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HIGH-ORDER CONSERVATIVE POSITIVITY-PRESERVING
DG-INTERPOLATION FOR DEFORMING MESHES AND
APPLICATION TO MOVING MESH DG SIMULATION OF

RADIATIVE TRANSFER\ast 

MIN ZHANG\dagger , WEIZHANG HUANG\ddagger , AND JIANXIAN QIU\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Solution interpolation between deforming meshes is an important component for
several applications in scientific computing, including indirect arbitrary-Lagrangian-Eulerian and
rezoning moving mesh methods in numerical solution of PDEs. In this paper, a high-order, con-
servative, and positivity-preserving interpolation scheme is developed based on the discontinuous
Galerkin solution of a linear time-dependent equation on deforming meshes. The scheme works for
bounded but otherwise arbitrary mesh deformation from the old mesh to the new one. The cost
and positivity preservation (with a linear scaling limiter) of the DG-interpolation are investigated.
Numerical examples are presented to demonstrate the properties of the interpolation scheme. The
DG-interpolation is applied to the rezoning moving mesh DG solution of the radiative transfer equa-
tion, an integro-differential equation modeling the conservation of photons and involving time, space,
and angular variables. Numerical results obtained for examples in one and two spatial dimensions
with various settings show that the resulting rezoning moving mesh DG method maintains the same
convergence order as the standard DG method, is more efficient than the method with a fixed uniform
mesh, and is able to preserve the positivity of the radiative intensity.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . DG-interpolation, conservative, positivity preserving, moving mesh DG method,
MMPDE, radiative transfer equation
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1. Introduction. Solution interpolation or remapping between two deforming
meshes is an important component for several applications in scientific computing,
including arbitrary-Lagrangian-Eulerian (ALE) methods in computational fluid dy-
namics [2, 3, 1, 4, 5, 9, 12, 14, 13, 16, 24, 23, 32] and rezoning moving mesh (MM)
methods in general numerical solution of PDEs [11, 28, 27, 36, 46]. If not designed
properly, a scheme for the interpolation can lead to violation of conservation of some
important physical quantities, deterioration of accuracy, and/or introduction of spu-
rious negative values in variables supposed to be nonnegative.

Some of the earliest work on conservative interpolation between two deformatting
meshes grew out of the development of ALE methods [16]. Depending on the relation
between the old (Lagrangian) and new (rezoned) meshes, we can classify mesh-to-mesh
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interpolation algorithms as integral-remapping or advection-remapping ones. If the
two meshes are completely independent of one another or have the same connectivity
but are arbitrarily displaced with respect to each other, one needs to use integral-
remapping interpolation, which involves finding the intersections of the cells of two
meshes. In [12], a conservative interpolation method is proposed that assumes piece-
wise constant fields and simplifies the problem of computing the volume of intersection
of old and new cells into a surface integral by invoking the divergence theorem. How-
ever, the first-order nature of the method leads to excessive diffusion. The approach
is extended to second order to improve its diffusive characteristics in [14]. In [32],
a second-order-accurate, conservative, and sign-preserving local remapping algorithm
for a positive, scalar, cell-centered function is developed based on the intersection,
which can be written in flux form if two meshes have the same connectivity. Then
the authors simplify it as a face-based donor-cell method which avoids finding the cell
intersections but requires the displacements to be small to maintain the positivity of
the remapping variables. The main drawback of this type of method is the difficulty
of evaluating the integrals for arbitrary meshes, especially in higher dimensions.

When the old and new meshes have the same connectivity, they can be viewed as
a deformation of each other, and advection-remapping can be used. It is shown in [13]
that if the physical time step is made sufficiently short such that node trajectories
are confined to the nearest neighbor cells (and thus the magnitude of the deformation
is small), then the remapping can be written as a flux-form convection algorithm.
An incremental remapping method based on the solution of convection equations is
developed in [13]. A linearity-and-bound-preserving conservative interpolation scheme
is introduced in [24]. A main advantage of an advection-based scheme is that it
does not require finding the intersections of old and new mesh cells. However, the
connection between advection equations and conservative interpolation/remapping
does not seem to be well understood, as assumptions and discretization errors of
using advection methods for interpolation/remapping are not easily identified.

