
Applied Numerical Mathematics 61 (2011) 554–580
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

RKDG methods with WENO type limiters and conservative interfacial
procedure for one-dimensional compressible multi-medium flow
simulations ✩

Jun Zhu a,b, Jianxian Qiu c,d, Tiegang Liu e, Boo Cheong Khoo f,a,∗
a Singapore–MIT Alliance, 4 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore
b College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, PR China
c Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, PR China
d School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
e LMIB and School of Mathematics and System Sciences, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
f Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 August 2010
Received in revised form 6 December 2010
Accepted 10 December 2010
Available online 21 December 2010

Keywords:
RKDG method
WENO and HWENO
HLLC flux
KXRCF indicator
Multi-medium flow

In this paper, we continue on studying the Runge–Kutta discontinuous Galerkin (RKDG)
methods to solve compressible multi-medium flow with conservative treatment of the
moving material interface. Comparing with the paper by J. Qiu, T.G. Liu and B.C. Khoo
[J. Comput. Phys. 222 (2007) 353–373], we adopt the HLLC flux instead of Lax-Friedrichs
numerical flux, the finite volume weighted essentially nonoscillatory (WENO) and Hermite
WENO (HWENO) reconstructions as limiter instead of TVB limiter for RKDG. The HLLC flux
is based on the approximate Riemann solver with little numerical viscosity and can resolve
the contact discontinuity and shear wave very well. For limiter procedure, first we use
the KXRCF indicator to identify the troubled cell, then apply WENO or HWENO method
to reconstruct the polynomial in the troubled cell, while maintaining the cell average.
This limiter procedure is more accurate and less problem dependent than the TVB limiter.
Numerical results in one dimension for multi-medium flows such as gas–gas and gas–water
are provided to illustrate the capability of these procedures.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we continue on studying the Runge–Kutta discontinuous Galerkin (RKDG) methods to solve compressible
two-medium flow with conservative treatment of the moving material interface. In general, algorithms proposed for solving
two-medium compressible flow consist of two parts. One is the method for solving the single-medium flow and the other
is to treat the interface of the two fluids. In [23], Qiu et al. applied RKDG methods to solve the single-medium flow
and developed a conservative treatment of the moving material interfaces for compressible two-medium flow. The RKDG
methods have been widely applied and performed very well to solve the single-medium compressible flow for past 20 years.
The first discontinuous Galerkin (DG) method was introduced by Reed and Hill [30]. A major development of the DG method
was carried out by Cockburn et al. in a series of papers [8–12], in which they established a framework to solve for the
nonlinear time dependent hyperbolic conservation laws. They employed the explicit, nonlinearly stable high-order Runge–
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Kutta time discretizations [33] and DG discretization in space with exact or approximate Riemann solvers as interface fluxes
and total variation bounded (TVB) limiter [31] to achieve nonoscillatory properties for strong shocks. These schemes are
termed RKDG methods.

There are two important components of RKDG methods for solving the conservation laws. One is the nonlinear limiter,
which is applied to detect discontinuities and control spurious oscillations near discontinuities. The other is the numer-
ical flux, based on exact or approximate Riemann solvers, which are borrowed from finite difference and finite volume
methodologies.

For the nonlinear limiters, there are many limiters presented in the literature, such as the minmod type TVB limiter
[8–12], which is a slope limiter using a technique borrowed from the finite volume methodology; the moment based limiter
[3] and an improved moment limiter [5], which are specifically designed for DG methods and work on the moments of the
numerical solution. Such limiters may be used to control spurious oscillations and maintain the proper order of accuracy in
the smooth regions at the same time. But these purposes are usually difficult to achieve in a robust way. And these limiters
may degrade in numerical accuracy when mistakenly used in the smooth regions of the solution. On the other hand,
the weighted essentially nonoscillatory (WENO) or Hermite WENO (HWENO) method [14,19,32,36] has been developed in
the context of finite volume and finite difference frameworks to successfully achieve both uniform high-order accuracy
and sharp, essentially nonoscillatory shock transitions. The WENO or HWENO methodology is more robust than the slope
limiter methodology, especially for the high-order schemes. Thus it would be natural to try to use the WENO or HWENO
methodology as limiters for the discontinuous Galerkin methods. Recently, Qiu and his colleagues [25–27,37,38] developed
WENO [14,19,32] and HWENO [36] type methodology as limiters for RKDG methods with the following framework adopted:

Step 1: First, identify the “troubled cells”, namely those cells which might need the limiting procedure.
Step 2: Then, replace the solution polynomials in those “troubled cells” by reconstructed polynomials using the WENO

or HWENO reconstruction methodology which maintains the original cell averages (conservation), and retains the same
orders of accuracy as before, but are much less oscillatory.

This technique works quite well when applied to computing the single-medium compressible problems in one and two
dimensions. In [28], Qiu and Shu, had systematically studied and compared a few different troubled-cell indicators for the
RKDG methods using WENO methodology as limiters. They showed that the KXRCF indicator by Krivodonova et al. [17]
was a suitable candidate for applications of the RKDG methods using WENO reconstructions, which is designed based on a
strong superconvergence at the outflow boundary of each element in smooth regions for the DG method.

For the numerical flux, in [29], Qiu et al. have systematically studied and compared a few different fluxes for the RKDG
methods. The conclusion based on extensive one and two-dimensional simulations on the hyperbolic systems of Euler
equations indicates that the HLLC flux [35] might be a good choice as flux for the RKDG method when all factors such as
the cost of CPU time, numerical errors and resolution of discontinuities in the solution are considered.

The treatment of the moving material interfaces and their immediate vicinities is a relatively dominant difficulty for
simulating the compressible multi-medium flow. There can arise severe nonphysical oscillations in the vicinity of the mate-
rial interface especially in the presence of shock or large density ratio even if the well established numerical methods for
the single-medium flow are applied directly to the multi-medium flow. There were several works on how to deal with this
difficulty [1,2,4,7,15,18,21]. In the fairly recent times, the ghost fluid method (GFM) [13] has provided a flexible way to treat
the material interface reasonably well although nonconservatively. It is easy to solve for multi-dimensional cases. Since only
single fluid flux formulations are required for the GFM, the proposed method can be employed directly for any two fluids of
vastly different equation of states [6,24]. There are subsequent variations of the original GFM with other applications [2,16].
On the other hand, it is precisely the manner of treatment of the single-medium across the material interface by GFM which
may cause numerical inaccuracy especially when there is a strong shock wave interaction with the material interface; this
had led to the modified GFM [20,22]. In [23], Qiu et al. developed the DG technique to treat the moving material interfaces
conservatively.

In this paper, following up the work of [23], we continue our study of the RKDG methods to solve compressible two-
medium flow with conservative treatment of the moving material interface. Comparing with the paper [23], we adopt the
HLLC flux instead of Lax-Friedrichs numerical flux, the finite volume weighted essentially nonoscillatory (WENO) and Her-
mite WENO (HWENO) reconstructions as limiter instead of TVB limiter for RKDG. The HLLC flux is based on the approximate
Riemann solver with little numerical viscosity and can resolve the contact discontinuity and shear wave very well. For lim-
iter procedure, first we use the KXRCF indicator to identify the troubled cell, then apply WENO or HWENO method to
reconstruct the polynomial in the troubled cell, while maintaining the cell average. This limiter procedure is more accurate
and less problem dependent than the TVB limiter.

The focus of the paper is on the development of limiter procedure on the interface of two fluids. We present the detailed
procedures for the WENO and HWENO reconstructions for the “troubled cells” located at different positions with respect to
the material interface: when the “troubled cells” are far away from the material interface and the reconstructions’ stencils
do not contain the interfacial cells, the formulations are unchanged like for the single-medium computations (we shall
define them as regular cells); when the “troubled cells” are the interfacial cells or the reconstructions’ stencils involve the
interfacial cells, the formulations are changed and we first solve for the Riemann problem at the material interface, then
employ the isobaric fix [13] to get the variables of the other material interface side cells. In doing so, we have the WENO3-
RKDG2, WENO5-RKDG3 and HWENO5-RKDG3 schemes in conjunction with the conservative material interface treatment
[23] for multi-medium flow simulations in one dimension. The organization of this paper is as follows. In Section 2, we
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review and construct the finite volume WENO/HWENO reconstructions as limiters for the RKDG methods, which include the
reconstructions for the regular cells and interfacial cells. Extensive numerical tests for the gas–gas and gas–water problems
are found in Section 3 to verify these procedures. Concluding remarks are given in Section 4. In Appendices A–D, we give
the procedures for the higher-order WENO5/HWENO5 type reconstructions as applied to the regular cell and interfacial cell
that are omitted in Section 2.

2. WENO and HWENO reconstructions as limiters for the discontinuous Galerkin methods

In this section, we consider the one-dimensional hyperbolic conservation laws:

ut + f (u)x = ∂

∂t

⎛
⎝ ρ

ρν

E

⎞
⎠ + ∂

∂x

⎛
⎝ ρν

ρν2 + p

ν(E + p)

⎞
⎠ = 0. (2.1)

Here, ρ is the density, ν is the velocity, p is the pressure and E (total energy) ≡ ρe + 1
2 ρν2, where e is the specific internal

energy per unit mass. For closure of the system, the equation of state (EOS) is required. The γ -law used for gases is given
as:

ρe = p

γ − 1
(2.2)

and Tait EOS used for the water medium [13,21] is expressed as:

ρe = p + N B̄

N − 1
, (2.3)

where B̄ = B − A, N = 7.15, A = 105 Pa and B = 3.31 × 108 Pa.

2.1. WENO and HWENO reconstructions as limiters for application of RKDG methods to regular cell

For simplicity of presentation, we shall assume that the mesh is uniformly distributed into several cells I i =
[xi−1/2, xi+1/2], with the cell size xi+1/2 − xi−1/2 = �x = h, cell center xi = 1

2 (xi+1/2 + xi−1/2). We denote the cell average
of u as: ūi(t) = 1

h

∫
Ii

u(x, t)dx. The DG solution as well as the test function space is given by V k
h = {p: p|Ii ∈ Pk(Ii)} and is

the polynomial spaces of degree at most k on the cell Ii . We adopt a local orthogonal basis over Ii , {v(i)
l (x)(l = 0,1, . . . ,k)},

such as:

v(i)
0 (x) = 1, v(i)

1 (x) = x − xi

h
, v(i)

2 (x) =
(

x − xi

h

)2

− 1

12
, . . . .

Then the numerical solution uh(x, t) in the space V k
h can be written as uh(x, t) = ∑k

l=0 u(l)
i (t)v(i)

l (x), for x ∈ Ii and the

degrees of freedom u(l)
i (t) are the moments defined by u(l)

i (t) = 1∫
Ii
(v(i)

l (x))2 dx

∫
Ii

uh(x, t)v(i)
l (x)dx (l = 0, . . . ,k). In order to

determine the approximate solution, we evolve the degrees of freedom u(l)
i (t):

d

dt
u(l)

i (t) = − 1∫
Ii
(v(i)

l (x))2 dx

(
−

∫
Ii

f
(
uh(x, t)

) d

dx
v(i)

l (x)dx + f̂
(
u−

i+1/2, u+
i+1/2

)
v(i)

l (xi+1/2)

− f̂
(
u−

i−1/2, u+
i−1/2

)
v(i)

l (xi−1/2)

)
(l = 0, . . . ,k) (2.4)

where u±
i+1/2 = uh(x±

i+1/2, t) are the left and right limits of the discontinuous solution uh(x, t) at the cell interface xi+1/2,

f̂ (u−, u+) is a monotone flux for the scalar case and an exact or approximate Riemann solver for the system. In this
paper, we use the HLLC flux (a modification of the HLL flux) [34,35]. The HLLC flux is based on the approximate Riemann
solver with only three constant states separated by two waves while resolving the contact and shear waves. For the Euler
equations (2.1), it is given as follows:

f̂
(
u−, u+) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (u−) if 0 � s−,

f (u−) + s−(u∗− − u−) if s− � 0 � s∗,
f (u+) + s+(u∗+ − u+) if s∗ � 0 � s+,

f (u+) if s+ � 0,

(2.5)

where, for the sound speed c = √
γ p/ρ and K = ±,
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u∗ K = ρK sK − νK

sK − s∗

⎛
⎝ 1

s∗

E K /ρK + (s∗ − νK )(s∗ + pK /(ρK (sK − νK )))

⎞
⎠ , (2.6)

qK =
{

1 if p∗ � pK ,

(1 + γ +1
2γ (p∗/pK − 1))

1
2 if p∗ > pK ,

(2.7)

with s− = ν− − c−q− , s∗ = ν∗ , s+ = ν+ + c+q+ , p∗ = 1
2 (p− + p+) − 1

2 (ν+ − ν−)ρ̄ c̄, ν∗ = 1
2 (ν− + ν+) − p+−p−

2ρ̄c̄ , ρ̄ =
1
2 (ρ− + ρ+) and c̄ = 1

2 (c− + c+).

