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Abstract. The selection of time step plays a crucial role in improving stability and ef-
ficiency in the Discontinuous Galerkin (DG) solution of hyperbolic conservation laws
on adaptive moving meshes that typically employs explicit stepping. A commonly
used selection of time step is a direct extension based on Courant-Friedrichs-Levy
(CFL) conditions established for fixed and uniform meshes. In this work, we provide
a mathematical justification for those time step selection strategies used in practical
adaptive DG computations. A stability analysis is presented for a moving mesh DG
method for linear scalar conservation laws. Based on the analysis, a new selection
strategy of the time step is proposed, which takes into consideration the coupling
of the α-function (that is related to the eigenvalues of the Jacobian matrix of the
flux and the mesh movement velocity) and the heights of the mesh elements. The
analysis also suggests several stable combinations of the choices of the α-function
in the numerical scheme and in the time step selection. Numerical results obtained
with a moving mesh DG method for Burgers’ and Euler equations are presented. For
comparison purpose, numerical results obtained with an error-based time step-size
selection strategy are also given.

AMS subject classifications: 65M50, 65M60
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1. Introduction

We are concerned with the stability of the discontinuous Galerkin (DG) solution of
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conservation laws on adaptive moving meshes. The DG method is a powerful numer-

ical tool for use in the simulation of hyperbolic problems. It was first used by Reed

and Hill [31] for the steady radiation transport equation and studied theoretically by

Lesaint and Raviart [25]. The method was extended to conservation laws by Cockburn

and Shu (and their coworkers) in a series of papers [6–11]. The DG method has the

advantages of high-order accuracy, geometric flexibility, easy use with mesh adaptivity,

local data structure, high parallel efficiency, and a good foundation for theoretical anal-

ysis. The DG method has been used widely in scientific and engineering computation.

Meanwhile, conservation laws typically exhibit discontinuous structures such as shock

waves, rarefaction waves, and contact discontinuities and are amenable to mesh adap-

tation in their numerical solution to enhance numerical resolution and computational

efficiency. It is natural to combine the DG method with mesh adaptation method for

the solution of conservation laws.

A large amount of work has been done in this area. For example, Bey and Oden

[3] combined the hp-method with the DG method for conservation laws and Li and

Tang [26] solved two-dimensional conservation laws using a rezoning moving mesh

DG method where the physical variables are interpolated from the old mesh to the

new one using conservative interpolation schemes. Mackenzie and Nicola [29] solved

the Hamilton-Jacobi equation by the DG method using a moving mesh method based

on the moving mesh partial differential equation (MMPDE) strategy [21, 22]. Vilar

et al. [36] studied a DG discretization for solving the two-dimensional gas dynamics

equations in Lagrangian formulation. More recently, Uzunca et al. [35] employed a

moving mesh symmetric interior penalty Galerkin method (SIPG) to solve PDEs with

traveling waves. Luo et al. considered a quasi-Lagrange moving mesh DG method

(MMDG) for conservation laws [27] and multi-component flows [28]. Zhang et al.

studied the MMDG solution for the radiative transfer equation [38, 39] and shallow

water equations (SWEs) [40, 41]. Zhang et al. [43] develop a arbitrary Lagrangian-

Eulerian discontinuous Galerkin (ALE-DG) methods for the SWEs. Wang et al. [37]

developed a reconstructed DG Method for compressible flows in Lagrangian formula-

tion.

In principle, any marching scheme (e.g., see Hairer and Wanner [16]) can be used

for the time integration of DG computations of hyperbolic conservation laws, includ-

ing explicit and implicit Runge-Kutta methods [13, 14] and multi-step methods [32].

Nevertheless, explicit schemes have been widely used in these computations. There are

at least two considerations for this. First, as we can see later, the stability condition

for explicit schemes when applied to hyperbolic equations typically requires the time

step-size to be proportional to the minimum mesh element size, which is considered

acceptable in practical computations with a uniform mesh. Second, due to the highly

nonlinear and hyperbolic nature of conservation laws, there exists hardly any efficient

solver for nonlinear algebraic systems (whose linearization is typically non-symmetric

and non-definite, and whose solution contains discontinuity, such as shock wave) re-

sulting from the implicit temporal discretization. As such, it does not seem worth the

trouble to increase the time step-size using implicit schemes when a uniform mesh is
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used. However, this can be a different situation when an adaptive mesh is employed

where some mesh elements can become very small. While implicit schemes for DG

computations on adaptive meshes deserve further investigations, in this work we focus

on explicit schemes and their stability on adaptive moving meshes.

Consider the conservation laws in the form

Ut +∇ · F(U,x) = 0, ∀x ∈ Ω, (1.1)

where Ω is a polygonal/polyhedral domain in R
d (d ≥ 1), U = (u1, . . . , um)T (m ≥ 1)

is the unknown function, and the flux F(U,x) is an m-by-d matrix-valued function of

U and x. A commonly used selection of time step in adaptive DG computations (e.g.,

see [27,40,41]) is

∆t =
Ccflσh,min

αh
, (1.2)

where σh,min is the minimum height or diameter of the mesh elements, Ccfl is a positive

parameter, αh is the maximum absolute value of the eigenvalues of the Jacobian matrix

of (F − UẊ) · n (with respect to U) taken over all of the edges, n is the unit outward

normal vector of the edges, and Ẋ is the piecewise linear mesh velocity function. The

choice (1.2) is a direct extension of the CFL conditions studied and used in DG compu-

tation for fixed meshes (e.g., see [9, 12]). Some researchers have used a different yet

mathematical equivalent form,

∆t =
Ccfl

αh max
K∈Th

(

1
|K|

∑

e∈∂K

|e|
) , (1.3)

where K is an element of the mesh Th, ∂K is the boundary of K, e is an edge of K, and

|K| and |e| denote the area of K and the length of e, respectively. This condition has

also been established by Zhang et al. [42] for positivity preservation for fixed unstruc-

tured triangular meshes. To show the equivalence between (1.2) and (1.3), we notice

that, for a simplex K,

max
e∈∂K

|e| ≤
∑

e∈∂K

|e| ≤ (d+ 1) max
e∈∂K

|e|,

which implies
d

σK,min
≤

1

|K|

∑

e∈∂K

|e| ≤
d(d+ 1)

σK,min
,

where σK,min denotes the minimum height of K and we have used a geometric property

of simplexes, |K| = (1/d)σK,minmaxe∈∂K |e|. Taking maximum over all elements, we

get
σh,min

d(d+ 1)
≤

1

max
K

(

1
|K|

∑

e∈∂K

|e|
) ≤

σh,min

d
, (1.4)

which gives the equivalence of (1.2) and (1.3).
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While the condition (1.2) or (1.3) appears to work well in existing adaptive DG

computation for conservation laws, there lacks a theoretical justification of them for

non-uniform and moving meshes. One may also wonder if the coupling between phys-

ical quantities and mesh elements can be taken into consideration for time step selec-

tion. The objective of this work is to study these issues. To be specific, we consider

a quasi-Lagrange MMDG method [27, 38] with the Lax-Friedrichs (LF) flux for (1.1).