There is a different approach of advection-remapping where the interpolation is
viewed as solving a linear convection PDE over a pseudotime interval. For example,
Li, Tang, and Zhang [28] use such an interpolation scheme in an MM finite element
method. A conservative interpolation scheme is proposed and used by Tang and Tang
[36] for finite volume computation of hyperbolic equations. This scheme seems to work
only for small mesh deformation. A divergence-free-preserving interpolation algorithm
is developed in [11] for the MM finite element computation of the incompressible
Navier--Stokes equations. It is worth pointing out that only one pseudotime step is
used in their computation since the mesh deformation is very small. The idea of [11]
is extended in [27] to develop a second-order conservative interpolation scheme for use
with an MM-DG method. Anderson et al. [2] propose a method for remapping the
state variables of single-material ALE based on solving convection equations using
semidiscrete DG methods and three nonlinear approaches to enforce monotonicity
of the remapping variables. Its multimaterial extension and combination with the
Lagrangian phase can be found in [3]. For more remapping/interpolation methods,
the interested reader is referred to [4, 9, 23, 46] and the references therein.

The objective of this paper is to develop an arbitrary high-order conservative
interpolation scheme and present an analysis for its cost and positivity preservation,
two issues that have hardly been studied for interpolation/remapping for deforming
meshes. The scheme is based on solving a linear convection equation with an MM-DG
method for spatial discretization and an explicit third-order Runge--Kutta scheme for
time discretization. This DG-interpolation scheme is shown to be mass-conservative
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DG-INTERPOLATION AND APPLICATION A3111

and applicable for bounded but otherwise arbitrary mesh deformation. Moreover,
it is shown that the cost of the DG-interpolation is in the order of the number of
mesh vertices multiplied by the number of pseudotime steps needed to integrate the
convection equation from the pseudotime zero corresponding to the old mesh and the
pseudotime one corresponding to the new mesh. This number of pseudotime steps
depends on the magnitude of mesh deformation relative to the size of mesh elements
in general. It stays constant as the mesh is being refined when the mesh deformation
is in the order of the minimum element height, a typical situation in the MM solution
of conservation laws with an explicit scheme. On the other hand, the number of
pseudotime steps increases as the mesh is being refined if the mesh deformation only
stays bounded. A typical scenario of this is in the MM solution of PDEs with a
fixed physical time step size or with an implicit scheme. Another issue is positivity
preservation. Generally speaking, the DG-interpolation alone may not preserve the
positivity/nonnegativity of the function to be interpolated. We consider a limiter
[30, 44, 45] that uses a linear scaling around the positive cell average while conserving
the cell average and maintaining the convergence order of the DG discretization. We
show analytically and verify numerically that the DG-interpolation with the limiter
can preserve the positivity of the function to be interpolated.

As an application example, we study the use of the DG-interpolation scheme in
the rezoning MM-DG solution of the radiative transfer equation (RTE). The RTE is
an integro-differential equation modeling the interaction of radiation with scattering
and absorbing media and having important applications in various fields in science
and engineering. It involves time, space, and angular variables and contains an inte-
gral term in angular directions while being hyperbolic in space. The challenges for
its numerical solution include the need to handle its high dimensionality, the pres-
ence of the integral term, the development of discontinuities and sharp layers in its
solution along spatial directions, and the appearance of spurious negative values in
the nonnegative radiative intensity. These challenges make adaptive high-order DG
methods amenable to the numerical solution of RTE. Indeed, DG methods have been
considered for RTE. For example, a quasi-Lagrangian MM-DG method is proposed
in [41] for RTE, and the preservation of nonnegativity of the radiative intensity is
investigated in [29, 40, 42] for the DG solution of RTE on a fixed mesh.