For the simplicity, we shall denote u(∗)
i = u(∗)

i (t) in the following text. The limiter adopted here is described below in
some details, as it is a shock detection technique by Krivodonova, Xin, Remacle, Chevaugeon and Flaherty (KXRCF) [17] to
detect the “troubled cells”. In this paper, we use density and energy as detection conservative variables. Next, we partition
the boundary of the cell Ii into two portions ∂ I−i and ∂ I+i , where the flow is into (ν · �n < 0, �n is the normal vector to ∂ Ii )
or out of (ν · �n > 0) Ii , respectively. Then the cell Ii is identified as a “troubled cell”, where:

| ∫
∂ I−i

(uh|Ii − uh|Ini
)ds|

h
k+1

2 |∂ I−i |‖uh|Ii ‖
> 1. (2.8)

Here, Ini is the neighbor of Ii sharing the boundary ∂ I−i and the norm is based on an element average in one dimension.
For the “troubled cells”, we reconstruct the polynomial solutions while retaining their cell averages.

For the second-order k = 1 case, we summarize the procedure for reconstructing the first moments u(1)
i for “troubled

cells” Ii by using WENO3.

2.1.1. WENO3 as limiter for application of RKDG2 (WENO3-RKDG2) to regular cell

Step 1.1. Given the small stencils S1 = {Ii−1, Ii}, S2 = {Ii, Ii+1} and the bigger stencil Γ = S1 ∪ S2, we construct the linear
reconstruction polynomials pn(x) ∈ span{1, (x − xi)/h} (n = 1,2) and a second degree reconstruction polynomial q(x) ∈
span{1, (x − xi)/h, (x − xi)

2/h2}, such that:

1

h

∫
Ii+ j

p1(x)dx = u(0)
i+ j, j = −1,0, (2.9)

1

h

∫
Ii+ j

p2(x)dx = u(0)
i+ j, j = 0,1, (2.10)

1

h

∫
Ii+ j

q(x)dx = u(0)
i+ j, j = −1,0,1. (2.11)

At the point x
i+

√
3

6
, we have:

p1(x
i+

√
3

6
) = (−√

3u(0)
i−1 + (6 + √

3 )u(0)
i

)
/6, (2.12)

p2(x
i+

√
3

6
) = (

(6 − √
3 )u(0)

i + √
3u(0)

i+1

)
/6. (2.13)

At the point x
i−

√
3

6
, we have:

p1(x
i−

√
3

6
) = (√

3u(0)
i−1 + (6 − √

3 )u(0)
i

)
/6, (2.14)

p2(x
i−

√
3

6
) = (

(6 + √
3 )u(0)

i − √
3u(0)

i+1

)
/6. (2.15)

Step 1.2. We find the combination coefficients, also called linear weights, denoted by γ1, γ2, which satisfy: q(xG) =∑2
j=1 γ j p j(xG) where xG is a Gaussian quadrature point. In this paper, we use the “two-point” quadrature points:

x
i±

√
3

6
= xi ±

√
3

6 h. Different quadrature points correspond to different linear weights. For xG = x
i+

√
3

6
, the associated lin-

ear weights are:

γ1 = 1/2, γ2 = 1/2. (2.16)
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For xG = x
i−

√
3

6
, the associated linear weights are:

γ1 = 1/2, γ2 = 1/2. (2.17)

Step 1.3. We compute the smoothness indicators βn (n = 1, . . . ,k + 1) for stencils Sn (n = 1, . . . ,k + 1). The smoothness
indicators are the same for the reconstruction of all Gaussian points in the same cell, thus significantly reducing the com-
putational cost. As in [14], we used the following smoothness indicators:

βn =
k∑

α=1

∫
Ii

h2α−1
(

dα pn(x)

dxα

)2

dx (n = 1, . . . ,k + 1). (2.18)

Step 1.4. We compute the nonlinear weights based on the smoothness indicators:

ωn = ω̄n∑k+1
l=1 ω̄l

, ω̄n = γn∑k+1
l=1 (10−6 + βl)

2
(n = 1, . . . ,k + 1) (2.19)

where γn (n = 1, . . . ,k + 1) are the linear weights determined above. Then the final WENO3 approximations are given by:

u(xG , t) ≈
k+1∑
n=1

ωn pn(xG). (2.20)

Step 1.5. We obtain the reconstructed moments based on the reconstructed point values u(xG , t) at the Gaussian quadrature
points xG and a numerical integration:

u(l)
i (t) ≈ 1∑

G σG(v(i)
l (xG))2

∑
G

σG u(xG , t)v(i)
l (xG) (l = 1). (2.21)

Here σG is the Gaussian quadrature weight for the point xG . The polynomial solution in this cell Ii is then obtained by
uh(x, t) = ∑1

l=0 u(l)
i (t)v(i)

l (x), for x ∈ Ii with the reconstructed moment u(l)
i (t) (l = 1) and the original cell average u(0)

i (t).

Step 1.6. The semidiscrete scheme is then discretized in time by a TVD Runge–Kutta method [33]. For example, the third-
order version:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)),

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)).

(2.22)

Remark. In this paper, the reconstruction is performed after each inner stage of the TVD Runge–Kutta method. We define
the time-step size �t = C F L∗h

max(ν)+c for all the examples.

For the third-order k = 2 case, we reconstruct the first and second moments u(1)
i and u(2)

i for “troubled cells” Ii using
the WENO5 or HWENO5 in [14,25–27,32], which are given in detail in Appendices A–D.

2.2. WENO and HWENO reconstructions as limiters for application of RKDG methods to interfacial cell

We use the level set method [13,23] to compute the location of the interface x∗(tn+1) at t = tn+1 based on the data at
t = tn . Let x∗(tn) ∈ Ii , then we evolve (2.4) for Fluid I from l = 1 to i −2 and for Fluid II from l = i +2 to the end, respectively.
And we also merge the interfacial cells and get two new cells: Ī i−1 = Ii−1 ∪ [xi− 1

2
, x∗(tn)], Ī i+1 = [x∗(tn), xi+ 1

2
] ∪ Ii+1, and

the new moments are denoted by ū(∗)∗ (tn) and ξ = x∗(tn)−xi
h ∈ [− 1

2 , 1
2 ]. The computation for the cells next to the interface

was described in details in [23]. We construct the DG methods for Fluid I over the cell Ī i−1 and Fluid II over the cell Ī i+1
by the formula:
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Fig. 2.1. Interfacial cell diagram.

d

dt

x∗(t)∫
xi−3/2

u(x, t)v(i)
l (x)dx = −

(
f
(
u
(
x∗(t), t

)) − dx∗(t)
dt

u
(
x∗(t), t

))
v(i)

l

(
x∗(t)

)

+ f
(
u(xi−3/2, t)

)
v(i)

l (xi−3/2) +
x∗(t)∫

xi−3/2

f
(
u(x, t)

)dv(i)
l (x)

dx
dx (l = 0, . . . ,k), (2.23)

d

dt

xi+3/2∫
x∗(t)

u(x, t)v(i)
l (x)dx =

(
f
(
u
(
x∗(t), t

)) − dx∗(t)
dt

u
(
x∗(t), t

))
v(i)

l

(
x∗(t)

)

− f
(
u(xi+3/2, t)

)
v(i)

l (xi+3/2) +
xi+3/2∫

x∗(t)

f
(
u(x, t)

)dv(i)
l (x)

dx
dx (l = 0, . . . ,k). (2.24)

We define the base functions {v(i)
l (x)} as continuous over the cell Ī i−1 and Ī i+1, but cannot maintain the orthogonal prop-

erty. And these can be written as uh
I (x, t) = ∑k

j=0 u( j)
I (t)v(i)

j (x) and uh
II(x, t) = ∑k

j=0 u( j)
II (t)v(i)

j (x). Then we discretize (2.23)
and (2.24) as:

dū(l)
I (t)

dt
= − f ∗(uI

(
x∗(t), t

))
v(i)

l

(
x∗(t)

) + f
(
uh

I (xi−3/2, t)
)

v(i)
l (xi−3/2) +

x∗(t)∫
xi−3/2

f
(
uh

I (x, t)
)dv(i)

l (x)

dx
dx (l = 0, . . . ,k),

(2.25)

dū(l)
II (t)

dt
= f ∗(uII

(
x∗(t), t

))
v(i)

l

(
x∗(t)

) − f
(
uh

II(xi+3/2, t)
)

v(i)
l (xi+3/2) +

xi+3/2∫
x∗(t)

f
(
uh

II(x, t)
)dv(i)

l (x)

dx
dx (l = 0, . . . ,k),

(2.26)

where ū(l)
I (t) = ∫ x∗(t)

xi−3/2
uh

I (x, t)v(i)
l (x)dx, ū(l)

II (t) = ∫ xi+3/2
x∗(t) uh

II(x, t)v(i)
l (x)dx and f ∗(u(x∗(t), t)) = f (u(x∗(t), t)) − dx∗(t)

dt u(x∗(t), t).

These ODE systems can be solved by using (2.22). The detailed discussion pertaining to the right-hand sides of (2.25) and
(2.26) can be found in [23].

Here we shall emphasize on the WENO type reconstructions for the “troubled cells”. As shown in Fig. 2.1, we only present
the formulae at the Gaussian points and associated linear weights and omit the smoothness indicators and nonlinear weights
equations which are analogous to the regular cell to simplify the main procedures for the WENO type reconstructions.

2.2.1. WENO3 as limiter for application of RKDG2 (WENO3-RKDG2) to interfacial cell
Below, we shall consider the different cases where the “troubled cell” is located and set x∗(t) to be x∗ .