A CFL condition for the L1 stability of the MMDG method with P 0 elements is then

established and analyzed for scalar linear equations (cf. Proposition 3.1), which pro-

vides a theoretical justification for the stability of the method. Moreover, based on this

analysis, for the MMDG method with P k elements (k ≥ 1) and general conservation

laws we propose to choose ∆t as

∆t =
Ccfl

max
K∈Th

(

1
|K|

∑

e∈∂K

αe|e|
) =

Ccfl

max
K∈Th

(

∑

e∈∂K

αe
|e|
|K|

) , (1.5)

where αe = αe(U, Ẋ) is the maximum absolute value of the eigenvalues of the Jacobian

matrix of (F−UẊ) ·n (with respect to U) taken over edge e. This choice is very similar

to (1.3). Indeed, it reduces to (1.3) when αe is replaced with the global αh. However,

unlike (1.3), the condition (1.5) takes into consideration the spatial variation of α and

its coupling with the element height (i.e., |K|/|e|). Moreover, it shows that ∆t can

be increased if the mesh velocity Ẋ can be chosen to minimize αe in regions where

the element height is relatively small. An example of this is Lagrangian-type methods

(e.g. [17, 18, 24]) where the mesh velocity is taken as the fluid velocity. On the other

hand, the mesh movement can be determined by other considerations. For example, in

the current work we consider the use of the MMPDE moving mesh method to determine

the mesh movement based on solution-Hessian. In this case, the mesh velocity does not

necessarily minimize αe. If αe does not change significantly over the domain, then (1.5)

is mathematically equivalent to (1.2) and ∆t is determined essentially by the minimum

height of the mesh elements.

The CFL condition such as (1.5) provides a selection strategy for time step-size

based on stability. This CFL-condition-based strategy is widely used in the DG com-

putation of hyperbolic conservation laws. On the other hand, it is common practice

to use an error-based time step-size selection strategy in the computation of ordinary

differential equations (e.g., see Hairer and Wanner [16]). It is worth studying how

error-based time step-size selection strategies fare in the DG computation of hyperbolic

conservation laws. To this end, we use the third-order explicit Strong Stability Preserv-

ing (SSP) embedded RK (SSP-ERK(4,3)) pair of [13] and the standard PI controller

step-size selection strategy (e.g., see Hairer and Wanner [16]) and present numerical

examples to demonstrate the feasibility of this approach.

The MMPDE moving mesh method [21, 22] is used to generate adaptive moving

meshes for the numerical examples presented in this work. A key idea of the MM-

PDE method is to view any nonuniform mesh as a uniform one in some Rieman-

nian metric specified by a tensor M = M(x), a symmetric and uniformly positive
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definite matrix-valued function that provides the information needed for determin-

ing the size, shape, and orientation of the mesh elements throughout the domain. It

has been shown analytically and numerically in [20] that the moving mesh gener-

ated by the MMPDE method stays nonsingular (free of tangling) if the metric tensor is

bounded and the initial mesh is nonsingular. It is worth pointing out that other adap-

tive moving mesh methods (such as Lagrangian-type methods) can also be used; e.g.,

see [1–3,5,15,17,18,22,24,30,34,36,37] and references therein.

An outline of the paper is as follows. The MMDG method is described in Section 2

and the L1 stability analysis of the method with P 0 elements is carried out for scalar

linear equations in Section 3. Numerical examples are presented in Section 4. In

these examples, the MMPDE moving mesh method is used to generate adaptive mov-

ing meshes. The section also contains the descriptions of the procedure of the MMDG

method and the definition of the metric tensor that is used to control mesh concentra-

tion. The conclusions are given in the final Section 5.

2. The moving mesh DG method

In this section we describe a quasi-Lagrange MMDG method [27,38,41] for solving

hyperbolic conservation laws in the form (1.1).

To start with, we assume that a sequence of simplicial meshes, T 0
h ,T

1
h , . . . , have

been given for Ω at time instants t0, t1, . . . and these meshes have the same number

of elements and vertices and the same connectivity. For numerical results presented

in this work, we use the MMPDE moving mesh method [19, 21, 22] to generate these

meshes (cf. Section 4). For any n ≥ 0 and t ∈ [tn, tn+1], we define Th(t) as the mesh

with the same number of elements (N) and vertices (Nv) and the same connectivity as

T n
h , and having the vertices given by

xi(t) =
t− tn
∆tn

x
n
i +

tn+1 − t

∆tn
x
n+1
i , i = 1, . . . , Nv , ∆tn = tn+1 − tn. (2.1)

Define the piecewise linear mesh velocity function as

Ẋ(x, t) =

Nv
∑

i=1

ẋiφi(x, t) =

Nv
∑

i=1

x
n+1
i − x

n
i

∆tn
φi(x, t), t ∈ [tn, tn+1], (2.2)

where φi(x, t) is the linear basis function at xi and ẋi is the nodal velocity. For any

element K ∈ Th(t), let P k(K) be the set of polynomials of degree at most k ≥ 1 on K.

The DG finite element space is defined as

Vk
h(t) =

{

u ∈ L2(Ω) : u|K ∈ P k(K), ∀K ∈ Th(t)
}

. (2.3)

We now are ready to describe the DG discretization of (1.1). Multiplying it with an

arbitrary test function φ ∈ Vk
h(t), integrating the resulting equation over K, and using
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the Reynolds transport theorem, we get

d

dt

∫

K

Uhφdx−

∫

K

H(Uh,x) · ∇φdx+
∑

e∈∂K

∫

e

φĤ(Uh,x)ds = 0, (2.4)

where Uh = Uh(x, t), H(Uh,x) = F(Uh,x) − UhẊ is the new flux accounting for the

effect of mesh movement, Ĥ(Uh,x) ≈ H(Uh,x) · n is a numerical flux, and n is the

unit outward normal to edge e. Let λm’s be the eigenvalues of the Jacobian matrix of

H(Uh,x) · n with respect to Uh and U int
h,K and U ext

h,K be the values of Uh in K and K ′,

respectively, where K ′ is the element sharing e with K. Define the α-function as

α(Uh,x) = max
m

(

max
(∣

∣λm(U int
h,K ,x)

∣

∣,
∣

∣λm(U ext
h,K ,x)

∣

∣

)

)

. (2.5)

In this work we consider the global/local Lax-Friedrichs (LF) numerical flux,

Ĥ(Uh,x) =
1

2

(

(

H(U int
h,K ,x) +H(U ext

h,K ,x)
)

· n− αLF

(

U ext
h,K − U int

h,K

)

)

, x ∈ e ⊂ ∂K,

where αLF denotes a choice of the α-function in this numerical flux. In practical

computation, the second and third terms in (2.4) are calculated typically by Gaussian

quadrature rules. We denote those by

∫

K

H(Uh,x) · ∇φdx ≈ |K|
∑

x
K
G

wK
G

(

H(Uh,x) · ∇φ
)∣

∣

x
K
G

with
∑

wK
G = 1,

∫

e

φĤ(Uh,x)ds ≈ |e|

(

∑

x
e
G

we
G

(

φĤ(Uh,x)
)∣

∣

x
e
G

)

with
∑

we
G = 1,

(2.6)

where x
K
G ’s and x

e
G’s are the Gauss points on K and e, respectively. For the analytical

analysis in the next section, we assume that the weights wK
G ’s and we

G’s are nonnegative.

