procedure to convert time derivatives to 
spatial derivatives, which provides the time evolution of the variables at the cell interfaces. This 
information is required for the simple HWENO reconstructions, which take advantages of the 
simple WENO and the classic HWENO. Compared with the original Runge-Kutta HWENO method 
(RK-HWENO), the new method has two advantages. Firstly, RK-HWENO method must solve the 
additional equations for reconstructions, which is avoided for the new method. Secondly, the 
SHWENO reconstruction is performed once with one stencil and is different from the classic 
HWENO methods, in which both the function and its derivative values are reconstructed with 
two different stencils, respectively. Thus the new method is more efficient than the RK-HWENO 
method. Moreover, the new method is more compact than the existing ADER-WENO method. 
Besides, the new method makes the best use of the information in the ADER method. Thus, the 
time evolution of the cell averages of the derivatives is simpler than that developed in the work 
(Li et al. (2021) [17]). Numerical tests indicate that the new method can achieve high order for 
smooth solutions both in space and time, keep non-oscillatory at discontinuities.

1. Introduction

In this paper, we consider the numerical solutions of hyperbolic conservation laws. The major difficulty in solving nonlinear 
hyperbolic conservation laws is that the solution can develop discontinuities even if the initial condition is smooth. In the past 
decades, a large number of the high order finite volume methods have been developed to solve the equations, which can be divided 
for two groups. One is based on the cell averages, such as essentially non-oscillatory (ENO) [11], weighted ENO (WENO) [1,12] and 
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so on. However, the stencil used for the reconstructions is becoming wider with an increasing the order of accuracy. The other group 
is discontinuous Galerkin method (DG) [2,3,19], Hermite WENO (HWENO) [20,22,23,37,40] and so on, which are compact methods. 
Generally, these methods should solve the additional equations to obtain the internal freedom for the reconstructions, which is used 
to time evolution.

Although these methods are arbitrarily high order in space. Most of them are discretized with Runge-Kutta (RK) methods in time. 
For the multi-stage methods, the reconstruction needs to be performed several times per time step. To avoid the disadvantages of 
the multi-stage temporal discretization methods, lots of high order one-stage methods such GRP (the generalized Riemann problem) 
[30], HGKS (high order gas kinetic scheme) [17,18,26], ADER (Arbitrary high order using DERivatives) approach of Toro et al. 
[28,29,31], and other Lax-Wendroff procedure based methods [21,24,25] are proposed.

In the past years, the gas-kinetic scheme (GKS) has been developed systematically [16–18,26]. HGKS has been proposed without 
employing RK time discretization [18,26]. Moreover, a compact and efficient HGKS (CEHGKS) [17] is proposed for the hyperbolic 
conservation laws recently, which is based on the framework of a one-stage efficient HGKS and can achieve high order accuracy both 
in space and time. The numerical examples [17] show the effectiveness of CEHGKS. However, the technique is only suitable in the 
framework of HGKS.

Another popular one-stage temporal discretization method is ADER method, which was first put forward by Toro and collaborators 
for linear problems on Cartesian meshes [33]. Soon after that the ADER methods are extended to many nonlinear problems. ADER 
methods are combined with WENO methodology (ADER-WENO) to obtain the non-oscillatory of very high order of accuracy in 
space and time for nonlinear hyperbolic conservation laws [6,7,10,28,29,31]. Similar to the traditional RK-WENO, the stencil used in 
ADER-WENO reconstructions is becoming wider with an increasing the order of accuracy, which makes the method more complex on 
high dimension and unstructured meshes. To avoid the disadvantages of ADER-WENO methods, the ADER approaches are extended to 
nonlinear systems in the framework of DG methods (ADER-DG) [5,8]. However, ADER-DG methods also need to solve the additional 
equations for obtaining the internal freedom for reconstructions and time advancing, which increases the computational costs.

Motivated by the CEHGKS and ADER methods, a compact and high order ADER scheme using the simple HWENO (SHWENO) 
method for hyperbolic conservation laws is proposed in this paper, which is denoted by ADER-SHWENO. The method is based on 
a fundamental assumption, i.e., all the variables of the equations are smooth within a space-time computational cell, which is also 
used for the work [17] and a reason why the method [17] can succeed indeed. Thus the Lax-Wendroff procedure can be employed 
to convert time derivatives to spatial derivatives, which provides the time evolution of the variables at the cell interfaces. This 
information is required for the SHWENO reconstructions, which combine the ideas of the simple WENO [38,39] and classic HWENO 
[22,23,40]. Note that the classic HWENO [22,23,40] must solve the additional equation for time evolution, which is avoided for the 
new method. Moreover, the SHWENO reconstruction is performed once with one stencil and is different from the classic HWENO 
methods [22,23,40], in which both the function and its derivative values are reconstructed with two different stencils, respectively. 
Thus ADER-SHWENO is more efficient than the classic HWENO methods. Moreover, the new method makes the best use of the 
information in the ADER method. Therefore, the time evolution of the cell averages of the solutions is simpler than that in the 
work [17], where it includes the non-equilibrium and equilibrium parts, which need to be computed additionally and increase the 
computational cost. Besides, the approximation to leading term is 𝑟th order accuracy for the 𝑟th ADER-SHWENO method while 
(2𝑟 − 1)th order accuracy for 𝑟th order ADER-WENO method [28]. Therefore, the newly-developed ADER-SHWENO method is more 
compact than ADER-WENO method [28]. Finally, an efficient and compact fifth order one-stage method is developed by combining 
ADER and SHWENO reconstructions. Numerical tests show that the new method can achieve high order for smooth solutions both in 
space and time, keep non-oscillatory at discontinuities.

An outline of the paper is given as follows. The ADER scheme based on the simple HWENO method is described in Section 2 and 
Section 3 for one and two dimensional hyperbolic conservation laws in detail, respectively. In Section 4, the algorithm of the method 
is presented briefly. One and two dimensional numerical examples are presented to demonstrate the accuracy and the capability of 
the ADER-SHWENO method in Section 5. In Section 6, conclusions are drawn.

2. The numerical scheme in one dimension

In this section, we describe the ADER-SHWENO method for the numerical solution of hyperbolic conservation laws on a uniform 
mesh. We consider the conservation law in one dimension in the form{

𝑊𝑡 + 𝐹 (𝑊 )𝑥 = 0,
𝑊 (𝑥,0) =𝑊0(𝑥),

(2.1)

where 𝑊 and 𝐹 (𝑊 ) are either scalars or vectors.

Assume the computational domain Ω is divided into 𝑁 nonoverlapping cells {𝐼𝑗 = (𝑥
𝑗− 1

2
, 𝑥

𝑗+ 1
2
), 𝑗 = 1, ⋯ , 𝑁}, Δ𝑥 = 𝑥

𝑗+ 1
2
− 𝑥

𝑗− 1
2
, 

and 𝑥𝑗 =
1
2 (𝑥𝑗+ 1

2
+ 𝑥

𝑗− 1
2
). Assume the computational time is 𝑇 and 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝑡𝑛+1 < ⋯ ≤ 𝑇 . Integrating (2.1) on 𝐼𝑗 ×

(𝑡𝑛, 𝑡𝑛+1) yields

𝑊̄ (𝑥𝑗 , 𝑡𝑛+1) = 𝑊̄ (𝑥𝑗 , 𝑡𝑛) −
Δ𝑡 ( 1

𝑡𝑛+1

𝐹 (𝑥
𝑗+ 1 , 𝑡)𝑑𝑡− 1

𝑡𝑛+1

𝐹 (𝑥
𝑗− 1 , 𝑡)𝑑𝑡),
2

Δ𝑥 Δ𝑡 ∫
𝑡𝑛

2 Δ𝑡 ∫
𝑡𝑛

2
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where 𝑊̄ (𝑥𝑗 , 𝑡𝑛) =
1
Δ𝑥

∫
𝐼𝑗

𝑊 (𝑥, 𝑡𝑛)𝑑𝑥 is the cell average in cell 𝐼𝑗 at time 𝑡𝑛, and Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. Thus, the finite volume method for 
the equation is defined as

𝑊̄ 𝑛+1
𝑗

= 𝑊̄ 𝑛
𝑗
− Δ𝑡

Δ𝑥
(𝐹

𝑗+ 1
2
− 𝐹

𝑗− 1
2
), (2.2)

where 𝑊̄ 𝑛
𝑗

is a high order approximation to 𝑊̄ (𝑥𝑗 , 𝑡𝑛), and 𝐹
𝑗+ 1

2
≈ 1

Δ𝑡
∫ 𝑡𝑛+1
𝑡𝑛

𝐹 (𝑥
𝑗+ 1

2
, 𝑡)𝑑𝑡 is the numerical flux, which is also a high 

order approximation to the physical flux. For the traditional finite volume methods, an explicit and the third order TVD Runge-Kutta 
scheme [27] is used for temporal discretization. In order to obtain the arbitrary order of accuracy in both time and space, the ADER 
approach [28] is employed in this paper. The ADER approach mainly contains three steps [28]:

1. first reconstruct the high order point-wise values from the cell averages;

2. after the reconstruction, solve the generalized Riemann problem at the cell interface;

3. finally evaluate the numerical flux in the conservative scheme (2.2).

2.1. The generalized Riemann problem

In this section, we describe the generalized Riemann problem. We assume the point-wise values of the conservative variables have 
been reconstructed, which are represented by the vector polynomials 𝑝𝑗 (𝑥), 𝑗 = 1, ⋯ , 𝑁 . Then at each cell interface, the generalized 
Riemann problem (GRP) with the reconstruction polynomials is proposed [28,29]:

𝜕𝑡𝑊 + 𝜕𝑥𝐹 (𝑊 ) = 0

𝑊 (𝑥,0) =

{
𝑊𝐿(𝑥) = 𝑝𝑗 (𝑥), 𝑥 < 𝑥

𝑗+ 1
2
,

𝑊𝑅(𝑥) = 𝑝𝑗+1(𝑥), 𝑥 > 𝑥
𝑗+ 1

2
,

(2.3)

which is different from the conventional piece-wise constant data Riemann problem. Now the solution no longer contains regions of 
constant values and characteristics are curved lines. Thus, we need to find an approximate solution for the interface state 𝑊 (𝑥

𝑗+ 1
2
, 𝜏), 

where 𝜏 is local time 𝜏 = 𝑡 − 𝑡𝑛 using the method developed in [30]. The approximate solution 𝑊 (𝑥
𝑗+ 1

2
, 𝜏) can be evaluated by a 

Taylor expansion of the interface state in time

𝑊 (𝑥
𝑗+ 1

2
, 𝜏) ≈𝑊 (𝑥

𝑗+ 1
2
,0+) +

4∑
𝑘=1

[𝜕(𝑘)
𝑡

𝑊 (𝑥
𝑗+ 1

2
,0+)] 𝜏

𝑘

𝑘!
, (2.4)

where

𝜕
(𝑘)
𝑡

𝑊 (𝑥, 𝑡) = 𝜕𝑘

𝜕𝑡𝑘
𝑊 (𝑥, 𝑡), 0+ ≡ lim

𝜏→0+
𝜏.

