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Summary

A robust, adaptive unstructured mesh refinement strategy for high-order
Runge-Kutta discontinuous Galerkin method is proposed. The present work
mainly focuses on accurate capturing of sharp gradient flow features like strong
shocks in the simulations of two-dimensional inviscid compressible flows. A
posteriori finite volume subcell limiter is employed in the shock-affected cells to
control numerical spurious oscillations. An efficient cell-by-cell adaptive mesh
refinement is implemented to increase the resolution of our simulations. This
strategy enables to capture strong shocks without much numerical dissipation.
A wide range of challenging test cases is considered to demonstrate the efficiency
of the present adaptive numerical strategy for solving inviscid compressible flow
problems having strong shocks.
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1 INTRODUCTION

The main purpose of this paper is to develop an accurate and robust numerical method for solving a hyperbolic system
of partial differential equations (PDEs) using high-order Runge-Kutta discontinuous Galerkin (RKDG) method with an
adaptive mesh refinement (AMR) strategy on two-dimensional (2-D) unstructured grids. Designing a high-order accurate
and robust numerical method for hyperbolic PDEs is a difficult problem because hyperbolic equations admit discontinu-
ous solution. This leads to spurious oscillations in the computed solution when approximated by high-degree polynomials.
The discontinuous Galerkin (DG) spectral element method (SEM) is one of the most promising available methods to
bring robustness and accuracy together to numerically solve hyperbolic problems. Reed and Hill1 first introduced the DG
method to simulate neutron transport phenomena. After that, Cockburn et al laid the profound theoretical background of
DG method with Runge-Kutta time integration in their series of well-known papers.2-6 The most attractive feature of the
DG method is that the continuity of approximations for the solution across the faces of an element need not to be assured.
As an immediate consequence of that, the approximation over any element does not depend on approximations of neigh-
boring elements, making this method compact and that is why highly parallelizable on a high-performance computing
platform. Moreover, such an approximation of solution space, being quite consistent with the admissible solution space
for a hyperbolic system of equations, provides a possible way of increasing the order of spatial accuracy of this method by
increasing the degree of approximating polynomials.
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Designing a suitable limiter plays a crucial role in the success of a high-order RKDG scheme for simulating compressible
flows. At the same time, designing a compact limiter in the DG framework is of prime interest to preserve the compactness
of the overall method. The compactness of a limiter is also important for an easy integration to the AMR strategy. The slope
limiting methodology is one of the most primitive attempts to control spurious oscillations in the computed solutions pro-
vided by high-order DG methods. The minmod-type limiters,3-6 the moment-based limiter as proposed by Biswas et al,7
and an improved moment-based limiter by Burbeau et al8 are few but not a complete list of limiting techniques that rely
on the slope limiting methodology. Such kind of limiting strategies are prone to degrade the order of accuracy of the
high-order RKDG if limiting is mistakenly applied to at least a few cells where the solution is reasonably smooth. How-
ever, the weighted essentially nonoscillatory (WENO) scheme–based limiting methodology for the DG method along with
an appropriate troubled cell indicator is relatively more successful. The WENO schemes9,10 first appeared as a high-order
reconstruction strategy in the finite difference and the finite volume methods. Essentially, these schemes adaptively
choose the smoothest reconstruction at a cell interface point out of all possible stencils of specified order to avoid spuri-
ous oscillations. The WENO-based reconstruction strategy comprises the basic ingredient of the DG limiter in the work of
Qiu and Shu11 and Zhu et al.12 Such kind of a limiting strategy shows an enormous possibility while keeping the order of
accuracy of the DG scheme intact. Similar to the classical WENO method, the Hermite WENO (HWENO)–based recon-
struction strategy also serves the same purpose in reconstructing a spurious oscillation-free solution in the finite difference
or the finite volume method. Additionally, the HWENO-based reconstruction enables one to achieve the same order of
accuracy on a relatively more compact stencil in comparison to the classical WENO-based reconstruction. Qiu and Shu13,14

first proposed the use of the HWENO-based reconstruction as a limiter for high-order DG methods on the Cartesian grids
to simulate one-dimensional and 2-D inviscid compressible flows. Zhu and Qiu15,16 extended this study to simulate 2-D
and three-dimensional flows using unstructured simplex elements and demonstrated the efficacy of the WENO and the
HWENO-based limiting strategy for the RKDG. Despite the clear superiority of the WENO-type limiters over available
slope limiting methodologies, the WENO-type limiters also have a few drawbacks. Reconstruction of polynomial on any
target cell using such limiters requires information not only from the immediate neighbors but also from the neighbors
of the next neighbors. This destroys the inherent compactness of the unlimited RKDG methods. The compactness of the
DG method is one of the most appealing features that makes this method suitable for parallel computing. However, in
addition to the loss of compactness, it is common to encounter the problem of negative linear weights while using such
WENO-type limiters, and this problem needs special treatment to get rid of subsequent difficulties (interested readers may
refer to the review paper by Shu17 and references therein). Zhong and Shu18 first proposed a simple as well as compact
WENO-based limiting strategy on the Cartesian mesh, which requires the information from the immediate neighbors of
a target cell, and at the same time, this scheme avoids the problem of negative linear weights. Zhu et al19 extended this
study to illustrate the performance of a simple and compact WENO-based limiting strategy for an unstructured grid with
triangular elements. Recently, Zhu et al proposed a simple and compact HWENO-based limiting technique for the RKDG
method on the structured20 as well as unstructured21 grids. Recently, Dumbser et al22,23 have developed an a posteriori
subcell limiter that has a different philosophy than the so-called classical DG limiters. Instead of repairing the solution at
any particular instant of time, a posteriori subcell limiters attempt to recompute the solution starting from a set of reliable
subcell averages at the previous time step with a more robust numerical method. Those methods are attractive in many
ways. First, unlike the classical limiters, a posteriori subcell limiters do not sacrifice the compactness of the underlying
DG scheme, irrespective of its order. After-the-fact troubled cell detection and recompute philosophy make such a limiter
more controllable, and that is why it is more failure-proof and robust. This is the key to integrate accuracy to the robust-
ness of a high-order DG scheme. In our present work, we implemented a modified a posteriori subcell limiting strategy,
which is discussed in Section 3.

An appropriate detection of troubled cells, on which limiting might be needed, is an important ingredient of a suc-
cessful limiting strategy. The classical minmod-type total variation bounded (TVB) troubled cell indicators were adopted
in the earliest related works of Cockburn et al.3,5,6 The necessity of a problem-dependent positive constant (M) hinders
the robustness of a minmod-type TVB limiter. Many other shock detection strategies or troubled cell indicators, some of
which perform well for a special kind of hyperbolic PDEs in comparison to other candidates, appear in the DG literature.
The moment limiter (BDF) of Biswas et al,7 a modified moment limiter of Burbeau et al,8 the monotonicity-preserving
limiter of Suresh and Huynh,24 a modified monotonicity-preserving limiter of Rider and Margolin,25 and subcell resolu-
tion idea–based troubled cell indicator of Harten26 are some of the interesting propositions to circumvent this problem.
Interested readers may refer to the work of Qiu and Shu27 for an extensive review and comparative study about the per-
formances of various troubled cell indicators in the literature. A clear superiority of the minmod-type TVB limiter with a
properly chosen TVB parameter, subcell resolution idea–based troubled cell indicator of Harten, and the shock detection
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technique (referred to as KXRCF hereafter) by Krivodonova et al28 over other shock detection methodologies was reported
by Qiu and Shu.27 In the context of a posteriori finite volume subcell limiter, an after-the-fact check is a natural way to
design a troubled cell indicator. This strategy is motivated by the so-called “multidimensional optimal order detection
(MOOD) loop” in the finite volume framework as proposed by Clain et al29 and extended to the cases for unstructured
grids by Diot et al.30 The MOOD-based limiting strategy was adopted by Dumbser et al.22,23 In our present work, a similar
strategy is adopted with a few modifications for their application with the AMR.

An admissible discontinuous solution across the cell interfaces is the basic essence and most prominent distinc-
tion of DG methods from the conventional continuous Galerkin methods. This privilege makes the algorithm highly
parallelizable and favorable to AMR without having any restriction on the conformity of the adapted grids. The first
patch-based nonconforming AMR was introduced by Berger and Oliger.31 They employed a nested, logically rectangu-
lar patch-based AMR for second-order accurate finite difference and finite volume method31,32 to solve for a hyperbolic
system of equations. A fifth-order accurate WENO scheme along with the patch-based AMR method was proposed by
Baeza and Mulet.33 The cell-by-cell AMR is a slightly simpler version of mesh adaptation from an algorithmic point of
view, and such methods can easily be extended for unstructured grids. The cell-by-cell AMR approach was introduced
first by Khokhlov34 in the finite volume framework. Later, this adaptation strategy was extended by Dumbser et al.35,36

for the high-order accurate finite volume framework with a high-order accurate time integration scheme to solve hyper-
bolic systems in conservative as well as nonconservative forms. An algorithmic simplicity of the cell-by-cell AMR made
this strategy well suited for a high-order DG method. Boumann and Oden37 implemented the DG with a cell-by-cell
adaptation for the convection-diffusion problem, and they extended this study for the compressible inviscid as well as
compressible viscous flow simulations.38 Houston et al.39,40 analyzed the cell-by-cell mesh adaptation with hanging nodes
for the first-order hyperbolic problems using DG methods. The cell-by-cell AMR approach was successfully extended to
the unstructured meshes (see the work of Luo et al41). Recently, Fambri and Dumbser42 extended the application of the
cell-by-cell AMR strategy to solve incompressible viscous flow problems on the Cartesian grids. The cell-by-cell AMR
strategy on the Cartesian grid along with the DG method was also implemented in our past work43 to solve hyperbolic
conservation laws.

Although there is no scope of any further dispute over the effectiveness of the AMR and high-order methods for hyper-
bolic problems, an efficient combination of those strategies remains challenging for solving real-world problems. In our
present work, a fifth-order RKDG method on unstructured triangular grid elements is implemented. It is immensely diffi-
cult for conventional a priori limiters with a fifth-order RKDG to simulate flow problems with strong shocks. However, to
our present implementation with a modified subcell limiter, a wide range of such problems remain accessible even with
a fifth-order RKDG. The present implementation relies on a new extra set of solution admissibility criteria to detect the
troubled cells. This is discussed in details in Section 3.3. Our numerical experiments show a substantial reduction in the
troubled cell count for the simulations of flow problems with strong shocks. To the best of our knowledge, a fifth-order
accurate RKDG method with an AMR on unstructured triangular grid elements for the compressible Euler equations has
not appeared in the literature yet.