Combining the above with (2.4) we obtain the semi-discrete MMDG scheme as

d

dt

∫

K

Uhφdx− |K|
∑

x
K
G

wK
G

(

H(Uh,x) · ∇φ
)∣

∣

x
K
G

+
∑

e∈∂K

|e|

(

∑

x
e
G

we
G

(

φĤ(Uh,x)
)∣

∣

x
e
G

)

= 0. (2.7)

One choice of αLF is the point-wise value of α(Uh,x), i.e.,

αp = α(Uh,x)|xe
G

= max
m

(

max
(∣

∣λm(U int
h,K ,x)|xe

G

∣

∣,
∣

∣λm(U ext
h,K ,x)|xe

G

∣

∣

)

)

, x
e
G ∈ e ⊂ ∂K. (2.8)
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It is worth pointing out that (2.8) is calculated pointwise. We can choose it differently,

for example, by taking the maximum value over each edge (denoted as αe), or all edges

in the mesh (denoted as αh), i.e.,

αe = max
x
e
G

α(Uh,x)|xe
G

= max
x
e
G,m

(

max
(∣

∣λm(U int
h,K ,x)|xe

G

∣

∣,
∣

∣λm(U ext
h,K ,x)|xe

G

∣

∣

)

)

, (2.9)

αh = max
K,e,xe

G

α(Uh,x)|xe
G

= max
K,e,xe

G,m

(

max
(∣

∣λm(U int
h,K ,x)|xe

G

∣

∣,
∣

∣λm(U ext
h,K ,x)|xe

G

∣

∣

)

)

. (2.10)

It is the remark that one choice of the αLF in local LF in the computation (e.g., see

[12,27]) is taken based on cell average, i.e.,

α̃e = max
x
e
G,m

(

max
(∣

∣λm(Ūh,K ,xe
G)
∣

∣,
∣

∣λm(Ūh,K ′,xe
G)
∣

∣

)

)

, (2.11)

where Ūh,K is the average of Uh on K, Ūh,K ′ is the average of Uh on K ′, and K and K ′

are sharing e ∈ ∂K.

A fully discrete MMDG scheme can be obtained by discretizing (2.7) in time. A sta-

bility analysis is presented in the next section for a simple case with the explicit Euler

scheme and numerical results are presented in Section 4 with a third-order strong-

stability-preserving (SSP) Runge-Kutta scheme.

3. CFL conditions on adaptive moving meshes

Generally speaking, it is difficult, if not impossible, to obtain a CFL condition rigor-

ously for a fully discrete version of the MMDG scheme (2.7) for general conservation

law (1.1). To gain insight into the stability, we consider a simple situation with P 0-DG

for spatial discretization, the explicit Euler scheme for time integration, and for linear

scalar conservation laws with the flux F = a(x, t)U . We also assume that Ω is cubi-

cal, periodic boundary conditions are used, and a(x, t) is periodic in each coordinate

direction.

Under these assumptions, we have

H(Uh,x) =
(

a(x, t)− Ẋ
)

Uh, λ(x, t) =
(

a(x, t)− Ẋ
)

· n, α(x, t) = |λ(x, t)|.

Moreover,

Ĥ(Uh,x) =
1

2

(

(

H(U int
h,K,x) +H(U ext

h,K ,x)
)

· n− αLF (x, t)
(

U ext
h,K − U int

h,K

)

)

=
1

2

(

λ(x, t)
(

U int
h,K + U ext

h,K

)

− αLF (x, t)
(

U ext
h,K − U int

h,K

)

)

=
αLF (x, t) + λ(x, t)

2
U int
h,K −

αLF (x, t)− λ(x, t)

2
U ext
h,K .
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Applying the explicit Euler scheme to (2.7) and taking φ = 1, we get

|Kn+1|Ūn+1
h,K = |Kn|Ūn

h,K −∆tn
∑

e∈∂Kn

|e|
∑

x
e
G

we
G, Ĥ(Uh,x)

∣

∣

x
e
G

= 0, (3.1)

where Ūn
h,K is the average of Un

h on Kn, Ūn+1
h,K is the average of Un+1

h on Kn+1, and Kn

and Kn+1 are the corresponding elements in T n
h and T n+1

h , respectively.

Proposition 3.1. The MM P 0-DG scheme (3.1) with F = a(x, t)U is L1-stable under the

CFL condition

∆tn ≤
1

max
Kn

(

1
|Kn|

∑

e∈∂Kn

|e|
∑

x
e
G

we
G αn

CFL(x
e
G)
) , (3.2)

where αn
CFL(x) ≥ αn

LF (x) and the subscripts LF and CFL stand for the LF numerical

flux and CFL condition, respectively.

Proof. From the assumption of P 0-DG, for any x ∈ e of Kn, we have

U int
h,K |xe

G
= Ū int

h,K = Ūh,K , U ext
h,K |xe

G
= Ū ext

h,K = Ūh,K ′ ,

where K ′ is the element sharing e with K. With this, (3.1) can be rewritten as

|Kn+1|Ūn+1
h,K = |Kn|Ūn

h,K −∆tn
∑

e∈∂Kn

|e|
∑

x
e
G

we
G

(

αn
LF + λn

2
Un,int
h,K −

αn
LF − λn

2
Un,ext
h,K

)∣

∣

∣

∣

x
e
G

= |Kn|Ūn
h,K −∆tn

∑

e∈∂Kn

|e|Ūn
h,K

∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

+∆tn
∑

e∈∂Kn

|e|Ūn,ext
h,K

∑

x
e
G

we
G

(

αn
LF (x

e
G)− λn(xe

G)

2

)

= |Kn|Ūn
h,K

[

1−
∆tn
|Kn|

∑

e∈∂Kn

|e|
∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

]

+∆tn
∑

e∈∂Kn

|e|Ūn,ext
h,K

∑

x
e
G

we
G

(

αn
LF (x

e
G)− λn(xe

G)

2

)

. (3.3)

Notice that, for any x
e
G ∈ e ⊂ ∂Kn, we have

0 ≤ αn
LF (xe

G) + λn (xe
G) ≤ 2αn

CFL (xe
G) , 0 ≤ αn

LF (xe
G)− λn (xe

G) .