Step 2.1.1. Here, Ii−2 is the “troubled cell”. Given the small stencils S1 = {Ii−3, Ii−2}, S2 = {Ii−2, Ī i−1} and the bigger stencil
Γ = S1 ∪ S2, we construct the linear reconstruction polynomials pn(x) ∈ span{1, (x − xi−2)/h} (n = 1,2) and a second degree
reconstruction polynomial q(x) ∈ span{1, (x − xi−2)/h, (x − xi−2)

2/h2}, such that:

1

h

∫
Ii+ j

p1(x)dx = u(0)
i+ j, j = −3,−2, (2.27)

1

h

∫
I

p2(x)dx = u(0)
i+ j, j = −2, (2.28)
i+ j
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1

x∗ − xi−1− 1
2

∫
Ī i+ j

p2(x)dx = ū(0)
i+ j, j = −1, (2.29)

1

h

∫
Ii+ j

q(x)dx = u(0)
i+ j, j = −3,−2, (2.30)

1

x∗ − xi−1− 1
2

∫
Ī i+ j

q(x)dx = ū(0)
i+ j, j = −1. (2.31)

At the point x
i−2+

√
3

6
, we have:

p1(x
i−2+

√
3

6
) = (−√

3u(0)
i−3 + (6 + √

3 )u(0)
i−2

)
/6, (2.32)

p2(x
i−2+

√
3

6
) = (

2
√

3ū(0)
i−1 + u(0)

i−2(15 − 2
√

3 + 6ξ)
)
/(15 + 6ξ). (2.33)

At the point x
i−2−

√
3

6
, we have:

p1(x
i−2−

√
3

6
) = (√

3u(0)
i−3 + (6 − √

3 )u(0)
i−2

)
/6, (2.34)

p2(x
i−2−

√
3

6
) = (−2

√
3ū(0)

i−1 + u(0)
i−2(15 + 2

√
3 + 6ξ)

)
/(15 + 6ξ). (2.35)

Step 2.1.2. Next, we find the combination coefficients. For xG = x
i−2+

√
3

6
, the associated linear weights are:

γ1 = (4 + 2ξ)/(7 + 2ξ), γ2 = 3/(7 + 2ξ). (2.36)

For xG = x
i−2−

√
3

6
, the associated linear weights are:

γ1 = (4 + 2ξ)/(7 + 2ξ), γ2 = 3/(7 + 2ξ). (2.37)

Step 2.2.1. Here, Ī i−1 is the “troubled cell”. Given the small stencils S1 = {Ii−2, Ī i−1}, S2 = { Ī i−1, Ī i+1} and the bigger stencil
Γ = S1 ∪ S2, we construct the linear reconstruction polynomials pn(x) ∈ span{1, (x− 1

2 (x∗+xi−1− 1
2
))/(x∗ −xi−1− 1

2
)} (n = 1,2)

and a second degree reconstruction polynomial q(x) ∈ span{1, (x− 1
2 (x∗ +xi−1− 1

2
))/(x∗ −xi−1− 1

2
), (x− 1

2 (x∗ +xi−1− 1
2
))2/(x∗ −

xi−1− 1
2
)2}, such that:

1

h

∫
Ii+ j

p1(x)dx = u(0)
i+ j, j = −2, (2.38)

1

x∗ − xi−1− 1
2

∫
Ī i+ j

p1(x)dx = ū(0)
i+ j, j = −1, (2.39)

1

x∗ − xi−1− 1
2

∫
Ī i+ j

p2(x)dx = ū(0)
i+ j, j = −1, (2.40)

1

xi+1+ 1
2

− x∗

∫
Ī i+ j

p2(x)dx = ū(0)
i+ j, j = 1, (2.41)

1

h

∫
Ii+ j

q(x)dx = u(0)
i+ j, j = −2, (2.42)

1

x∗ − xi−1− 1
2

∫
Ī i+ j

q(x)dx = ū(0)
i+ j, j = −1, (2.43)

1

xi+1+ 1
2

− x∗

∫
Ī

q(x)dx = ū(0)
i+ j, j = 1. (2.44)
i+ j
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At the point x̄
i−1+

√
3

6
= 1

2 (x∗ + xi−1− 1
2
) +

√
3

6 (x∗ − xi−1− 1
2
), we have:

p1(x̄
i−1+

√
3

6
) = (−√

3u(0)
i−2(3 + 2ξ) + ū(0)

i−1(15 + 3
√

3 + 6ξ + 2
√

3ξ)
)
/(15 + 6ξ), (2.45)

p2(x̄
i−1+

√
3

6
) = (√

3ū(0)
i+1(3 + 2ξ) + ū(0)

i−1(18 − 3
√

3 − 2
√

3ξ)
)
/18. (2.46)

At the point x̄
i−1−

√
3

6
, we have:

p1(x̄
i−1−

√
3

6
) = (√

3u(0)
i−2(3 + 2ξ) + ū(0)

i−1(15 − 3
√

3 + 6ξ − 2
√

3ξ)
)
/(15 + 6ξ), (2.47)

p2(x̄
i−1−

√
3

6
) = (−√

3ū(0)
i+1(3 + 2ξ) + ū(0)

i−1(18 + 3
√

3 + 2
√

3ξ)
)
/18. (2.48)

Step 2.2.2. Next, we find the combination coefficients. For xG = x̄
i−1+

√
3

6
, the associated linear weights are:

γ1 = (9 − 2ξ)/16, γ2 = (7 + 2ξ)/16. (2.49)

For xG = x̄
i−1−

√
3

6
, the associated linear weights are:

γ1 = (9 − 2ξ)/16, γ2 = (7 + 2ξ)/16. (2.50)

Step 2.3.1. Here, Ī i+1 is the “troubled cell”. Given the small stencils S1 = { Ī i−1, Ī i+1}, S2 = { Ī i+1, Ii+2} and the bigger
stencil Γ = S1 ∪ S2, we construct the linear reconstruction polynomials pn(x) ∈ span{1, (x − 1

2 (x∗ + xi+1+ 1
2
))/(xi+1+ 1

2
−

x∗)} (n = 1,2) and a second degree reconstruction polynomial q(x) ∈ span{1, (x − 1
2 (x∗ + xi+1+ 1

2
))/(xi+1+ 1

2
− x∗), (x − 1

2 (x∗ +
xi+1+ 1

2
))2/(xi+1+ 1

2
− x∗)2}, such that:

1

x∗ − xi−1− 1
2

∫
Ī i+ j

p1(x)dx = ū(0)
i+ j, j = −1, (2.51)

1

xi+1+ 1
2

− x∗

∫
Ī i+ j

p1(x)dx = ū(0)
i+ j, j = 1, (2.52)

1

xi+1+ 1
2

− x∗

∫
Ī i+ j

p2(x)dx = ū(0)
i+ j, j = 1, (2.53)

1

h

∫
Ii+ j

p2(x)dx = u(0)
i+ j, j = 2, (2.54)

1

x∗ − xi−1− 1
2

∫
Ī i+ j

q(x)dx = ū(0)
i+ j, j = −1, (2.55)

1

xi+1+ 1
2

− x∗

∫
Ī i+ j

q(x)dx = ū(0)
i+ j, j = 1, (2.56)

1

h

∫
Ii+ j

q(x)dx = u(0)
i+ j, j = 2. (2.57)

At the point x̄
i+1+

√
3

6
= 1

2 (x∗ + xi+1+ 1
2
) +

√
3

6 (xi+1+ 1
2

− x∗), we have:

p1(x̄
i+1+

√
3

6
) = (−√

3ū(0)
i−1(3 − 2ξ) + ū(0)

i+1(18 + 3
√

3 − 2
√

3ξ)
)
/18, (2.58)

p2(x̄
i+1+

√
3

6
) = (−√

3u(0)
i+2(3 − 2ξ) + ū(0)

i+1(−15 + 3
√

3 + 6ξ − 2
√

3ξ)
)
/(−15 + 6ξ). (2.59)

At the point x̄
i+1−

√
3

6
, we have:

p1(x̄
i+1−

√
3

6
) = (√

3ū(0)
i−1(3 − 2ξ) + ū(0)

i+1(18 − 3
√

3 + 2
√

3ξ)
)
/18, (2.60)
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p2(x̄
i+1−

√
3

6
) = (√

3u(0)
i+2(3 − 2ξ) + ū(0)

i+1(−15 − 3
√

3 + 6ξ + 2
√

3ξ)
)
/(−15 + 6ξ). (2.61)

Step 2.3.2. Next, we find the combination coefficients. For xG = x̄
i+1+

√
3

6
, the associated linear weights are:

γ1 = (7 − 2ξ)/16, γ2 = (9 + 2ξ)/16. (2.62)

For xG = x̄
i+1−

√
3

6
, the associated linear weights are:

γ1 = (7 − 2ξ)/16, γ2 = (9 + 2ξ)/16. (2.63)

Step 2.4.1. Here, Ii+2 is the “troubled cell”. Given the small stencils S1 = { Ī i+1, Ii+2}, S2 = {Ii+2, Ii+3} and the bigger stencil
Γ = S1 ∪ S2, we construct the linear reconstruction polynomials pn(x) ∈ span{1, (x − xi+2)/h} (n = 1,2) and a second degree
reconstruction polynomial q(x) ∈ span{1, (x − xi+2)/h, (x − xi+2)

2/h2}, such that:

1

xi+1+ 1
2

− x∗

∫
Ī i+ j

p1(x)dx = ū(0)
i+ j, j = 1, (2.64)

1

h

∫
Ii+ j

p1(x)dx = u(0)
i+ j, j = 2, (2.65)

1

h

∫
Ii+ j

p2(x)dx = u(0)
i+ j, j = 2,3, (2.66)

1

xi+1+ 1
2

− x∗

∫
Ī i+ j

q(x)dx = ū(0)
i+ j, j = 1, (2.67)

1

h

∫
Ii+ j

q(x)dx = u(0)
i+ j, j = 2,3. (2.68)

At the point x
i+2+

√
3

6
, we have:

p1(x
i+2+

√
3

6
) = (

2
√

3ū(0)
i+1 + u(0)

i+2(−15 − 2
√

3 + 6ξ)
)
/(−15 + 6ξ), (2.69)

p2(x
i+2+

√
3

6
) = (

(6 − √
3 )u(0)

i+2 + √
3u(0)

i+3

)
/6. (2.70)

At the point x
i+2−

√
3

6
, we have:

p1(x
i+2−

√
3

6
) = (−2

√
3ū(0)

i+1 + u(0)
i+2(−15 + 2

√
3 + 6ξ)

)
/(−15 + 6ξ), (2.71)

p2(x
i+2−

√
3

6
) = (

(6 + √
3 )u(0)

i+2 − √
3u(0)

i+3

)
/6. (2.72)

Step 2.4.2. Next, we find the combination coefficients. For xG = x
i+2+

√
3

6
, the associated linear weights are:

γ1 = 3/(7 − 2ξ), γ2 = (4 − 2ξ)/(7 − 2ξ). (2.73)

For xG = x
i+2−

√
3

6
, the associated linear weights are:

γ1 = 3/(7 − 2ξ), γ2 = (4 − 2ξ)/(7 − 2ξ). (2.74)

Remark. In this paper, it is the intent to have conservative treatment of the material interface and maintain the numerical
schemes’ high-order of accuracy near the interface. For this purpose, we shall define the Riemann problem at the material
interface, solve for the problem and get the densities (ρI L and ρI R ), velocity (uI ) and pressure (pI ). Then we employ the
isobaric fix [13] to get the variables of another side cells of the material interface for the WENO or HWENO reconstructions,
respectively.

Provided in Appendices A–D is the third-order k = 2 case for reconstruction of the first and second moments u(1)
i and

u(2) applicable to the “troubled cells” Ii via WENO5 or HWENO5.
i
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Table 3.1
1D Euler equations. ρ(x,0) = 1 + 0.2 sin(πx), ν(x,0) = 1, p(x,0) = 1. Periodic boundary conditions. WENO3-RKDG2 scheme; WENO5-RKDG3 scheme;
HWENO5-RKDG3 scheme. t = 2. L1 and L∞ errors.

Cells WENO3-RKDG2 scheme WENO5-RKDG3 scheme WENO5-RKDG3 scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order L1 error Order L∞ error Order

10 5.27E−3 1.76E−2 2.96E−4 3.28E−3 2.96E−4 3.28E−3
20 8.72E−4 2.60 2.80E−3 2.65 2.85E−5 3.38 4.67E−4 2.81 2.85E−5 3.38 4.67E−4 2.81
40 1.81E−4 2.26 7.45E−4 1.91 2.83E−6 3.33 5.99E−5 2.96 2.83E−6 3.33 5.99E−5 2.96
80 4.23E−5 2.10 1.96E−4 1.92 3.05E−7 3.21 7.51E−6 2.99 3.05E−7 3.21 7.51E−6 2.99

160 1.02E−5 2.04 5.03E−5 1.97 3.50E−8 3.12 9.39E−7 3.00 3.50E−8 3.12 9.39E−7 3.00
320 2.53E−6 2.02 1.27E−5 1.98 4.18E−9 3.07 1.17E−7 3.00 4.18E−9 3.07 1.17E−7 3.00
640 6.30E−7 2.01 3.19E−6 1.99 5.11E−10 3.03 1.46E−8 3.00 5.11E−10 3.03 1.46E−8 3.00

Fig. 3.1. On Example 3.2. Left to right: density; velocity; pressure; time history of the “troubled cells”. t = 1.3. Top to bottom: WENO3-RKDG2; WENO5-
RKDG3; HWENO5-RKDG3. Line: exact solution; squares: numerical solution with 200 cells.