The rest of this paper is organized as follows. Section 2 outlines the spatial and time discretization for the Euler equations
using a high-order RKDG method on triangular elements. Section 3 briefly describes the subcell limiter, as implemented
in our present work, and the related projection operation for transferring data from a cell to its subcells and the reconstruc-
tion operations for transferring data from the subcells to the corresponding cell. This section also outlines the detection
methodology for troubled cells. Section 4 describes the cell-by-cell AMR strategy suitable for our high-order RKDG on
the triangular elements as implemented in the present work. Section 5 demonstrates the efficacy and robustness of our
present implementation through a wide range of numerical experiments to simulate inviscid compressible flows with
intricate flow features including strong shocks. Finally, Section 6 draws some final remarks on our present work.

2 AN OVERVIEW OF THE RUNGE-KUTTA DISCONTINUOUS GALERKIN
SPECTRAL ELEMENT METHOD FOR THE 2-D EULER EQUATIONS

We consider the time-dependent, 2-D, compressible Euler equations, conservation laws for mass, momentum, and total
energy of the flow of an inviscid, compressible fluid, on a finite time interval (0,T] and in an open, connected, bounded
Lipschitz domain Ω ⊂ R2. Those equations can be given by the following form:

𝜕u
𝜕t

+ ∇ · F(u) = 0 in Ω × (0,T], (1)
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subject to the initial condition, u(0, x) = u0(x), where x ∈ Ω and t ∈ R+ denote the spatial coordinate in the domain of
interest and time variable, respectively. u(x, t) ∶ R2 ×R+ → R4 is the conservative vector and F(u(x, t)) ∶ R2 ×R+ → R4×2

is a second-order tensor denoting the flux function, given by

u =
⎡⎢⎢⎢⎣

𝜌
𝜌vx
𝜌v𝑦
𝜌E

⎤⎥⎥⎥⎦ and F(u) =
⎡⎢⎢⎢⎣

𝜌vx 𝜌v𝑦
𝜌v2

x + p 𝜌vxv𝑦
𝜌v𝑦vx 𝜌v2

𝑦 + p
(𝜌E + p)vx (𝜌E + p)v𝑦

⎤⎥⎥⎥⎦ . (2)

In the previous expressions, 𝜌, (vx, vy), p, and E denote density of the fluid, velocity vector, fluid pressure, and total energy
per unit mass, respectively. The total energy per unit mass can be determined from the knowledge of the internal energy
per unit mass (e) by the expression, E = e + ||v||2∕2. In our present case, the system is closed by the equation of state
𝜌e = p∕(𝛾 − 1) by assuming the fluid to be an ideal gas. 𝛾 denotes the ratio of specific heats.

Two-dimensional domains are partitioned by nonoverlapping, conforming triangular cells, which forms the primary
mesh for 2-D simulations in our present work. The primary mesh is adaptively refined with nonconforming triangular
elements as explained in details in Section 4. Next, the classical RKDG of order (m + 1) approach will be outlined for
the 2-D Euler equations. For a given conforming or nonconforming triangulation 𝜏h of the domain of interest, we seek
for the approximate solution for the conservative vector uh(x, t) at any particular time in the finite element space of the
discontinuous functions, given by

V m
h ∶=

{
vh(x) ∈ L∞(Ω) ∶ vh|T ∈ P

m,∀ T ∈ 𝜏h
}
. (3)

Here, T denotes any triangular element of the given triangulation 𝜏h, and Pm is the set of all polynomials of degree at most
m on any arbitrary triangle. We multiply Equation (1) by a test function vh(x) ∈ V m

h and integrate the equation over the
element T to obtain the following equation:

d
dt∫T

u(x, t)vh(x)dΩ − ∫T
F(u) · ∇vh(x)dΩ +

∑
e∈𝜕T

∫e
vh(x)F(u) · n̂edΓ = 0, (4)

where 𝜕T denotes the boundary of the triangular element T and n̂e is the outward unit normal to the edge specified by the
symbol e. Equation (4) is the exact representation of the weak form of Equation (1) since no approximation is introduced
until this point. Next, we replace u with the approximate solution uh to derive the semidiscrete form of Equation (4). The
problem essentially reduces to the following: Find uh ∈ (V m

h )4 ∀ vh ∈ V m
h on every T ∈ 𝜏h such that

d
dt∫T

uh(x, t)vh(x)dΩ − ∫T
F(uh) · ∇vh(x)dΩ +

∑
e∈𝜕T

∫e
vh(x)F(uh) · n̂edΓ = 0. (5)

Next, approximations of different terms of Equation (5) will be outlined. The volume integration ∫TF(uh) · ∇vh(x)dΩ on
the element T can be approximated with a numerical quadrature of sufficiently high order. The approximation can be
given by

∫T
F(uh) · ∇vh(x)dΩ ≈ 2|T|Nq(m)∑

i=1
wq

i F
(
uq

i

)
· ∇vh

(
xq

i

)
, (6)

where Nq(m) is the number of quadrature points to integrate the function on any triangular element when u is approxi-
mated in (Pm)4, xq

i are the Nq(m) number of quadrature points on any triangular element, uq
i are the conservative variables

evaluated at xq
i , wq

i are the weights associated to this integration rule, and |T| denotes the area of the triangular element.
In this paper, a cardinal function algorithm of Taylor et al44 is adopted to calculate the quadrature points and weights
to numerically integrate a function on a triangular element (see Appendix B for more details). The line integration as
featuring in Equation (4) can be calculated by a sufficiently high-order Gauss quadrature given by the following form:

∑
e∈𝜕T

∫e
vh(x)F(uh) · n̂edΓ ≈

∑
e∈𝜕T

|e|
2

NG
q (m)∑
i=1

wG
i vh

(
xG

i
)

F
(
uG

i
)
· n̂e, (7)
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FIGURE 1 The quadrature points on a typical triangular element for a fifth-order
discontinuous Galerkin method. points show the edge quadrature points for
approximating Equation (7). points show the quadrature points for approximating
Equation (6) [Colour figure can be viewed at wileyonlinelibrary.com]

where NG
q (m) is the number of Gauss-Legendre quadrature points to integrate the function on any edge of a triangular

element when uh is in (Pm)4, xG
i are the NG

q (m) number of Gauss-Legendre quadrature points on any edge, and uG
i denotes

the state variable evaluated at xG
i . It was proven by Cockburn et al5 that for an (m+1)th-order RKDG, the quadrature rules

over each of the faces of T have to be exact for polynomials of degree (2m+ 1), and the quadrature rules over T have to be
exact for polynomials of degree 2m. The number of quadrature points Nq(m) and NG

q (m) are chosen accordingly. Figure 1
shows the quadrature points on a typical triangular element for evaluating integrals (6) and (7). Note that F(uG

i ) · n̂e needs
to be approximated through any standard approximate Riemann solver. In our present work, a simple local Lax-Friedrichs
(LLF) solver is employed. The LLF solver, being a function of the left and right states at a point on an edge and the outward
unit normal vector to that edge, can be expressed by the following form:

F
(
uG

i
)
· n̂e ≈ f̃

(
uG

i
)
= 1

2
[
F
(
uG+

i

)
+ F

(
uG−

i
)]

· n̂e −
𝛼

2
[
uG+

i − uG−
i
]
. (8)

In Equation (8), 𝛼 is taken to be the maximum magnitude of eigenvalues of flux Jacobian matrix at xG
i in the direction of

n̂e. uG+
i and uG−

i are the conserved variables at xG
i are taken from the interior and exterior information on the triangle,

respectively.

2.1 Spatial discretization
This section describes the spatial discretization and approximations of different terms of Equation (5). Unlike the nodal
DG,45 the modal RKDG approach, which is pursued in this work, relies on the approximation of conserved variables on
each triangular element T with a linear combination of N(m) number of orthogonal functions: Ψ(T)

i (x) ∈ Pm(T):

u(T)
h (x, t) =

N(m)∑
i=1

û(T)
i (t)Ψ(T)

i (x). (9)

The superscript (T) is used to differentiate the approximations on different triangular elements. Also, it is worth noting
that the time dependence of the solution is encapsulated in the moments û(T)

i of the orthogonal functions in the above
approximation and hence facilitates the subsequent implementation. However, normalized Ψ(T)

i (x) functions construct
the basis for the finite element space V m

h . Unlike the nodal DG approach, Ψ(T)
i (x) are chosen as test functions vh(x) while

deriving the weak form of Equation (1). Consequently, the first term of Equation (5) simplifies further as

d
dt∫T

uh(x, t)Ψ(T)
i (x)dΩ = 2|T|𝜓i

dû(T)
i (t)
dt

. (10)

In Equation (10), the orthogonality relation for the orthogonal functions Ψ(T)
i (x) on the triangular element T is used:

∫TΨ
(T)
i (x)Ψ(T)

𝑗
(x)dΩ = 2|T|𝜓i if i = j and 0 otherwise. 𝜓 i is a scalar constant that comes from the orthogonality relation

for the chosen modal basis functions on the standard triangle, which is discussed later in this section and in Appendix A.
Next, combining the approximations for all the terms of Equation (5) yields the semidiscrete form of equations governing
the time evolution of the ith moment of the conserved variables on a triangular element T.

2|T|𝜓i
dûi(t)

dt
= 2|T|Nq(m)∑

𝑗=1
wq
𝑗
F
(

uq
𝑗

)
· ∇Ψi

(
xq
𝑗

)
−
∑
e∈𝜕T

|e|
2

NG
q (m)∑
𝑗=1

wG
𝑗 Ψi

(
xG
𝑗

)
f̃
(
uG
𝑗

)
. (11)

http://wileyonlinelibrary.com
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FIGURE 2 The mapping of any triangle to the standard triangle given by Equations (13a) and (13b) and the mapping of the standard
triangle to the standard square given by Equation (14)

In Equation (11), superscript (T) is removed from all the terms as this is not causing any ambiguity. The above equation
can be solved for the moments ûi(t) on all triangular elements with a given initial condition and consistent boundary
conditions on the domain boundaries using a time integration scheme.