(2.4) implies the solution is smooth in time. From (2.4), one can observe that the approximate solution contains two parts: a leading 
term 𝑊 (𝑥

𝑗+ 1
2
, 0+) and the high order terms with coefficients determined by the temporal derivatives 𝜕(𝑘)

𝑡
𝑊 (𝑥

𝑗+ 1
2
, 0+). Thus, the 

values of a leading term and high order terms at the cell interfaces need to be evaluated, which are described in the following 
sections.

2.1.1. The leading term
The leading term 𝑊 (𝑥

𝑗+ 1
2
, 0+) accounts for the interaction of the boundary extrapolated values 𝑊𝐿(𝑥𝑗+ 1

2
) and 𝑊𝑅(𝑥𝑗+ 1

2
), which 

are taken to be the Godunov state of the conventional Riemann problem:

𝜕𝑡𝑊 + 𝜕𝑥𝐹 (𝑊 ) = 0

𝑊 (𝑥,0) =

{
𝑊𝐿(𝑥𝑗+ 1

2
), 𝑥 < 𝑥

𝑗+ 1
2
,

𝑊𝑅(𝑥𝑗+ 1
2
), 𝑥 > 𝑥

𝑗+ 1
2
.

(2.5)

The leading term is obtained by solving the above equation. In this paper, 𝑊𝐿(𝑥𝑗+ 1
2
) and 𝑊𝑅(𝑥𝑗+ 1

2
) are directly obtained by the 

SHWENO reconstruction in Sec. 2.3. For scalar cases, we solve the Riemann problem exactly. For the Euler systems, the HLLC 
Riemann solver [30] is adopted, which contains all waves in the Riemann problem solution.

2.1.2. The high order term
To compute the high order terms in (2.4) we need to compute the coefficients, which are the partial derivatives 𝜕(𝑘)

𝑡
𝑊 (𝑥

𝑗+ 1
2
, 0+)

at 𝑥 = 𝑥
𝑗+ 1

2
, 𝑡 = 0. Thus, the high order terms are evaluated in two steps.

First, we express all time derivatives as functions of space derivatives by the Lax-Wendroff procedure. For systems the procedure 
yields the following expressions:
3

𝜕𝑡𝑊 = − 𝜕𝐹

𝜕𝑊
𝜕𝑥𝑊 ,
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𝜕𝑡𝑥𝑊 = −( 𝜕
2𝐹

𝜕𝑊 2 𝜕𝑥𝑊 )𝜕𝑥𝑊 − 𝜕𝐹

𝜕𝑊
𝜕𝑥𝑥𝑊 , (2.6)

𝜕𝑡𝑡𝑊 = −( 𝜕
2𝐹

𝜕𝑊 2 𝜕𝑡𝑊 )𝜕𝑥𝑊 − 𝜕𝐹

𝜕𝑊
𝜕𝑥𝑡𝑊 ,

and so on. In practice, it is more convenient to implement (2.6) in componentwise manner rather than in the matrix form.

Then differentiating the governing equation (2.1) with respect to 𝑥, we obtain

𝜕𝑡𝑊
(𝑘) +𝐴(𝑊 )𝜕𝑥𝑊 (𝑘) =𝐻(𝑊 ,𝑊 (1),𝑊 (2),⋯ ,𝑊 (𝑘−1)), (2.7)

where 𝑊 (𝑘) = 𝜕𝑘

𝜕𝑥𝑘
𝑊 , 1 ≤ 𝑘 ≤ 4, 𝐴(𝑊 ) is the Jacobian matrix, 𝐻 is a nonlinear source term depending on derivatives of lower order 

as well as 𝑊 (𝑥, 𝑡) itself. However, it is not easy to solve these nonlinear inhomogeneous problems. For simplicity, we neglect the 
source terms 𝐻 which comes into effect for 𝜏 > 0 only. Additionally, we linearize the equation around the leading term 𝑊 (𝑥

𝑗+ 1
2
, 0+)

of the time expansion (2.4) and replace the piece-wise polynomial initial data by left and right boundary extrapolated values of 
spatial derivatives at 𝑥

𝑗+ 1
2
. Then high order terms are obtained by solving the following linearized Riemann problem [28,31]:

𝜕𝑡𝑊
(𝑘) +𝐴

𝑗+ 1
2
𝜕𝑥𝑊

(𝑘) = 0

𝑊 (𝑘)(𝑥,0) =
⎧⎪⎨⎪⎩
𝜕
(𝑘)
𝑥 𝑊𝐿(𝑥𝑗+ 1

2
), 𝑥 < 𝑥

𝑗+ 1
2
,

𝜕
(𝑘)
𝑥 𝑊𝑅(𝑥𝑗+ 1

2
), 𝑥 > 𝑥

𝑗+ 1
2
,

(2.8)

where 𝐴
𝑗+ 1

2
= 𝐹 ′(𝑊 (𝑥

𝑗+ 1
2
, 0+)) is the Jacobian matrix.

Note that the coefficient matrix 𝐴
𝑗+ 1

2
is the same for all spatial derivatives 𝑊 (𝑘) and is evaluated only once, using the leading term 

of the expansion. The initial condition for (2.8) is found directly by differentiating the given SHWENO reconstruction polynomial 
with respect to 𝑥. In the paper, we use the same linear weights and smoothness indicators for the function and for all derivatives. 
Then the linear Riemann problem (2.8) can be solved directly.

2.2. The evaluation of the numerical flux

Finally, having computed all spatial derivatives we form the Tayor expansion (2.4). There exist two options to evaluate the 
numerical flux [29]. In the paper, the state-expansion ADER [28] is employed, in which the approximate state (2.4) is inserted into 
the definition of the numerical flux (2.2). To evaluate the numerical flux an appropriate Gaussian rule is used:

𝐹
𝑗+ 1

2
=

𝐾𝛼∑
𝛼=0

𝐹 (𝑊 (𝑥
𝑗+ 1

2
, 𝜆𝛼Δ𝑡))𝑤𝛼, (2.9)

where 𝜆𝛼 and 𝑤𝛼 are properly scaled nodes and weights of the rule, and 𝐾𝛼 is the number of the nodes.

2.3. SHWENO reconstruction in one dimension

In the previous sections, the GRP and evaluation of the flux are presented. Recall that we assume the polynomials are recon-

structed. In this subsection, the simple HWENO reconstruction is given. For the traditional ADER methods, both WENO and DG 
methods are applied for reconstructions. For the classic WENO method [12], the approximation to the leading term is (2𝑟 − 1)th 
order accuracy for 𝑟th order ADER method. Thus, the stencil used in reconstructions is becoming wider with an increasing order of 
accuracy. On the other hand, for DG method [2,3], the additional equations need to be solved to obtain the internal freedom for 
reconstruction and time advancing, which increases the computational costs. To avoid the disadvantages of WENO and DG method, 
the simple HWENO method [17] is employed in this paper. The reconstruction method combines the ideas of the simple WENO and 
the classic HWENO method. Thus the linear weights can be chosen arbitrary positive numbers except that its sum equal to one and 
the cell averages as well as the cell averages of the derivatives are needed for reconstruction. The procedure is the same as the work 
[17]. Assume

𝑉𝑗 =
1
Δ𝑥 ∫

𝐼𝑗

𝑊𝑥(𝑥, 𝑡)𝑑𝑥, (2.10)

which is the cell average of the derivatives of the solution. Then the reconstruction of the simple HWENO from the cell averages 
{𝑊̄𝑗 , 𝑉𝑗} is described in the following in detail.

Step 1. Define a series of polynomials of different degrees.

Step 1.1. Similar to the work in [17,22], choose the big stencil 𝑇1 = {𝐼𝑗−1, 𝐼𝑗 , 𝐼𝑗+1}. Then a quartic polynomial 𝑃1(𝑥) based on 
the cell averages of the solution and its derivative is constructed, which satisfies

1
𝑃1(𝑥)𝑑𝑥 = 𝑊̄𝑙, 𝑙 = 𝑗 − 1, 𝑗, 𝑗 + 1,
4

Δ𝑥 ∫
𝐼𝑙
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1
Δ𝑥 ∫

𝐼𝑙

𝑑𝑃1(𝑥)
𝑑𝑥

𝑑𝑥 = 𝑉𝑙, 𝑙 = 𝑗 − 1, 𝑗 + 1.

Step 1.2. Choose the other two smaller stencils 𝑇2 = {𝐼𝑗−1, 𝐼𝑗} and 𝑇3 = {𝐼𝑗 , 𝐼𝑗+1} to construct two linear polynomials 𝑃2(𝑥) and 
𝑃3(𝑥), which satisfy

1
Δ𝑥 ∫

𝐼𝑙

𝑃2(𝑥)𝑑𝑥 = 𝑊̄𝑙, 𝑙 = 𝑗 − 1, 𝑗,

and

1
Δ𝑥 ∫

𝐼𝑙

𝑃3(𝑥)𝑑𝑥 = 𝑊̄𝑙, 𝑙 = 𝑗, 𝑗 + 1,

respectively.

Step 2. Similar to the work in [14,15,39], we rewrite 𝑃1(𝑥) as:

𝑃1(𝑥) = 𝛾1(
1
𝛾1

𝑃1(𝑥) −
𝛾2
𝛾1

𝑃2(𝑥) −
𝛾3
𝛾1

𝑃3(𝑥)) + 𝛾2𝑃2(𝑥) + 𝛾3𝑃3(𝑥). (2.11)

Note that the equation (2.11) holds true for any 𝛾1, 𝛾2 and 𝛾3 with 𝛾1 ≠ 0. Here, 𝛾1, 𝛾2 and 𝛾3 are taken as the linear weights. There is 
no requirement on the values of these linear weights for accuracy besides 𝛾1 + 𝛾2 + 𝛾3 = 1. The choice of these linear weights is solely 
based on the balance between accuracy and ability to achieve essentially non-oscillation property. In this paper, we set the linear 
weights as follows: 𝛾1 = 0.994, 𝛾2 = 0.003 and 𝛾3 = 0.003.