3. Numerical tests

In this section, we present the results of numerical tests for the schemes described in the previous section for both
single-medium and multi-medium flows (which include gas–gas and gas–water cases). In this paper, we choose the CFL
number to be 0.3 for WENO3-RKDG2 (k = 1) and 0.18 for WENO5-RKDG3 (k = 2) and HWENO5-RKDG3 (k = 2), respectively.

Example 3.1. We solve the one-dimensional nonlinear Euler equations (2.1). The initial condition is set to be ρ(x,0) =
1 + 0.2 sin(πx), ν(x,0) = 1, p(x,0) = 1, x ∈ [0,2] with periodic boundary conditions. The exact solution is ρ(x, t) = 1 +
0.2 sin(π(x − t)), ν(x, t) = 1, p(x, t) = 1. The initial artificial interface is set at x∗(0) = 1. We compute the solution up to
t = 2. The errors and numerical orders of accuracy are shown in Table 3.1. It is clear that the three schemes have achieved
their designed order of accuracy. We have used the KXRCF indicator to identify the “troubled cells”. However, for this test
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Fig. 3.2. On Example 3.3. Left to right: density; velocity; pressure; time history of the “troubled cells”. t = 0.0007. Top to bottom: WENO3-RKDG2; WENO5-
RKDG3; HWENO5-RKDG3. Line: exact solution; squares: numerical solution with 200 cells.

case, in the determination of the super-convergence property, the KXRCF indicator showed that no “troubled cell” is present.
As such, the results shown here are the same as those obtained employing DG without limiter for all the norms.

Example 3.2. We solve the Euler equations (2.1). We use the following Riemann initial condition for the Lax problem:

(ρ,ν, p, γ )T =
{

(0.445,0.698,3.528,1.4)T x � 0,

(0.5,0,0.571,1.4)T x > 0.
(3.1)

The computational domain is [−5,5] with open boundary conditions. The computed density, velocity and pressure are
plotted at t = 1.3 against the exact solution. The solutions using 200 cells and the time history of the “troubled cells”
are shown in Fig. 3.1. The initial material interface is set at x∗(0) = 0. We can see that the resolutions of the contact
discontinuity by the RKDG methods are good for both k = 1 and k = 2 using WENO or HWENO reconstructions as limiters.
And the material interface is resolved properly too.

Below, we present the results of numerical tests for the gas–gas and gas–water flows by the WENO3-RKDG2, WENO5-
RKDG3 and HWENO5-RKDG3 schemes described in Section 2. In these tests, 200 cells are used. The units for the density,
velocity, pressure, length and time are kg/m3, m/s, Pa, m and s, respectively.

Example 3.3. This is an air–helium shock tube problem taken from [13], with the initial conditions as:

(ρ,ν, p, γ )T =
{

(1,0,105,1.4)T x � 0.5,

(0.125,0,104,1.2)T x > 0.5.
(3.2)

The computational domain is [0,1] with open boundary conditions. The computed density, velocity and pressure are plotted
at t = 0.0007 against the exact solutions and the time history of the “troubled cells” in Fig. 3.2. The initial material interface
is set at x∗(0) = 0.5. The location of the material interface is captured correctly by the WENO3-RKDG2, WENO5-RKDG3 and
HWENO5-RKDG3 schemes and are very comparable to the analysis.
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Fig. 3.3. On Example 3.4. Left to right: density; velocity; pressure; time history of the “troubled cells”. t = 0.0012. Top to bottom: WENO3-RKDG2; WENO5-
RKDG3; HWENO5-RKDG3. Line: exact solution; squares: numerical solution with 200 cells.

Example 3.4. This is a problem of a shock wave refracting at an air–helium interface with a reflected rarefaction wave [13].
The flow initial conditions are:

(ρ,ν, p, γ )T =

⎧⎪⎨
⎪⎩

(1.3333,0.3535
√

105,1.5 × 105,1.4)T x � 0.05,

(1,0,105,1.4)T 0.05 < x � 0.5,

(0.1379,0,105,5/3)T x > 0.5.

(3.3)

The computational domain is [0,1] with open boundary conditions. The computed density, velocity and pressure are plotted
at t = 0.0012 against the exact solutions and the time history of the “troubled cells” in Fig. 3.3. The strength of the shock
is pL/pR = 1.5 and the initial material interface is set at x∗(0) = 0.5. The location of the material interface is captured
correctly by the WENO3-RKDG2, WENO5-RKDG3 and HWENO5-RKDG3 schemes. There is good concurrence of results with
the analysis.

Example 3.5. We consider the Euler equations (2.1) with the following Riemann initial conditions:

(ρ,ν, p, γ )T =

⎧⎪⎨
⎪⎩

(1.3333,0.3535
√

105,1.5 × 105,1.4)T x � 0.05,

(1,0,105,1.4)T 0.05 < x � 0.5,

(3.1538,0,105,1.249)T x > 0.5.

(3.4)

The computational domain is [0,1] with open boundary conditions. The computed density, velocity and pressure are plotted
at t = 0.0017 against the exact solutions and the time history of the “troubled cells” in Fig. 3.4. The initial material interface
is set at x∗(0) = 0.5. The location of the material interface is captured correctly. The computed results are oscillatory free at
the neighborhood of the interface for the density, velocity and pressure.

Example 3.6. We define the strength of right shock wave to be pL/pR = 15. So in this case, we compute for the Riemann
problems with the following initial conditions:
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Fig. 3.4. On Example 3.5. Left to right: density; velocity; pressure; time history of the “troubled cells”. t = 0.0017. Top to bottom: WENO3-RKDG2; WENO5-
RKDG3; HWENO5-RKDG3. Line: exact solution; squares: numerical solution with 200 cells.

(ρ,ν, p, γ )T =

⎧⎪⎨
⎪⎩

(4.3333,3.2817
√

105,1.5 × 106,1.4)T x � 0.05,

(1,0,105,1.4)T 0.05 < x � 0.5,

(3.1538,0,105,1.249)T x > 0.5.

(3.5)

The computational domain is [0,1] with open boundary conditions. The computed density, velocity and pressure are plotted
at t = 0.0007 against the exact solutions and the time history of the “troubled cells” in Fig. 3.5. The initial material interface
is set at x∗(0) = 0.5. We can also see that the location of the material interface is captured correctly. And there is also a
local but limited hump lying in the smooth region, similar to that found in [13,23].

Example 3.7. This is a gas–water shock tube problem with very high pressure in the gaseous medium. The initial conditions
are:

(ρ,ν, p, γ )T =
{

(1270,0,8 × 108,1.4)T x � 0.5,

(1000,0,105,7.15)T x > 0.5.
(3.6)

The computational domain is [0,1] with open boundary conditions. The computed density, velocity and pressure are plotted
at t = 0.00016 against the exact solutions and the time history of the “troubled cells” in Fig. 3.6. The initial material interface
is set at x∗(0) = 0.5. The location of the gas–water interface is captured correctly by all the WENO3-RKDG2, WENO5-RKDG3
and HWENO5-RKDG3 schemes.

Example 3.8. We greatly increase the energy of the explosive gaseous medium in the previous example with the initial
conditions set as:

(ρ,ν, p, γ )T =
{

(1630,0,7.81 × 109,1.4)T x � 0.5,

(1000,0,105,7.15)T x > 0.5.
(3.7)

The computational domain is [0,1] with open boundary conditions. The computed density, velocity and pressure are plotted
at t = 0.0001 against the exact solutions and the time history of the “troubled cells” in Fig. 3.7. The initial material interface
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Fig. 3.5. On Example 3.6. Left to right: density; velocity; pressure; time history of the “troubled cells”. t = 0.0007. Top to bottom: WENO3-RKDG2; WENO5-
RKDG3; HWENO5-RKDG3. Line: exact solution; squares: numerical solution with 200 cells.

is set at x∗(0) = 0.5. We can see that the location of the material interface is captured correctly by the WENO3-RKDG2,
WENO5-RKDG3 and HWENO5-RKDG3 schemes. Further, it is clear that there is much better agreement of the computed
velocity and pressure with the analysis as compared to the previous work found in [23].

4. Concluding remarks

We have developed the WENO and HWENO reconstructions as limiters for the RKDG methods to solve for the multi-
medium flow in one dimension. The idea is to first identify the “troubled cells” by using a KXRCF indicator, then reconstruct
the polynomial solutions inside the “troubled cells” by WENO or HWENO reconstructions using the cell averages or deriva-
tive averages of neighboring cells, while maintaining the original cell averages of the “troubled cells” with the proposed
conservative treatment of the moving material interface [23]. Compared to [23], in their approach employing the TVB lim-
iter to identify the “troubled cell” and reconstruction depends to some extent on the proper M selected and use of the
Lax-Friedrichs flux which has larger numerical viscosity, our present employment of the KXRCF (with super-convergence
property) to identify the “troubled cell” and use of WENO/HWENO reconstructions with the HLLC flux are deemed much
more straightforward obviating the need to select a viable M value and possibly more accurate. Extensive numerical results
for both gas–gas and gas–water flows in one dimension are provided to show that the methods are stable, accurate, and ro-
bust subject to a wide range of initial conditions. The proposed methods have been found to be able to provide an accurate
and sharp real interface location and still with reasonable solution for the whole domain with very limited oscillations in
the interfacial regions.

Appendix

In Appendices A, B, C and D, we reconstruct the first and second moments u(1)
i and u(2)

i for the “troubled cells” Ii by
using the WENO5 or HWENO5 to regular cell and interfacial cell in details. The procedures are provided for the “troubled
cells” at different locations.
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Fig. 3.6. On Example 3.7. Left to right: density; velocity; pressure; time history of the “troubled cells”. t = 0.00016. Top to bottom: WENO3-RKDG2; WENO5-
RKDG3; HWENO5-RKDG3. Line: exact solution; squares: numerical solution with 200 cells.