To facilitate the numerical implementation, the orthogonal functions are defined on a standard triangle having scaled
coordinate 𝝃 ≡ (𝜁, 𝜂). An isosceles right triangle in the 𝜁 − 𝜂 plane is taken to be the standard triangle such that the three
vertices x0, x1, and x2 (specified in an anti-clockwise sense) of any triangle T are mapped to the vertices of the standard
triangle (0, 0), (1, 0), and (0, 1), respectively, as shown in Figure 2. In this way, one-to-one mapping between a physical
triangle and the standard triangle can be derived as follows:

x = x0(1 − 𝜁 − 𝜂) + x1𝜁 + x2𝜂. (12)

Similarly, an inverse mapping is obtained to find the coordinate of any point in any physical triangle from its vertices and
the corresponding coordinate in the 𝜁 − 𝜂 plane as follows:

𝜁 = (x − x0)(𝑦2 − 𝑦0) − (x2 − x0)(𝑦 − 𝑦0)|J| , (13a)

𝜂 = (x1 − x0)(𝑦 − 𝑦0) − (x − x0)(𝑦1 − 𝑦0)|J| , (13b)

where x0 ≡ (x0, y0), x1 ≡ (x1, y1), and x2 ≡ (x2, y2) are the three vertices of T and |J| is the Jacobian associated with the
mapping given by Equation (12). For any triangular element, |J| turns out to be a constant (see Appendix A). Both the
forward mapping and its inverse mapping are frequently used during the present computation. On the standard triangle, a
complete set of orthogonal functions can be defined in many ways to develop a generalized numerical methodology for an
RKDG of arbitrary order. In this work, Proriol polynomials46 are employed as the basis functions. Being dependent only
on the Jacobi polynomials which are orthogonal functions of a single variable, the Proriol polynomials can be computed in
a straightforward way by computing the Jacobi polynomials. The Proriol polynomials are defined in the standard square,
ie, in the 𝜁 − �̃� plane. On this plane, a standard square is defined by {(𝜁, �̃�) ∶ |𝜁 | ⩽ 1, |�̃�| ⩽ 1}, as shown in Figure 2. The
mapping from the standard isosceles triangle to the standard square is known as Duffy's transform and is given by

𝜁 = 2𝜁
1 − 𝜂

− 1 and �̃� = 2𝜂 − 1. (14)

One may notice that this transformation is not unique at 𝝃 = (0, 1) and that is why extra care is needed while computing
the Proriol polynomials accurately at that singular point. The Proriol functions are defined on the standard square by

Φkl(𝜁, �̃�) =
(

1 − �̃�

2

)k

P(0,0)
k (𝜁 )P(2k+1,0)

l (�̃�), (15)

where P(0,0)
k (𝜁 ) and P(2k+1,0)

l (�̃�) are the Jacobi polynomials of degree k and l, respectively. Explicit expressions of the first few
Proriol polynomials are given in Appendix A. A function u(T)

h (x, t) ∈ (Pm)4 on any triangular cell T can be approximated
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in terms of the Proriol polynomials as

u(T)
h (x, t) =

m∑
k=0

m−k∑
l=0

û(T)
kl (t)Φkl(�̃�). (16)

Equivalence of the above approximation of u(T)(x, t) and the approximation by Equation (9) determines the number of
required polynomials to approximate a function in (Pm)4, which is N(m) = (m+ 1)(m+ 2)∕2. It is worth noting that �̃� can
be uniquely determined for a given coordinate x in T by two consecutive mappings, namely Equations (13a) and (13b) and
(14). Also, the double-indexed moment û(T)

kl (t) and the single-indexed moment û(T)
i (t) are actually the same if the indices

are related by the following relation:

i = k(2m − k + 3)
2

+ l. (17)

Furthermore, a scheme with spatial order (m + 1) is obtained if the numerical solution on each triangular element are
approximated in (Pm)4.

2.1.1 Initialization
To evolve the moments of the state variables according to Equation (11), we need to provide the initial condition that is
consistent with Equation (9). For a given initial condition u0(x) = u(x, t = 0), corresponding moments can be approx-
imated by performing an L2-projection, which leads to the computations of the following integrals to find the initial
moments on any triangular element T:

û(T)
i (t = 0) = 1|T|∫T

u0(x)Ψ(T)
i (x)dΩ, ∀ i ∈ {1, 2, … ,N(m)}. (18)

The integral of Equation (18) can be approximated by choosing a quadrature rule exact for polynomials of degree 2m as
for an (m + 1)th-order RKDG discretization, where Ψ(T)

i is in Pm and approximation of u0(x) is in (Pm)4. After initializing
the moments of the conservative vector of each triangular element, a suitable time integration scheme is employed to
evolve those moments in time. This will be discussed in the following.

2.2 The Runge-Kutta time integration and calculation of time step
The spatial discretization over the physical domain of interest reduces the Euler equations to a set of coupled ordinary
differential equations given by Equation (11). A third-order explicit strong stability preserving Runge-Kutta (SSP-RK3)
scheme47 is applied for the time integration. On a triangular element, the vector of moments of any state variable û(T)

n is
updated for the next time level by the following stages:

û(T)
(1) = û(T)

n + 𝛿t(û(T)
n , tn

)
, (19a)

û(T)
(2) =

3
4

û(T)
n + 1

4
û(T)
(1) +

1
4
𝛿t(û(T)

(1) , tn + 𝛿t
)
, (19b)

û(T)
n+1 = 1

3
û(T)

n + 2
3

û(T)
(2) +

2
3
𝛿t(û(T)

(2) , tn + 𝛿t
2

)
, (19c)

where  denotes the spatial discretization.
To achieve numerical stability of the scheme, time step is chosen by the following condition:

𝛿t < min
T∈𝜏h

CFL r(T)(|vx| + ||v𝑦|| + 2a
) , (20)

where a =
√
𝛾p∕𝜌 is the local acoustic velocity, vx and vy are x and y components of velocity field, respectively, and r(T) is the

radius of the circumscribed circle of a triangular element T. CFL is the specified Courant-Friedrichs-Lewy (CFL) number.
(|vx| + |v𝑦| + 2c)(T)max is calculated based on the subcell averaged values among all 4m2 number of subcells of a triangular
cell. The condition (20) can be derived from a von Neumann stability analysis of the method for the linear advection
equation to ensure the L2-stability. This condition is equally valid for nonlinear equations to prevent the amplification of
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round-off errors. For the stability of the scheme, CFL = 1∕(2m + 1) is chosen in practice for the RKDG method where
spatial approximations are in Pm, and (m + 1)th-order (m + 1) stages SSP-RK time integration are employed. This can be
proved trivially for m = 0 and the same for m = 1 was proved by Cockburn and Shu.2 For m ⩾ 2, numerical experiments
confirm even smaller magnitude of CFL number than its estimated value from the analysis (ie, CFL = 1∕(2m + 1)). For
more details on this, readers may refer to table 2.2 of the review article of Cockburn and Shu.48 In our work, we presented
the simulation results for the DG discretization in P3 and P4 with the SSP-RK3 time integration scheme. From the work of
Cockburn and Shu,48 the estimated CFL number for the L2-stability of our scheme is 0.089. Our numerical experiments for
the solution of the compressible Euler equations in this work show that the scheme is stable for the CFL number between
0.1 and 0.05, which is very close to the estimated CFL number in the work of Cockburn and Shu48 for the L2-stability of
the scheme.

3 THE SUBCELL FINITE VOLUME LIMITER

This section describes the concept of the a posteriori subcell limiter, which was first proposed by Dumbser and Loubere.23

This subcell limiter is adopted in our present work with required modifications for its implementation with AMR. A
posteriori limiters are essentially different from the classical DG limiters such as TVB limiter and other DG limiters, which
rely on the concepts of WENO or HWENO. In the high-order RKDG, the major role of a limiter is to assure spurious
oscillation-free solution at any instant of time, while preserving the high-order of accuracy at the smooth regions. Hence,
the essential feature of a limiter is to introduce the ability to differentiate the physical oscillations and the oscillations that
appear due to some numerical artifact. The key step in achieving that goal for both the classical and a posteriori limiters is
to identify the cells on which limiting might be needed, ie, troubled cells through an appropriate troubled cell indicator or
shock detection technique. This step, of course, becomes an important ingredient of any limiting technique. The troubled
cell indicator, which is used in our work, is discussed in the next section.

Before discussing on a posteriori subcell limiter, it is important to realize the necessity of this alternative limiting strategy
even when classical limiters, especially those which rely on the concepts of the WENO and the HWENO, work reasonably
well for DG with AMR. Classical limiters reconstruct the DG solution on any troubled cell by using the solution on itself
and mass conservative extrapolated solutions on this cell from its neighbors. While combining all possible provisional
solutions on the troubled cell, classical limiters adaptively assign a small weight to a bad candidate, assuring a spurious
oscillation-free final solution on the troubled cell. The only assumption associated with the classical limiters is that the
provisional solution on the troubled cell or the provisional solutions provided by extrapolated solutions from its neighbors
may not be good solutions but should not contain any floating point error (NaN or Inf). Then, only it is possible to combine
those solutions with properly chosen weights to get rid of any bad component of the solution. However, very high-order
RKDG may produce a solution on a troubled cell, which is not even meaningful. Another motivation to choose an a
posteriori subcell limiter is the compactness of the stencil used for the limiting. A compact limiter is desirable especially
for the implementation of the RKDG with an AMR. In contrast to that, the robustness of the classical limiter relies on
the wider span of the selected stencil. However, the WENO and the HWENO-based compact limiters work well for DG
methods up to a certain order for the flows having strong shocks.

