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Abstract
In this paper, we propose a finite volume Hermite weighted essentially non-oscillatory 
(HWENO) method based on the dimension by dimension framework to solve hyperbolic 
conservation laws. It can maintain the high accuracy in the smooth region and obtain the 
high resolution solution when the discontinuity appears, and it is compact which will be 
good for giving the numerical boundary conditions. Furthermore, it avoids complicated 
least square procedure when we implement the genuine two dimensional (2D) finite vol-
ume HWENO reconstruction, and it can be regarded as a generalization of the one dimen-
sional (1D) HWENO method. Extensive numerical tests are performed to verify the high 
resolution and high accuracy of the scheme.

Keywords Finite volume · Dimension by dimension · HWENO · Hyperbolic conservation 
laws

Mathematics Subject Classification 65M60 · 35L65

1 Introduction

Based on the work in [31], we propose a dimension by dimension finite volume Hermite 
weighted essentially non-oscillatory (HWENO) method for solving two dimensional (2D) 
hyperbolic conservation laws. The HWENO method comes from the weighted essentially 
non-oscillatory (WENO) method. In 1994, the finite volume WENO method was first 
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proposed by Liu et  al. [14]. Then in 1996, Jiang and Shu introduced a finite difference 
WENO to solve hyperbolic conservation laws [10]. The WENO reconstruction is a con-
vex combination of several low order reconstructions, and the coefficients of the low order 
reconstructions are specially chosen such that they can achieve the optimal accuracy in the 
smooth area and achieve high resolution when the discontinuity appears. It achieves great 
success, and has been applied in many areas, such as the 2D finite volume WENO method 
[7], the three dimensional (3D) finite volume WENO method [23, 30], shallow water equa-
tions [28], relativistic hydrodynamics [26], the fast sweeping method [29], multi-fluids [8], 
detonation wave [24], and Hamilton-Jacobi equations [9]. The HWENO method is a gen-
eralization of the WENO method. The main difference between them is that the HWENO 
method is more compact than the WENO method under the same order of accuracy. Two 
different types of information on each cell are needed to implement the HWENO method, 
while only one information on each cell is used in the WENO method. So, the compact-
ness is achieved. The HWENO method is first proposed in [17] by Qiu and Shu, in which, 
the HWENO method is used to solve the hyperbolic conservation laws and as a limiter in 
the discontinuous Galerkin (DG) method. After that, the HWENO method is booming, for 
example, [1, 2, 13, 16, 18, 22]. In 2008, a unified framework termed as the PNPM method 
was proposed by Dumbser et al. [5] to define the numerical scheme extended by the DG 
method. These HWENO schemes can be seen as the P1PM method.

However, both the WENO and the HWENO methods mentioned above have the follow-
ing disadvantages. First, we need to use the least square method to implement the HWENO 
method. The HWENO method above is a convex combination of the reconstructed polynomi-
als. All of them are genuine 2D reconstructions on the structured meshes. For the sake of sta-
bility, we need to require the reconstructed polynomial to be equal to the value at the targeted 
cell and require the polynomial to be equal to values of other cells in a least-square sense. It 
is not an easy task to figure out the polynomial. Usually, we need to resort to the mathemati-
cal softwares to write out the polynomials explicitly. Furthermore, if we want to require the 
reconstructed polynomial to be identical to more given information [31], it becomes a quad-
ratic programming problem which is more difficult. Second, it is not guaranteed that these 
optimal coefficients are all positive. The negative coefficients would lead to serious oscil-
lation, instability, or even blowing up of the numerical solutions. Although we can partly 
resolve this problem by using the technique proposed in [19], it still does not work in some 
extreme cases, see [15] by using the WENO method. Third, in some particular cases, the lin-
ear weights would not even exist.

As to the first disadvantage, we want to use the dimension by dimension approach. As 
we know, the dimension by dimension method exploits the tensor product nature of the 
reconstruction. Therefore, in the higher dimensional case, we do not need to design the 
reconstruction method additionally, we can obtain satisfying results by simply performing 
the same routine in different dimensions. So, it is easy to generalize the method to the high 
dimensional case. In [3], the authors proposed the dimension by dimension finite volume 
ENO method in the 2D case. They do not design a set of small stencils for the 2D interpo-
lation. Instead, they just repeatedly use the same 1D ENO procedure in different directions. 
Therefore, they avoid the complicated least square procedure. The WENO method in [19, 
35] belongs to this class. In [22, 32], the authors also use the HWENO or central HWENO 
method in the dimension by dimension way. Therefore, we will follow this idea to solve the 
hyperbolic conservation laws. As to the second and third disadvantages, in [34], Zhu and 
Qiu proposed a new type of WENO method. They use the combination of a fourth degree 
polynomial and two linear polynomials. The new type of WENO method contains the same 
ingredients as the classical WENO method, such as linear weights, smoothness indicators, 
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and nonlinear weights. The difference is that the linear weights can be artificial as long as 
their sum is equal to one. Therefore, we can overcome both negative linear weights and 
non-existing linear weights which may exist in the classical WENO method. Moreover, this 
new type of WENO method does not degrade the order of accuracy by carefully designing 
the methodology of computing the nonlinear weights. In [31], the authors have extended 
the idea to the HWENO framework. Therefore, we follow the idea to avoid the issues com-
ing from the linear weights.