Appendix A. WENO5 as limiter for application of RKDG3 (WENO5-RKDG3) to regular cell

Step A.1. Given the small stencils S1 = {Ii−2, Ii−1, Ii}, S2 = {Ii−1, Ii, Ii+1}, S3 = {Ii, Ii+1, Ii+2} and the bigger stencil Γ =
S1 ∪ S2 ∪ S3, we construct the quadratic reconstruction polynomials pn(x) ∈ span{1, (x − xi)/h, (x − xi)

2/h2} (n = 1,2,3)

and a fourth degree reconstruction polynomial q(x) ∈ span{1, (x − xi)/h, (x − xi)
2/h2, (x − xi)

3/h3, (x − xi)
4/h4}, such

that:

1

h

∫
Ii+ j

p1(x)dx = u(0)
i+ j, j = −2,−1,0, (A.1)

1

h

∫
Ii+ j

p2(x)dx = u(0)
i+ j, j = −1,0,1, (A.2)

1

h

∫
Ii+ j

p3(x)dx = u(0)
i+ j, j = 0,1,2, (A.3)

1

h

∫
Ii+ j

q(x)dx = u(0)
i+ j, j = −2,−1,0,1,2. (A.4)

At the point x
i+

√
3

6
, we have:

p1(x
i+

√
3

6
) = (

u(0)
i−2 − 4u(0)

i−1

)√
3/12 + u(0)

i (1 + √
3/4), (A.5)

p2(x √
3 ) = −u(0)

i−1

√
3/12 + u(0)

i + u(0)
i+1

√
3/12, (A.6)
i+ 6
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Fig. 3.7. On Example 3.8. Left to right: density; velocity; pressure; time history of the “troubled cells”. t = 0.0001. Top to bottom: WENO3-RKDG2; WENO5-
RKDG3; HWENO5-RKDG3. Line: exact solution; squares: numerical solution with 200 cells.

p3(x
i+

√
3

6
) = u(0)

i (1 − √
3/4) + (

4u(0)
i+1 − u(0)

i+2

)√
3/12. (A.7)

At the point x
i−

√
3

6
, we have:

p1(x
i−

√
3

6
) = (

4u(0)
i−1 − u(0)

i−2

)√
3/12 + u(0)

i (1 − √
3/4), (A.8)

p2(x
i−

√
3

6
) = u(0)

i−1

√
3/12 + u(0)

i − u(0)
i+1

√
3/12, (A.9)

p3(x
i−

√
3

6
) = (1 + √

3/4)u(0)
i + (−4u(0)

i+1 + u(0)
i+2

)√
3/12. (A.10)

Step A.2. We find the combination coefficients, also called linear weights, denoted by γ1, γ2, γ3, which satisfy: q(xG) =∑3
j=1 γ j p j(xG). For xG = x

i+
√

3
6

, the associated linear weights are:

γ1 = (210 − √
3 )/1080, γ2 = 11/18, γ3 = (210 + √

3 )/1080. (A.11)

For xG = x
i−

√
3

6
, the associated linear weights are:

γ1 = (210 + √
3 )/1080, γ2 = 11/18, γ3 = (210 − √

3 )/1080. (A.12)

Step A.3. We compute the smoothness indicators βn (n = 1,2,3) for stencils Sn (n = 1,2,3):

βn =
2∑

α=1

∫
h2α−1

(
dα pn(x)

dxα

)2

dx (n = 1,2,3). (A.13)
Ii
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Step A.4. We compute the nonlinear weights based on the smoothness indicators:

ωn = ω̄n∑3
l=1 ω̄l

, ω̄n = γn∑3
l=1(10−6 + βl)

2
(n = 1,2,3). (A.14)

Then the final WENO5 approximations are given by:

u(xG , t) ≈
3∑

n=1

ωn pn(xG). (A.15)

Step A.5. We obtain the reconstructed moments based on the reconstructed point values u(xG , t) at the Gaussian quadrature
points xG and a numerical integration:

u(l)
i (t) ≈ 1∑

G σG(v(i)
l (xG))2

∑
G

σG u(xG , t)v(i)
l (xG) (l = 1,2). (A.16)

Here σG is the Gaussian quadrature weight for the point xG . The polynomial solution in this cell Ii is then obtained by
uh(x, t) = ∑2

l=0 u(l)
i (t)v(i)

l (x), for x ∈ Ii with these reconstructed moments u(l)
i (t) (l = 1,2) and the original cell average

u(0)
i (t).

Appendix B. HWENO5 as limiter for application of RKDG3 (HWENO5-RKDG3) to regular cell

Step B.1. Given the small stencils S1 = {Ii−1, Ii}, S2 = {Ii, Ii+1}, S3 = {Ii−1, Ii, Ii+1} and the bigger stencil Γ = S1 ∪
S2 ∪ S3, we construct the quadratic reconstruction polynomials pn(x) ∈ span{1, (x − xi)/h, (x − xi)

2/h2} (n = 1,2,3)

and a fourth degree reconstruction polynomial q(x) ∈ span{1, (x − xi)/h, (x − xi)
2/h2, (x − xi)

3/h3, (x − xi)
4/h4} such

that:

1

h

∫
Ii+ j

p1(x)dx = u(0)
i+ j, j = −1,0, (B.17)

1∫
Ii+ j

(v(i+ j)
1 (x))2 dx

∫
Ii+ j

p1(x)v(i+ j)
1 (x)dx = u(1)

i+ j, j = −1, (B.18)

1

h

∫
Ii+ j

p2(x)dx = u(0)
i+ j, j = 0,1, (B.19)

1∫
Ii+ j

(v(i+ j)
1 (x))2 dx

∫
Ii+ j

p2(x)v(i+ j)
1 (x)dx = u(1)

i+ j, j = 1, (B.20)

1

h

∫
Ii+ j

p3(x)dx = u(0)
i+ j, j = −1,0,1, (B.21)

1

h

∫
Ii+ j

q(x)dx = u(0)
i+ j, j = −1,0,1, (B.22)

1∫
Ii+ j

(v(i+ j)
1 (x))2 dx

∫
Ii+ j

q(x)v(i+ j)
1 (x)dx = u(1)

i+ j, j = −1,1. (B.23)

At the point x
i+

√
3

6
, we have:

p1(x
i+

√
3

6
) = −u(0)

i−1

√
3/3 + u(0)

i (1 + √
3/3) − u(1)

i−1

√
3/6, (B.24)

p2(x
i+

√
3

6
) = u(0)

i (1 − √
3/3) + (

2u(0)
i+1 − u(1)

i+1

)√
3/6, (B.25)

p3(x
i+

√
3

6
) = −u(0)

i−1

√
3/12 + u(0)

i + u(0)
i+1

√
3/12. (B.26)
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At the point x
i−

√
3

6
, we have:

p1(x
i−

√
3

6
) = u(0)

i−1

√
3/3 + u(0)

i (1 − √
3/3) + u(1)

i−1

√
3/6, (B.27)

p2(x
i−

√
3

6
) = u(0)

i (1 + √
3/3) + (−2u(0)

i+1 + u(1)
i+1

)√
3/6, (B.28)

p3(x
i−

√
3

6
) = u(0)

i−1

√
3/12 + u(0)

i − u(0)
i+1

√
3/12. (B.29)

Step B.2. We find the combination coefficients, also called linear weights, denoted by γ1, γ2, γ3, which satisfy: q(xG) =∑3
j=1 γ j p j(xG). For xG = x

i+
√

3
6

, the associated linear weights are:

γ1 = 35/114 − 1/(96
√

3 ), γ2 = 35/114 + 1/(96
√

3 ), γ3 = 22/57. (B.30)

For xG = x
i−

√
3

6
, the associated linear weights are:

γ1 = 35/114 + 1/(96
√

3 ), γ2 = 35/114 − 1/(96
√

3 ), γ3 = 22/57. (B.31)

The latter steps are similar to the previous section and hence omitted.

Appendix C. WENO5 as limiter for application of RKDG3 (WENO5-RKDG3) to interfacial cell

Step C.1.1. Here, Ii−3 is the “troubled cell”. Given the small stencils S1 = {Ii−5, Ii−4, Ii−3}, S2 = {Ii−4, Ii−3, Ii−2}, S3 =
{Ii−3, Ii−2, Ī i−1} and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x

i−3+
√

3
6

, we

have:

p1(x
i−3+

√
3

6
) = u(0)

i−5

√
3/12 − u(0)

i−4

√
3/3 + u(0)

i−3(4 + √
3 )/4, (C.32)

p2(x
i−3+

√
3

6
) = −u(0)

i−4

√
3/12 + u(0)

i−3 + u(0)
i−2

√
3/12, (C.33)

p3(x
i−3+

√
3

6
) = (

u(0)
i−3(5 + 2ξ)

(
21 − 5

√
3 + (6 − √

3 )ξ
)

+ √
3
(−6ū(0)

i−1 + u(0)
i−2

(
31 + 15ξ + 2ξ2)))/(3

(
35 + 24ξ + 4ξ2)). (C.34)

At the point x
i−3−

√
3

6
, we have:

p1(x
i−3−

√
3

6
) = −u(0)

i−5

√
3/12 + u(0)

i−4

√
3/3 + u(0)

i−3(4 − √
3 )/4, (C.35)

p2(x
i−3−

√
3

6
) = u(0)

i−4

√
3/12 + u(0)

i−3 − u(0)
i−2

√
3/12, (C.36)

p3(x
i−3−

√
3

6
) = (

u(0)
i−3(5 + 2ξ)

(
21 + 5

√
3 + (6 + √

3 )ξ
)

+ √
3
(
6ū(0)

i−1 − u(0)
i−2

(
31 + 15ξ + 2ξ2)))/(3

(
35 + 24ξ + 4ξ2)). (C.37)

Step C.1.2. We find the combination coefficients. For xG = x
i−3+

√
3

6
, the associated linear weights are:

γ1 = (84 − √
3/3 + 28ξ)/(396 + 72ξ),

γ2 = (
6744 + √

3 + 2(1530 + √
3)ξ + 264ξ2)/(

108
(
99 + 40ξ + 4ξ2)),

γ3 = (420 + 2
√

3)
/(

27
(
99 + 40ξ + 4ξ2)). (C.38)

For xG = x
i−3−

√
3

6
, the associated linear weights are:

γ1 = (84 + √
3/3 + 28ξ)/(396 + 72ξ),

γ2 = (
6744 − √

3 + 2(1530 − √
3 )ξ + 264ξ2)/(108

(
99 + 40ξ + 4ξ2)),

γ3 = (420 − 2
√

3 )/
(
27

(
99 + 40ξ + 4ξ2)). (C.39)
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Step C.2.1. Here, Ii−2 is the “troubled cell”. Given the small stencils S1 = {Ii−4, Ii−3, Ii−2}, S2 = {Ii−3, Ii−2, Ī i−1}, S3 =
{Ii−2, Ī i−1, Ī i+1} and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x

i−2+
√

3
6

, we

have:

p1(x
i−2+

√
3

6
) = u(0)

i−4

√
3/12 − u(0)

i−3

√
3/3 + u(0)

i−2(4 + √
3 )/4, (C.40)

p2(x
i−2+

√
3

6
) = (

6
√

3ū(0)
i−1 − √

3u(0)
i−3

(
10 + 9ξ + 2ξ2) + u(0)

i−2

(
105 + 4

√
3 + 9(8 + √

3 )ξ

+ 2(6 + √
3 )ξ2))/(

3
(
35 + 24ξ + 4ξ2)), (C.41)

p3(x
i−2+

√
3

6
) = (

6u(0)
i−2

(
6(5 − √

3 ) + (12 − √
3 )ξ

) − √
3
(
ū(0)

i+1

(
10 + 9ξ + 2ξ2)

− ū(0)
i−1

(
46 + 15ξ + 2ξ2)))/(

36(5 + 2ξ)
)
. (C.42)

At the point x
i−2−

√
3

6
, we have:

p1(x
i−2−

√
3

6
) = −u(0)

i−4

√
3/12 + u(0)

i−3

√
3/3 + u(0)

i−2(4 − √
3 )/4, (C.43)

p2(x
i−2−

√
3

6
) = (−6

√
3ū(0)

i−1 + √
3u(0)

i−3

(
10 + 9ξ + 2ξ2) + u(0)

i−2

(
105 − 4

√
3 + 9(8 − √

3 )ξ

+ 2(6 − √
3 )ξ2))/(

3
(
35 + 24ξ + 4ξ2)), (C.44)

p3(x
i−2−

√
3

6
) = (

6u(0)
i−2

(
6(5 + √

3 ) + (12 + √
3 )ξ

) + √
3
(
ū(0)

i+1

(
10 + 9ξ + 2ξ2)

− ū(0)
i−1

(
46 + 15ξ + 2ξ2)))/(

36(5 + 2ξ)
)
. (C.45)

Step C.2.2. We find the combination coefficients. For xG = x
i−2+

√
3

6
, the associated linear weights are:

γ1 = (130 − √
3/3 + 64ξ)/

(
54(9 + 2ξ)