A general implementation strategy for a posteriori finite volume subcell limiter is discussed next. First, a provisional
solution u(T)

∗ ∈ (Pm)4 on a cell T for the next time level (t + 𝛿t) is obtained using the RKDG from u(T)
n (the solution at

time t) without applying any limiter. Next, u(T)
∗ is checked against some numerical and physical admissibility criteria as

discussed in the next section. If this provisional solution qualifies against those preliminary checks, then u(T)
∗ is further

checked against some shock detection criteria to determine whether this cell is a troubled cell or not. If u(T)
∗ fails against

those preliminary numerical and physical admissibility checks, then this cell is identified as a troubled cell without any
further investigation. After identifying a cell T as a troubled cell, the provisional solution u(T)

∗ is discarded. In place of
that discarded solution, subcell averages at time t, ie, u(T)

n is evolved with a first-order finite volume method and with
the same time integration scheme as the RKDG to obtain subcell averages u(T)

n+1 at time (t + 𝛿t). An appropriate choice
of the CFL number assures reliable subcell averages at time (t + 𝛿t). Subsequently, the DG solution u(T)

n+1 at time (t + 𝛿t)
is reconstructed from u(T)

n+1 to resume the time integration by the RKDG. To perform an a posteriori subcell limiting, any
triangular cell is divided into a fixed number of uniform subcells. In our present work, number of subcells Ns(m) = 4m2

is considered for an RKDG of order (m+ 1) as suggested by Dumbser and Loubere.23 This choice of Ns(m) for a triangular
element assures exactly the same number of degrees of freedom for the RKDG solution and for the solution in terms of
subcell averages. Figure 3 shows the division of a typical troubled cell into a specified Ns(m) number of subcells and the
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FIGURE 3 Subcells used for the a posteriori subcell finite volume limiter on a typical troubled cell for a seventh-order discontinuous
Galerkin scheme. To update the subcell averages of the subcells of the target cell, boundary subcells are found from the neighboring cells of
the target cell. The right-hand figure shows the troubled cell along with its immediate neighbors, which may need to be constructed for an
application with an adaptive mesh refinement [Colour figure can be viewed at wileyonlinelibrary.com]

boundary subcells from the immediate neighboring cells for applying an a posteriori finite volume limiter. Algorithm 1
summarizes the present numerical strategy.

The calculation of subcell averages from the moments on a triangular cell T and the calculation of moments with
respect to the Proriol polynomials from the given set of subcell averages of a function are two major components for the
implementation of an a posteriori finite volume subcell limiter. Those two steps are discussed in details next.

3.1 Computation of subcell averages from the DG solution in a cell
In this section, a computation procedure of subcell averages from the N(m) number of moments of any scalar-valued
function u(T)

h on any triangular element T is discussed. Exactly same steps are followed for each component of the con-
servative vector. We denote the N(m) number of moments of this function with respect to the Proriol basis function as
û(T) ≡ {û(T)

1 , û(T)
2 … û(T)

N(m)}. Also, the Ns(m) number of subcell averages is denoted by u(T) ≡ {u(T)
1 , u(T)

2 … u(T)
Ns(m)}. Here,

the superscript T indicates the fact that this function is restricted to T. The subcell averages on Ns(m) subcells can be
calculated from the following equation:

u(T) = Psû(T), (21)

where Ps ∈ RNs(m)×N(m) is the projection matrix. The (i, j)th entry of the projection matrix can be derived from the following
equation:

pi, 𝑗 =
1|Tsi |∫Tsi

Ψ𝑗(x)dΩ, (22)

http://wileyonlinelibrary.com
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which can be derived from Equation (9). Tsi , which is featured in Equation (22), denotes the ith subcell of the triangular
element T and clearly T = ∪Ns(m)

i=1 Tsi . The computation of this projection matrix and its pseudoinverse turns out to be
cumbersome if it is evaluated on the physical triangle. However, in the standard triangle, Equation (22) becomes

pi, 𝑗 =
1|Tsi |∫Ω𝝃si

Ψ𝑗(x)|J|d𝜁d𝜂, (23)

where J is the Jacobian matrix of the transformation given by Equation (12) and Ω𝝃si
denotes the subcell in the standard

triangle corresponding to Tsi . It turns out that for a triangular element, |J| = 2|Tsi | (see Appendix A for more details).
Consequently, Equation (23) reduces to the following equation:

pi, 𝑗 = 2∫Ω𝝃si

Ψ𝑗(x)d𝜁d𝜂. (24)

Note that, unlike a quadrilateral element, the projection matrix Ps turns out to be independent of the coordinates of
vertices of any triangular element. Hence, this projection matrix can be precomputed once in the preprocessing stage for
its repeated usage on the fly.

3.2 Reconstruction of the DG solution from the subcell averages
This problem is opposite to the previous one. We seek N(m)number of moments of any scalar-valued function u(T)

h on a spe-
cific triangular cell T when Ns(m) number of subcell averages u(T)

h are given on the subcells of T. Following Equation (16),
u(T)

h can be expanded in terms of the Proriol polynomials as

u(T)
h =

N(m)∑
i=1

û(T)
i Ψ(T)

i (x). (25)

The first set of equations is obtained by the fact that u(T)
h should recover the subcell averages exactly on the Ns(m) subcells

of T, ie, on the jth subcell Ts𝑗 ∀ 1 ⩽ 𝑗 ⩽ Ns(m)

1|Ts𝑗 |∫Ts𝑗

u(T)
h dΩ = u(T)

𝑗

⇒
N(m)∑
i=1

û(T)
i

1|Ts𝑗 |∫Ts𝑗

Ψ(T)
i (x)dΩ = u(T)

𝑗 . (26)

Equations (26) gives rise to a set of Ns(m) number of equations for N(m) number of unknown moments. This overdeter-
mined system can be solved in a least squares sense while retaining the total mass fixed. So, the equality constraint can
be represented with the following equations:

∫T
u(T)

h dΩ =
Ns(m)∑

l=1
u(T)

l |Tsl |
⇒ Ns(m)û(T)

1 =
Ns(m)∑

l=1
u(T)

l . (27)

A general procedure to efficiently solve this constrained optimization problem is outlined in Appendix B.

3.3 Detection of the troubled cells
For the Euler equations, state variables at time tn, denoted by u(T)

n ≡ {𝜌, 𝜌vx, 𝜌v𝑦, 𝜌E}(T)n on any cell T, is evolved with
the high-order RKDG first to obtain provisional state variables u(T)

∗ at time (tn + 𝛿t). These provisional state variables are
tested against a few admissibility conditions, as proposed by Dumbser and Loubere,23 before accepting this as a solution
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at (tn + 𝛿t). The first condition that needs to be checked is the numerical admissibility of all the components of u(T)
∗ . If

any of the components of u(T)
∗ produces a floating point error (NaN or Inf), this cell is marked as a troubled cell without

any further test. If u(T)
∗ satisfies numerical admissibility criteria, then the provisional state variables are checked further

against a few physical admissibility criteria. In the case of the Euler equations, density 𝜌 and pressure p are two variables
which cannot be negative. So, the positivity of provisional density and pressure are checked. If u(T)

∗ does not satisfy the
physical admissibility criteria, then this cell is marked as a troubled cell. If any exception is not found against the physical
admissibility criteria, then this provisional solution is finally checked for the presence of any discontinuity in the density
and entropy s = ( p∕𝜌𝛾 ) variable on that cell T.

To check for the presence of any discontinuity on a particular cell T, provisional density (𝜌(T)∗ ) and provisional entropy
variable (s(T)∗ ) are checked against the so-called discrete maximum principle, which is given by the following conditions
on that cell:

max
(
𝜌
(T)
∗

)
< max

(
𝜌
(T)
n

)
+ 𝜖, max

(
s(T)∗

)
< max

(
s(T)n

)
+ 𝜖, (28a)

min
(
𝜌
(T)
∗

)
> min

(
𝜌
(T)
n

)
− 𝜖, min

(
s(T)∗

)
> min

(
s(T)n

)
− 𝜖, (28b)

where max(𝜌(T)∗ ) and min(𝜌(T)∗ ) denote the maximum and minimum subcell averages of 𝜌
(T)
∗ , respectively. Similarly,

max(𝜌(T)n ) and min(𝜌(T)n ) denote the maximum and minimum subcell averages of 𝜌(T)n , respectively. If all of the conditions,
given by Equations (28a) and (28b), are satisfied on a cell, this cell is ensured to be a problem-free cell, and the provisional
solution provided by the high-order RKDG is considered to be the solution at the next time level. Note that if the solution
should remain constant in time over any cell, a small positive value of 𝜖 ensures that this not to be detected as a troubled
cell. Furthermore, a strict verification of the discrete maximum principle requires an evaluation of the optimal values
of a function in any triangular cell. This is not at all a feasible option for an arbitrarily high-order method. We perform
those checks by using the subcell averages of the density and entropy variables. That is why, it is necessary to introduce a
small positive number 𝜖 in the conditions (28a) and (28b) to avoid the detection of a problem-free cell as a troubled cell.
In our experience, 𝜖 = 10−10 works well for all the simulations performed in our present work. If a provisional solution
does not satisfy conditions (28a) and (28b), then this solution is checked further before declaring this cell as a troubled
cell. These final conditions check for any drastic change in the second derivatives of the provisional density or entropy
function in comparison to the solution at the previous time step. Those extra conditions are motivated by the so-called
'MOOD loop', first proposed by Clain et al29 in the context of a high-order multidimensional finite volume method. The
provisional solution on a problem-free cell should additionally satisfy the following conditions:

max
(
𝜌
(T)
∗xx

)
< max

∀T̃

(
𝜌
(T̃)
nxx

)
+ 𝜖, max

(
s(T)∗xx

)
< max

∀T̃

(
s(T̃)nxx

)
+ 𝜖, (29a)

min
(
𝜌
(T)
∗xx

)
> min

∀T̃

(
𝜌
(T̃)
nxx

)
− 𝜖, min

(
s(T)∗xx

)
> min

∀T̃

(
s(T̃)nxx

)
− 𝜖, (29b)

max
(
𝜌
(T)
∗𝑦𝑦

)
< max

∀T̃

(
𝜌
(T̃)
n𝑦𝑦

)
+ 𝜖, max

(
s(T)∗𝑦𝑦

)
< max

∀T̃

(
s(T̃)n𝑦𝑦

)
+ 𝜖, (29c)

min
(
𝜌
(T)
∗𝑦𝑦

)
> min

∀T̃

(
𝜌
(T̃)
n𝑦𝑦

)
− 𝜖, min

(
s(T)∗𝑦𝑦

)
> min

∀T̃

(
s(T̃)n𝑦𝑦

)
− 𝜖, (29d)

where T̃ denotes the set of all immediate neighboring cells of T including T itself. max(𝜌(T)∗xx
) and min(𝜌(T)∗xx

) denote maxi-
mum and minimum values of subcell averages of the second derivative of 𝜌(T)∗ with respect to x. Similarly, max(𝜌(T̃)nxx

) and
min(𝜌(T̃)nxx

) denote the maximum and minimum values of subcell averages of the second derivative of 𝜌(T̃)∗ with respect to x.
One may note that extra set of conditions (29a) to (29d) relax the strict maximum principle (conditions (28a) and (28b))
and allow any oscillatory physical solution to evolve by the unlimited RKDG. It is worth noting that there is a major differ-
ence in the implementation of the conditions (29a) to (29d) in our work from that of Clain et al.29 Clain et al derived those
conditions from the subcell averages of the state variables. In this present work, moments of the second derivatives are
first calculated from the moments of the state variables on any triangular cell through the computation of the derivatives
of the Proriol polynomials on a triangular element (see Equation A7 of Appendix A) and two consecutive L2-projections.
Next, the subcell averages of the second derivatives (ie, 𝜌(T)∗xx

, 𝜌(T)∗𝑦𝑦 , s(T)∗xx
, s(T)∗𝑦𝑦 , 𝜌(T)nxx

, 𝜌(T)n𝑦𝑦
, s(T)nxx

, and s(T)n𝑦𝑦
) are computed from
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their moments on the triangular element T by using Equation (21). This modification facilitates the implementation by
maintaining the compactness of the DG-SEM. Detection of troubled cells is summarized in Algorithm 2.