From the CFL condition (3.2), we have

1−
∆tn
|Kn|

∑

e∈∂Kn

|e|
∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

≥ 0.
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From this, taking the absolute value on both side of (3.3) gives

|Kn+1||Ūn+1
h,K | ≤ |Kn||Ūn

h,K |

[

1−
∆tn
|Kn|

∑

e∈∂Kn

|e|
∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

]

+∆tn
∑

e∈∂Kn

|e||Ūn,ext
h,K |

∑

x
e
G

we
G

(

αn
LF (x

e
G)− λn(xe

G)

2

)

.

Summing this over all elements, we get

∑

Kn+1

|Kn+1||Ūn+1
h,K | ≤

∑

Kn

|Kn||Ūn
h,K |

[

1−
∆tn
|Kn|

∑

e∈∂Kn

|e|
∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

]

+∆tn
∑

Kn

∑

e∈∂Kn

|e||Ūn,ext
h,K |

∑

x
e
G

we
G

(

αn
LF (x

e
G)− λn(xe

G)

2

)

.

We notice that
∑

e∈∂Kn |e|Ū
n,ext
h,K (· · · ) goes over all neighboring elements (K ′) of Kn

and each term can be considered to be associated with K ′ but with n being changed

to −n (because the unit outward normal of e in view of Kn is opposite to the unit

outward normal of e in view of K ′). From the periodicity assumption on the boundary

conditions and a(x, t), we can rewrite the second term on the right-hand side of the

above equation as

∆tn
∑

Kn

∑

e∈∂Kn

|e||Ūn,ext
h,K |

∑

x
e
G

we
G

(

αn
LF (x

e
G)− λn(xe

G)

2

)

= ∆tn
∑

Kn

∑

e∈∂Kn

|e||Ūn
h,K |

∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

.

Combining these, we have

∑

Kn+1

|Kn+1||Ūn+1
h,K | ≤

∑

Kn

|Kn||Ūn
h,K |

[

1−
∆tn
|Kn|

∑

e∈∂Kn

|e|
∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

]

+∆tn
∑

Kn

∑

e∈∂Kn

|e||Ūn
h,K |

∑

x
e
G

we
G

(

αn
LF (x

e
G) + λn(xe

G)

2

)

=
∑

K

|Kn||Ūn
h,K |.

Hence, the scheme is L1-stable.

It should be pointed out that the CFL condition (3.2) is only a sufficient condition.

Nevertheless, it offers several insights on the maximum time step allowed by stability.

We elaborate these in the following remarks.
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Remark 3.1. Condition (3.2) involves an important factor |e|/|K|. It is known that

|e|

|K|
=

d

σe
, ∀e ∈ ∂K, (3.4)

where σe is an element height defined as the distance between e and the vertex of K
opposite to e. Using this, we can rewrite (3.2) into

∆t ≤
1

dmax
K

(

∑

e∈∂K

1
σe

∑

x
e
G

we
G αCFL(xe

G)
) . (3.5)

This indicates that the allowed maximum time step depends on the coupling between

σe and αCFL(x
e
G). Recall that α (cf. (2.5)) is defined as the maximum of the eigenvalue

of the Jacobian matrix of (F(Uh,x)−UhẊ)·n. Thus, if the mesh velocity can be chosen

to minimize αCFL (such as in Lagrangian-type methods; e.g., see [17,18,24]), a larger

time step can be used. On the other hand, the mesh movement can be determined by

other considerations. For example, the meshes in the examples of Section 4 are moved

via the MMPDE method using solution-Hessian based mesh adaptation. In this case,

the mesh velocity does not necessarily minimize αCFL. The condition (3.5) shows that,

if αCFL(x
e
G) does not change significantly over the domain, ∆t is determined by the

minimum height σh,min = minK,e σe of the mesh elements.

Remark 3.2. From the above proof we can see that the choice of α in the CFL condition

(3.2) can be different from that in the DG scheme (2.8) as long as

αCFL(x) ≥ αLF (x). (3.6)

For example, we can use αLF = αp (pointwise, cf. (2.8)) for the scheme (denoted as

αLF,p) and αCFL = αh (global, cf. (2.10)) for the CFL condition (denoted as αCFL,h),

which has been expressed for the general form (1.1) of conservation laws. This works

since (3.6) is satisfied. On the other hand, the proof of Proposition 3.1 will not hold in

general for the choice with αLF = αh and αCFL = αp since it violates (3.6). As a con-

sequence, it is unclear if there is a theoretical guarantee that the scheme is L1-stable

for this choice.

Remark 3.3. For the choice αCFL = αh (denoted as αCFL,h), the CFL condition (3.2)

becomes

∆t ≤
1

αCFL,hmax
K

(

1
|K|

∑

e∈∂K

|e|
) . (3.7)

This corresponds to the CFL condition (1.3) that has been commonly used in existing

adaptive DG computation and is a direct extension of CFL conditions used for fixed,

uniform meshes.



DG Solution of Conservation Laws on Adaptive Moving Meshes 121

Remark 3.4. We can use something in between the very local αp (2.8) and the global

one in (2.10). For example, we take the maximum value of α over the Gauss points on

edge e (cf. (2.9)). For this choice (αCFL = αe, denoted as αCFL,e), the CFL condition

(3.2) becomes

∆t ≤
1

max
K

(

1
|K|

∑

e∈∂K

|e|αCFL,e

) . (3.8)

Remark 3.5. Since an explicit Runge-Kutta scheme can be expressed as a combination

of the explicit Euler scheme with different time stepsize, we expect that the above

analysis applies to explicit Runge-Kutta schemes as well. Moreover, for general P k-DG

(k ≥ 0) and general systems of conservation laws, based on [6, 9], we suggest to use

(1.5), where αe is defined in (2.9). A choice of Ccfl is Ccfl ≤ 1/(2k + 1) [9].

4. Numerical results

In this section we present numerical results obtained with the MMDG method de-

scribed in the previous sections with the third-order explicit SSP Runge-Kutta scheme

(SSP RK3) [14] for one- and two-dimensional Burgers’ equations and Euler equa-

tions. The moving mesh is generated by the MMPDE moving mesh method; e.g.,

see [38, Section 4] or [39, Section 3] for a brief yet complete description of the method

and [19–23] for a more detailed description and a development history. A key idea of

the MMPDE method is to view any nonuniform mesh as a uniform one in some Rie-

mannian metric specified by a tensor M = M(x), a symmetric and uniformly positive

definite matrix-valued function that provides the information needed for determining

the size, shape, and orientation of the mesh elements throughout the domain.