Step 3. The smoothness indicators, denoted by 𝛽𝑙, 𝑙 = 1, 2, 3 are computed [12] as

𝛽𝑙 =
𝑘∑

𝑠=1
∫
𝐼𝑗

Δ𝑥2𝑠−1(
𝑑𝑠𝑃𝑙(𝑥)
𝑑𝑥𝑠

)2𝑑𝑥, 𝑙 = 1,2,3,

where 𝑘 = 4 for 𝑙 = 1 and 𝑘 = 1 for 𝑙 = 2, 3. They measure how smooth the function 𝑃𝑙(𝑥) is in the target cell 𝐼𝑗 .
Step 4. Compute the nonlinear weights based on the linear weights and smoothness indicators

𝜔𝑙 =
𝜔̄𝑙

𝜔̄1 + 𝜔̄2 + 𝜔̄3
, 𝜔̄𝑠 = 𝛾𝑠(1 +

𝜅

𝜖 + 𝛽𝑠
), 𝑙 = 1,2,3; 𝑠 = 1,2,3, (2.12)

where 𝜅 = 1
4 (|𝛽1 − 𝛽2| + |𝛽1 − 𝛽3|)2, and 𝜖 is a small positive number to avoid the denominator to become zeros, which is set to be 

10−6 in all the computations in this work.

Step 5. Replace the linear weights (2.11) with the nonlinear weights (2.12), and the final HWENO reconstruction of the conser-

vative values at the point 𝑥
𝑗+ 1

2
on the cell 𝐼𝑗 is given by

𝑊 −
𝑗+ 1

2
= 𝜔1(

1
𝛾1

𝑃1(𝑥𝑗+ 1
2
) −

𝛾2
𝛾1

𝑃2(𝑥𝑗+ 1
2
) −

𝛾3
𝛾1

𝑃3(𝑥𝑗+ 1
2
)) +𝜔2𝑃2(𝑥𝑗+ 1

2
) +𝜔3𝑃3(𝑥𝑗+ 1

2
). (2.13)

The reconstruction to 𝑊 +
𝑗+ 1

2

is mirror symmetric with respect to 𝑥𝑗 of the above procedure.

2.4. The evaluation of the cell average of 𝑊𝑥

Note that in Sec. 2.3 the cell averages of 𝑊𝑥 are needed for the SHWENO reconstruction in the next time step, which is evaluated 
in the following.

From (2.10), at time 𝑡𝑛+1 we have

𝑉 𝑛+1
𝑗

= 1
Δ𝑥 ∫

𝐼𝑗

𝑊𝑥(𝑥, 𝑡𝑛+1)𝑑𝑥 =
𝑊 (𝑥

𝑗+ 1
2
, 𝑡𝑛+1) −𝑊 (𝑥

𝑗− 1
2
, 𝑡𝑛+1)

Δ𝑥
. (2.14)

In the classic HWENO method [22], an additional equation with respect to the cell average of 𝑊𝑥 is solved for time evolution. To 
avoid the disadvantages of HWENO methods, Li et al. [17] employed the equation (2.14) and evaluated the value of 𝑊 (𝑥

𝑗+ 1
2
, 𝑡𝑛+1)

in the framework of GKS, which includes the non-equilibrium and equilibrium states. Thus these terms should be evaluated in order 
to calculate 𝑊 (𝑥

𝑗+ 1
2
, 𝑡𝑛+1), which increases the complexity of the method developed in [17].

Recall the ADER method described in the previous section. From (2.9), one can see that the numerical solutions at the different 
times between 𝑡𝑛 and 𝑡𝑛+1 should be computed for the numerical flux. In the ADER method, the solutions at different times are eval-

uated by a Taylor expansion of the interface state in time, i.e. (2.4). Motivated by that, a fifth order approximation of 𝑊 (𝑥
𝑗+ 1

2
, 𝑡𝑛+1)
5

can be evaluated by
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𝑊 (𝑥
𝑗+ 1

2
, 𝑡𝑛 +Δ𝑡) ≈𝑊 (𝑥

𝑗+ 1
2
, 𝑡+

𝑛
) +

4∑
𝑘=1

[𝜕(𝑘)
𝑡

𝑊 (𝑥
𝑗+ 1

2
, 𝑡+

𝑛
)] (Δ𝑡)𝑘

𝑘!
, (2.15)

which implies the solution in time is smooth.

In fact, the leading term 𝑊 (𝑥
𝑗+ 1

2
, 𝑡+

𝑛
) and high order term 𝜕(𝑘)

𝑡
𝑊 (𝑥

𝑗+ 1
2
, 𝑡+

𝑛
) have been evaluated in the ADER method, which can 

be used directly in (2.15). Therefore, the evaluation of 𝑊 (𝑥
𝑗+ 1

2
, 𝑡𝑛+1) in our new method almost does not introduce the additional 

computational cost and is simpler than that in the work [17]. Finally, we can obtain the cell averages of 𝑊𝑥 at the next time using 
(2.14).

Remark 1. From the procedure above, one can see that we only need to take 𝜏 = Δ𝑡 in (2.4) to get (2.15) for updating the cell 
average of 𝑊𝑥. In addition, the leading term and high order term are evaluated in ADER method. Therefore, we almost directly use 
trivial work to update the cell average of 𝑊𝑥 using (2.14). This is the key point of our method.

Remark 2. In the practical implementations, we can use the Gauss-Lobatto quadrature rule in (2.9), which includes the values at 
both ends, i.e. 𝑡𝑛 and 𝑡𝑛+1. Thus, we can further reduce the computational cost.

3. The numerical scheme in two dimensions

In this section, we describe the ADER-SHWENO method for two dimensional problems. We consider the form{
𝑊𝑡 + 𝐹 (𝑊 )𝑥 +𝐺(𝑊 )𝑦 = 0,
𝑊 (𝑥, 𝑦,0) =𝑊0(𝑥, 𝑦),

(3.1)

where 𝑊 , 𝐹 (𝑊 ) and 𝐺(𝑊 ) are either scalars or vectors. We use a rectangle mesh of cell size Δ𝑥 and Δ𝑦 in 𝑥 and 𝑦 directions, 
respectively. We denote the cells by

𝐼𝑖𝑗 = (𝑥
𝑖− 1

2
, 𝑥

𝑖+ 1
2
) × (𝑦

𝑗− 1
2
, 𝑦

𝑗+ 1
2
),

where 𝑥
𝑖+ 1

2
= 1

2 (𝑥𝑖 + 𝑥𝑖+1), 𝑦𝑗+ 1
2
= 1

2 (𝑦𝑗 + 𝑦𝑗+1).
Integrating (3.1) on 𝐼𝑖𝑗 × (𝑡𝑛, 𝑡𝑛+1), we obtain

𝑊̄ (𝑥𝑖, 𝑦𝑗 , 𝑡𝑛+1) = 𝑊̄ (𝑥𝑖, 𝑦𝑗 , 𝑡𝑛)−
Δ𝑡

Δ𝑥Δ𝑦
[ 1
Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

𝑦
𝑗+ 1

2

∫
𝑦
𝑗− 1

2

𝐹 (𝑊 (𝑥
𝑖+ 1

2
, 𝑦, 𝑡)) − 𝐹 (𝑊 (𝑥

𝑖− 1
2
, 𝑦, 𝑡))𝑑𝑦𝑑𝑡]−

Δ𝑡

Δ𝑥Δ𝑦
[ 1
Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

𝑥
𝑖+ 1

2

∫
𝑥
𝑖− 1

2

𝐺(𝑊 (𝑥, 𝑦
𝑗+ 1

2
, 𝑡)) −𝐺(𝑊 (𝑥, 𝑦

𝑗− 1
2
, 𝑡))𝑑𝑥𝑑𝑡],

where 𝑊̄ (𝑥𝑖, 𝑦𝑗 , 𝑡𝑛) =
1

Δ𝑥Δ𝑦
∫
𝐼𝑖𝑗

𝑊 (𝑥, 𝑦, 𝑡𝑛)𝑑𝑥𝑑𝑦. Then the finite volume method in two dimensions is given by

𝑊̄ 𝑛+1
𝑖𝑗

= 𝑊̄ 𝑛
𝑖𝑗
− Δ𝑡

Δ𝑥Δ𝑦
(𝐹

𝑖+ 1
2 ,𝑗

− 𝐹
𝑖− 1

2 ,𝑗
) − Δ𝑡

Δ𝑥Δ𝑦
(𝐺̂

𝑖,𝑗+ 1
2
− 𝐺̂

𝑖,𝑗− 1
2
), (3.2)

where 𝐹
𝑖+ 1

2 ,𝑗
≈ 1

Δ𝑡
∫ 𝑡𝑛+1
𝑡𝑛

∫ 𝑦
𝑗+ 1

2
𝑦
𝑗− 1

2
𝐹 (𝑊 (𝑥

𝑖+ 1
2
, 𝑦, 𝑡))𝑑𝑦𝑑𝑡, 𝐺̂

𝑖,𝑗+ 1
2
≈ 1

Δ𝑡
∫ 𝑡𝑛+1
𝑡𝑛

∫ 𝑥
𝑖+ 1

2
𝑥
𝑖− 1

2
𝐺(𝑊 (𝑥, 𝑦

𝑗+ 1
2
, 𝑡))𝑑𝑥𝑑𝑡. One can observe that this leads to 

equations including the line integrals on the cell 𝐼𝑖𝑗 , which can be computed by the Gaussian quadrature rule

𝐹
𝑖+ 1

2 ,𝑗
=
∑
𝐺𝑦

Δ𝑦𝑤𝐺𝑦
( 1
Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

𝐹 (𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

, 𝑡))𝑑𝑡), (3.3)

𝐺̂
𝑖,𝑗+ 1

2
=
∑
𝐺𝑥

Δ𝑥𝑤𝐺𝑥
( 1
Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

𝐺(𝑊 (𝑥𝐺𝑥
, 𝑦

𝑖+ 1
2
, 𝑡))𝑑𝑡), (3.4)

where 𝑥𝐺𝑥
and 𝑦𝐺𝑦

are the Gaussian points on (𝑥
𝑖− 1

2
, 𝑥

𝑖+ 1
2
) and (𝑦

𝑗− 1
2
, 𝑦

𝑗+ 1
2
), respectively. 𝑤𝐺𝑥

and 𝑤𝐺𝑦
are the corresponding 

weights. As one dimensional case, we should evaluate the numerical fluxes (3.3) and (3.4). Here we concentrate on 𝐹
𝑖+ 1

2 ,𝑗
and the 
6

other one 𝐺̂
𝑖,𝑗+ 1

2
is obtained in a similar manner.
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3.1. The generalized Riemann problem in two dimensions

After the reconstruction is carried out for each Gaussian integration point (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

) at the cell interface, the generalized Riemann 
problem (2.3) can be proposed along the 𝑥-direction. Then we can obtain a high order approximation to 𝑊 (𝑥

𝑖+ 1
2
, 𝑦𝐺𝑦

, 𝜏). All steps 
of the solution procedure are the same as in the one dimensional case. The Taylor series expansion in time is written as following:

𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

, 𝜏) =𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

,0+) +
4∑

𝑘=1
[𝜕(𝑘)

𝑡
𝑊 (𝑥

𝑗+ 1
2
, 𝑦𝐺𝑦

,0+)] 𝜏
𝑘

𝑘!
. (3.5)

The leading term 𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

, 0+) is the Godunov state of the conventional Riemann problem:

𝜕𝑡𝑊 + 𝜕𝑥𝐹 (𝑊 ) = 0

𝑊 (𝑥,0) =

{
𝑊𝐿(𝑥𝑖+ 1

2
, 𝑦𝐺𝑦

), 𝑥 < 𝑥
𝑖+ 1

2
,

𝑊𝑅(𝑥𝑖+ 1
2
, 𝑦𝐺𝑦

), 𝑥 > 𝑥
𝑖+ 1

2
,

(3.6)

which can be solved by an exact or HLLC Riemann solver. To evaluate the high order term we first use the Lax-Wendroff procedure 
to express the time derivatives as functions of space derivatives. Then we can obtain

𝜕𝑡𝑊 = −( 𝜕𝐹
𝜕𝑊

)𝜕𝑥𝑊 − ( 𝜕𝐺
𝜕𝑊

)𝜕𝑦𝑊 ,

𝜕𝑡𝑥𝑊 = −( 𝜕
2𝐹

𝜕𝑊 2 𝜕𝑥𝑊 )(𝜕𝑥𝑊 ) − ( 𝜕𝐹
𝜕𝑊

)𝜕𝑥𝑥𝑊 − ( 𝜕
2𝐺

𝜕𝑊 2 𝜕𝑥𝑊 )(𝜕𝑦𝑊 ) − ( 𝜕𝐺
𝜕𝑊

)𝜕𝑥𝑦𝑊 ,

𝜕𝑡𝑦𝑊 = −( 𝜕
2𝐹

𝜕𝑊 2 𝜕𝑦𝑊 )(𝜕𝑥𝑊 ) − ( 𝜕𝐹
𝜕𝑊

)𝜕𝑥𝑦𝑊 − ( 𝜕
2𝐺

𝜕𝑊 2 𝜕𝑦𝑊 )(𝜕𝑦𝑊 ) − ( 𝜕𝐺
𝜕𝑊

)𝜕𝑦𝑦𝑊 ,

𝜕𝑡𝑡𝑊 = −( 𝜕
2𝐹

𝜕𝑊 2 𝜕𝑡𝑊 )(𝜕𝑥𝑊 ) − ( 𝜕𝐹
𝜕𝑊

)𝜕𝑡𝑥𝑊 − ( 𝜕
2𝐺

𝜕𝑊 2 𝜕𝑡𝑊 )(𝜕𝑦𝑊 ) − ( 𝜕𝐺
𝜕𝑊

)𝜕𝑡𝑦𝑊 ,

and so on. These equations can be also used for systems. However, 𝜕𝐹

𝜕𝑊
is a matrix and 𝜕2𝐹

𝜕𝑊 2 is a three-dimensional tensor, etc. After 
getting the expression, the high order terms are obtained by solving the linearized Riemann problem:

𝜕𝑡𝑊
(𝑚+𝑛) +𝐴

𝑖+ 1
2 ,𝑗

𝜕𝑥𝑊
(𝑚+𝑛) = 0

𝑊 (𝑚+𝑛)(𝑥, 𝑦𝐺𝑦
,0) =

⎧⎪⎨⎪⎩
𝜕
(𝑚+𝑛)
𝑥𝑚𝑦𝑛

𝑊𝐿(𝑥𝑖+ 1
2
, 𝑦𝐺𝑦

), 𝑥 < 𝑥
𝑖+ 1

2
,

𝜕
(𝑚+𝑛)
𝑥𝑚𝑦𝑛

𝑊𝑅(𝑥𝑖+ 1
2
, 𝑦𝐺𝑦

), 𝑥 > 𝑥
𝑖+ 1

2
,

(3.7)

where 𝑊 (𝑚+𝑛) = 𝜕𝑚+𝑛

𝜕𝑥𝑚𝜕𝑦𝑛
𝑊 = 𝜕

(𝑚+𝑛)
𝑥𝑚𝑦𝑛

𝑊 , 1 ≤ 𝑚 + 𝑛 ≤ 4 and 𝐴
𝑖+ 1

2 ,𝑗
= 𝐹 ′(𝑊 (𝑥

𝑖+ 1
2
, 𝑦𝐺𝑦

, 0+)). Then the Taylor expansion (3.5) can be 
formed for the interface state at the Gaussian point (𝑥

𝑖+ 1
2
, 𝑦𝐺𝑦

). Finally the numerical flux can be evaluated by

𝐹
𝑖+ 1

2 ,𝑗
=
∑
𝐺𝑦

Δ𝑦𝑤𝐺𝑦

𝐾𝛼∑
𝛼=0

𝐹 (𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

, 𝜆𝛼Δ𝑡))𝑤𝛼. (3.8)

3.2. SHWENO reconstruction in two dimensions

For SHWENO reconstruction on Cartesian meshes, one can employ either a direct two dimensional procedure or a dimension-

by-dimension strategy [20]. In this paper, the dimension-by-dimension strategy is adopted. To perform the reconstruction, the cell 
averages of 𝑊 , 𝑊𝑥, 𝑊𝑦 and 𝑊𝑥𝑦 are denoted by

Δ𝑥Δ𝑦𝑊̄𝑖𝑗 = ∫
𝐼𝑖𝑗

𝑊 𝑑𝑥𝑑𝑦,

Δ𝑥Δ𝑦𝑉𝑖𝑗 = ∫
𝐼𝑖𝑗

𝑊𝑥𝑑𝑥𝑑𝑦,

Δ𝑥Δ𝑦𝑌𝑖𝑗 = ∫
𝐼𝑖𝑗

𝑊𝑦𝑑𝑥𝑑𝑦,

Δ𝑥Δ𝑦𝑍̄𝑖𝑗 = ∫
𝐼𝑖𝑗

𝑊𝑥𝑦𝑑𝑥𝑑𝑦.

(3.9)

The reconstruction is as follows. First, we perform two 𝑦-direction reconstructions as Sec. 2.3, i.e.,

{𝑊̄𝑚𝑛, 𝑌𝑚𝑛}→ 𝑊̄𝑖+𝑙,𝑗 (𝑦𝐺𝑦
) ≈ 1

Δ𝑥 ∫
𝐼𝑖+𝑙 ,𝑗

𝑊 (𝑥, 𝑦𝐺𝑦
)𝑑𝑥,

{𝑉𝑚𝑛, 𝑍̄𝑚𝑛}→ 𝑊̄𝑥,𝑖+𝑙,𝑗 (𝑦𝐺𝑦
) ≈ 1

Δ𝑥 ∫ 𝑊𝑥(𝑥, 𝑦𝐺𝑦
)𝑑𝑥.
7

𝐼𝑖+𝑙 ,𝑗
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Then we use 𝑊̄𝑖+𝑙,𝑗 (𝑦𝐺𝑦
) and 𝑊̄𝑥,𝑖+𝑙,𝑗 (𝑦𝐺𝑦

) to perform 𝑥-direction reconstruction to get an approximation to 𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

), i.e.,

{𝑊̄𝑚𝑛(𝑦𝐺𝑦
), 𝑊̄𝑥,𝑚𝑛(𝑦𝐺𝑦

)}→ 𝑊̃ (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

) ≈𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

).

The reconstruction of 𝑊 (𝑥𝐺𝑥
, 𝑦

𝑗+ 1
2
) is performed in a similar way.

3.3. The evaluation of the cell averages of 𝑊𝑥, 𝑊𝑦 and 𝑊𝑥𝑦

As in one dimensional case, the cell averages of 𝑊𝑥, 𝑊𝑦 and 𝑊𝑥𝑦 need to be evaluated at the next time, which are given by

𝑉 𝑛+1
𝑖𝑗

= 1
Δ𝑥

∑
𝐺𝑦

𝑤𝐺𝑦
(𝑊 (𝑥

𝑖+ 1
2
, 𝑦𝐺𝑦

, 𝑡𝑛+1) −𝑊 (𝑥
𝑖− 1

2
, 𝑦𝐺𝑦

, 𝑡𝑛+1)),

𝑌 𝑛+1
𝑖𝑗

= 1
Δ𝑦

∑
𝐺𝑥

𝑤𝐺𝑥
(𝑊 (𝑥𝐺𝑥

, 𝑦
𝑗+ 1

2
, 𝑡𝑛+1) −𝑊 (𝑥𝐺𝑥

, 𝑦
𝑗− 1

2
, 𝑡𝑛+1)),

𝑍̄𝑛+1
𝑖𝑗

= 1
Δ𝑥Δ𝑦

(𝑊 (𝑥
𝑖+ 1

2
, 𝑦

𝑗+ 1
2
, 𝑡𝑛+1) −𝑊 (𝑥

𝑖− 1
2
, 𝑦

𝑗+ 1
2
, 𝑡𝑛+1)−

(𝑊 (𝑥
𝑖+ 1

2
, 𝑦

𝑗− 1
2
, 𝑡𝑛+1) −𝑊 (𝑥

𝑖− 1
2
, 𝑦

𝑗− 1
2
, 𝑡𝑛+1))).

(3.10)

Similar to one dimensional case, Li et al. [17] computed the values at next time using the non-equilibrium and equilibrium states. 
However, what is different from one dimensional case is that the computational costs are significantly increased in two dimensions 
since more terms at the next time should be evaluated for the numerical flux. Thus, the method developed in [17] becomes more 
complicated in two dimensions.

In this paper, to get 𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

, 𝑡𝑛+1), 𝜏 is taken as Δ𝑡 in (3.5) similar to the one dimensional case, which leads

𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

, 𝑡𝑛 +Δ𝑡) =𝑊 (𝑥
𝑖+ 1

2
, 𝑦𝐺𝑦

, 𝑡+
𝑛
) +

4∑
𝑘=1

[𝜕(𝑘)
𝑡

𝑊 (𝑥
𝑗+ 1

2
, 𝑦𝐺𝑦

, 𝑡+
𝑛
)] (Δ𝑡)𝑘

𝑘!
. (3.11)

𝑊 (𝑥𝐺𝑥
, 𝑦

𝑗+ 1
2
, 𝑡𝑛+1) and 𝑊 (𝑥

𝑖+ 1
2
, 𝑦

𝑗+ 1
2
, 𝑡𝑛+1) can be obtained in a similar way. Thus the values at the next time are evaluated by the 

Taylor expansion (3.11). The leading term and high order term also have been computed in the ADER method. Thus, we take trivial 
cost to obtain the value at different times and is simpler. In fact, we can employ the Gauss-Lobatto quadrature rule to evaluate the 
numerical flux. Thus, the values at the next time are calculated in the ADER method and can be directly used in (3.10) for updating 
the cell averages of the derivatives, which can further reduce the computational cost for our method.