4 ADAPTIVE MESH REFINEMENT STRATEGY

The dynamic mesh adaption is an economic and efficient way to cope with a simulation of flows having a wide range
of spatial scales. An AMR is advantageous in the RKDG in many ways in comparison to the other adaption strategies.
First as there is no restriction on the conformity of the grid, a refinement strategy that even allows hanging nodes also
works well in the DG framework. In addition to that, an AMR strategy is preferred when primary mesh quality needs
to be maintained. In our present implementation, any triangular cell T is split into four triangular cells by introducing
three new vertices which are the midpoints of three edges. Hence, the quality of newly generated child elements does not
deteriorate in comparison to the same of the parent element. A reverse methodology is followed if the four adjacent child
cells of the same parent node need to be merged. The refinement and derefinement of any triangular cell, as adopted in
our present work, are shown in Figure 4. In our approach, a quadtree data structure is employed to serve this purpose. In
the initial conforming primary mesh, data of each element is stored in a dynamically allocated structure, and all the cells
are designated as level = 0. In any case, primary cells or root cells are not allowed to be deleted but only can be refined,
thus assuring a volume-filling triangulation at any instant of time. A data structure, which is associated with every cell,
consists of the following information about that cell.

• The link to its parent cell. This piece of information is NULL for the primary cells or root cells.

• The links to its four child cells. Those information are NULL if a cell is a leaf cell, ie, this cell does not have any child
cell.

• All the leaf cells contain a DG solution in terms of the moments of the state variables.

• It is also necessary to store the subcell averages of the state variables. The subcell averages are useful to take corrective
measures if the moments are found to be erroneous owing to the presence of flow discontinuities or flow features having
very high gradients of state variables. After each time step, the subcell averages are updated from the DG solution if this
particular cell is not detected as a troubled cell. For a troubled cell, the subcell averages are evolved from the subcell
averages of the previous time step, and DG solutions are reconstructed from the subcell averages obtained from the
subcell limiting.

Next, the refinement/derefinement criteria and the methodology for transferring data to the newly created leaf
element(s) due to a refinement or derefinement will be addressed.
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FIGURE 4 Refinement (arrow to the
left) and derefinement (arrow to the right)
of a triangular element. Above figures show
the refinement and derefinement
operations on a typical triangular element
in the physical plane. Bottom figures show
the refinement and derefinement
operations for the standard triangle.
Solution(s) on the newly created four child
cells during refinement or newly created
parent cell due to merging of four child cells
can be computed efficiently by multiplying
a precomputed matrix and the vector of
moments of the solution(s) [Colour figure
can be viewed at wileyonlinelibrary.com]

4.1 The mesh refinement/derefinement criteria
The refinement/derefinement of cells, in our present work, ensures equidistribution of some quantitie(s) over each cell.
For compressible flow simulations, the dilatation of velocity field (∇ · v) is to a great extent a reliable indicator of the
presence of strong shocks and, hence, adopted as a key determining quantity of refinement to assure cell clustering near
to the shock locations. In addition to the velocity dilatation, the gradient of entropy variable (∇p − a2∇𝜌) also is taken
as an additional parameter which senses contact discontinuities as well. To be precise, a cell is refined if the following
condition is satisfied:

𝛼
(T)
d > 𝛼min

d + 𝜎r
d
(
𝛼max

d − 𝛼min
d

)
, (30a)

or, 𝛼(T)
s > 𝛼min

s + 𝜎r
s
(
𝛼max

s − 𝛼min
s

)
, (30b)

where 𝜎r
d and 𝜎r

s are two specified constants and the superscript r emphasizes that those parameters are associated with
the refinement of cells. Both of those values are chosen between 0.6 and 0.8 for all the simulations in this paper. In
Equations (30a) and (30b), other notations are defined as

𝛼
(T)
d = 1|T|∫T

|∇ · v|dΩ, (31a)

𝛼
(T)
s = 1|T|∫T

||∇p − a2∇𝜌||dΩ. (31b)

The superscript (T) is used to emphasize that those refinement parameters are associated with a particular triangular
element T. Two subscripts d and s stand for velocity dilatation and entropy, respectively. The symbol a, as featured in the
last equation, denotes the local acoustic velocity in the fluid medium and computed by

√
𝛾p∕𝜌. Here, 𝛼max

d , 𝛼min
d , 𝛼max

s ,
and 𝛼min

s are four global quantities on a specific triangulation 𝜏n
h and are defined by

𝛼max
d = max

∀ T∈𝜏n
h

𝛼
(T)
d , 𝛼min

d = min
∀ T∈𝜏n

h

𝛼
(T)
d , (32a)

𝛼max
s = max

∀ T∈𝜏n
h

𝛼
(T)
s , 𝛼min

s = min
∀ T∈𝜏n

h

𝛼
(T)
s . (32b)
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FIGURE 5 Left-hand figure shows a
volume-filling splitting of a typical
triangular cell of level = 0 and right-hand
figure demonstrates the representation of
the data structure for this particular
refinement of a root cell or a cell of level = 0.
Leaf nodes are represented by solid circles.
Any node may have either four nodes or
maybe a leaf node itself [Colour figure can
be viewed at wileyonlinelibrary.com]

In a similar way, four child leaf cells of the same parent cell need to be merged if the following conditions are met:

max
[
𝛼
(T1)
d , 𝛼

(T2)
d , 𝛼

(T3)
d , 𝛼

(T4)
d ,

]
< 𝛼min

d + 𝜎m
d

(
𝛼max

d − 𝛼min
d

)
, (33a)

max
[
𝛼
(T1)
s , 𝛼

(T2)
s , 𝛼

(T3)
s , 𝛼

(T4)
s

]
< 𝛼min

s + 𝜎m
s
(
𝛼max

s − 𝛼min
s

)
, (33b)

where 𝜎m
d and 𝜎m

s are two specified constants and the superscript m emphasizes that those parameters are associated with
the merging of child cells of the same parent cell.

4.2 The mesh refinement/derefinement and associated data structures
The dynamic mesh refinement/derefinement needs a dynamic data structure for the efficient implementation of AMR
algorithm. When child nodes of the same parent need to be merged, a dynamic memory allocation is needed for the
nonleaf parent node to accommodate data from its child leaf nodes. At the same time, the data in those child leaf nodes
also need to be deleted as soon as all the necessary data are transferred to their parent node. Exactly reverse actions are
performed while refining a cell. A quadtree data structure is employed to perform the dynamic cell splitting and merging
operations. The employed data structure is illustrated in Figure 5. A cell of level = 0 (ie, root cell) has the direct access to
its direct child cells. So, any leaf cell, which is the direct or indirect child of the root cell, can be accessed from the address
of the root cell itself. So, all the root nodes are traversed to perform refinement or derefinement in a similar manner. Next,
data transfer to newly created leaf cells as a result of a refinement or derefinement is discussed.

4.2.1 Data transfer during refinement
Four new leaf cells, resulting from a refinement of a parent leaf cell, get their own DG solution from the DG solution of
the corresponding parent cell. Any component of solution on a parent leaf cell T, which needs to be refined, is given by
u(T)

h =
∑N(m)

i=1 û(T)
i Ψ(T)

i . This representation of the solution is exactly the same as Equation (9), with Ψ(T)
i and ûi being the

Proriol polynomials defined on T and moments with respect to the chosen basis, respectively. We seek similar solution
representations on the newly created child cells as given by the following equation:

u(Tk)
h =

N(m)∑
i=1

û(Tk)
i Ψ(Tk)

i , (34)

where k ∈ {1, 2, 3, 4}. This problem can be solved without losing any information as provided by the parent cell. We
outline the projection methodology for the first child node T0. The similar procedure follows for other child nodes. On
the standard triangle, the coordinates of three vertices of the first child cell are (0, 0), (1∕2, 0), and (0, 1∕2). For the sake
of an efficient computation, Nq(m) number of quadrature points on the 𝜁 − 𝜂 plane inside the first child T0 to compute
the integral of any function of degree 2m are precomputed at the preprocessing stage. Those Nq(m) number of quadrature
points are denoted by {𝛏(T0)

1 , 𝛏(T0)
2 , … , 𝛏(T0)

Nq(m)}. In the physical plane, those coordinates are {x(T0)
1 , x(T0)

2 , … , x(T0)
Nq(m)}. It turns

http://wileyonlinelibrary.com


GIRI AND QIU 381

out that N(m) number of basis functions Ψ(T)
i on any of those quadrature points are independent of the vertices of T. This

motivates one to precompute all possible basis functions on the quadrature points in the first child.

P(T1) =

⎡⎢⎢⎢⎢⎢⎢⎣

ΨT
1

(
x(T1)

1

)
ΨT

2

(
x(T1)

1

)
… ΨT

N(m)

(
x(T1)

1

)
ΨT

1

(
x(T1)

2

)
ΨT

2

(
x(T1)

2

)
… ΨT

N(m)

(
x(T1)

2

)
⋮ ⋮ ⋱ ⋮

ΨT
1

(
x(T1)

Nq(m)

)
ΨT

2

(
x(T1)

Nq(m)

)
… ΨT

N(m)

(
x(T1)

Nq(m)

)
⎤⎥⎥⎥⎥⎥⎥⎦
, (35)

where P(T1) ∈ R
Nq(m)×N(m). Function values on the quadrature points of the first child cell can be obtained by multiply-

ing the vector of moments of the solution {û(T)
1 ,û(T)

2 , … ,û(T)
N(m)} to the precomputed matrix P(T1). Thus, the moments of

the local representation of the solution for the first child are obtained by an L2 projection from the function values on
the quadrature points. Similar projection matrices P(T2), P(T3), and P(T4) are precomputed for finding the solution on the
second, third, and fourth child cells, respectively, from their parent cell.