In this work we use an optimal metric tensor based on the L2-norm of piece linear

interpolation error [22, 23]. To be specific, we consider a physical variable u and its

finite element approximation uh. Let HK be a recovered Hessian of uh on K ∈ Th such

as one obtained using least squares fitting. Assuming that the eigen-decomposition of

HK is given by

HK = Qdiag(λ1, · · · , λd)Q
T ,

where Q is an orthogonal matrix, we define

|HK | = Qdiag
(

|λ1|, . . . , |λd|
)

QT .

The metric tensor is defined as

MK = det
(

βhI+ |HK |
)− 1

d+4
(

βhI+ |HK |
)

, ∀K ∈ Th, (4.1)

where I is the identity matrix, det(·) is the determinant of a matrix, and βh is a regu-

larization parameter defined through the algebraic equation

∑

K∈Th

|K|det
(

βhI+ |HK |
) 2

d+4 = 2
∑

K∈Th

|K|det
(

|HK |
) 2

d+4 .
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Roughly speaking, the choice of (4.1) is to concentrate mesh points in regions where

the determinant of the Hessian is large.

In our numerical results, we use the physical solution u to compute the metric

tensor for Burgers’ equation and the density ρ and the entropy S = ln(Pρ−γ) for the

Euler equations, unless otherwise stated. To explain the latter, we first compute M
ρ
K

and M
S
K using (4.1) with u = ρ and S, respectively. Then, a new metric tensor is

obtained through matrix intersection as

M̃K =
M

S
K

|||MS
K |||

∩
M

ρ
K

|||Mρ
K |||

, (4.2)

where ||| · ||| denotes the maximum absolute value of the entries of a matrix and “∩”

stands for matrix intersection. The reader is referred to [38] for the definition and

geometric interpretation of matrix intersection.

The procedure of the MMDG method is presented in Algorithm 4.1.

Algorithm 4.1 The MMDG method for hyperbolic conservation laws

1: Initialization. For a given initial mesh T 0
h , project the initial physical variables into

the DG space Vk,0
h to obtain U0

h .

2: for n = 0, 1, . . . , do

3: Mesh adaptation.

4: Compute the time step ∆̃tn according to (1.5) based on T n
h = {xn

i } and Un
h , i.e.,

∆̃tn =
Ccfl

max
Kn

(

1
|Kn|

∑

e∈∂Kn

|e|α̃n
CFL

) , (4.3)

where α̃n
CFL is chosen based on the eigenvalues of the Jacobian matrix of F · n

(with respect to U) evaluated on edge e.
5: Compute the metric tensor M based on T n

h and Un
h .

6: Generate the new mesh T̃ n+1
h = {x̃n+1

i } using the MMPDE moving mesh method.

7: Compute the nodal mesh velocity as

ẋ
n
i =

x̃
n+1
i − x

n
i

∆̃tn
, i = 1, . . . , Nv .

8: Compute the time step ∆tn (using (1.5)) based on T n
h , T̃ n+1

h and Un
h as

∆tn =
Ccfl

max
K

[

max

( ∑

e∈∂Kn
|e|αn

CFL

|Kn| ,

∑

e∈∂K̃n+1

|e|αn
CFL

|K̃n+1|

)] , (4.4)

where αn
CFL is chosen based on the eigenvalues of the Jacobian matrix of (F −

UẊ) · n (with respect to U) evaluated on edge e.
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9: Finally, the physical mesh T n+1
h is defined as

x
n+1
i = x

n
i +∆tn ẋ

n
i , i = 1, . . . , Nv.

10: end for

11: Solution of the physical equations on the moving mesh. Integrate the physical

equations from tn to tn+1 using the MMDG scheme to obtain Un+1
h .

It is remarked that the CFL condition (4.4) has been used in the above algorithm

to take the old and new meshes T n
h and T n+1

h into consideration. The rationale behind

this is that the SSP RK3 scheme we use for the time integration has three stages that

can be viewed roughly as the explicit Euler scheme from tn to tn+1, tn+1 to tn+ 1

2

, and

tn+ 1

2

to tn+1, respectively. The computation of the right-hand side of (3.1) involves

both T n
h and T n+1

h and thus it would be better to take the effects of these meshes

into consideration more directly in time step even the mesh velocity is involved in the

computation of αe. In principle, we should also update αe during the Runge-Kutta

stages. However, this can cause changes in the time step-size during the Runge-Kutta

stepping, which requires to re-start the stepping with a new time step-size. To avoid

this complicity, we choose to freeze αe at t = tn.

We also note that αe has been used in the algorithm and it can be replaced by αh.

Unless otherwise stated, αe is chosen in the LF numerical flux. In fact, in the following

numerical examples, we consider two options αe and αh for each of the LF numerical

flux and the CFL condition. For example, (αCFL,h, αLF,e) indicates that αh is used in

the CFL condition and αe used in the LF numerical flux. Furthermore, we consider

moving mesh P k-DG with k = 1, 2, 3. We take the CFL number Ccfl as 0.3 for P 1-DG,

0.15 for P 2-DG, and 0.1 for P 3-DG.

The CFL condition such as (4.4) provides a selection strategy for time step-size

based on stability. This strategy is widely used in the DG computation of hyperbolic

conservation laws. On the other hand, it is common practice to use an error-based

time step-size selection strategy in the computation of ordinary differential equations

(e.g., see Hairer and Wanner [16]). It is worth studying how error-based time step-

size selection strategies fare in the DG computation of hyperbolic conservation laws.

Interestingly, Conde et al. [13] developed a family of embedded pairs of SSP Runge-

Kutta schemes and combined them with WENO5 (for spatial discretization on fixed

meshes) for the numerical solution of the one-dimensional Euler equations. Partic-

ularly, they compared the performance of the third-order explicit SSP embedded RK

(SSP-ERK(4,3)) pair with RK(3,2) of Bogacki and Shampine [4] and showed that both

pairs lead to stable computation while SSP-ERK(4,3) offers stronger stability. In this

section, we also present numerical results to demonstrate this idea of using error-based

time step-size selection strategies for the computation of hyperbolic conservation laws.

Our demonstration is more general than that of [13] in the sense that we consider

one- and two-dimensional conservation laws and DG discretization on adaptive mov-

ing meshes. We use SSP-ERK(4,3) of [13] (see its Butcher tableau in Table 1) and the
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Table 1: Butcher tableau for SSP ERK(4,3).
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1

2
1

2

1

2
1

1

6

1

6

1
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1

2

1

6

1

6

1

6

1

2
1

1

4

1

4

1

4

1

4
1

standard PI controller for time step-size selection [16], with the relative and absolute

tolerances chosen as 1 × 10−6 and 1 × 10−8, respectively. This selection strategy is

compared with that based on the CFL condition.

Example 4.1 (1D Burgers’ equation). We first consider Burgers’ equation in one di-

mension,

ut +

(

u2

2

)

x

= 0, x ∈ (0, 2) (4.5)

subject to the initial condition u(x, 0) = 1
2 + sin(πx) and periodic boundary conditions.