In this work, we proposed the dimension by dimension finite volume HWENO method 
to solve hyperbolic conservation laws. It is a hybrid method. After revising the moments 
for troubled-cell identified by the KXRCF limiter, we will simply use an efficient linear 
approximation in the smooth region and use the more expensive HWENO method when 
discontinuity appears. The implementation is in the dimension by dimension way. Both the 
cell averages and moments are evolved in the end. This method can avoid the complicated 
least square procedure in the genuine 2D finite volume HWENO reconstruction, and it is 
stable by setting the linear weights artificially. The implementation is simple. We also per-
form extensive numerical experiments to verify the high resolution and high accuracy of 
the scheme.

The organization of this paper is as follows: in Sect.   2, we review the finite volume 
HWENO scheme in the 1D case. In Sect.  3, we describe the detailed steps of the finite 
volume dimension by dimension HWENO method. In Sect.  4, we present some classical 
numerical tests to verify the numerical accuracy and efficiency of the scheme. In Sect.  5, 
we give a conclusion.

2  Review the Finite Volume HWENO Method in the 1D Case

2.1  The Framework of the Finite Volume Scheme for Solving 1D Hyperbolic 
Conservation Laws

One dimensional scalar hyperbolic conservation laws can be written as

For simplicity, the computational domain is equally divided: a = x1∕2 < x3∕2 < ⋯ < xN+1∕2 = b . 
The cell is denoted as Ii = [xi−1∕2, xi+1∕2] with the mesh size being denoted as 
Δx = xi+1∕2 − xi−1∕2 . Furthermore, we define

We multiply (1) by functions 1 and x−xi

Δx
 , use the integration by parts formula, then we obtain

(1)
{

ut + f (u)x = 0,

u(x, 0) = u0(x).

ui =
1

Δx ∫Ii

u(x, t)dx, vi =
1

Δx ∫Ii

u(x, t)
x − xi

Δx
dx.

⎧⎪⎪⎨⎪⎪⎩

dui

dt
= −

1

Δx

�
f (u(xi+1∕2)) − f (u(xi−1∕2))

�
,

dvi

dt
= −

1

2Δx

�
f (u(xi+1∕2)) + f (u(xi−1∕2))

�
+

1

Δx2 ∫Ii

f (u)dx.
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After replacing the fluxes and integration with numerical fluxes and numerical integration, 
we have the following scheme:

where f̂  is the numerical flux, Gl and �l are the Gauss-Lobatto quadrature points and 
coefficients:

The u±
i±1∕2

 and ui+Gl
 are obtained by the HWENO method. Then, we can rewrite the semi-

discrete system (3.2) as Ut = L(U) , where L denotes the operator of the spatial discretiza-
tion, and the third-order total variation diminishing (TVD) Runge-Kutta time discretization 
[21] is utilized to solve the semi-discrete form (3.2):

2.2  HWENO Reconstruction

Here, we review the HWENO reconstruction method for hyperbolic conservation laws. 
The steps are similar to [31].

Procedure 1 Identify the troubled-cell
A cell is marked as a troubled cell, which means that the solution in the cell may 

contain discontinuity. Therefore, we can design a hybrid scheme by using the efficient 
linear reconstruction in the smooth area and the expensive HWENO method in the dis-
continuous region. Here, we choose the KXRCF troubled-cell indicator [11] and follow 
the suggestion in [31] to identify troubled-cell automatically. It is noted that, if cell Ii is 
marked as a troubled-cell through the KXRCF indicator, then its neighbours Ii−1 and Ii+1 
will also be marked as a troubled-cell [31].

Procedure 2 Modify {vi} from the values {ui} and {vi}.
In order for better performance, we will modify the first moment vi when cell Ii is 

marked as a troubled-cell. The steps are as follows.
Step 1. Given a big stencil S0 = {Ii−1, Ii, Ii+1} and small stencils S1 = {Ii−1, Ii} , 

S2 = {Ii, Ii+1} , we need to construct a fifth order polynomial p0(x) and second order pol-
ynomials p1(x) , p2(x) , such that

⎧
⎪⎪⎨⎪⎪⎩

dui

dt
= −

1

Δx

�
f̂
�
u−
i+1∕2

, u+
i+1∕2

�
− f̂

�
u−
i−1∕2

, u+
i−1∕2

��
,

dvi

dt
= −

1

2Δx

�
f̂
�
u−
i+1∕2

, u+
i+1∕2

�
+ f̂

�
u−
i−1∕2

, u+
i−1∕2

��
+

1

Δx

�
l

�lf (ui+Gl
),

G1 =
1

2
, G2 =

√
5

10
, G3 = −

√
5

10
, G4 = −

1

2
,

�1 =
1

12
, �2 =

5

12
, �3 =

5

12
, �4 =

1

12
.