4.2.2 Data transfer during derefinement
The problem statement for data transfer to a parent cell from its child cells is exactly the opposite to the cell refinement.
More precisely, this problem can be described as follows.

The DG solutions are given on the child cells in terms of the moments u(Tk)
h =

∑N(m)
i=1 û(Tk)

i Ψ(Tk)
i , where k ∈ {1, 2, 3, 4}.

We need to find out the moments of the solution on the parent cell before deleting its child cells. This process is associated
with an inevitable loss of information. The first step for transferring data to the parent node T from its child cells, namely
T1, T2, T3, and T4, is to compute the function values on the quadrature points of T. In a matrix form, function values on
quadrature points of T can be calculated from the following:

u(T)
h = P̃(T1)û(T1) + P̃(T2)û(T2) + P̃(T3)û(T3) + P̃(T4)û(T4), (36)

where u(T)
h ∈ R

Nq(m) is the vector of function values at the quadrature points of T when uh ∈ Pm, û(T1), û(T2), û(T3), and û(T4)

are the vectors of moments of the solution of corresponding child cells. The projection matrices P̃(T1), P̃(T2), P̃(T3), and P̃(T4)

are precomputed and stored as those do not change when child tags are fixed on the standard triangle. Figure 4 shows
the child numbering convention on the standard triangle, which is adopted in the present work. However, after gathering
function values on the quadrature points of T, moments of the DG solution can be obtained through an L2-projection.

5 NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present 2-D test cases to assess our numerical scheme. More specifically, we would like to show the
effectiveness of the modified subcell limiter in eliminating spurious oscillations in the solution. The onset of spurious
oscillations at any instant of time may be proved to be detrimental in the later stage of a simulation. Such spurious
oscillations always contaminate the smooth and fine solution features and, in its worst consequence, result in an abrupt
termination of the simulation due to floating point errors. For a higher-order RKDG schemes, the solution is more prone
to produce spurious oscillations especially when the solution contains intricate flow features or flow discontinuities like
shocks. That is why for a high-order RKDG method, the limiter has a more important role for a successful simulation. In
the later sections, we present the results for a fifth-order RKDG method. This RKDG scheme with a subcell limiter can be
extended to even higher-order methods without having any extra difficulties from the implementation point of view. Also,
note that the value of the ratio of specific heats, 𝛾 = 1.4 is chosen in all our simulations unless it is specified otherwise.

5.1 Two-dimensional cases
5.1.1 Isentropic vortex test case
In our first 2-D test problem, the correctness in terms of convergence rate towards the exact or reference solution of our
RKDG implementation on the unstructured triangular mesh is tested. To test that, we consider the isentropic vortex test
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TABLE 1 The rate of convergence for
fourth-order and fifth-order discontinuous
Galerkin (DG) schemes without any mesh
refinement for two-dimensional problems

Fourth-order DG Fifth-order DG
N ||eh||L2 OL2 ||eh||L∞ OL∞ ||eh||L2 OL2 ||eh||L∞ OL∞

124 5.998E-02 - 1.243E-01 - 1.383E-02 - 1.343E-02 -
518 2.648E-03 4.50 3.052E-03 5.35 3.230E-04 5.42 2.914E-04 5.53

1926 1.272E-04 4.38 1.865E-04 4.03 1.334E-05 4.60 2.464E-05 3.56
7668 5.079E-06 4.65 1.274E-05 3.87 2.937E-07 5.51 8.269E-07 4.90

problem which first appeared in the work of Yee et al.49 The primitive variables are initialized with the following functions:

𝜌0 =
[

1 − (𝛾 − 1)𝛽2

8𝜋2𝛾
e(1−x2−𝑦2)

] 1
𝛾−1

, (37a)

u0 = M cos 𝛼 − 𝛽(𝑦 − 𝑦0)
2𝜋

e(1−x2−𝑦2)∕2, (37b)

v0 = M sin 𝛼 + 𝛽(x − x0)
2𝜋

e(1−x2−𝑦2)∕2, (37c)

p0 = 𝜌
𝛾

0. (37d)

In Equations (37a) to (37d), 𝛽 = 5, x0 = y0 = 0, M = 0.5, and 𝛼 = 𝜋∕4 are chosen. The Euler equations are solved
with this initial condition on the domain [−5, 5]2. The periodic boundary condition is applied at all the boundaries of the
domain. The CFL number = 0.1 is chosen for all the runs of this particular test problem. This problem is run up to the
final time, T𝑓 = 20

√
2 units, yielding the identical exact solution at the final time and the initial condition. This happens

due to that particular choice of initial flow field, which assures an exact balance between the centrifugal force and the
pressure gradient at any point in the domain. However, in this particular case, the initial flow field is divergence-free and
the entropy variable vanishes everywhere in the domain. That is why refinement based on equidistribution of the entropy
and the divergence of the velocity field do not have any influence on the primary grid refinement.

The convergence rates towards the exact solution of fourth-order and fifth-order RKDG schemes are tabulated in
Table 1. L2 and L∞ errors are inferred by calculating the following quantities:

L2 error, ||eh||L2 =
N−1∑
i=0

∫Ωi

[
𝜌0(x, 𝑦) − 𝜌(x, 𝑦,T𝑓 )

]2dΩ, (38a)

L∞ error, ||eh||L∞ = max
∀ (x,𝑦)

||𝜌0(x, 𝑦) − 𝜌(x, 𝑦,T𝑓 )|| . (38b)

In Equation (38a), Ωi is the ith element, and N denotes the total number of leaf elements. The numerical order of accuracy
is defined by

OL2 = log2

( ||eh||L2||eh∕2||L2

)
, (39a)

OL∞ = log2

( ||eh||L∞||eh∕2||L∞

)
. (39b)

We see that the L2 and L∞ errors decrease with the increased number of primary elements yielding the expected
convergence rate.

5.1.2 Kelvin-Helmholtz instability
The Kelvin-Helmholtz instability is one of the most ubiquitous shear-driven hydrodynamic instabilities occurs in nature.
However, such kind of instability may also occur between two adjacent flow streams having different fluid densities and
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FIGURE 6 A, Density contour for
Kelvin-Helmholtz problem at the final
time, t=5 by a fifth-order discrete Galerkin
method on 2130 primary triangular
elements and maximum three levels of
adaptive mesh refinement;
B, Corresponding adaptively refined grid
layout; C, Magnified view of the panel A; D,
Corresponding magnified adaptively
refined grid layout. Red patches indicate
the troubled cells [Colour figure can be
viewed at wileyonlinelibrary.com]

streamwise velocities in presence of disturbances in the form of a cross-stream velocity. This is achieved by the following
initialization for the primitive variables on the domain [0, 1] × [0, 2]:

𝜌0 = 1 + 𝜌∞

2

[
tanh

(
𝑦 − 𝑦1

𝜖

)
− tanh

(
𝑦 − 𝑦2

𝜖

)]
, (40a)

u0 = u∞

[
tanh

(
𝑦 − 𝑦1

𝜖

)
− tanh

(
𝑦 − 𝑦2

𝜖

)]
, (40b)

v0 = A sin(2𝜋x)
[

e−(𝑦−𝑦1)2∕𝜎2 + e−(𝑦−𝑦2)2∕𝜎2
]
, (40c)

p0 = p∞, (40d)

where 𝜌∞ = u∞ = 1, p∞ = 10, 𝜖 = 0.05, 𝜎 = 0.2, A = 0.01, y1 = 0.5, and y2 = 1.5. The chosen initial condition is
similar to that in the work of Springel.50 The periodic boundary condition is applied along both the directions. Here, the
small amplitude disturbance acts as an initial stimulus for the generation of vortical structures at the interfaces between
the two streams and subsequent turbulent mixing. Our demonstration computation is performed on only 2130 numbers
of primary triangular elements in the physical domain and maximum three levels of refinements of any primary ele-
ment corresponding to an effective resolution of 136 320 triangular cells. All associated grid refinement and derefinement
parameters, namely, 𝜎r

d, 𝜎r
s , 𝜎m

d , and 𝜎m
s are chosen to be 0.3. The CFL number = 0.1 is chosen for a stable computation

up to a final time, Tf = 5.0 units. In Figure 6A, we illustrate the density profile obtained from the solution of the Euler
equations by a fifth-order RKDG scheme along with the subcell limiter. With three levels of refinement, secondary bil-
lows are effectively captured in our simulation. Figure 6B depicts the adapted grid layout along with the troubled cells in
the whole domain, which shows a maximum level of refinements around the turbulent region. Here the number of leaf
cells at the final time is 50 438, which is about 37% of the effective resolution.

5.1.3 Shu-Osher problem
Performance of a limiting strategy can be better tested if the solution contains both the intricate smooth solution features
as well as strong discontinuities. The Shu-Osher test problem51 is one of the examples of such kind. In this test problem,
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FIGURE 7 A, Surface plot of density for
the two-dimensional Shu-Osher problem at
a final time t= 1.8 by a fifth-order
discontinuous Galerkin method on 5224
primary triangular elements and maximum
two levels of primary grid refinements. Red
patches show the troubled cells at the final
time; B, This panel plots the computed
density values (blue circles) on the y = 0
line to compare with the reference solution
(plotted using a black solid line) obtained
from the solution of the one-dimensional
Shu-Osher problem [Colour figure can be
viewed at wileyonlinelibrary.com] (A)
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we solve for the interaction of a moving Mach 3 shock front with a sinusoidally varying density profile, given by the
following initial state of primitive variables:

(𝜌0,u0, p0) =

{
(3.857143, 2.629369, 10.333333) if x ⩽ −4
(1 + 0.2 sin(5x), 0, 1) otherwise.

(41)

For the 2-D case, this problem is considered on the domain [−5, 5] × [−1, 1], which is discretized with 5224 triangular
elements. Maximum two levels of refinement are employed, corresponding to an effective resolution of 334 336 number
of cells. All four refinement and derefinement parameters are chosen to be 0.3. At both the boundaries at x = −5 and
x = 5, the nonreflecting boundary condition is applied, whereas a periodic boundary condition is applied at the other
two boundaries. For a stable computation of this specified problem setup, the CFL number = 0.05 is chosen. Figure 7A
highlights the density variation near to the shock front at the final time along with the regions on which limiter acts.
It is worth noting that AMR uses only 17% of the effective grid resolution at the final time, achieving a high level of
computational efficiency by this AMR approach. Figure 7B compares the density profile on the y = 0 line in the domain
with the reference solution obtained from the solution of the one-dimensional Euler equations. In Figure 7B, numerical
values of density at the final time are obtained by sampling on 100 uniformly distributed points on the y = 0 line between
x = −5 and x = 5.