We consider a rezoning MM-DG method (instead of a quasi-Lagrangian one)
for the numerical solution of RTE. It typically includes three steps: mesh redistribu-
tion/adaptation, solution interpolation from the old mesh to the new one, and solution
of the physical equation on the new mesh. The method has the advantages that these
steps are independent of each other, and existing schemes can be used for each step.
Moreover, the task seems to be simpler here than that with a quasi-Lagrangian MM
method that strongly couples the effects of mesh movement with the discretization of
RTE. For the current situation, we deal separately with a scalar function/equation on
a moving mesh for the second step (interpolation) and the discretization of RTE on
a fixed mesh for the third step. In our computation, we use the positivity-preserving
(PP) DG method of [29, 40, 42] for spatial variables and the discrete-ordinate method
(DOM) [25] for angular variables. For adaptive mesh generation (the first step), we
use an MM method [20, 19, 17] which is known to produce a nonsingular moving mesh
[18]. We use the DG-interpolation for the second step. The whole computation can
be made positivity preserving when the computation at the second and third steps
can be made positivity preserving.

To conclude the introduction, we would like to emphasize that the current work
contains a few new contributions. As mentioned earlier, a number of remapping or
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interpolation schemes for deforming meshes have been developed (e.g., see [13, 11, 24,
32, 36]); however, none of the existing schemes seems to work well with large mesh
deformation. Here we propose to use multiple pseudotime steps and demonstrate that
the resulting DG-interpolation scheme works for meshes of large or small bounded
deformation. Moreover, we give a cost analysis for the scheme and particularly obtain
an estimate of the number of pseudotime steps needed for each interpolation in terms
of mesh deformation. Furthermore, we consider high-order accuracy, conservation,
geometric conservation law, and positivity preservation in the construction of the
scheme. The proposed scheme appears to be the first interpolation/remapping scheme
taking all of those properties into consideration. Finally, RTE proves to be the right
application for the DG interpolation scheme. Its implicit time integration means
large time step size, which in turn leads to large mesh deformation between time
steps. In addition, the positivity of the radiative intensity needs to be preserved in
the computation. Positivity preservation in the MM solution of RTE is new too.

The outline of the paper is as follows. The high-order DG-interpolation is de-
veloped and its cost, mass conservation, and positivity preservation are analyzed
in section 2. The moving mesh PDE (MMPDE) method is described in section 3.
Numerical results obtained for one- and two-dimensional examples are presented in
section 4 to demonstrate the high-order accuracy and PP features and the cost of the
DG-interpolation. A rezoning MM-DG method for RTE is described in section 5, and
numerical examples with various settings in one and two spatial dimensions are given
in section 6. Finally, section 7 contains the conclusions.

2. High-order conservative PP DG-interpolation. In this section, we pres-
ent an interpolation scheme from an old simplicial mesh to a new one with high-order
accuracy, mass conservation, and positivity preservation. The scheme works in any di-
mension, although we restrict our discussion in one and two dimensions for notational
simplicity.

Let \scrD \subset \BbbR d (d = 1 and 2) be a polygonal bounded domain. Assume that we are
given nonsingular simplicial meshes \scrT old

h and \scrT new
h on \scrD that have the same number

of elements and vertices and the same connectivity. They differ only in the location of
vertices and can be considered a deformation of each other. They can also be regarded
as a moving mesh at different time instants. In this work, we use the MMPDE method
(see section 3) to generate such a mesh.

The interpolation problem between \scrT old
h and \scrT new

h is equivalent to the numerical
solution of the differential equation [2, 20, 28, 27]

(2.1)
\partial u

\partial \varsigma 
(\bfitx , \varsigma ) = 0, (\bfitx , \varsigma ) \in \scrD \times (0, 1]

on the moving mesh \scrT h(\varsigma ) obtained as a linear interpolant of \scrT old
h and \scrT new

h in the
pseudotime \varsigma \in [0, 1]. In particular, \scrT h(\varsigma ) has the same number of elements and
vertices and the same connectivity as \scrT old

h and \scrT new
h , and its nodal positions and

velocities (which can also be interpreted as deformation) are given by

\bfitx i(\varsigma ) = (1 - \varsigma )\bfitx old
i + \varsigma \bfitx new

i , i = 1, . . . , Nv(2.2)

\.\bfitx i = \bfitx new
i  - \bfitx old

i , i = 1, . . . , Nv.(2.3)