The final time is T = 1.

The mesh trajectories, solution, and time step-size obtained with the moving mesh

P k-DG method (k = 1, 2, 3) and N = 100 are shown in Fig. 1. Three combinations

of αe and αh are used: (αCFL,e, αLF,e), (αCFL,h, αLF,e), and (αCFL,h, αLF,h). They

all lead to stable computation and almost identical solutions and mesh trajectories.

A close examination on ∆t indicates that (αCFL,e, αLF,e) gives a slightly larger and

less oscillatory time step than those with (αCFL,h, αLF,e) and (αCFL,h, αLF,h). We

may attribute the former to the fact αe ≤ αh (cf. (4.4)). However, it is unclear to

the authors why (αCFL,h, αLF,e) and (αCFL,h, αLF,h), which appear to be more stable,

lead to more oscillatory ∆t. This feature is also observed in other examples presented

in this section except Example 4.5. The figures also show that the time step behaves

similar qualitatively and quantitatively for (αCFL,h, αLF,e) and (αCFL,h, αLF,h).

The mesh trajectories (N = 100) obtained with the P 1-DG method of ∆t and a PI-

controller time step-size selection strategy (denoted as ERK PI) are plotted in Fig. 2(a).

The solution and time step-size are obtained with the P 1-DG method and ERK PI and

(αCFL,e, αLF,e) step-size selection strategies are shown in Fig. 2(d) and Fig. 2(g), re-

spectively. The results of P 2-DG and P 3-DG are also shown in Fig. 2. From Fig. 2,

we see that both time-size selection strategies lead to stable computation and almost

identical solutions and mesh trajectories. ERK PI produces slightly larger time step-size

than (αCFL,e, αLF,e), and this is especially true for higher-order DG. To guarantee the
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(a) P 1-DG: mesh trajectories (b) P 2-DG: mesh trajectories (c) P 3-DG: mesh trajectories

(d) P 1-DG: solution u (e) P 2-DG: solution u (f) P 3-DG: solution u

(g) P 1-DG: ∆t (h) P 2-DG: ∆t (i) P 2-DG: ∆t

Figure 1: Example 4.1. The mesh trajectories, solution, and time step-size are obtained with the P k-DG
method (k = 1, 2, 3) and a moving mesh of N = 100.

stability, the CFL number and thus ∆t in the CFL condition decrease when k increases.

This is reflected in Fig. 2. On the other hand, ∆t selected by ERK PI does not seem

to have big changes when k increases. As a result, the difference in ∆t selected by

ERK PI and CFL condition becomes bigger as k increases. Note that ERK PI leads to

more oscillatory ∆t, which is consistent with observations made in the computation of

general stiff equations; e.g., see [16].

The time step-size obtained with N = 50, 100, 200 is shown in Fig. 3. The number of

time steps obtained with N = 50, 100, 200 is shown in Fig. 4. The number of time steps

appears to be a linear function of N for all cases. Interestingly, the slope of the straight

lines for CFL-based selection is significantly larger than that associated with ERK PI,
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(a) P 1-DG: mesh trajectories (b) P 2-DG: mesh trajectories (c) P 3-DG: mesh trajectories

(d) P 1-DG: solution u (e) P 2-DG: solution u (f) P 3-DG: solution u

(g) P 1-DG: ∆t (h) P 2-DG: ∆t (i) P 3-DG: ∆t

Figure 2: Example 4.1. The mesh trajectories, solution, and time step-size are obtained with the P k-DG
method (k = 1, 2, 3) and with ERK PI and CFL (αCFL,e, αLF,e) step-size selection strategies (N = 100).
The mesh trajectories and solutions are almost indistinguishable for both strategies.

and becomes larger as k increases. On the other hand, the lines associated with ERK PI

for k = 1, 2, 3 differ only slightly.

Example 4.2 (Sod shock tube problem for 1D Euler equations). We consider the Sod

problem of the Euler equations,

∂

∂t





ρ
ρu
E



+
∂

∂x





ρu
ρu2 + P
u(E + P )



 = 0, x ∈ (−5, 5), (4.6)
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(a) P 1-DG: (αCFL,e, αLF,e) (b) P 2-DG: (αCFL,e, αLF,e) (c) P 3-DG: (αCFL,e, αLF,e)

(d) P 1-DG: ERK PI (e) P 2-DG: ERK PI (f) P 3-DG: ERK PI

Figure 3: Example 4.1. The time step-size is obtained with the P k-DG method (k = 1, 2, 3) and the moving
meshes of N = 50, 100, 200, and with ERK PI and CFL (αCFL,e, αLF,e) time step-size selection strategies.

where ρ is the density, u is the velocity, E is the energy density, and P is the pressure.

The equation of the state is E = P/(γ − 1) + ρu2/2 with γ = 1.4. The initial conditions

are given by

(ρ, u, P ) =

{

(1, 0, 1), x ≤ 0,

(0.125, 0, 0.1), x > 0.
(4.7)

The computation is stopped at T = 2. The solution of the problem contains a shock

wave, a rarefaction, and a contact discontinuity.

The mesh trajectories, density, and time step-size obtained with the P k-DG method

(k = 1, 2, 3) and a moving mesh of N = 200 are shown in Fig. 5. We can see that the

mesh points are concentrated correctly around the shock wave, rarefaction, and contact

discontinuity. The computation is stable for all three choices of α. Similar observations

can be made for ∆t as in the previous example except for the case with P 2-DG where

(αCFL,h, αLF,e) leads to larger ∆t for 0.2 < t < 0.8 than (αCFL,e, αLF,e). To explain

this, we notice that different CFL conditions can lead to different ∆t, which can affect

the mesh adaptation and the time integration of the physical equations. These effects

do not seem significant in the previous example and in other cases in this example.

However, they are slightly more significant in this case. From Fig. 6, we can see that

(αCFL,h, αLF,e) results in a slightly larger minimum mesh spacing, which in turns gives

slightly larger ∆t.
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Figure 4: Example 4.1. The number of time steps is obtained with the P k-DG method (k = 1, 2, 3) and the
moving meshes of N = 50, 100, 200, and with ERK PI and CFL (αCFL,e, αLF,e) time step-size selection
strategies.

Once again, the results show that ∆t associated with (αCFL,h, αLF,e) and (αCFL,h,

αLF,h) has large oscillations than that associated with (αCFL,e, αLF,e).

It is worth mentioning that we have tried (αCFL,e, αLF,h), which violates (3.6),

in the computation with moving mesh P 1-DG. The computation stops at around t =
0.0011 when ∆t becomes machine-precision. Similar unstable computations have also

been observed for this choice for other P k elements.