)
,

γ2 = (
35268 + 13

√
3 + 14(1530 + √

3 )ξ + 1848ξ2)/(
3240

(
18 + 13ξ + 2ξ2)),

γ3 = (92 + √
3/3 + 44ξ)/

(
360(2 + ξ)

)
. (C.46)

For xG = x
i−2−

√
3

6
, the associated linear weights are:

γ1 = (130 + √
3/3 + 64ξ)/

(
54(9 + 2ξ)

)
,

γ2 = (
35268 − 13

√
3 + 14(1530 − √

3 )ξ + 1848ξ2)/(
3240

(
18 + 13ξ + 2ξ2)),

γ3 = (92 − √
3/3 + 44ξ)/

(
360(2 + ξ)

)
. (C.47)

Step C.3.1. Here, Ī i−1 is the “troubled cell”. Given the small stencils S1 = {Ii−3, Ii−2, Ī i−1}, S2 = {Ii−2, Ī i−1, Ī i+1}, S3 =
{ Ī i−1, Ī i+1, Ii+2} and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x̄

i−1+
√

3
6

, we

have:

p1(x̄
i−1+

√
3

6
) = (

12ū(0)
i−1(10 + 3

√
3 + 4ξ + 2

√
3ξ) + √

3u(0)
i−3

(
15 + 16ξ + 4ξ2)

− √
3u(0)

i−2

(
51 + 40ξ + 4ξ2))/(

24(5 + 2ξ)
)
, (C.48)

p2(x̄
i−1+

√
3

6
) = (−6

√
3u(0)

i−2

(
27 + 12ξ − 4ξ2) + √

3ū(0)
i+1

(
105 + 142ξ + 60ξ2 + 8ξ3)

+ ū(0)
i−1

(
1440 + 57

√
3 + 576ξ − 70

√
3ξ − 84

√
3ξ2 − 8

√
3ξ3))/(

288(5 + 2ξ)
)
, (C.49)

p3(x̄
i−1+

√
3

6
) = (

ū(0)
i−1(−5 + 2ξ)

(
288 − 75

√
3 − 44

√
3ξ + 4

√
3ξ2)

− √
3(3 + 2ξ)

(
6u(0)

i+2(−9 + 2ξ) + ū(0)
i+1

(
179 − 72ξ + 4ξ2)))/(

288(−5 + 2ξ)
)
. (C.50)
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At the point x̄
i−1−

√
3

6
, we have:

p1(x̄
i−1−

√
3

6
) = (

12ū(0)
i−1(10 − 3

√
3 + 4ξ − 2

√
3ξ) − √

3u(0)
i−3

(
15 + 16ξ + 4ξ2)

+ √
3u(0)

i−2

(
51 + 40ξ + 4ξ2))/(

24(5 + 2ξ)
)
, (C.51)

p2(x̄
i−1−

√
3

6
) = (

6
√

3u(0)
i−2

(
27 + 12ξ − 4ξ2) − √

3ū(0)
i+1

(
105 + 142ξ + 60ξ2 + 8ξ3)

+ ū(0)
i−1

(
1440 − 57

√
3 + 576ξ + 70

√
3ξ + 84

√
3ξ2 + 8

√
3ξ3))/(

288(5 + 2ξ)
)
, (C.52)

p3(x̄
i−1−

√
3

6
) = ((

ū(0)
i−1(−5 + 2ξ)

(
288 + 75

√
3 + 44

√
3ξ − 4

√
3ξ2))

+ √
3(3 + 2ξ)

(
6u(0)

i+2(−9 + 2ξ) + ū(0)
i+1

(
179 − 72ξ + 4ξ2)))/(

288(−5 + 2ξ)
)
. (C.53)

Step C.3.2. We find the combination coefficients. For xG = x̄
i−1+

√
3

6
, the associated linear weights are:

γ1 = (
27 − 1296

√
3 + 6(9 + 8

√
3 )ξ + (36 + 96

√
3 )ξ2 + 8ξ3)/(

720
√

3(7 + 2ξ)
)
,

γ2 = (−27(1452 + √
3 ) − 2088ξ + 72(58 + √

3 )ξ2

+ 32(9 + 2
√

3 )ξ3 + 16
√

3ξ4)/(
1080

(−63 − 4ξ + 4ξ2)),
γ3 = (

27 + 1080
√

3 + 6(9 + 56
√

3 )ξ + 36ξ2 + 8ξ3)/(
720

√
3(−9 + 2ξ)

)
. (C.54)

For xG = x̄
i−1−

√
3

6
, the associated linear weights are:

γ1 = (
27 + 1296

√
3 + 6(9 − 8

√
3 )ξ + (36 − 96

√
3 )ξ2 + 8ξ3)/(

720
√

3(7 + 2ξ)
)
,

γ2 = (−27(1452 − √
3 ) − 2088ξ + 72(58 − √

3 )ξ2 + 32(9 − 2
√

3 )ξ3 − 16
√

3ξ4)/(
1080

(−63 − 4ξ + 4ξ2)),
γ3 = (

27 − 1080
√

3 + 6(9 − 56
√

3 )ξ + 36ξ2 + 8ξ3)/(
720

√
3(−9 + 2ξ)

)
. (C.55)

Step C.4.1. Here, Ī i+1 is the “troubled cell”. Given the small stencils S1 = {Ii−2, Ī i−1, Ī i+1}, S2 = { Ī i−1, Ī i+1, Ii+2}, S3 =
{ Ī i+1, Ii+2, Ii+3} and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x̄

i+1+
√

3
6

, we

have:

p1(x̄
i+1+

√
3

6
) = (−6

√
3u(0)

i−2

(−27 + 12ξ + 4ξ2) + ū(0)
i+1(5 + 2ξ)

(
288 + 75

√
3 − 44

√
3ξ

− 4
√

3ξ2) + √
3ū(0)

i−1

(−537 + 142ξ + 132ξ2 + 8ξ3))/(
288(5 + 2ξ)

)
, (C.56)

p2(x̄
i+1+

√
3

6
) = (

6
√

3u(0)
i+2

(−27 + 12ξ + 4ξ2) + √
3ū(0)

i−1

(
105 − 142ξ + 60ξ2 − 8ξ3)

+ ū(0)
i+1

(−1440 + 57
√

3 + 576ξ + 70
√

3ξ − 84
√

3ξ2 + 8
√

3ξ3))/(
288(−5 + 2ξ)

)
, (C.57)

p3(x̄
i+1+

√
3

6
) = (

12ū(0)
i+1

(−10 + 3
√

3 + 2(2 − √
3 )ξ

) + √
3(−3 + 2ξ)

(
u(0)

i+2(17 − 2ξ)

− u(0)
i+3(5 − 2ξ)

))/(
24(−5 + 2ξ)

)
. (C.58)

At the point x̄
i+1−

√
3

6
, we have:

p1(x̄
i+1−

√
3

6
) = (

6
√

3u(0)
i−2

(−27 + 12ξ + 4ξ2) + ū(0)
i+1(5 + 2ξ)

(
288 − 75

√
3 + 44

√
3ξ + 4

√
3ξ2)

− √
3ū(0)

i−1

(−537 + 142ξ + 132ξ2 + 8ξ3))/(
288(5 + 2ξ)

)
, (C.59)

p2(x̄
i+1−

√
3

6
) = (−6

√
3u(0)

i+2

(−27 + 12ξ + 4ξ2) − √
3ū(0)

i−1

(
105 − 142ξ + 60ξ2 − 8ξ3)

+ ū(0)
i+1

(−1440 − 57
√

3 + 576ξ − 70
√

3ξ + 84
√

3ξ2 − 8
√

3ξ3))/(
288(−5 + 2ξ)

)
, (C.60)

p3(x̄
i+1−

√
3

6
) = (

12ū(0)
i+1

(−10 − 3
√

3 + 2(2 + √
3 )ξ

) − √
3(−3 + 2ξ)

(
u(0)

i+2(17 − 2ξ)

− u(0)
(5 − 2ξ)

))/(
24(−5 + 2ξ)

)
. (C.61)
i+3
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Step C.4.2. We find the combination coefficients. For xG = x̄
i+1+

√
3

6
, the associated linear weights are:

γ1 = (−27 + 1080
√

3 + 54ξ − 336
√

3ξ − 36ξ2 + 8ξ3)/(
720

√
3(9 + 2ξ)

)
,

γ2 = (−27(1452 − √
3 ) + 2088ξ + 72(58 − √

3 )ξ2 − 32(9 − 2
√

3 )ξ3 − 16
√

3ξ4)/(
1080

(−63 + 4ξ + 4ξ2)),
γ3 = (−27 − 1296

√
3 − 6(−9 + 8

√
3 )ξ + 12(−3 + 8

√
3 )ξ2 + 8ξ3)/(

720
√

3(−7 + 2ξ)
)
. (C.62)

For xG = x̄
i+1−

√
3

6
, the associated linear weights are:

γ1 = (
27 + 1080

√
3 − 54ξ − 336

√
3ξ + 36ξ2 − 8ξ3)/(

720
√

3(9 + 2ξ)
)
,

γ2 = (−27(1452 + √
3 ) + 2088ξ + 72(58 + √

3 )ξ2 − 32(9 + 2
√

3 )ξ3 + 16
√

3ξ4)/(
1080

(−63 + 4ξ + 4ξ2)),
γ3 = (

27 − 1296
√

3 − 6(9 + 8
√

3 )ξ + 12(3 + 8
√

3 )ξ2 − 8ξ3)/(
720

√
3(−7 + 2ξ)

)
. (C.63)

Step C.5.1. Here, Ii+2 is the “troubled cell”. Given the small stencils S1 = { Ī i−1, Ī i+1, Ii+2}, S2 = { Ī i+1, Ii+2, Ii+3}, S3 =
{Ii+2, Ii+3, Ii+4} and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x

i+2+
√

3
6

, we

have:

p1(x
i+2+

√
3

6
) = (

6u(0)
i+2(−30 − 6

√
3 + 12ξ + √

3ξ) − √
3ū(0)

i−1

(
10 − 9ξ + 2ξ2)

+ √
3ū(0)

i+1

(
46 − 15ξ + 2ξ2))/(

36(−5 + 2ξ)
)
, (C.64)

p2(x
i+2+

√
3

6
) = (−6

√
3ū(0)

i+1 + √
3u(0)

i+3

(
10 − 9ξ + 2ξ2) + u(0)

i+2

(
105 − 4

√
3 − 9(8 − √

3 )ξ

+ 2(6 − √
3 )ξ2))/(

3
(
35 − 24ξ + 4ξ2)), (C.65)

p3(x
i+2+

√
3

6
) = u(0)

i+2(4 − √
3 )/4 + (

4u(0)
i+3 − u(0)

i+4

)√
3/12. (C.66)

At the point x
i+2−

√
3

6
, we have:

p1(x
i+2−

√
3

6
) = (

6u(0)
i+2(−30 + 6

√
3 + 12ξ − √

3ξ) + √
3ū(0)

i−1

(
10 − 9ξ + 2ξ2)

− √
3ū(0)

i+1

(
46 − 15ξ + 2ξ2))/(

36(−5 + 2ξ)
)
, (C.67)

p2(x
i+2−

√
3

6
) = (

6
√

3ū(0)
i+1 − √

3u(0)
i+3

(
10 − 9ξ + 2ξ2) + u(0)

i+2

(
105 + 4

√
3 − 9(8 + √

3 )ξ

+ 2(6 + √
3 )ξ2))/(

3
(
35 − 24ξ + 4ξ2)), (C.68)

p3(x
i+2−

√
3

6
) = u(0)

i+2(4 + √
3 )/4 − (

4u(0)
i+3 − u(0)

i+4

)√
3/12. (C.69)

Step C.5.2. We find the combination coefficients. For xG = x
i+2+

√
3

6
, the associated linear weights are:

γ1 = (−276 + √
3 + 132ξ)/

(
1080(−2 + ξ)