The initial condition is

(2.4) u(\bfitx , 0) = u0(\bfitx ), \bfitx \in \scrD ,
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where u0(\bfitx ) is the original function defined on \scrT old
h . We define the piecewise linear

mesh velocity function as

(2.5) \.\bfitX (\bfitx , \varsigma ) =

Nv\sum 
i=1

\.\bfitx i\phi i(\bfitx , \varsigma ),

where \phi i is the linear basis function associated with the vertex \bfitx i.
We consider the numerical solution of (2.1) using a quasi-Lagrangian MM-DG

method [31, 41]. Let K be an arbitrary element of \scrT h(\varsigma ). Denote the basis functions

of degree up to r \geq 1 on K by \phi 
[j]
K , j = 1, . . . , nb, where nb \equiv (r + d)!/(d!r!) is the

number of basis functions. Notice that nb = r+1 for d = 1 and nb = (r+1)(r+2)/2
for d = 2. The DG finite element space is defined as

(2.6) V r
h (\varsigma ) = \{ v \in L2(\scrD ) : v| K \in P r(K) \forall K \in \scrT h(\varsigma )\} ,

where P r(K) stands for the space of polynomials of degree at most r on K. Then
any DG approximation polynomial uh \in V r

h (\varsigma ) can be expressed as

(2.7) uh(\bfitx , \varsigma ) =

nb\sum 
j=1

u
[j]
K (\varsigma )\phi 

[j]
K (\bfitx , \varsigma ), \bfitx \in K, K \in \scrT h(\varsigma ),

where u
[j]
K , j = 1, . . . , nb, are the degrees of freedom. Without causing confusion,

hereafter we will suppress the subscript ``h"" in uh; i.e., we will write uh as u. We note
that the basis functions depend on \varsigma due to the movement of the vertices. From the
fact that K is a simplex, it is not difficult to show that

(2.8)
\partial \phi 

[j]
K

\partial \varsigma 
(\bfitx , \varsigma ) =  - \nabla \phi 

[j]
K (\bfitx , \varsigma ) \cdot \.\bfitX (\bfitx , \varsigma ), a.e. in \scrD .

For the weak formulation of (2.1), multiplying it by a test function v \in V r
h (\varsigma ) and

integrating the resulting equation over K, we obtain

(2.9)

\int 
K

\partial u

\partial \varsigma 
vd\bfitx = 0.

On the other hand, from the Reynolds transport theorem, we have

d

d\varsigma 

\int 
K

uvd\bfitx =

\int 
K

\biggl( 
v
\partial u

\partial \varsigma 
+ u

\partial v

\partial \varsigma 

\biggr) 
d\bfitx +

\int 
\partial K

uv \.\bfitX \cdot \bfitn Kds,

where \bfitn K is the outward unit normal to the boundary \partial K. Using (2.8) (with \phi 
[j]
K

being replaced by v) and (2.9) in the above equation, we get

(2.10)
d

d\varsigma 

\int 
K

uvd\bfitx +

\int 
\partial K

v
\Bigl( 
 - u \.\bfitX \cdot \bfitn K

\Bigr) 
ds+

\int 
K

(u \.\bfitX ) \cdot \nabla vd\bfitx = 0.

The boundary integral term is replaced by a numerical flux in the DG approximation.
Thus, the semidiscrete MM-DG solution for (2.1) is to seek u \in V r

h (\varsigma ), 0 < \varsigma \leq 1 such
that

(2.11)
d

d\varsigma 

\int 
K

uvd\bfitx +
\sum 
e\in \partial K

\int 
e

vFe(u
in
K , uout

K )ds+

\int 
K

(u \.\bfitX ) \cdot \nabla vd\bfitx = 0 \forall v \in V r
h (\varsigma ),
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where Fe(u
in
K , uout

K ) \approx  - u \.\bfitX \cdot \bfitn K is a numerical flux defined on e \in \partial K, uin
K denotes

the value of u on K, and uout
K is the value of u on the element (denoted by K \prime ) sharing

the common edge e with K. We use the local Lax--Friedrichs numerical flux, viz.,

Fe(u
in
K , uout

K ) =
1

2

\Bigl( \bigl( 
 - uin

K
\.\bfitX e  - uout

K
\.\bfitX e
\bigr) 
\cdot \bfitn e

K  - \alpha e(u
out
K  - uin

K )
\Bigr) 

\forall e \in \partial K,(2.12)

where \.\bfitX e denotes the restriction of \.\bfitX on e and

(2.13) \alpha e = max
\bigl( 
| \.\bfitX e \cdot \bfitn e

K | , | \.\bfitX e \cdot \bfitn e
K\prime | 

\bigr) 
.