⎧⎪⎪⎨⎪⎪⎩

U(1) = Un + ΔtL(Un),

U(2) =
3

4
Un +

1

4
(U(1) + ΔtL(U(1))),

Un+1 =
1

3
Un +

2

3
(U(2) + ΔtL(U(2))).
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Then, we obtain the first moment of these polynomials:

Step 2. Based on the formula in [10], we compute the smoothness indicators, denoted 
as �0, �1, and �2, respectively. For each polynomials:

where r = 4 for p0(x) , r = 1 for p1(x) and p2(x) . Then, we can compute

Step 3. We take the linear weights as

Then, we have

Therefore, vi,p0 will be fifth order accuracy modification to vi.
Step 4. We compute the nonlinear weights

where � = 10−14 to avoid division by zero. Then, by replacing the linear weights with non-
linear weights, we have

Procedure 3 Reconstruct {ui+Gl
} from the values {ui, v

mod

i
}.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

Δx ∫Ii+l

p0(x)dx = ui+l, l = −1, 0, 1,

1

Δx ∫Ii±1

p0(x)
x − xi±1

Δx
dx = vi±1,

1

Δx ∫Ii+l

p1(x)dx = ui+l, l = −1, 0,

1

Δx ∫Ii+l

p2(x)dx = ui+l, l = 0, 1.

vi,pm =
1

Δx ∫Ii

pm(x)
x − xi

Δx
dx, m = 0, 1, 2.

�m =
1

Δx

r∑
k=1

∫Ii

(
Δxk

�k

�xk
pm(x)

)2

dx, m = 0, 1, 2,

� =
(�0 − �1)

2 + (�0 − �2)
2

4
.

r0 = 0.98, r1 = 0.01, r2 = 0.01.

vi,p0 = r0

(
1

r0
vi,p0 −

r1

r0
vi,p1 −

r2

r0
vi,p2

)
+ r1vi,p1 + r2vi,p2 .

�k =
�k

�0 + �1 + �2

, �k = 1 +
�

�k + �
, k = 0, 1, 2,

v
mod

i
= �0

(
1

r0
vi,p0 −

r1

r0
vi,p1 −

r2

r0
vi,p2

)
+ �1vi,p1 + �2vi,p2 .
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If cell Ii is marked as a troubled-cell, then we will reconstruct ui+Gl
 by the HWENO 

method. The steps are as follows.
Step 1. Given a big stencil S0 = {Ii−1, Ii, Ii+1} and small stencils S1 = {Ii−1, Ii} , 

S2 = {Ii, Ii+1} , we need to construct polynomials p0(x) , p1(x) , and p2(x) , such that

Step 2. We compute the smoothness indicators, denoted as �0, �1, and �2 , respectively, 
for each polynomials based on the formula in [10]:

where r = 5 for p0(x) , r = 2 for p1(x) and p2(x) . Then, we can compute

Step 3. We take the linear weights as

Then, we have

Step 4. We compute the nonlinear weights

where � = 10−14 to avoid division by zero. Then, we have

However, if cell Ii is good, we will simply take ui+Gl
= p0(xi+Gl

) , where p0(x) is the polyno-
mial obtained from the above steps.

1

Δx ∫Ii+l

p0(x)dx = ui+l,
1

Δx ∫Ii+l

p0(x)
x − xi+l

Δx
dx = v

mod

i+l
, l = −1, 0, 1,

1

Δx ∫Ii+l

p1(x)dx = ui+l,
1

Δx ∫Ii

p1(x)
x − xi

Δx
dx = v

mod

i
, l = −1, 0,

1

Δx ∫Ii+l

p2(x)dx = ui+l,
1

Δx ∫Ii

p2(x)
x − xi

Δx
dx = v

mod

i
, l = 0, 1.

�m =
1

Δx

r∑
k=1

∫Ii

(
Δxk

�k

�xk
pm(x)

)2

dx, m = 0, 1, 2,

� =
(�0 − �1)

2 + (�0 − �2)
2

4
.

r0 = 0.98, r1 = 0.01, r2 = 0.01.

p0(xi+Gl
) = r0

(
1

r0
p0(xi+Gl

) −
r1

r0
p1(xi+Gl

) −
r2

r0
p2(xi+Gl

)

)
+ r1p1(xi+Gl

) + r2p2(xi+Gl
).

�k =
�k

�0 + �1 + �2

, �k = 1 +
�

�k + �
, k = 0, 1, 2,

ui+Gl
= �0

(
1

r0
p0(xi+Gl

) −
r1

r0
p1(xi+Gl

) −
r2

r0
p2(xi+Gl

)

)
+ �1p1(xi+Gl

) + �2p2(xi+Gl
).
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3  The HWENO Method in 2D

3.1  The Framework of the Finite Volume Scheme for Solving 2D Euler Equations

Two dimensional hyperbolic conservation laws can be written as follows:

For simplicity, the computational domain is equally divided: a = x
1∕2 < x

3∕2 < ⋯ 
< x

N
x
+1∕2 = b , c = y1∕2 < y3∕2 < ⋯ < yNy+1∕2

= d . The cell is denoted as I
i,j
= [x

i−1∕2, xi+1∕2]

×[y
j−1∕2, yj+1∕2] , where the cell center is denoted as (xi, yj) and the mesh size is denoted as 

Δx = xi+1∕2 − xi−1∕2 , Δy = yj+1∕2 − yj−1∕2 . Furthermore, we define

We multiply (2) by functions 1, x−xi
Δx

,
y−yj

Δy
, and

(x−xi)(y−yj)

ΔxΔy
 . Use the integration by parts for-

mula. Then we obtain

After replacing the fluxes with numerical fluxes and integration with numerical integration, 
we have the following scheme:

(2)