The results obtained with ERK PI (SSP-ERK(4,3)) and CFL (αCFL,e, αLF,e) time step-

size selection strategies are shown in Fig. 7 for comparison purpose. As Example 4.1,

we can see that both selection strategies lead to stable computation and almost identical

solutions and mesh trajectories. ∆t associated with ERK PI is slightly larger than that

associated with CFL (αCFL,e, αLF,e), and this is especially true and the difference in ∆t
for both is larger for higher-order DG methods.

Example 4.3 (Lax problem for 1D Euler equations). In this example, we consider the

Lax problem of the Euler equations (4.6) with the following initial conditions:

(ρ, u, P ) =

{

(0.445, 0.698, 3.528), x ≤ 0,

(0.5, 0, 0.571), x > 0.
(4.8)

The final time is T = 1.3. The mesh trajectories, density, and time step-size ∆t obtained

with the P k-DG method (k = 1, 2, 3) and a moving mesh of N = 200 are shown in

Fig. 8. In this example (and following examples), we show results only for two choices

of α, (αCFL,e, αLF,e) and (αCFL,h, αLF,e), since (αCFL,h, αLF,e) and (αCFL,h, αLF,h)

produce almost identical results. The results show that the computation is stable and

∆t associated with (αCFL,e, αLF,e) is slightly larger and has small oscillations than that

associated with (αCFL,h, αLF,e).
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(a) P 1-DG: mesh trajectories (b) P 2-DG: mesh trajectories (c) P 3-DG: mesh trajectories

(d) P 1-DG: density ρ (e) P 2-DG: density ρ (f) P 3-DG: density ρ

(g) P 1-DG: ∆t (h) P 2-DG: ∆t (i) P 3-DG: ∆t

Figure 5: Example 4.2. The mesh trajectories, solution, and time step-size are obtained with the P k-DG
method (k = 1, 2, 3) and a moving mesh of N = 200.

(a) P 1-DG (b) P 2-DG (c) P 3-DG

Figure 6: Example 4.2. The evolution of the minimal mesh spacing min(∆x) with the time obtained with
the P k-DG method (k = 1, 2, 3) and a moving mesh of N = 200.
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(a) P 1-DG: mesh trajectories (b) P 2-DG: mesh trajectories (c) P 3-DG: mesh trajectories

(d) P 1-DG: density ρ (e) P 2-DG: density ρ (f) P 3-DG: density ρ

(g) P 1-DG: ∆t (h) P 2-DG: ∆t (i) P 3-DG: ∆t

Figure 7: Example 4.2. The mesh trajectories, solution, and time step-size are obtained with the P k-DG
method (k = 1, 2, 3) and with ERK PI and CFL (αCFL,e, αLF,e) step-size selection strategies (N = 200).
The mesh trajectories and solutions are almost indistinguishable for both strategies.

Example 4.4 (2D Burgers’ equation). We now consider Burgers’ equation in two di-

mensions,

ut +

(

u2

2

)

x

+

(

u2

2

)

y

= 0, (x, y) ∈ (0, 2) × (0, 2) (4.9)

subject to the initial condition u(x, y, 0) = e(−c(x2+y2)), c = − ln(10−16) and periodic

boundary conditions. The final time is T = 2.

The mesh, solution, and time step-size (associated with three selection strategies,

ERK PI, CFL (αCFL,e, αLF,e), and CFL (αCFL,h, αLF,e)) obtained with the moving mesh
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(a) P 1-DG: mesh trajectories (b) P 2-DG: mesh trajectories (c) P 3-DG: mesh trajectories

(d) P 1-DG: density ρ (e) P 2-DG: density ρ (f) P 3-DG: density ρ

(g) P 1-DG: ∆t (h) P 2-DG: ∆t (i) P 3-DG: ∆t

Figure 8: Example 4.3. The mesh trajectories, solution, and time step-size are obtained with the P k-DG
method (k = 1, 2, 3) and a moving mesh of N = 200.

P k-DG method (k = 1, 2, 3) and N = 30 × 30 × 4 are plotted in Fig. 9. The results

show that the computation is stable and the mesh points are concentrated in regions

with sharp jumps in the solution. Moreover, ∆t associated with (αCFL,e, αLF,e) is

larger and has smaller oscillations than that associated with (αCFL,h, αLF,e) while ∆t
associated with ERK PI is significantly larger than that associated with (αCFL,e, αLF,e)

(and this is especially true for higher-order DG). The time step-size for the meshes with

N = 10× 10× 4, 20× 20× 4, and 30× 30× 4, is shown in Fig. 10. The number of time

steps obtained with N = 10×10×4, 20×20×4, and 30×30×4, is shown in Fig. 11. The

number of time steps for CFL-based time-size selection is significantly larger than that

associated with ERK PI. Moreover, it increases more significantly as N increases. On the
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(a) P 1-DG: mesh (b) P 2-DG: mesh (c) P 3-DG: mesh

(d) P 1-DG: solution u (e) P 2-DG: solution u (f) P 3-DG: solution u

(g) P 1-DG: ∆t (h) P 2-DG: ∆t (i) P 3-DG: ∆t

Figure 9: Example 4.4. The time step-size ∆t results from three selection strategies, ERK PI, CFL
(αCFL,h,αLF,e), and CFL (αCFL,e,αLF,e). The P 1, P 2, and P 3-DG method with a moving mesh of
N = 30× 30× 4 is used.

other hand, the number of time steps associated with ERK PI increases almost linearly

and more mildly as N increases and does not have much difference for k = 1, 2, 3.

Example 4.5 (Riemann problem for the 2D Euler equations). We consider a two-

dimensional Riemann problem of the Euler equations

∂
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∂
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ρuv

ρv2 + P
u(E + P )









= 0. (4.10)
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(a) P 1-DG: (αCFL,e, αLF,e) (b) P 2-DG: (αCFL,e, αLF,e) (c) P 3-DG: (αCFL,e, αLF,e)

(d) P 1-DG: ERK PI (e) P 2-DG: ERK PI (f) P 3-DG: ERK PI

Figure 10: Example 4.4. The time step-size results from ERK PI and CFL (αCFL,e, αLF,e) strategies for
the P k-DG method (k = 1, 2, 3) and the moving meshes of N = 10× 10× 4, 20× 20× 4, and 30× 30× 4.

The computational domain is taken as [0, 1] × [0, 1], and the initial conditions are

(ρ, u, v, P )(x, y, 0) =























(1.1, 0, 0, 1.1), x ≥ 0.5, y ≥ 0.5,

(0.5065, 0.8939, 0, 0.35), x < 0.5, y ≥ 0.5,

(1.1, 0.8939, 0.8939, 1.1), x < 0.5, y < 0.5,

(0.5065, 0, 0.8939, 0.35), x ≥ 0.5, y < 0.5.