4. The algorithm of the ADER-SHWENO method

Assume the physical solution is given at 𝑡 = 𝑡𝑛. Now the procedure of the ADER-SHWENO method is summarized:

Algorithm 1 ADER-SHWENO method.

1: Input: 
{
𝑊̄ 𝑛

𝑗
, 𝑉 𝑛

𝑗

}
at time level 𝑛

2: Step I. Reconstruct the pointwise values at the cell interface by (2.13).

3: Step II. Express all time derivatives as functions of space derivatives by (2.6).

4: Step III. Evaluate the values of the leading term and high order terms in (2.4) by (2.5) and (2.8), respectively.

5: Step IV. Compute the numerical flux (2.9).

6: Step V. Update the conservative variables by (2.2) and evaluate the cell average of derivatives at the next time by (2.14).

7: Output: 
{
𝑊̄ 𝑛+1

𝑗
, 𝑉 𝑛+1

𝑗

}
at time level 𝑛 + 1

5. Numerical examples

In this section we present numerical results for a selection of one- and two-dimensional examples to demonstrate the performance 
of the ADER-SHWENO method proposed in the paper. The CFL condition number is taken as 0.9 for all the computations. In addition, 
the classic HWENO method [22] is termed as RK-HWENO in the following. In this paper, the two-dimensional RK-HWENO scheme 
is also reconstructed by a dimension-by-dimension strategy, and the procedure is the same as the two-dimensional SHWENO in 
Section 3.2. Moreover the CFL condition number for RK-HWENO is taken as 0.6. For accuracy test, we set time step Δ𝑡 =𝑂(Δ𝑥

5
3 ) for 

RK-HWENO method to make sure the spatial errors dominate. Moreover, the ADER scheme based on the simple WENO method [39]

is termed as ADER-SWENO in the following.

5.1. One-dimensional examples

Example 5.1. We first consider Burgers’ equation(
𝑊 2)
8

𝑊𝑡 + 2 𝑥

= 0, 𝑥 ∈ (0,2)
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Table 5.1

Example 5.1: Solution error with periodic boundary conditions and 𝑡 = 0.5
𝜋

.

method 𝑁 10 20 40 80 160 320

ADER-SHWENO

𝐿1 7.320e-3 7.184e-4 1.729e-5 6.061e-7 1.977e-8 6.198e-10

Order 3.349 5.377 4.834 4.938 4.995

𝐿2 1.267e-2 1.324e-3 5.042e-5 1.738e-6 5.616e-8 1.768e-9

Order 3.259 4.714 4.859 4.951 4.989

𝐿∞ 3.002e-2 4.208e-3 2.637e-4 9.512e-6 3.085e-7 9.941e-9

Order 2.835 3.996 4.793 4.947 4.955

RK-HWENO

𝐿1 1.3887e-2 1.204e-3 6.052e-5 2.294e-6 8.357e-8 2.427e-9

Order 3.525 4.315 4.722 4.779 5.106

𝐿2 2.234e-2 2.808e-3 1.630e-4 5.974e-6 2.031e-7 6.086e-9

Order 3.525 4.107 4.770 4.879 5.060

𝐿∞ 9.947e-2 1.079e-2 8.033e-4 3.290e-5 1.044e-6 3.175e-8

Order 3.204 3.748 4.610 4.978 5.039

ADER-SWENO

𝐿1 1.701e-2 1.459e-3 6.180e-5 2.332e-6 7.602e-8 2.392e-9

Order 3.543 4.561 4.728 4.939 4.990

𝐿2 2.859e-2 2.958e-3 1.610e-4 6.338e-6 2.107e-7 6.687e-9

Order 3.273 4.200 4.667 4.911 4.978

𝐿∞ 7.000e-2 1.039e-2 7.983e-4 3.369e-5 1.176e-6 3.773e-8

Order 2.752 3.703 4.566 4.841 4.961

subject to the initial condition 𝑊 (𝑥, 0) = 0.5 + sin(𝜋𝑥) and a periodic boundary condition.

We compute the solution up to 𝑡 = 0.5
𝜋

when the solution is still smooth and the exact solution can be computed using Newton’s 
iteration. The errors of the ADER-SHWENO, RK-HWENO and ADER-SWENO method are listed in Table 5.1, which shows the conver-

gence of the fifth order for all the methods. Moreover, from the table one can observe that the error of the ADER-SHWENO method 
is smallest among the three methods at the same number of points.

Example 5.2. To see the accuracy of the method for system problems, we compute the Euler equations,

⎛⎜⎜⎝
𝜌

𝜌𝑢

𝐸

⎞⎟⎟⎠𝑡 +
⎛⎜⎜⎝

𝜌𝑢

𝜌𝑢2 + 𝑃

𝑢(𝐸 + 𝑃 )

⎞⎟⎟⎠𝑥 = 0, (5.1)

where 𝜌 is the density, 𝑢 is the velocity, 𝐸 is the energy density, and 𝑃 is the pressure. The equation of state is 𝐸 = 𝑃

𝛾−1 +
1
2𝜌𝑢

2 with 
𝛾 = 1.4. The initial condition is

𝜌(𝑥,0) = 1 + 0.2sin(𝜋𝑥), 𝑢(𝑥,0) = 1, 𝑃 (𝑥,0) = 1,

and a periodic boundary condition is used. The exact solution for this problem is

𝜌(𝑥, 𝑡) = 1 + 0.2sin(𝜋(𝑥− 𝑡)), 𝑢(𝑥, 𝑡) = 1, 𝑃 (𝑥, 𝑡) = 1.

The final time is 𝑡 = 10.0. The errors of both ADER-SHWENO, RK-HWENO and ADER-SWENO method in computed density are 
listed in Table 5.2. From the table one can see that the fifth order of accuracy of the scheme is achieved for this nonlinear system 
for all the methods. Moreover the error of ADER-SHWENO method is also smallest among all the methods, which is the same as the 
Example 5.1. In addition, the accuracy will be decreased to third order for RK-HWENO if the time step is set as Δ𝑡 = 𝑂(Δ𝑥).

To show the efficiency of the ADER-SHWENO method, we plot the 𝐿∞ error as a function of the CPU time for both RK-HWENO 
and ADER-SHWENO methods in Fig. 5.1. The results are obtained on a single Intel Core i7 CPU with 2.5 GHz and 32.00 GB of RAM 
using Matlab R2021b. From the figure, one can see that the ADER-SHWENO method is more efficient than the original RK-HWENO 
method.

Example 5.3. In this example we consider the Lax problem of the Euler equations (5.1) with the initial condition

(𝜌, 𝑢, 𝑝) =
{

(0.445,0.698,3.528), for 𝑥 < 0
(0.5,0,0.571), for 𝑥 > 0

and the inflow/outflow boundary condition. The computational domain is (−5, 5) and the integration is stopped at 𝑡 = 1.3.

The computed density obtained by the RK-HWENO and ADER-SHWENO methods is plotted with 200 points in Fig. 5.2, in which 
one can see that the resolution obtained by ADER-SHWENO is comparable with that obtained by RK-HWENO.

Example 5.4. The Shu-Osher problem is considered in this example, which contains both shocks and complex smooth region struc-

tures. We solve the Euler equations (5.1) with a moving shock (Mach = 3) interacting with a sine wave in density. The initial 
9

condition is
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Table 5.2

Example 5.2: Errors in computed density for periodic boundary conditions and 𝑡 = 10.0.

method 𝑁 10 20 40 80 160

ADER-SHWENO

𝐿1 1.328e-3 4.031e-5 1.274e-6 3.983e-8 1.244e-9

Order 5.043 4.984 4.999 5.001

𝐿2 1.556e-3 4.545e-5 1.417e-6 4.423e-8 1.382e-9

Order 5.097 5.003 5.002 5.001

𝐿∞ 2.263e-3 6.976e-5 2.032e-6 6.271e-8 1.954e-9

Order 5.020 5.102 5.018 5.004

RK-HWENO

𝐿1 1.276e-2 5.794e-4 1.730e-5 5.346e-7 1.648e-8

Order 4.461 5.066 5.016 5.020

𝐿2 1.375e-2 6.335e-4 1.974e-5 6.041e-7 1.862e-8

Order 4.440 5.002 5.033 5.020

𝐿∞ 1.660e-2 9.258e-4 3.218e-5 1.010e-6 3.008e-8

Order 4.164 4.846 4.994 5.069

ADER-SWENO

𝐿1 6.422e-3 1.478e-4 4.819e-6 1.519e-7 4.718e-9

Order 5.441 4.939 4.996 5.000

𝐿2 7.546e-3 1.734e-4 5.362e-6 1.677e-7 5.240e-9

Order 5.444 5.015 4.999 5.000

𝐿∞ 1.123e-3 3.008e-4 7.882e-6 2.394e-7 7.419e-9

Order 5.222 5.254 5.041 5.012

Fig. 5.1. 𝐿∞ error is plotted as a function of CPU time (in seconds).

(𝜌, 𝑢, 𝑝) =

{
(3.857143,2.629369,10.333333), for 𝑥 < −4,
(1 + 0.2sin(5𝑥),0,1), for 𝑥 > −4.

The physical domain is taken as (−5, 5) in this computation. The computed density is shown at 𝑡 = 1.8 against an “exact solution” 
obtained by a fifth-order finite volume WENO scheme with 10,000 uniform points.

The solution obtained by the ADER-SHWENO method with 400 uniform points is compared with the uniform mesh solutions 
obtained by the RK-HWENO method and ADER-SWENO method in Fig. 5.3 and 5.4, respectively. From the figures, one can observe 
that the results obtained by ADER-SHWENO method are better than ones obtained by RK-HWENO method, and comparable with 
ones obtained by the ADER-SWENO method. However, ADER-SHWENO method is more compact than ADER-SWENO method.

Example 5.5. In this example the turbulence interaction [32] is considered. The computational domain is taken as (−5, 5). The initial 
10

condition is given by
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Fig. 5.2. Example 5.3: The density obtained by ADER-SHWENO method with 𝑁 = 200 uniform meshes is compared with RK-HWENO method. Green square: RK-

HWENO; Blue triangle: ADER-SHWENO. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5.3. Example 5.4: The density obtained by ADER-SHWENO method with 𝑁 = 400 uniform meshes is compared with RK-HWENO method. Green square: RK-

HWENO; Blue triangle: ADER-SHWENO.