{
ut + f (u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).

ui,j =
1

ΔxΔy ∬Ii,j

u(x, y, t)dxdy, vi,j =
1

ΔxΔy ∬Ii,j

u(x, y, t)
x − xi

Δx
dxdy,

wi,j =
1

ΔxΔy ∬Ii,j

u(x, y, t)
y − yj

Δy
dxdy, si,j =

1

ΔxΔy ∬Ii,j

u(x, y, t)
(x − xi)(y − yj)

ΔxΔy
dxdy.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui,j

dt
= −

1

ΔxΔy ∫
yj+1∕2

yj−1∕2

�
f (u(xi+1∕2, y)) − f (u(xi−1∕2, y))

�
dy

−
1

ΔxΔy ∫
xi+1∕2

xi−1∕2

�
g(u(x, yj+1∕2)) − g(u(x, yj−1∕2))

�
dx,

dvi,j

dt
= −

1

2ΔxΔy ∫
yj+1∕2

yj−1∕2

�
f (u(xi+1∕2, y)) + f (u(xi−1∕2, y))

�
dy +

1

Δx2Δy ∬Ii,j

f (u)dxdy

−
1

ΔxΔy ∫
xi+1∕2

xi−1∕2

�
g(u(x, yj+1∕2)) − g(u(x, yj−1∕2))

�x − xi

Δx
dx,

dwi,j

dt
= −

1

ΔxΔy ∫
yj+1∕2

yj−1∕2

�
f (u(xi+1∕2, y)) − f (u(xi−1∕2, y))

�y − yj

Δy
dy

−
1

2ΔxΔy ∫
xi+1∕2

xi−1∕2

�
g(u(x, yj+1∕2)) + g(u(x, yj−1∕2))

�
dx +

1

ΔxΔy2 ∬Ii,j

g(u)dxdy,

dsi,j

dt
= −

1

2ΔxΔy ∫
yj+1∕2

yj−1∕2

�
f (u(xi+1∕2, y)) + f (u(xi−1∕2, y))

�y − yj

Δy
dy +

1

Δx2Δy ∬Ii,j

f (u)
y − yj

Δy
dxdy

−
1

2ΔxΔy ∫
xi+1∕2

xi−1∕2

�
g(u(x, yj+1∕2)) + g(u(x, yj−1∕2))

�x − xi

Δx
dx +

1

ΔxΔy2 ∬Ii,j

g(u)
x − xi

Δx
dxdy.
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The u±
i±1∕2,j+Gl

 , u±
i+Gl,j±1∕2

 , ui+Gl1
,j+Gl2

 are obtained by the HWENO method, which will be 
introduced in later section. Then, we can rewrite the semi-discrete system (3.2) as 
Ut = L(U) and use the third-order TVD Runge-Kutta time discretization [21] to solve the 
semi-discrete form.

3.2  Dimension by Dimension HWENO Reconstruction

Dimension by dimension HWENO reconstruction, which can maintain both high order 
accuracy in the smooth case and keep high resolution when discontinuity appears, is the 
key component for our scheme. It can be regarded as a generalization of the 1D case. 
Before describing the dimension by dimension HWENO reconstruction algorithm, we 
need to introduce Procedure 4.

Procedure 4 Modify {si,j} from the values {wi,j}.
If cell Ii,j is a troubled-cell, then we need to modify value si,j . The steps are as follows.
Step 1. Given a big stencil S0 = {Ii−2,j, Ii−1,j, Ii,j, Ii+1,j, Ii+2,j} and small stencils 

S1 = {Ii−1,j, Ii,j} , S2 = {Ii,j, Ii+1,j} , we need to construct polynomials p0(x) , p1(x) , and 
p2(x) , such that

dui,j

dt
= −

1

Δx

∑
l

�l

[
f̂
(
u−
i+1∕2,j+Gl

, u+
i+1∕2,j+Gl

)
− f̂

(
u−
i−1∕2,j+Gl

, u+
i−1∕2,j+Gl

)]

−
1

Δy

∑
l

�l

[
ĝ
(
u−
i+Gl ,j+1∕2

, u+
i+Gl ,j+1∕2

)
− ĝ

(
u−
i+Gl,j−1∕2

, u+
i+Gl,j−1∕2

)]
,

dvi,j

dt
= −

1

2Δx

∑
l

�l

[
f̂
(
u−
i+1∕2,j+Gl

, u+
i+1∕2,j+Gl

)
+ f̂

(
u−
i−1∕2,j+Gl

, u+
i−1∕2,j+Gl

)]

+
1

Δx

∑
l1

∑
l2

�l1
�l2

f
(
ui+Gl1

,j+Gl2

)

−
1

Δx

∑
l

�lGl

[
ĝ
(
u−
i+Gl,j+1∕2

, u+
i+Gl ,j+1∕2

)
− ĝ

(
u−
i+Gl,j−1∕2

, u+
i+Gl,j−1∕2

)]
,

dwi,j

dt
= −

1

Δx

∑
l

�lGl

[
f̂
(
u−
i+1∕2,j+Gl

, u+
i+1∕2,j+Gl

)
− f̂

(
u−
i−1∕2,j+Gl

, u+
i−1∕2,j+Gl

)]