5.1.4 Double Mach reflection problem
This problem consists of the evolution of a self-similar shock structure with two triple points when a vertical shock front
of Mach 10 hits a ramp, inclined at an angle 30o with the horizontal line.52 At the primary triple point, a primary mach
stem and a reflected shock front meet with the incident shock. Due to the breaking up of the reflected shock front, a
secondary triple point appears where a bow structured secondary mach stem, and primary and secondary reflected shock
fronts meet. When the secondary reflected shock front meets the primary slip line (which emanates from the primary
triple point), an interesting fine vortex sheet roll-up appears on the primary slip line. It is challenging for any higher order
method to capture all the shock structures sharply and at the same time this fine vortex sheet on the primary slip line.
We solve the Euler equations with a fifth-order RKDG method on the domain [0, 4] × [0, 1]. A Mach 10 shock, inclined at
an angle 60o with the horizontal line is placed at the point (1∕6, 0). At the top boundary of this domain, time-dependent
Dirichlet boundary condition tracks exactly the location of the incident shock front. At the left and right boundaries,
inflow and outflow boundary conditions are applied. At the bottom boundary, the postshock boundary condition is applied
before the initial location of the incident shock. A reflecting boundary condition is applied on the rest of the bottom
boundary (for more details of the setup for this problem and analytical treatment, refer to the work of Kem53 and references
therein). The number of primary triangles used to run this simulation is 5947. Maximum three levels of refinement of any
primary element are employed, which corresponds to an effective resolution of 380 608 triangular elements. All four grid
refinement and derefinement parameters are chosen to be 0.2. The CFL number = 0.05 is assigned for this problem. The
most significant portion of the domain is presented for the visualization of the density profile at a final time, Tf = 0.2 in
Figure 8A, showing the small-scale structures on the primary slip line. Figure 8B depicts the adaptively refined primary
grid layout in the domain at the final time along with the troubled cells. The number of leaf elements at the final time is
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FIGURE 8 A, Density contour for the
double Mach reflection problem at the final
time t = 0.2 by a fifth-order discontinuous
Galerkin method on the 5947 primary
triangular elements and maximum three
levels of adaptive mesh refinement; B,
Corresponding adaptively refined grid
layout; C, Magnified view of panel A
around the primary slip line;
D, Corresponding magnified adaptively
refined grid layout. Red patches indicate
the troubled cells [Colour figure can be
viewed at wileyonlinelibrary.com]

13 294, which is approximately only 3.493% of the effective grid resolution in this particular case. Figures 8C and 8D show
the magnified view of the density contour around the primary slip line and grid layout on that portion of the domain,
respectively.

5.1.5 Forward facing step
In this test problem, we investigate a supersonic flow over a forward-facing step in a Mach 3 wind tunnel. This is an
extensively studied benchmark problem, proposed by Woodward and Colella.52 A triple point structure appears after a
bow shock reflects from the forward step and then from the top wall. After a short time, a vortex sheet emanates from that
triple point and sustains. Similar to the previous test case, it is challenging to capture sharp shock structures as well as
vortex sheet roll-up by a high-order method. We set up this problem exactly in the same way as in the work of Woodward
and Colella.52 This simulation is run up to a final time of four units and on only 6962 primary triangles. Maximum three
levels of grid refinement of any primary cell are specified, which corresponds to 445 568 effective triangular cells. All four
grid refinement and derefinement parameters are chosen to be 0.2. The CFL number to simulate this problem is chosen to
be 0.1. Figure 9A shows the density contour at the final time illustrating the ability of our AMR approach and the subcell
limiting to capture vortex sheet roll-up nicely along with strong shock fronts. Figure 9B demonstrates the refined primary
grid layout at the final time along with the troubled cells. For this particular case, only 3.39% of effective resolution is used
at the final time by this AMR strategy.

http://wileyonlinelibrary.com
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FIGURE 9 A, Density contour for the
forward facing step problem at the final
time t= 4 by a fifth-order discontinuous
Galerkin method on 6962 primary
triangular elements and maximum three
levels of adaptive mesh refinement.
B, Corresponding adaptively refined grid
layout. Red patches indicate the troubled
cells [Colour figure can be viewed at
wileyonlinelibrary.com]

5.1.6 Two-dimensional Riemann problems
The 2-D Riemann problem is one of the most extensively studied problems both analytically and numerically. Unlike
one-dimensional Riemann problem, 2-D Riemann problem exhibits much more intricate flow structures in gas dynamics
simulations. Numerically those are good tests to check the ability of a higher-order scheme to capture complex interac-
tions between various wave patterns (shocks, contact, discontinuities, and rarefaction waves). In this section, we consider
configurations (6) and (12) of the work of Kurganov and Tadmov.54 The initial conditions on [0, 1]2 square domain are
given by

(𝜌0,u0, v0, p0) =

⎧⎪⎪⎨⎪⎪⎩

(1, 0.75,−0.5, 1) if x ⩾ 0.5 and 𝑦 ⩾ 0.5
(2, 0.75, 0.5, 1) if x < 0.5 and 𝑦 ⩾ 0.5
(1,−0.75, 0.5, 1) if x < 0.5 and 𝑦 < 0.5
(3,−0.75,−0.5, 1) otherwise.

(42a)

(𝜌0,u0, v0, p0) =

⎧⎪⎪⎨⎪⎪⎩

(0.5313, 0, 0, 0.4) if x ⩾ 0.5 and 𝑦 ⩾ 0.5
(1, 0.7276, 0, 1) if x < 0.5 and 𝑦 ⩾ 0.5
(0.8, 0, 0, 1) if x < 0.5 and 𝑦 < 0.5
(1, 0, 0.7276, 1) otherwise.

(42b)

To simulate those cases, 6768 primary triangular elements are used along with maximum three levels of mesh refinement,
which corresponds to an effective resolution of 433 152 cells. All four refinement and derefinement parameters are chosen
to be 0.3 for those two cases. The CFL = 0.1 is specified for both those cases. Right panels of Figure 10 show the density
contours for the first and second Riemann problems at final times = 3.5 and 2.5, respectively. The left panels of Figure 10
show the corresponding adaptive refined grid layouts along with the troubled cells. It turns out that, to simulate the first
Riemann problem, only about 4.79% of effective grid resolution needs to be used by the AMR strategy. For the second
Riemann problem that is only about 3.61% of the effective grid resolution. We see our adaptive mesh refinement efficiently
refines the grid locally where the solution develops intricate flow features.

5.1.7 Sedov-Taylor blast wave problem
We now consider a simulation of the strong cylindrical blast wave, which propagates supersonically in a uniform gas
medium. To set up a strong blast wave, a large amount of energy E0 is injected into a pointlike region. In our present
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FIGURE 10 A, Density contour for the first two-dimensional Riemann problem at the final time t = 0.35 by a fifth-order discontinuous
Galerkin (DG) method; B, Corresponding adaptively refined grid layout; C, Density contour for the second two-dimensional Riemann
problem at the final time t=0.25 by a fifth-order DG method; D, Corresponding adaptively refined grid layout of the panel A;
D, Corresponding magnified adaptively refined grid layout. Both the problems are run on 6768 primary triangular elements and maximum
three levels of adaptive mesh refinement. Red patches indicate the troubled cells [Colour figure can be viewed at wileyonlinelibrary.com]

simulation, E0 is set to be 1.5 erg within a small region at the center of the domain having radius 0.02 unit. To assure
supersonic expansion of the blast wave front, ambient pressure p0 is chosen to be low (4×10−13 in our present simulation).
Density 𝜌0 is set to unity everywhere in the domain of interest. This problem admits a self-similar solution, derived first
independently by John von Neumann, Leonid Sedov, and Sir G.I. Taylor. Theoretically, the cylindrical shock front location
at any time instant t is predicted by the expression, rs = (𝛼E0t2∕𝜌0)1/4, where 𝛼 is a constant depending on the geometry of
the problem (planer, cylindrical or spherical) and the ratio of specific heats of the surrounding media 𝛾 (for more details
on the analytical treatment, see the work of Sedov55). In this particular case, 𝛼 = 1.0162 as we consider 𝛾 to be 1.4. The
final time for our simulation is set to be unity.

This problem is set with 4542 triangular cells having smaller elements near to the center to facilitate initial large pressure
at the center of the square domain [−2, 2]2. Maximum two levels of refinement are specified with all four refinement and
derefinement parameters as 0.2. As our simulation is stopped well before the supersonic shock front reaches the outer
boundary of the domain, boundary conditions are irrelevant in this present problem. The CFL number is taken to be 0.1
to stabilize the computation of a fifth-order RKDG scheme.

Figure 11A shows the density contour at the final time, and Figure 11B illustrates the adaptive grid layout along with
the troubled cells at the same time showing a high degree of grid refinements near to the shock location. In the bottom
panels of Figure 11, we compare the primitive variables obtained from our simulation on the y = 0 line with the analytical
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FIGURE 11 A, Density contour for the Sedov-Taylor blast wave problem at the final time, t=1 on 4542 number of primary triangular
elements and maximum three levels of adaptive mesh refinement by a fifth order DG method; B, corresponding adaptively refined grid
layout. Bottom panels compare the density, x-component of velocity and pressure (plotted with green circles) obtained numerically with the
exact solutions (black solid lines). Red patches indicate the troubled cells [Colour figure can be viewed at wileyonlinelibrary.com]

solution obtained using the codes of Kamm and Timmes.56 We see that the numerically calculated pressure does not agree
well with the analytical one towards the center of the cylindrical shock front. We suspect that the inaccuracy associated
with the initialization of the pressure field within a small number of triangular cells near the domain center is the reason.

5.1.8 Shock wave diffraction at a convex corner
We simulate a Mach 10 shock wave diffraction at a convex corner, which is a well-studied benchmark problem in com-
putational fluid dynamics. It is challenging to develop a stable numerical scheme for a high-order RKDG due to the
development of a low pressure region near to the 120o convex corner.57 We consider a right-moving Mach 10 shock ini-
tially located at x = 3.4, moving in an undisturbed fluid medium with 𝜌 = 1.4 and p = 1. The domain of interest is shown
in Figure 12.