Fig. 5.4. Example 5.4: The density obtained by ADER-SHWENO method with 𝑁 = 400 uniform meshes is compared with ADER-SWENO method. Green square: 
11

ADER-SWENO; Blue triangle: ADER-SHWENO.
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Fig. 5.5. The density obtained by ADER-SHWENO method with 𝑁 = 1500 uniform meshes is compared with RK-HWENO method.

(𝜌, 𝑢, 𝑝) =

{
(1.515695,0.523346,1.80500), for 𝑥 < −4.5
(1 + 0.1sin(20𝜋𝑥),0,1), for 𝑥 > −4.5.

The results of the computed density obtained by both methods with 1500 uniform meshes are plotted at 𝑡 = 5 against a “reference 
solution” obtained by the ADER-SHWENO method with 10,000 uniform points.

From Fig. 5.5, one can see that the resolution of the ADER-SHWENO method is much better than that of the RK-HWENO method, 
which shows the advantages of the new method for the problem containing the complex structure.

Example 5.6. We consider the interaction of blast waves of the Euler equations (5.1), which was first used by Woodward and Colella 
[35] as a test problem for various numerical schemes. The initial condition is given by

(𝜌, 𝑢, 𝑝) =
⎧⎪⎨⎪⎩
(1.0,0,1000), for 0 ≤ 𝑥 < 0.1
(1.0,0,0.01), for 0.1 ≤ 𝑥 < 0.9
(1.0,0,100), for 0.9 ≤ 𝑥 ≤ 1.

The physical domain is taken as (0, 1) and a reflective boundary condition is applied to both ends. The results at time 𝑡 = 0.038 are 
plotted against an “exact solution” computed by a fifth-order finite difference WENO scheme [12] with 81,920 uniform mesh points 
12

in Fig. 5.6 and Fig. 5.7.
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Fig. 5.6. Example 5.6: The density obtained by ADER-SHWENO method with 𝑁 = 800 uniform meshes is compared with RK-HWENO method. Green square: RK-

HWENO; Blue triangle: ADER-SHWENO.

Fig. 5.7. Example 5.6: The density obtained by ADER-SHWENO method with 𝑁 = 800 uniform meshes is compared with ADER-SWENO method. Green square: 
ADER-SWENO; Blue triangle: ADER-SHWENO.

From the figures we can see that the solution obtained by ADER-SHWENO method is comparable with that obtained by RK-

HWENO method and ADER-SWENO method.

5.2. Two-dimensional examples

Example 5.7. In order to test the accuracy in two-dimensional case, we solve the Euler equations

𝑊𝑡 + 𝐹 (𝑊 )𝑥 +𝐺(𝑊 )𝑦 ≡ 𝜕

𝜕𝑡

⎛⎜⎜⎜⎝
𝜌

𝜌𝜇

𝜌𝜈

𝐸

⎞⎟⎟⎟⎠+
𝜕

𝜕𝑥

⎛⎜⎜⎜⎝
𝜌𝜇

𝜌𝜇2 + 𝑃

𝜌𝜇𝜈

𝜇(𝐸 + 𝑃 )

⎞⎟⎟⎟⎠+
𝜕

𝜕𝑦

⎛⎜⎜⎜⎝
𝜌𝜈

𝜌𝜇𝜈

𝜌𝜈2 + 𝑃

𝜈(𝐸 + 𝑃 )

⎞⎟⎟⎟⎠ = 0, (5.2)

where 𝜌 is the density, 𝜇 and 𝜈 are the velocity components in the 𝑥- and 𝑦-direction, respectively, 𝐸 is the energy density, and 𝑃 is 
the pressure. The equation of state is 𝐸 = 𝑃

𝛾−1 +
1
2𝜌(𝜇

2 + 𝜈2) with 𝛾 = 1.4. The initial condition is given by

𝜌(𝑥, 𝑦,0) = 1 + 0.2sin(𝜋(𝑥+ 𝑦)), 𝜇(𝑥, 𝑦,0) = 1, 𝜈(𝑥, 𝑦,0) = 1, 𝑃 (𝑥, 𝑦,0) = 1,
13

and a periodic boundary condition is applied in both directions.
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Table 5.3

Example 5.7: Solution error with periodic boundary conditions and 𝑡 = 1.

method 𝑁 ×𝑀 10 × 10 20 × 20 40 × 40 80 × 80 160 × 160

ADER-SHWENO

𝐿1 8.405e-4 8.659e-6 2.584e-7 7.873e-9 2.427e-10

Order 6.601 5.067 5.037 5.020

𝐿2 1.101e-3 9.391e-6 2.833e-7 8.692e-9 2.689e-10

Order 6.873 5.051 5.026 5.015

𝐿∞ 1.887e-3 1.558e-5 4.080e-7 1.232e-8 3.820e-10

Order 6.920 5.255 5.049 5.011

RK-HWENO

𝐿1 9.860e-3 3.836e-4 1.106e-5 3.344e-7 1.024e-8

Order 4.684 5.116 5.048 5.029

𝐿2 1.036e-2 4.078e-4 1.231e-5 3.735e-7 1.143e-8

Order 4.667 5.050 5.043 5.030

𝐿∞ 1.340e-2 5.734e-4 1.983e-5 6.213e-7 1.820e-8

Order 4.547 4.854 4.996 5.093

Table 5.4

Example 5.8: Solution error with periodic boundary conditions and 𝑡 = 10.

method 𝑁 ×𝑀 10 × 10 20 × 20 40 × 40 80 × 80 160 × 160 320 × 320

ADER-SHWENO

𝐿1 1.870e-2 2.834e-3 1.113e-4 4.073e-6 1.329e-7 4.693e-9

Order 2.722 4.670 4.771 4.938 4.824

𝐿2 4.286e-2 5.972e-3 2.879e-4 1.160e-5 3.835e-7 1.219e-8

Order 2.843 4.375 4.633 4.919 4.976

𝐿∞ 3.447e-1 5.292e-2 1.883e-3 7.588e-5 2.506e-6 7.822e-8

Order 2.703 4.813 4.633 4.920 5.002

RK-HWENO

𝐿1 2.609e-2 1.442e-2 7.669e-3 4.481e-3 2.074e-4 1.123e-6

Order 0.855 0.911 0.775 4.433 7.529

𝐿2 5.638e-2 3.372e-2 1.666e-2 1.057e-2 4.901e-4 1.719e-6

Order 0.742 1.017 0.656 4.431 8.155

𝐿∞ 4.389e-1 2.506e-1 1.348e-1 8.709e-2 8.295e-3 1.171e-5

Order 0.809 0.895 0.630 3.392 9.468

The computational domain is (0, 2) × (0, 2) and the final time is 𝑡 = 1. The results in Table 5.3 show the convergence of the fifth 
order for both ADER-SHWENO and RK-HWENO method is achieved for the Euler system in two dimensions. In addition, the error of 
ADER-SHWENO is much smaller than that of RK-HWENO.

Example 5.8. In this example, the two-dimensional isotropic vortex problem is considered. The computational domain is taken as 
(0, 10) × (0, 10) and the initial condition is

𝜌 = (1 − 25(𝛾 − 1)
8𝛾𝜋2 𝑒1−𝑟2 )

1
𝛾−1 , 𝜇 = 1 − 5

2𝜋
𝑒
1−𝑟2
2 (𝑦− 5), 𝜈 = 1 + 5

2𝜋
𝑒
1−𝑟2
2 (𝑥− 5), 𝑃 = 𝜌𝛾 ,

where 𝑟2 = (𝑥 −5)2 + (𝑦 −5)2. The periodic boundary condition is employed in both directions. The exact solution is the vortex along 
the upper right direction with velocities (𝜇, 𝜈) = (1, 1). We compute the numerical solution at the output time 𝑡 = 10. At this time the 
vortex returns to the initial position.

The errors of the computed density are listed in Table 5.4 for both methods, in which one can observe that both ADER-SHWENO 
method can achieve the fifth order accuracy for this nonlinear smooth problem. From the table one can see that the error of ADER-

SHWENO is much smaller the same as the previous example.

Example 5.9. To show the performance of our method for Riemann problem genuinely in two dimensions, two 2D Riemann problems 
are considered in the example. The first one we consider is a 2D Riemann problem with shock waves [13] with the initial condition

(𝜌,𝜇, 𝜈,𝑃 ) =

⎧⎪⎪⎨⎪⎪⎩
(1.1,0.0,0.0,1.1), if 𝑥 > 0.5, 𝑦 > 0.5,
(0.5065,0.8939,0.0,0.35), if 𝑥 < 0.5, 𝑦 > 0.5,
(1.1,0.8939,0.8939,1.1), if 𝑥 < 0.5, 𝑦 < 0.5,
(0.5065,0.0,0.8939,0.35), if 𝑥 > 0.5, 𝑦 < 0.5,

which is the case of left forward shock, right backward shock, upper backward shock and lower forward shock in [13]. And the 
non-reflecting boundary conditions are employed on all the boundaries. The computational domain is taken as (0, 1) × (0, 1) and the 
14

stop time is taken as 0.25.
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Fig. 5.8. Example 5.9: 30 density contours from 0.5 to 1.9.

The computed density contours using both methods with 200 × 200 and 400 × 400 uniform meshes are plotted in Fig. 5.8, which 
shows that the results obtained by the refiner mesh have a better resolution. Besides, one can observe that the results are comparable 
for both methods from the figures.

The second problem is the shear instabilities among four initial contact discontinuities [13,17]. The initial condition is given by

(𝜌,𝜇, 𝜈,𝑃 ) =

⎧⎪⎪⎨⎪⎪⎩
(1.0,0.75,−0.5,1.0), if 𝑥 > 0.5, 𝑦 > 0.5,
(2.0,0.5,0.5,1.0), if 𝑥 < 0.5, 𝑦 > 0.5,
(1.0,−0.75,0.5,1.0), if 𝑥 < 0.5, 𝑦 < 0.5,
(3.0,−0.75,−0.5,1.0), if 𝑥 > 0.5, 𝑦 < 0.5.

And the non-reflecting boundary conditions are adopted on all the boundaries. The computational domain is taken as (0, 1) × (0, 1).
Fig. 5.9 is the result of the density computed by the ADER-SHWENO and RK-HWENO methods with 200 × 200 and 400 × 400

uniform meshes at 𝑡 = 0.8. From the figure, one can observe that more complex structures are captured for the refiner mesh. Moreover, 
the ADER–SHWENO method captures more complex structures than the RK-HWENO method, which indicates the advantages of the 
15

newly-developed method.
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Fig. 5.9. Example 5.9: 30 density contours from 0.2 to 2.4.