Note that this numerical flux is actually an upwind flux and vanishes on the boundary
of the domain due to the fact that the boundary does not move. It satisfies several
properties including consistency, monotonicity, Lipschitz continuity, and conservative-
ness, with the last property being expressed as

(2.14) Fe(u
in
K , uout

K ) + Fe(u
in
K\prime , uout

K\prime ) = 0.

In our computation, the second and third terms in the left of (2.11) are computed
using Gaussian quadrature rules.

The third-order explicit total variation diminishing (TVD) Runge--Kutta scheme
is used to discretize (2.11) in time. To describe the scheme, we rewrite (2.11) into

d

d\varsigma 

\int 
K

uvd\bfitx =  - \scrA (u, v)| K \equiv  - 
\sum 
e\in \partial K

\int 
e

vFe(u
in
K , uout

K )ds - 
\int 
K

(u \.\bfitX ) \cdot \nabla vd\bfitx .(2.15)

Let the time instants be

0 = \varsigma 0 < \varsigma 1 < \cdot \cdot \cdot < \varsigma \nu < \varsigma \nu +1 < \cdot \cdot \cdot < \varsigma N\varsigma = 1 and \Delta \varsigma \nu = \varsigma \nu +1  - \varsigma \nu .

The third-order explicit TVD Runge--Kutta scheme for (2.15) reads as

(2.16)

\left\{                 

\int 
K\nu ,(1) u

(1)v\nu ,(1)d\bfitx =
\int 
K\nu u

\nu v\nu d\bfitx  - \Delta \varsigma \nu \scrA (u\nu , v\nu )| K\nu ,\int 
K\nu ,(2) u

(2)v\nu ,(2)d\bfitx = 3
4

\int 
K\nu u

\nu v\nu d\bfitx 

+ 1
4

\Bigl( \int 
K\nu ,(1) u

(1)v\nu ,(1)d\bfitx  - \Delta \varsigma \nu \scrA (u(1), v\nu ,(1))| K\nu ,(1)

\Bigr) 
,\int 

K\nu +1 u
\nu +1v\nu +1d\bfitx = 1

3

\int 
K\nu u

\nu v\nu d\bfitx 

+ 2
3

\Bigl( \int 
K\nu ,(2) u

(2)v\nu ,(2)d\bfitx  - \Delta \varsigma \nu \scrA (u(2), v\nu ,(2))| K\nu ,(2)

\Bigr) 
,

where u(1), v\nu ,(1), K\nu ,(1) are stage values at \varsigma = \varsigma \nu +1; u(2), v\nu ,(2), K\nu ,(2) are the
values at \varsigma = \varsigma \nu +

1
2 ; and u\nu +1, v\nu +1, K\nu +1 are at \varsigma = \varsigma \nu +1. It is emphasized that the

coordinates of the vertices and the volume of K need to be updated at these stages.
Especially, as will be seen in section 2.1, a special update scheme for the element
volume may be needed for the scheme to satisfy the so-called geometric conservation
law [37, 38]. It is also worth pointing out that the test functions at K\nu , K\nu +1, K\nu ,(1),

and K\nu ,(2) are connected through their counterparts on the reference element \widehat K.
Indeed, for any \^v \in P r( \widehat K), we have

(2.17) v\nu = \^v \circ F - 1
K\nu , v\nu +1 = \^v \circ F - 1

K\nu +1 , v\nu ,(1) = \^v \circ F - 1
K\nu ,(1) , v\nu ,(2) = \^v \circ F - 1

K\nu ,(2) ,

where FK is the affine mapping from \widehat K to K for K = K\nu , K\nu +1, K\nu ,(1), or K\nu ,(2).
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The time step size \Delta \varsigma is chosen to ensure the stability of the scheme [10], i.e.,

(2.18) \Delta \varsigma =
Ccfl

max
e,K

| \.\bfitX e \cdot \bfitn e
K | 

\cdot min(hold
min, h

new
min),

where Ccfl is a constant typically chosen to be less than 1/(2r + 1) and hold
min and

hnew
min are the minimum element height for the old and new meshes, respectively.