−
1

2Δy

∑
l

�l

[
ĝ
(
u−
i+Gl ,j+1∕2

, u+
i+Gl ,j+1∕2

)
+ ĝ

(
u−
i+Gl,j−1∕2

, u+
i+Gl,j−1∕2

)]

+
1

Δy

∑
l1

∑
l2

�l1
�l2

g
(
ui+Gl1

,j+Gl2

)
,

dsi,j

dt
= −

1

2Δx

∑
l

�lGl

[
f̂
(
u−
i+1∕2,j+Gl

, u+
i+1∕2,j+Gl

)
+ f̂

(
u−
i−1∕2,j+Gl

, u+
i−1∕2,j+Gl

)]

−
1

2Δy

∑
l

�lGl

[
ĝ
(
u−
i+Gl ,j+1∕2

, u+
i+Gl ,j+1∕2

)
+ ĝ

(
u−
i+Gl,j−1∕2

, u+
i+Gl,j−1∕2

)]

+
1

Δx

∑
l1

∑
l2

�l1
�l2

Gl2
f
(
ui+Gl1

,j+Gl2

)
+

1

Δy

∑
l1

∑
l2

�l1
�l2

Gl1
g
(
ui+Gl1

,j+Gl2

)
.
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Then, we can obtain the first moment of these polynomials:

It is noted that si,j,p0 , si,j,p1 , and si,j,p2 are all the approximations to the value si,j in the smooth 
region.

Step 2. We compute the smoothness indicators, denoted as �0, �1, and �2, respectively. 
For each polynomial based on the formula in [10]:

where r = 4 for p0(x) , r = 1 for p1(x) and p2(x) . Then, we can compute

Step 3. We take the linear weights as

Then, we have

Step 4. We compute the nonlinear weights

where � = 10−14 to avoid division by zero. Then, we have

Remark 1 To conclude, we input the variable {wi,j} and implement the above procedure in 
the x direction. Then we obtain the variable {smod

i,j
} . If we input the variable {vi,j} and imple-

ment the above procedure in the y direction, we can also obtain the variable {smod

i,j
}.

Remark 2 In the 2D case, we will implement the KXRCF indicator in the dimension by 
dimension way. For the 2D Euler equations, the density and energy will be the indicator 

1

Δx ∫Ii+l

p0(x)dx = wi+l,j, l = − 2,−1, 0, 1, 2,

1

Δx ∫Ii+l

p1(x)dx = wi+l,j, l = − 1, 0,

1

Δx ∫Ii+l

p2(x)dx = wi+l,j, l = 0, 1.

si,j,pm =
1

Δx ∫Ii

pm(x)
x − xi

Δx
dx, m = 0, 1, 2.

�m =
1

Δx

r∑
k=1

∫
xi+1∕2

xi−1∕2

(
Δxk

�k

�xk
pm(x)

)2

dx, m = 0, 1, 2,

� =
(�0 − �1)

2 + (�0 − �2)
2

4
.

r0 = 0.98, r1 = 0.01, r2 = 0.01.

si,j,p0 = r0

(
1

r0
si,j,p0 −

r1

r0
si,j,p1 −

r2

r0
si,j,p2

)
+ r1si,j,p1 + r2si,j,p2 .

�k =
�k

�0 + �1 + �2

, �k = 1 +
�

�k + �
, k = 0, 1, 2,

s
mod

i,j
= �0

(
1

r0
si,j,p0 −

r1

r0
si,j,p1 −

r2

r0
si,j,p2

)
+ �1si,j,p1 + �2si,j,p2 .
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variables. What’s more, if cell Ii,j is marked as a troubled-cell, then its eight neighbours 
will also be marked as troubled-cells.

Remark 3 For the system cases, we will perform HWENO reconstruction procedures on 
the local characteristic field if the target cell is marked as a troubled cell, otherwise we will 
simply perform the linear approximation procedures component by component.

Algorithm 1 Dimension by dimension HWENO method.
Input: {ui,j, vi,j, wi,j, si,j}
Output: ui+Gl1 , j+Gl2

i) Apply Procedure 1 in the dimension by dimension way to identify the troubled-cell

ii) Apply Procedure 2 in the x direction, input {ui,j, vi,j}, output {vmod
i,j }

iii) Apply Procedure 3 in the y direction, input {ui,j, wi,j}, output {wmod
i,j }

iv) Apply Procedure 4 in the x direction, input {wmod
i,j }, output {s(1)i,j }. Apply Procedure 4 in the

y direction, input {vmod
i,j }, output {s(2)i,j }. Take smod

i,j = (s(1)i,j + s
(2)
i,j )/2

v) Apply Procedure 3 in the x direction, input {ui,j, v
mod
i,j }, output {ui+Gl1 ,•}

vi) Apply Procedure 3 in the x direction, input {wmod
i,j , smod

i,j }, output {wi+Gl1 ,•}
vii) Apply Procedure 3 in the y direction, input {ui+Gl1 , ,• wi+Gl1 ,•}, output {ui+Gl1 ,j+Gl2

}

4  Numerical Test
In this section, we will show the numerical results of the dimension by dimension HWENO 
method. We take the CFL number as 0.6.

Example 1 Accuracy test for the Burgers equation.