Example 5.10. This is the double Mach reflection problem [35]. We solve the Euler equations (5.2) in a computational domain of 
(0, 4) × (0, 1). The initial condition is given by

𝑊 =
{

(8,57.1597,−33.0012,563.544)𝑇 , for 𝑦 ≥ ℎ(𝑥,0)
(1.4,0,0,2.5)𝑇 , otherwise

where ℎ(𝑥, 𝑡) =
√
3(𝑥 − 1

6 ) − 20𝑡. The exact post shock condition is imposed from 0 to 16 at the bottom while the reflection boundary 
condition for the rest of the bottom boundary. At the top, the boundary condition is the values that describe the exact motion of the 
Mach 10 shock. On the left and right boundaries, the inflow and outflow boundary conditions are used, respectively. The final time 
is 𝑡 = 0.2.

The density contours are shown in Fig. 5.10 on (0, 3) × (0, 1). The complex regions are plotted in Fig. 5.11. From the figures, 
one can see that the resolution is improved as the meshes are refined. In addition, more complex vortex are captured by the ADER-

SHWENO method.

6. Conclusions

We have presented a compact and high order ADER scheme using the simple HWENO method for hyperbolic conservation laws. 
16

The Lax-Wendroff procedure is adopted in the newly-developed method to convert time derivatives to spatial derivatives, which 
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Fig. 5.10. Example 5.10: 30 density contours from 2 to 22.

provides the time evolution of the variables at the cell interface. This information is necessary for the SHWENO reconstructions, 
which take advantages of the simple WENO [38,39] and the classic HWENO [22,23]. Compared with the original RK-HWENO 
[22,23], the new method has two advantages. Firstly, RK-HWENO method must solve the additional equations for reconstructions, 
which is avoided for the new method. Secondly, the SHWENO reconstruction is performed once with one stencil and is different 
from the classic HWENO methods, in which both the function and its derivative values are reconstructed with two different stencils, 
respectively. Thus the new method is more efficient than the RK-HWENO method. Moreover, the new method makes the best use 
of the information in the ADER method. Therefore the time evolutions of the cell averages of the derivatives are simpler than that 
developed in the work [17], where it includes the non-equilibrium and equilibrium parts. Besides, the new method is more compact 
than the ADER-WENO [28]. Numerical results in one and two dimensions shown demonstrate the high order for smooth solutions 
both in space and time and keep non-oscillatory at discontinuities. We recall that the structured mesh has been used in this work. 
Extending the developed method to the unstructured mesh has been underway. In addition, we will combine the ADER-SHWENO 
with the moving mesh method [19] to further improve the resolution.
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Fig. 5.11. Example 5.10: 30 density contours from 2 to 22. Zoom of Fig. 5.10 in the complex region.

Appendix A

In this paper, the Euler equations are focused on. However the ADER-SHWENO method can be also extended to the viscous 
Navier-Stokes equations with the same idea as the previous section described. For simplicity the ADER-SHWENO method for the 
viscous Navier-Stokes equations in one dimension is given briefly in the following and the two-dimensional can be implemented 
similarly, which have the form of [4,34]:{

𝑊𝑡 + 𝐹 (𝑊 )𝑥 =𝐺(𝑊 ,𝑊𝑥)𝑥,
𝑊 (𝑥,0) =𝑊0(𝑥),

(6.1)

where the conservative variables 𝑊 and the flux function 𝐹 (𝑊 ) are the same as (5.1), and

𝐺(𝑊 ,𝑊𝑥) =
⎛⎜⎜⎜⎝

0
4
3𝜇𝑢𝑥

4
3𝜇𝑢𝑢𝑥 +

𝜇

𝑃𝑟(𝛾−1)
𝑇𝑥

⎞⎟⎟⎟⎠ , (6.2)

where 𝑇 is the temperature, 𝑃𝑟 is the Prandtl number and 𝜇 is the molecular viscosity computed by the Sutherland’s law

1 + 𝑐 3
18

𝜇 =
𝑇 + 𝑐

𝑇 2 ,
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where 𝑐 = 110.4
𝑇∞

, and 𝑇∞ = 288𝐾 is the reference temperature. The temperature is related to the pressure and density as

𝑇 = 𝑃

𝜌𝑅
,

where 𝑅 is the gas constant. For simplicity, the gas constant 𝑅 is set to be 1 and 𝜇 is taken as a constant in this paper.

Then the finite volume method for the equation (6.1) is defined

𝑊̄ 𝑛+1
𝑗

= 𝑊̄ 𝑛
𝑗
− Δ𝑡

Δ𝑥
(𝐹

𝑗+ 1
2
− 𝐹

𝑗− 1
2
) + Δ𝑡

Δ𝑥
(𝐺̂

𝑗+ 1
2
− 𝐺̂

𝑗− 1
2
), (6.3)

where 𝐺̂
𝑗+ 1

2
≈ 1

Δ𝑡
∫ 𝑡𝑛+1
𝑡𝑛

𝐺(𝑊 , 𝑊𝑥)𝑗+ 1
2
𝑑𝑡 is the numerical flux for the diffusion term. To evaluate the numerical flux an appropriate 

Gaussian rule is used similarly to (2.9)

𝐹
𝑗+ 1

2
=

𝐾𝛼∑
𝛼=0

𝐹 (𝑊 (𝑥
𝑗+ 1

2
, 𝜆𝛼Δ𝑡))𝑤𝛼, (6.4)

𝐺̂
𝑗+ 1

2
=

𝐾𝛼∑
𝛼=0

𝐺̃(𝑊 (𝑥
𝑗+ 1

2
, 𝜆𝛼Δ𝑡),𝑊𝑥(𝑥𝑗+ 1

2
, 𝜆𝛼Δ𝑡))𝑤𝛼, (6.5)

where 𝜆𝛼 and 𝑤𝛼 are properly scaled nodes and weights of the rule, and 𝐾𝛼 is the number of the nodes.

Recall that the leading term of the Taylor series expansion (2.4) is the solution of a nonlinear problem obtained by an exact or 
approximate non-linear Riemann solver and the high order terms are obtained by solving linearized Riemann problem, which are 
adopted for the evaluation of the flux (2.9). However for complex nonlinear systems such solvers are very complicated. Besides, in 
the appendix our main goal is to show the ADER-SHWENO method can be extended to the Navier-Stokes equations. Thus the simple 
Lax-Friedrichs flux and the central flux are employed for the advection term (6.4) and the diffusion term (6.5), respectively, i.e.,

𝐹
𝑗+ 1

2
= 1

2
(𝐹 (𝑊 (𝑥−

𝑗+ 1
2
, 𝜏) + 𝐹 (𝑊 (𝑥+

𝑗+ 1
2
, 𝜏)) − 𝛼(𝑊 (𝑥+

𝑗+ 1
2
, 𝜏) −𝑊 (𝑥−

𝑗+ 1
2
, 𝜏))),

𝐺̃
𝑗+ 1

2
= 1

2
(𝐺(𝑊 (𝑥−

𝑗+ 1
2
, 𝜏),𝑊𝑥(𝑥−

𝑗+ 1
2
, 𝜏)) +𝐺(𝑊 (𝑥+

𝑗+ 1
2
, 𝜏),𝑊𝑥(𝑥+

𝑗+ 1
2
, 𝜏))),

where 𝜏 = 𝜆𝛼Δ𝑡, and 𝛼 is the numerical viscosity constant taken as the largest eigenvalues in magnitude of max
𝑗

|𝐹 ′(𝑊̄𝑗 , 𝜏)|. Then the 
approximate solutions at time 𝑡 = 𝜏 on each side of the interface 𝑥

𝑗+ 1
2

are evaluated by

𝑊 (𝑥−
𝑗+ 1

2
, 𝜏) ≈𝑊 (𝑥−

𝑗+ 1
2
,0+) +

4∑
𝑘=1

[𝜕(𝑘)
𝑡

𝑊 (𝑥−
𝑗+ 1

2
,0+)] 𝜏

𝑘

𝑘!
, (6.6)

𝑊 (𝑥+
𝑗+ 1

2
, 𝜏) ≈𝑊 (𝑥+

𝑗+ 1
2
,0+) +

4∑
𝑘=1

[𝜕(𝑘)
𝑡

𝑊 (𝑥+
𝑗+ 1

2
,0+)] 𝜏

𝑘

𝑘!
. (6.7)

Similarly, the values of 𝑊𝑥(𝑥+
𝑗+ 1

2

, 𝜏) used for diffusion flux are obtained

𝑊𝑥(𝑥−
𝑗+ 1

2
, 𝜏) ≈𝑊𝑥(𝑥−

𝑗+ 1
2
,0+) +

3∑
𝑘=1

[𝜕(𝑘)
𝑡

𝑊𝑥(𝑥−
𝑗+ 1

2
,0+)] 𝜏

𝑘

𝑘!
, (6.8)

𝑊𝑥(𝑥+
𝑗+ 1

2
, 𝜏) ≈𝑊𝑥(𝑥+

𝑗+ 1
2
,0+) +

3∑
𝑘=1

[𝜕(𝑘)
𝑡

𝑊𝑥(𝑥+
𝑗+ 1

2
,0+)] 𝜏

𝑘

𝑘!
. (6.9)

From the last two equations above, one can observe that the order of the method will be decreased to four for the advection-diffusion 
equations. Moreover, all time derivatives are also expressed as functions of space derivatives by the Lax-Wendroff procedure based 
on the equation (6.1) at present. And the equation (6.1) is written as

𝑊𝑡 + 𝐹 (𝑊 )𝑥 =𝐺(𝑊 ,𝑊𝑥)𝑥 = (𝐷(𝑊 )𝑊𝑥)𝑥 (6.10)

where 𝐷(𝑊 ) = 𝜕𝐺(𝑊 ,𝑊𝑥)
𝜕𝑊𝑥

is a matrix. Thus similar to (2.6), one can get the following expressions:

𝜕𝑡𝑊 =− 𝜕𝐹

𝜕𝑊
𝜕𝑥𝑊 + ( 𝜕𝐷

𝜕𝑊
𝜕𝑥𝑊 )𝜕𝑥𝑊 +𝐷𝜕𝑥𝑥𝑊 ,

𝜕𝑡𝑥𝑊 =− ( 𝜕
2𝐹

𝜕𝑊 2 𝜕𝑥𝑊 )𝜕𝑥𝑊 − 𝜕𝐹

𝜕𝑊
𝜕𝑥𝑥𝑊 + ( 𝜕

2𝐷

𝜕𝑊 2 𝜕𝑥𝑊 )𝜕𝑥𝑊 𝜕𝑥𝑊 + ( 𝜕𝐷
𝜕𝑊

𝜕𝑥𝑥𝑊 )𝜕𝑥𝑊 +

( 𝜕𝐷 𝜕 𝑊 )𝜕 𝑊 + ( 𝜕𝐷 𝜕 𝑊 )𝜕 𝑊 +𝐷𝜕 𝑊 ,
19

𝜕𝑊
𝑥 𝑥𝑥

𝜕𝑊
𝑥 𝑥𝑥 𝑥𝑥𝑥
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Table 6.1

Example 6.1: Solution errors with periodic boundary conditions, 𝑡 = 1.0 and 𝜖 = 0.01.