From the theory of DG and TVD Runge--Kutta scheme (e.g., see [43]), we can
expect that the above-described DG-interpolation scheme is (r + 1)th order in space
and third order in time for problems with smooth solutions, viz., \scrO (\Delta \varsigma 3) +\scrO (hr+1),
where h denotes the maximum element diameter. Particularly, the scheme is second
order for r = 1 and third order for r = 2. For r > 2, we can choose a smaller \Delta \varsigma or a
higher-order time scheme such that the temporal error is negligible.

It is emphasized that the above-described scheme does not require any prior
conditions on the meshes \scrT old

h and \scrT new
h . Particularly, it works when the mesh has

large deformation, although more time steps may be needed. The cost of the scheme
is discussed in section 2.3.

2.1. The geometric conservation law (GCL). GCL stands for geometric
identities that hold in continuous form. They may no longer hold in a discrete set-
ting, especially in the computation with moving meshes [37, 38]. A simple verification
for satisfying GCL is to use uniform flow reproduction, i.e., to check if the underlying
scheme produces a uniform flow if the initial flow is uniform. Theoretical and numer-
ical analysis (e.g., see [6, 15]) shows that satisfying GCL is neither a necessary nor a
sufficient condition for the stability of a scheme but often helps improve the accuracy
and stability of the computation. We study (2.16) here for the satisfaction of GCL.

Taking u = 1 in (2.15) and using Fe(1, 1) =  - \.\bfitX e \cdot \bfitn e
K and the divergence theorem,

we have

\scrA (1, v)| K =
\sum 
e\in \partial K

\int 
e

v( - \.\bfitX e \cdot \bfitn e
K)ds+

\int 
K

\.\bfitX \cdot \nabla vd\bfitx 

=  - 
\int 
K

v\nabla \cdot \.\bfitX d\bfitx =  - \nabla \cdot \.\bfitX | K
\int 
K

vd\bfitx =  - | K| 
| \^K| 

\nabla \cdot \.\bfitX | K
\int 

\widehat K \^vd\^\bfitx .(2.19)

Combining this equation with (2.15) and taking u = 1 and v = 1, we get

(2.20)
d

d\varsigma 
| K| = | K| \nabla \cdot \.\bfitX | K ,

which is the GCL governing the evolution of the volume of element K. On the other
hand, taking u\nu = 1, u(1) = 1, u(2) = 1, u\nu +1 = 1, and \^v = 1 in (2.16), we obtain

(2.21)

\left\{     
| K\nu ,(1)| = | K\nu | +\Delta \varsigma \nu | K\nu | \nabla \cdot \.\bfitX | K\nu ,

| K\nu ,(2)| = 3
4 | K

\nu | + 1
4

\bigl( 
| K\nu ,(1)| +\Delta \varsigma \nu | K\nu ,(1)| \nabla \cdot \.\bfitX | K\nu ,(1)

\bigr) 
,

| K\nu +1| = 1
3 | K

\nu | + 2
3

\bigl( 
| K\nu ,(2)| +\Delta \varsigma \nu | K\nu ,(2)| \nabla \cdot \.\bfitX | K\nu ,(2)

\bigr) 
,

which can be used to update the volume of K at the three Runge--Kutta stages. The
above equation can also be obtained by applying the third-order Runge--Kutta scheme
directly to (2.20). The time stepping (2.21) has been derived by Cheng and Shu [8] for
a GCL-preserving ALE formulation and extended to ALE-DG and Lagrangian-DG
more recently by Pandare, Wang, and Luo [33] and Pandare et al. [34].
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Lemma 2.1. The fully discrete MM-DG scheme (2.16) reproduces the uniform
flow; i.e., u\nu \equiv 1 implies u\nu +1 \equiv 1 if the element volume is updated according to
(2.21).

This lemma can be proved by taking u\nu \equiv 1 in (2.16) and using (2.19) and (2.21).
As mentioned above, the volume of K at different Runge--Kutta stages can be

obtained using (2.21). It can also be calculated directly using the coordinates of the
vertices. Interestingly, it can be verified that these two approaches are the same in
one dimension but different in two and higher dimensions. In the latter case, (2.21)
needs to be used for uniform flow reproduction and thus GCL satisfaction.