We solve the following nonlinear Burgers equation:

with the initial condition u(x, y, 0) = 0.5 + sin(π(x + y)∕2) and periodic boundary con-
dition. The computational domain is [0, 4] × [0, 4] . When t = 0.5∕π , the solution is still 
smooth. Table 1 shows the numerical error. From the table, we can see that our scheme can 
achieve the designed precision, and the numerical errors are smaller than the one obtained 
by the new hybrid HWENO method [31]. The numerical error against CPU time graphs 
of our method and WENO method are in Fig. 1. We can see that our method can achieve 
smaller numerical error at the cost of more CPU time than the WENO method in this 
numerical test.

Example 2 Accuracy test for the Euler system.

We consider the 2D Euler system accuracy test. The initial conditions are

ut +

(
u2

2

)

x

+

(
u2

2

)

y

= 0

�(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = v(x, y, 0) = 1, p(x, y, 0) = 1.
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The computational domain is [0, 2] × [0, 2] . Periodic boundary conditions are used in this 
test. The exact solution of � is

We set the final time t = 2 . We list the error in Table 2. We can also see that our method 
achieves the designed fifth order accuracy, and the numerical errors are smaller than those 
obtained by the new hybrid HWENO method [31]. The numerical error against CPU time 
graphs of our method and WENO method are in Fig. 2. We can also see that our method 
performs better than the WENO method in this numerical test.

�(x, y, t) = 1 + 0.2 sin(π(x + y − 2t)).

Table 1  Accuracy test for Burgers equation

Mesh size Dimension by dimension HWENO New hybrid HWENO

L∞ error Order L
1
 error Order L∞ error Order L

1
 error Order

40× 40 3.85E−06 3.58E−07 2.49E−05 2.70E−06
80× 80 4.19E−08 6.52 7.45E−09 5.59 8.91E−07 4.81 5.01E−08 5.75
120× 120 6.32E−09 4.67 9.86E−10 4.99 7.81E−08 6.00 4.15E−09 6.14
160× 160 1.63E−09 4.71 2.42E−10 4.89 1.27E−08 6.32 7.00E−10 6.18
200× 200 5.58E−10 4.81 8.07E−11 4.92 3.26E−09 6.09 1.94E−10 5.74
240× 240 2.30E−10 4.87 3.27E−11 4.94 1.17E−09 5.63 7.65E−11 5.12

Fig. 1  Computing CPU time and error for accuracy test of Burgers equation. Scales of CPU time and error 
are logarithmic

Table 2  Accuracy test for the Euler system

Mesh size Dimension by dimension HWENO New hybrid HWENO

L∞ error Order L
1
 error Order L∞ error Order L

1
 error Order

30× 30 5.59E−08 3.57E−08 4.87E−07 3.11E−07
60× 60 1.74E−09 5.01 1.10E−09 5.01 7.14E−09 6.09 4.55E−09 6.09
90× 90 2.28E−10 5.01 1.45E−10 5.00 6.20E−10 6.03 3.95E−10 6.03
120× 120 5.41E−11 5.00 3.44E−11 5.00 1.10E−10 6.00 7.01E−11 6.01
150× 150 1.77E−11 5.00 1.13E−11 5.00 3.00E−11 5.84 1.84E−11 5.99
180× 180 7.12E−12 5.00 4.53E−12 5.00 9.71E−12 5.98 6.19E−12 5.98
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Example 3 Two-dimensional vortex evolution problem for the Euler equations.

We consider the accuracy test for the compressible Euler equations of gas dynamics. The 
mean flow is � = 1 , p = 1 , and (u, v) = (1, 1) . We add an isentropic vortex to the mean flow 
(perturbations in (u,v) and the temperature T =

p

�
 , no perturbation in the entropy S =

p

��
):

where (x, y) = (x − 5, y − 5) , r2 = x2 + y2 , and the vortex strength � = 5 . The computational 
domain is taken as [0, 10] × [0, 10] , and periodic boundary conditions are used. The exact 
solution of the Euler equation with the above initial and boundary conditions is just the 
passive convection of the vortex with the mean velocity. We compute the solution to the 
time T = 2.0 for the accuracy, see Table 3. We can see that our method can achieve the 
designed order.

Example 4 Discontinuity test for the Burgers equation.

We solve the following nonlinear Burgers equation:

with the initial condition u(x, y, 0) = 0.5 + sin(π(x + y)∕2) and periodic boundary condi-
tion. The computational domain is [0, 4] × [0, 4] . We take the final time as t = 1.5∕π . Now, 
the discontinuity appears. From Fig.  3, we can see that our scheme can obtain the high 
resolution solution.

Example 5 The 2D Riemann problem.

The 2D Riemann problems have been studied in [12, 27, 33]. Now they have 
become benchmarks to test the resolution of the scheme. The computational domain is 
[0, 1] × [0, 1] , and the initial data are given by

(�u, �v) =
�

2π
e0.5(1−r

2)(−y,x),

ut +

(
u2

2

)

x

+

(
u2

2

)

y

= 0

Fig. 2  Computing CPU time and error for accuracy test of the Euler system. Scales of CPU time and error 
are logarithmic
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We use 400 × 400 cells to solve the problem. Figure 4 shows the density contours with 30 
equally spaced contour lines. We can see that our scheme can correctly capture the com-
plicated flow structure. The computational results are comparable to those in the literature.

Example 6 Double Mach reflection.