method 𝑁 10 20 40 80 160 320

ADER-SHWENO

𝐿1 2.826e-3 1.713e-4 3.825e-7 9.392e-9 2.984e-10 9.490e-12

Order 4.045 8.807 5.348 4.976 4.975

𝐿2 3.990e-3 2.632e-4 4.449e-7 1.051e-8 3.316e-10 1.054e-11

Order 3.922 9.209 5.404 4.986 4.975

𝐿∞ 6.515e-3 6.277e-4 9.758e-7 1.477e-8 4.688e-10 1.491e-11

Order 3.376 9.329 6.045 4.978 4.975

Table 6.2

Example 6.1: Solution errors with periodic boundary conditions, 𝑡 = 1.0 and 𝜖 = 1.

method 𝑁 10 20 40 80 160 320

ADER-SHWENO

𝐿1 3.006e-3 1.977e-5 2.867e-7 1.929e-8 1.297e-9 8.404e-11

Order 7.248 6.108 3.893 3.895 3.948

𝐿2 4.339e-3 2.287e-5 3.195e-7 2.143e-8 1.441e-9 9.335e-11

Order 7.568 6.162 3.898 3.895 3.948

𝐿∞ 7.043e-3 3.983e-5 4.563e-7 3.036e-8 2.038e-9 1.320e-10

Order 7.466 6.448 3.910 3.897 3.948

Table 6.3

Example 6.2: Errors in computed density for periodic boundary conditions, 𝑡 = 1.0 and 𝜇 = 0.0001.

method 𝑁 20 40 80 160 320

ADER-SHWENO

𝐿1 4.251e-4 1.243e-5 4.007e-7 1.253e-8 3.916e-10

Order 5.096 4.955 4.999 4.999

𝐿2 5.949e-3 1.403e-5 4.412e-7 1.382e-8 4.320e-10

Order 5.406 4.991 4.997 5.000

𝐿∞ 9.998e-4 2.409e-5 6.344e-7 1.930e-8 6.023e-10

Order 5.375 5.247 5.039 5.002

𝜕𝑡𝑡𝑊 =− ( 𝜕
2𝐹

𝜕𝑊 2 𝜕𝑡𝑊 )𝜕𝑥𝑊 − 𝜕𝐹

𝜕𝑊
𝜕𝑥𝑡𝑊 + ( 𝜕

2𝐷

𝜕𝑊 2 𝜕𝑡𝑊 )𝜕𝑥𝑊 𝜕𝑥𝑊 + ( 𝜕𝐷
𝜕𝑊

𝜕𝑥𝑡𝑊 )𝜕𝑥𝑊 +

( 𝜕𝐷
𝜕𝑊

𝜕𝑥𝑊 )𝜕𝑥𝑡𝑊 + ( 𝜕𝐷
𝜕𝑊

𝜕𝑡𝑊 )𝜕𝑥𝑥𝑊 +𝐷𝜕𝑥𝑥𝑡𝑊 ,

and so on. From these equations, we can observe that 𝜕(𝑘)
𝑡

𝑊 is a function of 𝜕𝑥𝑊 (2𝑘) now, which is different from the inviscid Euler 
equation. Moreover, 𝜕𝑥𝑊 (2𝑘)(𝑘 > 2) is set to be 0 since the degree of the polynomial is four at most in this paper.

Finally, the cell average of the derivatives at the next time in Sec. 2.4 is now evaluated by

𝑉 𝑛+1
𝑗

= 1
Δ𝑥 ∫

𝐼𝑗

𝑊𝑥(𝑥, 𝑡𝑛+1)𝑑𝑥 =
𝑊 (𝑥−

𝑗+ 1
2

, 𝑡𝑛+1) −𝑊 (𝑥−
𝑗− 1

2

, 𝑡𝑛+1)

Δ𝑥
. (6.11)

To demonstrate the performance of the ADER-SHWENO method, we test an example for the scalar linear advection-diffusion 
equation, and several examples for the Navier-Stokes equations in one dimension in the following section. In addition, to demonstrate 
the good performance, we also provide the comparison with the fifth order positivity-preserving finite volume hybrid Hermite WENO 
schemes [9], which is termed as PP-HWENO.

Example 6.1. First we consider the following linear advection-diffusion equation

𝑊𝑡 +𝑊𝑥 = 𝜖𝑊𝑥𝑥, 𝑥 ∈ (0,2),

with the initial condition 𝑊 (𝑥, 0) = sin(𝜋𝑥) and a periodic boundary condition is applied at both ends.

The exact solution for this linear problem is 𝑊 (𝑥, 𝑡) = 𝑒−𝜖𝑡 sin(𝜋(𝑥 − 𝑡)). The errors with 𝜖 = 0.01 and 𝜖 = 1 at 𝑡 = 1 are listed in 
Table 6.1 and Table 6.2, respectively. From the tables, one can observe that our method obtains the designed order of accuracy. 
Moreover, the fifth order is achieved when the convection is dominated and the order is decreased to four while the diffusion is 
dominated.

Example 6.2. In this example, we consider the one-dimensional compressible Navier-Stokes equation (6.1). To verify the accuracy 
of the ADER-SHWENO method for Navier-Stokes equation, the numerical example of the linear advection equation in Example 5.2

is extended to the viscous Navier-Stokes equation with the same initial condition and boundary condition. The parameters 𝑃𝑟 and 𝛾
20

are taken as 23 and 1.4, respectively.
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Table 6.4

Example 6.2: Errors in computed density for periodic boundary conditions, 𝑡 = 1.0 and 𝜇 = 0.1.

method 𝑁 20 40 80 160 320

ADER-SHWENO

𝐿1 1.533e-4 5.224e-6 1.885e-7 7.331e-9 3.188e-10

Order 4.875 4.793 4.684 4.523

𝐿2 1.643e-4 5.793e-6 2.139e-7 8.400e-9 3.665e-10

Order 4.826 4.759 4.670 4.519

𝐿∞ 2.979e-4 1.144e-5 4.277e-7 1.686e-8 7.321e-10

Order 4.703 4.741 4.665 4.525

Fig. 6.1. Example 6.3: The density obtained by ADER-SHWENO method with 𝑁 = 200 uniform meshes is compared with ones obtained by PP-HWENO method. Top: 
𝜇 = 0.001; Bottom: 𝜇 = 0.01.

We compute the problem up to 𝑡 = 1. Particularly, the numerical convergence rates are estimated by the asymptotic convergence 
error proposed in [36] since there are no exact solutions for this problem, which is also used in [4,34]. The errors and corresponding 
numerical orders with the different parameters 𝜇 = 0.0001 and 𝜇 = 0.1 are shown in Table 6.3 and Table 6.4, respectively. From the 
tables, it is observed that our method can obtain the designed order of accuracy. Moreover, it can achieve the fifth order when the 
advection is dominated, i.e., 𝜇 = 0.0001, and the order is decreased while the diffusion is dominated, i.e., 𝜇 = 0.1.

Example 6.3. The Lax problem in Example 5.3 is extended to the viscous Navier-Stokes equation (6.1). And the parameters 𝑃𝑟

and 𝛾 are set to be 0.72 and 1.4, respectively. We set the same initial condition, boundary condition and computational domain as 
21

Example 5.3.
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Fig. 6.2. Example 6.4: The density obtained by ADER-SHWENO method with 𝑁 = 400 uniform meshes is compared with the ones obtained by PP-HWENO method. 
Top: 𝜇 = 0.0001; Bottom: 𝜇 = 0.001.

The results of the density obtained by the ADER-SHWENO and PP-HWENO method with 𝑁 = 200 uniform meshes with 𝜇 = 0.001
and 𝜇 = 0.01 at time 𝑡 = 1.3 are shown Fig. 6.1. The reference solution is obtained by the ADER-SHWENO method with 2000 uniform 
mesh points. From the figures, one can see that the contact discontinuity, and the front and the tail of the rarefaction wave are 
becoming smoother as the parameter 𝜇 is increased. In addition, the resolution of the result obtained by ADER-SHWENO method is 
clearly better than the results obtained by the PP-HWENO method in [9].

Example 6.4. The Shu-Osher problem in Example 5.4 is extended to the viscous Navier-Stokes equation (6.1). Thus, the initial 
condition, the computational domain, and the boundary condition are taken as Example 5.4. And the parameters 𝑃𝑟 and 𝛾 are also 
set to be 0.72 and 1.4, respectively.

The results of the density obtained by the ADER-SHWENO method with 𝑁 = 400 uniform meshes with 𝜇 = 0.0001 and 𝜇 = 0.001 at 
time 𝑡 = 1.8 are compared with the solutions obtained by the PP-HWENO method in Fig. 6.2 against the reference solution obtained 
by the method with 𝑁 = 2000 uniform meshes. From the figures, one can observe that our results are comparable with the ones 
obtained by PP-HWENO proposed in [9] for 𝜇 = 0.0001 and a little better than the results with PP-HWENO method when 𝜇 = 0.001.

Remark. From the figures, one may find that although the parameter 𝜇 is small and the advection is dominated, the resolution is 
lower than the results in Example 5.4 with the same number of points. The main reason is that the Lax-Friedrich flux is employed 
in this example instead of HLLC in Example 5.4. Besides, the order of the ADER-SHWENO method for the viscous Navier-Stokes 
22

equation is decreased to four.
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Fig. 6.3. Example 6.5: The density obtained by ADER-SHWENO method with 𝑁 = 800 uniform meshes is compared with these obtained by PP-HWENO method. Top: 
𝜇 = 0.001; Bottom: 𝜇 = 0.01.

Example 6.5. The interaction of blast waves of the viscous Navier-Stokes equation (6.1) is considered. The initial condition, the com-

putational domain, and the boundary condition are the same as the Example 5.6. And the same parameters 𝑃𝑟 and 𝛾 as Example 6.3

are taken.

The numerical solutions (density) obtained by both the ADER-SHWENO method and the PP-HWENO method with 𝑁 = 800
uniform meshes with 𝜇 = 0.001 and 𝜇 = 0.01 at time 𝑡 = 0.038 are plotted in Fig. 6.3, where the reference solution is obtained by the 
ADER-SHWENO method with 2000 uniform mesh points. From the figures, it is observed that our results are comparable with the 
ones obtained by the PP-HWENO method for 𝜇 = 0.001 and is slightly better for 𝜇 = 0.01, which is the same as Example 6.4.
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