To simulate this problem, 5081 primary triangular elements are used along with maximum three levels of mesh refine-
ment, which corresponds to an effective resolution of 325 184 cells. All four refinement and derefinement parameters are
chosen to be 0.2 for this case. The CFL = 0.1 is specified. Right panels of Figure 12 show the density contour for this
problem at a final time = 0.9. The left panel of Figure 12 shows the corresponding adaptively refined grid layout along
with the troubled cells. It turns out that, to simulate this problem, only about 3.76% of effective grid resolution needs to
be used by the AMR strategy. The result matches well with the same reported in the work of Liu et al.57
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FIGURE 12 A, Density contour for the Mach 10 shock diffraction at a convex corner at the final time t = 0.9 on 5081 primary triangular
elements and maximum three levels of adaptive mesh refinement by a fifth-order discontinuous Galerkin method; B, Corresponding
adaptively refined grid layout [Colour figure can be viewed at wileyonlinelibrary.com]

5.1.9 Schardin's Problem: Shock waves pass a finite wedge
The purpose of this test case is to demonstrate the potential of the present scheme with adaptively refined unstructured
grid for solving problems on complex domains. In this problem, we simulate a Mach 1.3 shock passing an equilateral
triangular solid body.57 The domain of interest is the region [-0.65,0.5]×[-0.5,0.5] with a triangular body having the coor-
dinates of its vertices (-0.2,0), (0.1,-1/6) and (0.1,1/6). The undisturbed upstream condition of the Mach 1.3 shock is given
by 𝜌 = 1.225 kg∕m3 and p = 101 325Pa. Inflow and outflow boundary conditions are applied at the leftmost and right-
most boundaries, respectively. The remaining boundaries are considered reflecting walls. The initial shock location is at
x = −0.55.

To simulate this problem, 4674 primary triangular elements are used along with maximum three levels of mesh refine-
ment, which corresponds to an effective resolution of 299 136 cells. All four refinement and derefinement parameters are
chosen to be 0.2 for this case. The CFL = 0.1 is specified. The right panels of Figure 13 show the density contour for this
problem at a final time = 2.2 ×10−3. The left panel of Figure 13 shows the corresponding adaptively refined grid layout

FIGURE 13 A, Density contour for the Schardin's problem at the final time t = 2.2 ×10−3 on 4674 primary triangular elements and
maximum three levels of adaptive mesh refinement by a fifth-order discontinuous Galerkin method; (B) corresponding adaptively refined
grid layout [Colour figure can be viewed at wileyonlinelibrary.com]
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along with the troubled cells. It turns out that, to simulate this problem only about 5.14% of effective grid resolution needs
to be used by the AMR strategy.

6 CONCLUSION

In this work, we implemented and investigated the performance of a fourth-order and fifth-order RKDG method with
an AMR to solve inviscid compressible flow problems. Simulations are performed with unstructured triangular grid ele-
ments, which make our implementation suitable for compressible flow problems on 2-D complex domains. A finite
volume subcell limiter is used to suppress spurious oscillations due to the presence of shocks. Troubled cells are detected
based on a few after-the-fact detection criteria, which was suggested by Dumbser and Loubere23 and a few extra new con-
ditions enabling a reduction in troubled cell count in expense of only a slight increase in computational cost. Moreover,
this modification of the solution admissibility criterion in our present work enables us to retain the compactness of the
overall scheme. Although there seems to have an everlasting room for improvements, our tests show some promising
results with this modified subcell limiter along with a cell-by-cell AMR.
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APPENDIX A

THE PRORIOL POLYNOMIALS AND QUADRATURE ON A TRIANGULAR ELEMENT

Equation (15) defines the Proriol polynomials on the standard square. On the standard triangle, (ie, on the 𝜁 − 𝜂 plane),
explicit expressions for first few Proriol polynomials are given by

Φ00 = 1, (A1a)

Φ10 = 2𝜁 + 𝜂 − 1, (A1b)
Φ01 = 3𝜂 − 1, (A1c)

Φ20 = 6𝜁2 + 6𝜁𝜂 + 𝜂2 − 6𝜁 − 2𝜂 + 1, (A1d)

Φ11 = (2𝜁 + 𝜂 − 1)(5𝜂 − 1), (A1e)

Φ02 = 10𝜂2 − 8𝜂 + 1. (A1f)

The orthogonality relation for those Proriol polynomials on the standard triangle is given by

∫Ω𝛏
Φi 𝑗Φkl d𝜁d𝜂 =

𝛿ik𝛿𝑗l

2(2i + 1)(i + 𝑗 + 1)
, (A2)

where 𝛿ik and 𝛿jl are the Kronecker delta.
The numerical integration of a function on any triangular element is approximated by first changing the variable of

integration from x to 𝝃.

∫T
𝑓 (x) dxd𝑦 = ∫Ω𝛏

𝑓 (x)|J| d𝜁d𝜂 = 2|T|∫Ω𝛏
𝑓 (x) d𝜁d𝜂. (A3)

Next, the integration on the standard triangle can be approximated by using an approximate quadrature rule.

∫Ω𝛏
𝑓 (x) d𝜁d𝜂 ≈

Nq(m)∑
i=1

𝑓
(
xq

i

)
wq

i , (A4)

where xq
i and wq

i are the quadrature points in T and corresponding quadrature weights. In the present paper, we have
calculated the quadrature rule for integrating a function of arbitrary order by following the cardinal function algorithm
by Taylor et al.44 Note that Nq(m) here is chosen such that the integration is exact for 𝑓 (x) ∈ P2m.

Determinant of the Jacobian matrix for the transformation (12) can be derived by

|J| = ||||||
𝜕x
𝜕𝜁

𝜕𝑦

𝜕𝜁
𝜕x
𝜕𝜂

𝜕𝑦

𝜕𝜂

|||||| =
|||| (x1 − x0) (𝑦1 − 𝑦0)
(x2 − x0) (𝑦2 − 𝑦0)

|||| = 2|T|. (A5)
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Finally, to calculate the derivative of a function given in terms of linear combination of the Proriol polynomials on any
triangular cell T, at first, we need to derive the formula for calculating the gradient of the Proriol polynomials on the
standard triangle. By the chain rule, derivatives of the Proriol polynomials can be calculated from the following equations:

𝜕Φkl

𝜕𝜁
=
⎧⎪⎨⎪⎩

0 if k = 0,

2
(

1−�̃�
2

)k−1 dP(0,0)
k (𝜁 )
d𝜁

P(2k+1,0)
l (�̃�) ∀ k > 0,

(A6a)

𝜕Φkl

𝜕𝜂
=

⎧⎪⎪⎨⎪⎪⎩
2 dP(1,0)

l (�̃�)
d�̃�

if k = 0,(
1−�̃�

2

)k−1
(
(1 + 𝜁 ) dP(0,0)

k (𝜁 )
d𝜁

− kP(0,0)
k (𝜁 )

)
P(2k+1,0)

l (�̃�)

+2
(

1−�̃�
2

)k
P(0,0)

k (𝜁) dP(2k+1,0)
l (�̃�)

d�̃�
∀ k > 0.

(A6b)

Subsequently, the gradient of a Proriol polynomial in physical domain is calculated from the following equation:

⎧⎪⎨⎪⎩
𝜕Φkl
𝜕x
𝜕Φkl
𝜕𝑦

⎫⎪⎬⎪⎭ = 1
2|T|

[ (𝑦2 − 𝑦0) −(𝑦1 − 𝑦0)

−(x2 − x0) (x1 − x0)

]⎧⎪⎨⎪⎩
𝜕Φkl
𝜕𝜁

𝜕Φkl
𝜕𝜂

,

⎫⎪⎬⎪⎭ (A7)

where (x0, y0), (x1, y1), and (x2, y2) are three vertices of T.

APPENDIX B

RECONSTRUCTION OF A FUNCTION ON T FROM THE SUBCELL AVERAGES

In Section 3, a modified subcell limiter for DG-SEM is outlined. In this section, the reconstruction of DG solution from
the subcell averages on a cell T is detailed. More precisely, the problem can be stated as follows. We seek for the vector of
moments û ∈ Rn such that it minimizes ||Aû−b|| and at the same time satisfies exactly Bû = d where A ∈ Rk×n, B ∈ Rp×n,
b ∈ Rk, and d ∈ Rp. It is also important to note that k > n, rank(B)=p, and p < n. û denotes the vector of moments of
the reconstructed DG solution on a specific triangular element and n is the number of moments = (m+ 1)(m+ 2)∕2. The
first set of equations, namely Aû = b arises by imposing the condition: the DG solution recovers the subcell averages in
the least squares sense (see Equation (26)). The second set of equations, namely Bû = d, comes from the condition that
the cell average calculated from subcell averages and reconstructed DG solution on any triangular element have to be the
same (see Equation (27)). We need the second set of equations to be satisfied exactly, whereas the first set of equations,
the number of equations being more than the number of unknowns, needs to be satisfied in a least squares sense. The
solution methodology is adopted from the work of Golub.58 We start by calculating the QR decomposition of BT of the
following form:

BT = Q
[

R
Θ

]
, (B1)

where Q is an orthogonal matrix and an element of Rn×n, R ∈ Rp×p is an upper triangular matrix, and 𝚯 is the null matrix
in R(n−p)×p. With this notation, the second set of equations further simplifies to

Bû =
(

Q
[

R
Θ

])T

û =
[

RT ΘT ]QTû. (B2)

We introduce a new notation, ie,

QTû =
{

y
z,

}
where y ∈ R

p and z ∈ R
(n−p). (B3)
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Introducing the above notation, Equation (B2) reduces to

Bû =
[

RT ΘT ]{ y
z

}
= RTy = d. (B4)

Equation (B4) can be solved conveniently by a direct solver. However, the first set of equation can be reduced to the
following set of equations in terms of the transformed variables.

Aû = (AQ)(QTû) = (AQ)
{

y
z

}
= A1y + A2z = b,

⇒ A2z = b − A1y, (B5)

where the matrix AQ is partitioned into two matrices A1 ∈ Rk×p and A2 ∈ Rk×(n−p) as AQ = [A1|A2]. So, this problem
reduces to an unconstrained minimization problem: Find a z ∈ R(n−p) that minimizes ||A2z − (b − A1y)|| as y is already
known from the solution of Equation (B4). The solution of this unconstrained minimization problem determines z.
Finally, û can be calculated from Equation (B3) as

û = Q
{

y
z

}
. (B6)

To accelerate our computation, QR decompositions of BT and A2 are precomputed and stored beforehand for their
frequent usage.
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