Double Mach reflection is a standard test case for high resolution schemes [20]. High 
order schemes are good for resolving the flow below the Mach stem. The computational 
domain for this problem is [0, 4] × [0, 1] . The wall lies at the bottom boundary from 
x = 1∕6 . A right-moving Mach = 10 shock is located at x = 1∕6, y = 0 , making a 60◦ 
angle with the x-axis. The reflective boundary condition is used at the wall, while the exact 
post-shock condition is used at the rest of the bottom boundary. At the top boundary, the 
flow values are set to describe the exact motion of the Mach 10 shock. Figure 5 shows the 

(a) (𝜌, u, v, p) =

⎧
⎪⎪⎨⎪⎪⎩

(1.5, 0, 0, 1.5), x > 0.5, y > 0.5,

(0.532 3, 1.206, 0, 0.3), x ⩽ 0.5, y > 0.5,

(0.532 3, 0, 1.206, 0.3), x > 0.5, y ⩽ 0.5,

(0.138, 1.206, 1.206, 0.029), x ⩽ 0.5, y ⩽ 0.5,

(b) (𝜌, u, v, p) =

⎧⎪⎪⎨⎪⎪⎩

(0.531 3, 0, 0, 0.4), x > 0.5, y > 0.5,

(1, 0.727 6, 0, 1), x ⩽ 0.5, y > 0.5,

(1, 0, 0.727 6, 1), x > 0.5, y ⩽ 0.5,

(0.8, 0, 0, 1), x ⩽ 0.5, y ⩽ 0.5,

(c) (𝜌, u, v, p) =

⎧⎪⎪⎨⎪⎪⎩

(1, 0.1, 0, 1), x > 0.5, y > 0.5,

(0.531 3, 0.827 6, 0, 0.4), x ⩽ 0.5, y > 0.5,

(0.531 3, 0.1, 0.727 6, 0.4), x > 0.5, y ⩽ 0.5,

(0.8, 0.1, 0, 0.4), x ⩽ 0.5, y ⩽ 0.5,

(d) (𝜌, u, v, p) =

⎧⎪⎪⎨⎪⎪⎩

(1.1, 0, 0, 1.1), x > 0.5, y > 0.5,

(0.506 5, 0.893 9, 0, 0.35), x ⩽ 0.5, y > 0.5,

(0.506 5, 0, 0.893 9, 0.35), x > 0.5, y ⩽ 0.5,

(1.1, 0.893 9, 0.893 9, 1.1), x ⩽ 0.5, y ⩽ 0.5.

Table 3  Two-dimensional vortex 
evolution problem for the Euler 
equations

Mesh size L∞ error Order L
2
 error Order L

1
 error Order

10× 10 2.34E−01 4.86E−02 2.30E−02
20× 20 2.24E−01 0.07 2.97E−02 0.71 1.25E−02 0.88
40× 40 2.02E−02 3.47 2.44E−03 3.61 1.21E−03 3.36
80× 80 7.42E−05 8.09 1.24E−05 7.62 4.32E−06 8.13
160× 160 2.44E−06 4.92 4.06E−07 4.93 1.40E−07 4.95
320× 320 7.56E−08 5.01 1.27E−08 4.99 4.69E−09 4.90
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computational result at time t = 0.2 with 1 920 × 480 cells. From the figure, we can see that 
the scheme can capture the complicated flow structure well.

Example 7 A Mach 3 wind tunnel with a step.

It is also a standard test case for high resolution schemes. The computational domain 
is [0, 3] × [0, 1] except [0.6, 3] × [0, 0.2] which simulates a 1 length unit wide and 3 length 
units long wind tunnel with a 0.2 length unites high step located at 0.6 length units from 
the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow. 
Reflective boundary conditions are applied along the walls of the tunnel. The inflow and 
outflow boundary conditions are applied to the left-hand end and right-hand end. The cor-
ner of the step is a singularity point. [25] used an assumption of nearly steady flow in the 
region near the corner to fix the singularity. In this paper, we do not modify our method 
near the corner. Figure  6 shows the contour picture for the density at time t = 4 with 
960 × 320 cells. We can see that the scheme can solve the problem well.

Example 8 2D shock vortex interactions.

The model problem shows the interaction between a stationary shock and a vortex. 
The computational domain is taken as [0, 2] × [0, 1] . A stationary Mach = 1.1 shock is 
positioned at x = 0.5 . The left state is (�, u, v, p) = (1, 1.1

√
� , 0, 1) and the right state 

can be obtained through the Rankine-Hugoniot condition. An isentropic vortex is at 
(0.25, 0.5). The perturbation to the velocity (u, v), the temperature (T = p∕�) , and the 
entropy (S = ln(p∕�� )) are as follows:

⎧⎪⎪⎨⎪⎪⎩

(�u, �v) = ��e�(1−�
2)(sin �,− cos �),

�T = −
(� − 1)�2e2�(1−�

2)

4��
,

�S = 0,

u

n

x

1.0

1.0

y

Fig. 3  Burgers equation. 80 × 80 cells. Left: the surface of the solution; right: solution along the cut line 
y = x
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1.0

1.0 1.0

1.01.0

1.0

1.0 1.0

yy

yy

Fig. 4  The 2D Riemann Problem

y

x

1.0

1.0 2.0 3.0

Fig. 5  Double Mach reflection. Density, 30 equally spaced contour lines from 1.5 to 22.7
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where

Here, rc , which is the radius of the vortex, is taken as rc = 0.05 ; � , which describes the 
decay rate of the vortex, is taken as � = 0.204 ; � , which indicates the strength of the vortex, 
is taken as � = 0.3 . Therefore, the initial values for the post-shock field are

where T = p∕� . We use 250 × 100 cells. The upper and bottom boundaries are set to be 
reflective. Figure  7 shows the pressure contour lines at time t = 0.05 , t = 0.2 , t = 0.35 , 
t = 0.6 , and t = 0.8 , respectively. We can see that our scheme can capture the shock and 
vortex well.