(4.11)

The energy density E and the pressure P are related by the equation of the state E =
P/(γ − 1) + ρ(u2 + v2)/2 with γ = 1.4. The problem contains complicated interactions

between four initial shocks. This problem has been widely used as a benchmark test

for shock capturing methods due to the challenge in resolving the complicated flow

features that emerge from those interactions. The final time for the computation is

taken as T = 0.25.

The mesh and density at the final time, and time step-size obtained with the mov-

ing mesh P k-DG method (k = 1, 2, 3) and N = 50 × 50 × 4 are shown in Fig. 12.

Like the previous examples, the computation is stable and the mesh points are concen-

trated correctly around the shocks. Moreover, ∆t associated with (αCFL,e, αLF,e) is

slightly larger than that associated with (αCFL,h, αLF,e). However, unlike the previous

examples, ∆t has large oscillations before t < 0.1 for both cases.
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Figure 11: Example 4.4. The number of time step-sizes results from ERK PI and CFL (αCFL,e, αLF,e)
strategies for the P k-DG method (k = 1, 2, 3) and the moving meshes of N = 10 × 10 × 4, 20 × 20 × 4,
and 30× 30× 4.

Example 4.6 (Isentropic vortex convection problem for the 2D Euler equations). We

consider the isentropic vortex problem of Shu [33] for the two-dimensional compress-

ible Euler equations (4.10). The mean flow is ρ = P = u = v = 1. We add to

this mean flow an isentropic vortex perturbations centered at (x0, y0) in (u, v) and the

temperature (T = P/ρ) and no perturbation in the entropy S = Pρ−γ , i.e.,

(δu, δv) =
ε

2π
e0.5(1−r2)(−ȳ, x̄), δT = −

(γ − 1)ε2

8γπ2
e1−r2 , (4.12)

where (x̄, ȳ) = (x−x0, y− y0), r
2 = x2+ y2, and the vortex strength ε = 5. This means

that the initial conditions are

ρ(x, y, 0) =
(

1−
(γ − 1)ε2

8γπ2
e1−r2

) 1

γ−1

, P (x, y, 0) = ργ(x, y, 0),

u(x, y, 0) = 1−
ε

2π
e0.5(1−r2)ȳ, v(x, y, 0) = 1 +

ε

2π
e0.5(1−r2)x̄.

The computational domain is taken as (0, 10)×(0, 10) and (x0, y0) = (5, 5). The periodic

boundary conditions are used for all unknown variables. The energy density E and the

pressure P are related by the equation of the state E = P/(γ − 1) + ρ(u2 + v2)/2 with

γ = 1.4. The final time for the computation is taken as T = 1.

We use the density ρ only to compute the metric tensor in the MMPDE method since

entropy S = ln(Pρ−γ) is constant for this example. The mesh (N = 50 × 50 × 4), the

contours of density and momenta at the final time obtained with P 3-DG method and

CFL (αCFL,h, αLF,e) step-size selection strategy are shown in Fig. 13. For comparison

purpose, we plot ∆t for three time step-size strategies, ERK PI, CFL (αCFL,e, αLF,e),

and CFL (αCFL,h, αLF,e) in Fig. 14. Like previous examples, the computation is stable.

Moreover, ∆t associated with (αCFL,e, αLF,e) is slightly larger than that associated

with (αCFL,h, αLF,e), and ∆t associated with ERK PI is significantly larger than that

associated with (αCFL,e, αLF,e).
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(a) P 1-DG: mesh (b) P 2-DG: mesh (c) P 3-DG: mesh

(d) P 1-DG: density ρ (e) P 2-DG: density ρ (f) P 3-DG: density ρ

(g) P 1-DG: ∆t (h) P 2-DG: ∆t (i) P 3-DG: ∆t

Figure 12: Example 4.5. The mesh, solution, and time step-size are obtained with the P k-DG method
(k = 1, 2, 3) and a moving mesh of N = 50× 50× 4.

5. Conclusions

In the previous sections we have studied the stability of a DG solution of conserva-

tion laws on adaptive moving meshes. Particularly, we have obtained a CFL condition

(3.2) for moving mesh P 0-DG for linear scalar conservation laws. The condition shows

that the allowed maximum time step depends on the coupling between α on any edge

and the element height associated with the edge, where α (cf. 2.8) is the maximum

absolute value of the eigenvalue of the Jacobian matrix of the flux (F − UẊ) · n with

respect to U and the element height is the distance between the edge and the vertex

opposite to the edge. The condition justifies a known intuition that time step can be



136 M. Zhang, W. Huang and J. Qiu

Mesh ρ

ρu ρv

Figure 13: Example 4.6. The mesh (N = 50× 50× 4) and contours of the solutions at t = 1 are obtained
with the moving mesh P 3-DG method and CFL (αCFL,e, αLF,e) time step-size selection strategy.

(a) P 1-DG (b) P 2-DG (c) P 3-DG

Figure 14: Example 4.6. The time step-size ∆t results from with three selection strategies, ERK PI, CFL
(αCFL,e, αLF,e), and CFL (αCFL,h, αLF,e). The P 1, P 2, and P 3-DG method with a moving mesh of
N = 50× 50× 4 is used.

increased if the mesh velocity is chosen to minimize (F −UẊ). On the other hand, if α
does not change significantly over the domain, it is expected that the allowed maximum

time step is determined mostly by the minimum element height of the mesh.

The stability analysis also shows that different choices of α can be used in the LF

numerical flux and the CFL condition but a relation (3.6) should be satisfied for L1

stability. Two common choices for α are αe defined in (2.9) and αh defined in (2.10).
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Based on (3.2) and CFL conditions for DG method on fixed meshes, we have pro-

posed to choose the time step according to (4.4) (with the same or a different choice

of α) for moving mesh P k-DG (k = 1, 2, 3) for general conservation laws. This condi-

tion reduces to the one on fixed meshes when α is taken as αh.

Numerical examples have been presented with mesh adaptation by the MMPDE

method for Burgers’ and Euler equations in one and two dimensions. Numerical results

show that (4.4) with αCFL = αe or αCFL = αh lead to stable computation. Moreover,

(αCFL,e, αLF,e) typically gives larger ∆t than (αCFL,h, αLF,e) and (αCFL,h, αLF,h). All

but one example also show that ∆t with (αCFL,e, αLF,e) has smaller oscillations.

In this work, we have also studied an error-based time step-size selection strategy

with the explicit SSP embedded Runge-Kutta pairs for DG computation of hyperbolic

conservation laws on adaptive moving meshes. Numerical examples show that the

error-based strategy can lead to stable computation and result in larger time step-size

especially for higher-order DG than the CFL based selection strategy. It should be

pointed out that we have not considered moving mesh strategies such as Lagrangian-

type methods to minimize α and increase ∆t in the current work. Moreover, the error-

based time step-size selection strategy seems to result in larger time step-size than CFL

condition. These are interesting topics that may deserve more studies in near future.
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