)
,

γ2 = (
35268 − 13

√
3 − 14(1530 − √

3 )ξ + 1848ξ2)/(
3240

(
18 − 13ξ + 2ξ2)),

γ3 = (390 + √
3 − 192ξ)/

(
162(9 − 2ξ)

)
. (C.70)

For xG = x
i+2−

√
3

6
, the associated linear weights are:

γ1 = (−276 − √
3 + 132ξ)/

(
1080(−2 + ξ)

)
,

γ2 = (
35268 + 13

√
3 − 14(1530 + √

3 )ξ + 1848ξ2)/(
3240

(
18 − 13ξ + 2ξ2)),

γ3 = (390 − √
3 − 192ξ)/

(
162(9 − 2ξ)

)
. (C.71)

Step C.6.1. Here, Ii+3 is the “troubled cell”. Given the small stencils S1 = { Ī i+1, Ii+2, Ii+3}, S2 = {Ii+2, Ii+3, Ii+4}, S3 =
{Ii+3, Ii+4, Ii+5} and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x

i+3+
√

3
6

, we

have:
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p1(x
i+3+

√
3

6
) = (

6
√

3ū(0)
i+1 − u(0)

i+3(−5 + 2ξ)
(
21 + 5

√
3 − (6 + √

3 )ξ
)

− √
3u(0)

i+2

(
31 − 15ξ + 2ξ2))/(

3
(
35 − 24ξ + 4ξ2)), (C.72)

p2(x
i+3+

√
3

6
) = −u(0)

i+2

√
3/12 + u(0)

i+3 + u(0)
i+4

√
3/12, (C.73)

p3(x
i+3+

√
3

6
) = u(0)

i+3(4 − √
3 )/4 + (

4u(0)
i+4 − u(0)

i+5

)√
3/12. (C.74)

At the point x
i+3−

√
3

6
, we have:

p1(x
i+3−

√
3

6
) = (−6

√
3ū(0)

i+1 − u(0)
i+3(−5 + 2ξ)

(
21 − 5

√
3 − (6 − √

3 )ξ
)

+ √
3u(0)

i+2

(
31 − 15ξ + 2ξ2))/(

3
(
35 − 24ξ + 4ξ2)), (C.75)

p2(x
i+3−

√
3

6
) = u(0)

i+2

√
3/12 + u(0)

i+3 − u(0)
i+4

√
3/12, (C.76)

p3(x
i+3−

√
3

6
) = u(0)

i+3(4 + √
3 )/4 − (

4u(0)
i+4 − u(0)

i+5

)√
3/12. (C.77)

Step C.6.2. We find the combination coefficients. For xG = x
i+3+

√
3

6
, the associated linear weights are:

γ1 = (420 − 2
√

3 )/
(
27

(
99 − 40ξ + 4ξ2)),

γ2 = (
6744 − √

3 − 2(1530 − √
3 )ξ + 264ξ2)/(

108
(
99 − 40ξ + 4ξ2)),

γ3 = (252 + √
3 − 84ξ)/(1188 − 216ξ). (C.78)

For xG = x
i+3−

√
3

6
, the associated linear weights are:

γ1 = (420 + 2
√

3 )/
(
27

(
99 − 40ξ + 4ξ2)),

γ2 = (
6744 + √

3 − 2(1530 + √
3 )ξ + 264ξ2)/(

108
(
99 − 40ξ + 4ξ2)),

γ3 = (252 − √
3 − 84ξ)/(1188 − 216ξ). (C.79)

Appendix D. HWENO5 as limiter for application of RKDG3 (HWENO5-RKDG3) to interfacial cell

Step D.1.1. Here, Ii−2 is the “troubled cell”. Given the small stencils S1 = {Ii−3, Ii−2}, S2 = {Ii−2, Ī i−1}, S3 = {Ii−3, Ii−2, Ī i−1}
and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x

i−2+
√

3
6

, we have:

p1(x
i−2+

√
3

6
) = −u(0)

i−3

√
3/3 + u(0)

i−2(3 + √
3 )/3 − u(1)

i−3

√
3/6, (D.80)

p2(x
i−2+

√
3

6
) = (

3u(0)
i−2(3 + 2ξ)(7 − 2

√
3 + 2ξ) + 4

√
3
(
3ū(0)

i−1 − ū(1)
i−1(2 + ξ)

))
/(

63 + 60ξ + 12ξ2), (D.81)

p3(x
i−2+

√
3

6
) = (

6
√

3ū(0)
i−1 − √

3u(0)
i−3

(
10 + 9ξ + 2ξ2) + u(0)

i−2

(
105 + 4

√
3 + 9(8 + √

3 )ξ

+ 2(6 + √
3 )ξ2))/(

3
(
35 + 24ξ + 4ξ2)). (D.82)

At the point x
i−2−

√
3

6
, we have:

p1(x
i−2−

√
3

6
) = u(0)

i−3

√
3/3 + u(0)

i−2(3 − √
3 )/3 + u(1)

i−3

√
3/6, (D.83)

p2(x
i−2−

√
3

6
) = (

3u(0)
i−2(3 + 2ξ)(7 + 2

√
3 + 2ξ) − 4

√
3
(
3ū(0)

i−1 − ū(1)
i−1(2 + ξ)

))
/(

63 + 60ξ + 12ξ2), (D.84)

p3(x
i−2−

√
3

6
) = (−6

√
3ū(0)

i−1 + √
3u(0)

i−3

(
10 + 9ξ + 2ξ2) + u(0)

i−2

(
105 − 4

√
3 + 9(8 − √

3 )ξ

+ 2(6 − √
3 )ξ2))/(

3
(
35 + 24ξ + 4ξ2)). (D.85)
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Step D.1.2. We find the combination coefficients. For xG = x
i−2+

√
3

6
, the associated linear weights are:

γ1 = (
29877 − 197

√
3 + (42876 − 96

√
3 )ξ + 12(1872 − √

3 )ξ2 + 5136ξ3 + 432ξ4)/(
9
(
8613 + 9204ξ + 3744ξ2 + 688ξ3 + 48ξ4)),

γ2 = (
(7 + 2ξ)

(
91 + 3488

√
3 + 30(1 + 92

√
3 )ξ + 528

√
3ξ2))/(

6
√

3(2 + ξ)
(
8613 + 9204ξ + 3744ξ2 + 688ξ3 + 48ξ4)),

γ3 = (
117312 + 151

√
3 + (176232 + 386

√
3 )ξ + 180(540 + √

3 )ξ2 + 24(980 + √
3 )ξ3 + 2112ξ4)/(

18
(
17226 + 27021ξ + 16692ξ2 + 5120ξ3 + 784ξ4 + 48ξ5)). (D.86)

For xG = x
i−2−

√
3

6
, the associated linear weights are:

γ1 = (
29877 + 197

√
3 + (42876 + 96

√
3 )ξ + 12(1872 + √

3 )ξ2 + 5136ξ3 + 432ξ4)/(
9
(
8613 + 9204ξ + 3744ξ2 + 688ξ3 + 48ξ4)),

γ2 = (
(7 + 2ξ)

(−91 + 3488
√

3 + 30(−1 + 92
√

3 )ξ + 528
√

3ξ2))/(
6
√

3(2 + ξ)
(
8613 + 9204ξ + 3744ξ2 + 688ξ3 + 48ξ4)),

γ3 = (
117312 − 151

√
3 + (176232 − 386

√
3 )ξ + 180(540 − √

3 )ξ2 + 24(980 − √
3 )ξ3 + 2112ξ4)/(

18
(
17226 + 27021ξ + 16692ξ2 + 5120ξ3 + 784ξ4 + 48ξ5)). (D.87)

Step D.2.1. Here, Ī i−1 is the “troubled cell”. Given the small stencils S1 = {Ii−2, Ī i−1}, S2 = { Ī i−1, Ī i+1}, S3 = {Ii−2, Ī i−1, Ī i+1}
and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x̄

i−1+
√

3
6

, we have:

p1(x̄
i−1+

√
3

6
) = (−12

√
3u(0)

i−2(3 + 2ξ) + 12ū(0)
i−1

(
8 + 3

√
3 + 2(2 + √

3 )ξ
)

− √
3u(1)

i−2

(
21 + 20ξ + 4ξ2))/(

48(2 + ξ)
)
, (D.88)

p2(x̄
i−1+

√
3

6
) = (

12ū(0)
i−1(−3 + 2ξ)

(
3(3 − √

3 ) + 2(1 − √
3 )ξ

)
− √

3(3 + 2ξ)2(ū(1)
i+1(−9 + 2ξ) + 6ū(0)

i+1(3 + 2ξ)
))/(

6
(−81 − 18ξ + 36ξ2 + 8ξ3)), (D.89)

p3(x̄
i−1+

√
3

6
) = (−6

√
3u(0)

i−2

(
27 + 12ξ − 4ξ2) + √

3ū(0)
i+1

(
105 + 142ξ + 60ξ2 + 8ξ3)

+ ū(0)
i−1

(
1440 + 57

√
3 + 576ξ − 70

√
3ξ − 84

√
3ξ2 − 8

√
3ξ3))/(

288(5 + 2ξ)
)
. (D.90)

At the point x̄
i−1−

√
3

6
, we have:

p1(x̄
i−1−

√
3

6
) = (

12
√

3u(0)
i−2(3 + 2ξ) + 12ū(0)

i−1

(
8 − 3

√
3 + 2(2 − √

3 )ξ
) + √

3u(1)
i−2

(
21 + 20ξ + 4ξ2))

/(
48(2 + ξ)

)
, (D.91)

p2(x̄
i−1−

√
3

6
) = (

12ū(0)
i−1(−3 + 2ξ)

(
3(3 + √

3 ) + 2(1 + √
3 )ξ

)
+ √

3(3 + 2ξ)2(ū(1)
i+1(−9 + 2ξ) + 6ū(0)

i+1(3 + 2ξ)
))/(

6
(−81 − 18ξ + 36ξ2 + 8ξ3)), (D.92)

p3(x̄
i−1−

√
3

6
) = (

6
√

3u(0)
i−2

(
27 + 12ξ − 4ξ2) − √

3ū(0)
i+1

(
105 + 142ξ + 60ξ2 + 8ξ3)

+ ū(0)
i−1

(
1440 − 57

√
3 + 576ξ + 70

√
3ξ + 84

√
3ξ2 + 8

√
3ξ3))/(

288(5 + 2ξ)
)
. (D.93)

Step D.2.2. We find the combination coefficients. For xG = x̄
i−1+

√
3

6
, the associated linear weights are:

γ1 = −(
(2 + ξ)

(−891(−9 + 212
√

3 ) + (18846 − 72216
√

3 )ξ − 24(−693 + 52
√

3 )ξ2

+ 16(423 + 292
√

3 )ξ3 + 16(79 + 84
√

3 )ξ4 + 32(3 + 4
√

3 )ξ5))/(
6
√

3
(
168399 + 211942ξ + 104600ξ2 + 26928ξ3 + 3760ξ4 + 224ξ5)),
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γ2 = −(
(9 + 2ξ)

(
3807 + 70704

√
3 + 96(99 + 749

√
3 )ξ + (8856 + 21824

√
3 )ξ2 + 64(57 + 26

√
3 )ξ3

+ 560ξ4))/(
12

√
3
(−216513 − 162522ξ − 27496ξ2 + 3120ξ3 + 1968ξ4 + 224ξ5)),

γ3 = (
81(−85588 − 201

√
3 ) − 18(420388 + 705

√
3 )ξ − 12(186668 − 3393

√
3 )ξ2

+ 8(31052 + 9027
√

3 )ξ3 + (280640 + 46928
√

3 )ξ4 + 96(764 + 151
√

3)ξ5

+ 64(148 + 33
√

3 )ξ6 + 128(4 + √
3 )ξ7)/(

12
(−1515591 − 1570680ξ − 517516ξ2

− 33152ξ3 + 20016ξ4 + 5504ξ5 + 448ξ6)). (D.94)