Example 9 Shock passing a backward facing corner (diffraction).

The shock diffraction is a very common phenomenon. The problem has been tested in 
[4]. It has a different structure according to different Mach numbers and different shapes 
of backward facing corners. Here, we consider Shock diffraction around a 90 degree 
corner. The computational domain is [0, 1] × [6, 11] and [1, 13] × [0, 11] . The initial con-
dition is a pure right moving shock of Mach = 5.09 located at x = 0.5 and 6 ⩽ y ⩽ 11 , 
moving into undisturbed air with the density � = 1.4 , the velocity u = v = 0 , and the 
pressure p = 1 . The initial inflow boundary condition is specified at x = 0, 6 ⩽ y ⩽ 11 , 
and the initial outflow boundary condition is specified at x = 13, 0 ⩽ y ⩽ 11 . The reflec-
tive boundary conditions is at 0 ⩽ x ⩽ 1, y = 6 and x = 1, 0 ⩽ y ⩽ 6 . The Neumann 
boundary condition is at 1 ⩽ x ⩽ 13, y = 0 and 0 ⩽ x ⩽ 13, y = 11 . The finial time is 
t = 2.3 . Due to the expansion of the flow, the density and pressure will suffer a sudden 
drop around the corner. Many schemes fail to solve this problem because of the negative 
density or pressure during the computation. Here, we use the dimension by dimension 
HWEMO method to solve this problem with 1 040 × 880 cells. Although the method 
does not contain any positivity-preserving techniques, it maintains the positivity of the 

� = r∕rc,R =

√
(x − xc)

2 + (y − yc)
2, � = arctan

(
y − yc

x − xc

)
.

(�l, ul, vl, pl) =

((
T + �T

) 1

�−1
, u + �u, v + �v,

(
T + �T

) �

�−1

)
,

y

x

1.0

1.0 2.0 3.0

Fig. 6  A Mach 3 wind tunnel with a step. Density, 30 equally spaced contour lines from 0.32 to 6.15
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density and pressure during the computation. From Fig. 8, we can see that the results 
are comparable with that in [4].

Example 10 High Mach number astrophysical jets.

x x

y y

x x x

y y y

1.0 1.0

1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

Fig. 7  The 2D shock vortex interaction. Pressure. (a) t=0.05; (b) t=0.2; (c) t=0.35; (e) t=0.6. (d) t=0.8, 90 
contours from 1.19 to 1.37

yy

xx

Fig. 8  Shock diffraction problem. Left: density, 20 equally spaced contour lines from 0.066 227 to 7.066 8; 
right: pressure, 40 equally spaced contour lines from 0.091 to 31
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We consider two high Mach number astrophysical jets without the radiative cool-
ing [6]. In these examples, we take � = 5∕3 . The first example is Mach 80 prob-
lem. The computational domain is [0, 2] × [−0.5, 0.5] , which is initialized by set-
ting (�, u, v, p) = (0.5, 0, 0, 0.412 7) . The right, top, and bottom boundaries are 
outflows. For the left boundary, (�, u, v, p) = (5, 30, 0, 0.412 7) if y ∈ [−0.05, 0.05] and 
(�, u, v, p) = (0.5, 0, 0, 0.412 7) otherwise. The numerical result for the density, pressure, 
and temperature with 448×224 grid points at time t = 0.07 are shown in Fig. 9. The sec-
ond example is Mach 2 000 problem. The computational domain is [0, 1] × [−0.25, 0.25] , 
which is full of gas with (�, u, v, p) = (0.5, 0, 0, 0.412 7) . The right, top, and bot-
tom boundary are outflows. For the left boundary, (�, u, v, p) = (5, 800, 0, 0.412 7) if 
y ∈ [−0.05, 0.05] and (�, u, v, p) = (0.5, 0, 0, 0.412 7) otherwise. The numerical result for 
the density, pressure, and temperature with 640×320 grid points at time t = 0.001 are 
shown in Fig. 9. The scales are logarithmic. From the figures, we can see that our results 
match well with those in [6].

Fig. 9  High Mach number astrophysical jet. Left: the density, pressure, and temperature for Mach 80 at t= 
0.07 with mesh 448×224. Right: the density, pressure, and temperature for Mach 2 000 at t= 0.001 with 
mesh 640×320. Scales are logarithmic
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5  Conclusion

In this paper, we propose the dimension-by-dimension HWENO method to solve hyper-
bolic conservation laws. It is the generalization of the 1D HWENO method, which leads 
to an easier 2D simulation. Extensive numerical tests are performed to verify the high 
resolution and high accuracy of the scheme.
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