For xG = x̄
i−1−

√
3

6
, the associated linear weights are:

γ1 = −(
(2 + ξ)

(−891(9 + 212
√

3) + (−18846 − 72216
√

3 )ξ − 24(693 + 52
√

3 )ξ2

+ 16(−423 + 292
√

3 )ξ3 + 16(−79 + 84
√

3 )ξ4 + 32(−3 + 4
√

3 )ξ5))/(
6
√

3
(
168399 + 211942ξ + 104600ξ2 + 26928ξ3 + 3760ξ4 + 224ξ5)),

γ2 = (
(9 + 2ξ)

(
3807 − 70704

√
3 + 96(99 − 749

√
3 )ξ + (8856 − 21824

√
3 )ξ2 + 64(57 − 26

√
3 )ξ3

+ 560ξ4))/(
12

√
3
(−216513 − 162522ξ − 27496ξ2 + 3120ξ3 + 1968ξ4 + 224ξ5)),

γ3 = (
81(−85588 + 201

√
3 ) − 18(420388 − 705

√
3 )ξ − 12(186668 + 3393

√
3 )ξ2 + 8(31052 − 9027

√
3 )ξ3

+ (280640 − 46928
√

3 )ξ4 + 96(764 − 151
√

3)ξ5 + 64(148 − 33
√

3 )ξ6 + 128(4 − √
3 )ξ7)/(

12
(−1515591 − 1570680ξ − 517516ξ2 − 33152ξ3 + 20016ξ4 + 5504ξ5 + 448ξ6)). (D.95)

Step D.3.1. Here, Ī i+1 is the “troubled cell”. Given the small stencils S1 = { Ī i−1, Ī i+1}, S2 = { Ī i+1, Ii+2}, S3 = { Ī i−1, Ī i+1, Ii+2}
and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x̄

i+1+
√

3
6

, we have:

p1(x̄
i+1+

√
3

6
) = (

6ū(0)
i+1(3 + 2ξ)

(−9 − 3
√

3 + 2(1 + √
3 )ξ

) + 6
√

3ū(0)
i−1

(
9 − 4ξ2)

+ √
3ū(1)

i−1

(
27 − 12ξ − 4ξ2))/(

6
(−27 − 12ξ + 4ξ2)), (D.96)

p2(x̄
i+1+

√
3

6
) = (

12ū(0)
i+1(3 + 2ξ)

(
8 − 3

√
3 − 2(2 − √

3 )ξ
) + √

3(3 − 2ξ)2(u(1)
i+2(−7 + 2ξ)

+ 6u(0)
i+2(3 − 2ξ)

))/(
48

(
6 − 7ξ + 2ξ2)), (D.97)

p3(x̄
i+1+

√
3

6
) = (

6
√

3u(0)
i+2

(−27 + 12ξ + 4ξ2) + √
3ū(0)

i−1

(
105 − 142ξ + 60ξ2 − 8ξ3)

+ ū(0)
i+1

(−1440 + 57
√

3 + 576ξ + 70
√

3ξ − 84
√

3ξ2 + 8
√

3ξ3))/(
288(−5 + 2ξ)

)
. (D.98)

At the point x̄
i+1−

√
3

6
, we have:

p1(x̄
i+1−

√
3

6
) = (

6ū(0)
i+1(3 + 2ξ)

(−9 + 3
√

3 + 2(1 − √
3 )ξ

) − 6
√

3ū(0)
i−1

(
9 − 4ξ2)

− √
3ū(1)

i−1

(
27 − 12ξ − 4ξ2))/(

6
(−27 − 12ξ + 4ξ2)), (D.99)

p2(x̄
i+1−

√
3

6
) = (

12ū(0)
i+1(3 + 2ξ)

(
8 + 3

√
3 − 2(2 + √

3 )ξ
) − √

3(3 − 2ξ)2(u(1)
i+2(−7 + 2ξ)

+ 6u(0)
i+2(3 − 2ξ)

))/(
48

(
6 − 7ξ + 2ξ2)), (D.100)

p3(x̄
i+1−

√
3

6
) = (−6

√
3u(0)

i+2

(−27 + 12ξ + 4ξ2) − √
3ū(0)

i−1

(
105 − 142ξ + 60ξ2 − 8ξ3)

+ ū(0)
i+1

(−1440 − 57
√

3 + 576ξ − 70
√

3ξ + 84
√

3ξ2 − 8
√

3ξ3))/(
288(−5 + 2ξ)

)
. (D.101)

Step D.3.2. We find the combination coefficients. For xG = x̄
i+1+

√
3

6
, the associated linear weights are:

γ1 = (
(−9 + 2ξ)

(
3807 − 70704

√
3 + 96(−99 + 749

√
3 )ξ + (8856 − 21824

√
3 )ξ2 + 64(−57 + 26

√
3 )ξ3

+ 560ξ4))/(
12

√
3
(
216513 − 162522ξ + 27496ξ2 + 3120ξ3 − 1968ξ4 + 224ξ5)),
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γ2 = (
(−2 + ξ)

(
891(9 + 212

√
3 ) + (−18846 − 72216

√
3 )ξ + 24(693 + 52

√
3 )ξ2

+ 16(−423 + 292
√

3 )ξ3 − 16(−79 + 84
√

3 )ξ4 + 32(−3 + 4
√

3 )ξ5))/(
6
√

3
(−168399 + 211942ξ − 104600ξ2 + 26928ξ3 − 3760ξ4 + 224ξ5)),

γ3 = (−81(85588 − 201
√

3 ) + 18(420388 − 705
√

3 )ξ − 12(186668 + 3393
√

3 )ξ2 − 8(31052 − 9027
√

3 )ξ3

+ (280640 − 46928
√

3 )ξ4 − 96(764 − 151
√

3 )ξ5 + 64(148 − 33
√

3 )ξ6 − 128(4 − √
3 )ξ7)/(

12
(−1515591 + 1570680ξ − 517516ξ2 + 33152ξ3 + 20016ξ4 − 5504ξ5 + 448ξ6)). (D.102)

For xG = x̄
i+1−

√
3

6
, the associated linear weights are:

γ1 = (
(−9 + 2ξ)

(−3807 − 70704
√

3 + 96(99 + 749
√

3 )ξ + (−8856 − 21824
√

3 )ξ2 + 64(57 + 26
√

3 )ξ3

− 560ξ4))/(
12

√
3
(
216513 − 162522ξ + 27496ξ2 + 3120ξ3 − 1968ξ4 + 224ξ5)),

γ2 = (
(−2 + ξ)

(
891(−9 + 212

√
3 ) + (18846 − 72216

√
3 )ξ + 24(−693 + 52

√
3 )ξ2

+ 16(423 + 292
√

3 )ξ3 − 16(79 + 84
√

3 )ξ4 + 32(3 + 4
√

3 )ξ5))/(
6
√

3
(−168399 + 211942ξ − 104600ξ2 + 26928ξ3 − 3760ξ4 + 224ξ5)),

γ3 = (−81(85588 + 201
√

3 ) + 18(420388 + 705
√

3 )ξ − 12(186668 − 3393
√

3 )ξ2 − 8(31052 + 9027
√

3 )ξ3

+ (280640 + 46928
√

3 )ξ4 − 96(764 + 151
√

3 )ξ5 + 64(148 + 33
√

3 )ξ6 − 128(4 + √
3 )ξ7)/(

12
(−1515591 + 1570680ξ − 517516ξ2 + 33152ξ3 + 20016ξ4 − 5504ξ5 + 448ξ6)). (D.103)

Step D.4.1. Here, Ii+2 is the “troubled cell”. Given the small stencils S1 = { Ī i+1, Ii+2}, S2 = {Ii+2, Ii+3}, S3 = { Ī i+1, Ii+2, Ii+3}
and the bigger stencil Γ = S1 ∪ S2 ∪ S3, we construct pn(x) (n = 1,2,3) and q(x). At the point x

i+2+
√

3
6

, we have:

p1(x
i+2+

√
3

6
) = (

4
√

3ū(1)
i+1(−2 + ξ) + 6

√
3ū(0)

i+1(−3 + 2ξ) + 3u(0)
i+2(−3 + 2ξ) (−7 − 2

√
3 + 2ξ)

)
/(

63 − 60ξ + 12ξ2), (D.104)

p2(x
i+2+

√
3

6
) = (√

3
(
2u(0)

i+3 − u(1)
i+3

) − (3 − √
3 )u(0)

i+2(−3 + 2ξ)
)
/6, (D.105)

p3(x
i+2+

√
3

6
) = (−6

√
3ū(0)

i+1 + √
3u(0)

i+3

(
10 − 9ξ + 2ξ2) + u(0)

i+2

(
105 − 4

√
3 − 9(8 − √

3 )ξ + 2(6 − √
3 )ξ2))

/(
3
(
35 − 24ξ + 4ξ2)). (D.106)

At the point x
i+2−

√
3

6
, we have:

p1(x
i+2−

√
3

6
) = (−4

√
3ū(1)

i+1(−2 + ξ) − 6
√

3ū(0)
i+1(−3 + 2ξ) + 3u(0)

i+2(−3 + 2ξ)(−7 + 2
√

3 + 2ξ)
)

/(
63 − 60ξ + 12ξ2), (D.107)

p2(x
i+2−

√
3

6
) = (−√

3
(
2u(0)

i+3 − u(1)
i+3

) − (3 + √
3 )u(0)

i+2(−3 + 2ξ)
)
/6, (D.108)

p3(x
i+2−

√
3

6
) = (

6
√

3ū(0)
i+1 − √

3u(0)
i+3

(
10 − 9ξ + 2ξ2) + u(0)

i+2

(
105 + 4

√
3 − 9(8 + √

3 )ξ + 2(6 + √
3 )ξ2))

/(
3
(
35 − 24ξ + 4ξ2)). (D.109)

Step D.4.2. We find the combination coefficients. For xG = x
i+2+

√
3

6
, the associated linear weights are:

γ1 = (
(−7 + 2ξ)

(−91 + 3488
√

3 − 30(−1 + 92
√

3 )ξ + 528
√

3ξ2))/(
6
√

3(−2 + ξ)
(
8613 − 9204ξ + 3744ξ2 − 688ξ3 + 48ξ4)),

γ2 = (
29877 + 197

√
3 − 12(3573 + 8

√
3 )ξ + 12(1872 + √

3 )ξ2 − 5136ξ3 + 432ξ4)/(
9
(
8613 − 9204ξ + 3744ξ2 − 688ξ3 + 48ξ4)),

γ3 = (−117312 + 151
√

3 + (176232 − 386
√

3 )ξ − 180(540 − √
3 )ξ2 + 24(980 − √

3 )ξ3 − 2112ξ4)/(
18

(−17226 + 27021ξ − 16692ξ2 + 5120ξ3 − 784ξ4 + 48ξ5)). (D.110)
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For xG = x
i+2−

√
3

6
, the associated linear weights are:

γ1 = (
(−7 + 2ξ)

(
91 + 3488

√
3 − 30(1 + 92

√
3 )ξ + 528

√
3ξ2))/(

6
√

3(−2 + ξ)
(
8613 − 9204ξ + 3744ξ2 − 688ξ3 + 48ξ4)),

γ2 = (
29877 − 197

√
3 − 12(3573 − 8

√
3 )ξ + 12(1872 − √

3 )ξ2 − 5136ξ3 + 432ξ4)/(
9
(
8613 − 9204ξ + 3744ξ2 − 688ξ3 + 48ξ4)),

γ3 = (−117312 − 151
√

3 + (176232 + 386
√

3 )ξ − 180(540 + √
3 )ξ2 + 24(980 + √

3 )ξ32112ξ4)/(
18

(−17226 + 27021ξ − 16692ξ2 + 5120ξ3 − 784ξ4 + 48ξ5)).
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