2.2. Mass conservation. In this subsection, we show that the DG-interpolation
scheme (2.11) and (2.16) conserves the mass.

Lemma 2.2. The semidiscrete MM-DG scheme (2.11) conserves the mass.

This lemma can be proved by taking v = 1 in (2.11), summing the resulting
equation over all elements, rearranging the terms according to interior and boundary
edges, and using (2.14) and the fact that the numerical flux vanishes on the boundary.

Lemma 2.3. The fully discrete MM-DG scheme (2.16) conserves the mass.

This lemma can be proved similarly as for Lemma 2.2.

Remark 2.4. Similarly, we can prove that the first-order forward Euler scheme
and the second-order explicit TVD Runge--Kutta scheme also conserve the mass when
applied to (2.11).

2.3. Cost of the DG-interpolation. We now investigate the cost of the DG-
interpolation scheme (2.16). We start with noticing that the cost of each time step of
the scheme is \scrO (Nv) and the total cost is \scrO (NvN\varsigma ), where Nv is the number of the
mesh vertices and N\varsigma is the number of time steps to reach \varsigma = 1. Note that this total
cost is the cost for each interpolation of the function from the old mesh to the new
one. The key to the estimation of this cost is to estimate N\varsigma .

To this end, we recall that the CFL stability condition (2.18). Since \.\bfitX is piecewise
linear, from (2.3), we have

max
e,K

| \.\bfitX \cdot \bfitn e
K | \sim max

i
| \bfitx old

i  - \bfitx new
i | .

Then (2.18) becomes

(2.22) \Delta \varsigma =
Ccfl

maxi | \bfitx old
i  - \bfitx new

i | 
\cdot min(hold

min, h
new
min).

This indicates that \Delta \varsigma and thus N\varsigma depend on the magnitude of mesh deformation
relative to the size of mesh elements. In the following, we consider two special cases.

Case 1. In the first case, we consider the situation where

(2.23) max
i

| \bfitx old
i  - \bfitx new

i | = \scrO (min(hold
min, h

new
min)).

Then (2.22) implies that the DG-interpolation only takes a constant number of time
steps to reach \varsigma = 1 and its total cost is \scrO (Nv).

An extreme situation for (2.23) is that the mesh is fixed. Then we have maxi | \bfitx old
i

 - \bfitx new
i | = 0, and the upper bound of (2.22) becomes infinity, which means just one

step is needed for the DG-interpolation.
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DG-INTERPOLATION AND APPLICATION A3117

In the context of the MM solution of first-order hyperbolic equations, \scrT old
h and

\scrT new
h correspond to meshes at consecutive time steps, i.e., \scrT old

h = \scrT n
h and \scrT new

h =
\scrT n+1
h , where n stands for the index for the physical time step, and the time step size

used for integrating the physical equations is typically chosen as

(2.24) \Delta t = \scrO 
\bigl( 
min(hold

min, h
new
min)

\bigr) 
to ensure stability. If the mesh velocities are bounded, i.e.,

(2.25) max
i

\bigm| \bigm| \bigm| \bigm| \bfitx n
i  - \bfitx n+1

i

\Delta t

\bigm| \bigm| \bigm| \bigm| = \scrO (1) or max
i

| \bfitx n
i  - \bfitx n+1

i | = \scrO (\Delta t),

then (2.24) implies (2.23). As a consequence, we can expect that the cost for each
DG-interpolation in the MM solution of hyperbolic equations is \scrO (Nv).

Case 2. In this case we consider the situation with

(2.26) max
i

| \bfitx old
i  - \bfitx new

i | = \scrO (1).

Then (2.22) means that the number of the time steps needed is

(2.27) N\varsigma = \scrO 
\biggl( 

1

min(hold
min, h

new
min)

\biggr) 
,

which is \scrO (N
1
d ) at the minimum (where N is the number of elements). It clearly

indicates that N\varsigma increases as the mesh is being refined.
A typical scenario for this case is when the physical PDE is integrated with an

implicit scheme and the physical time step size \Delta t is taken independent of the mesh
size (in contrast to (2.24)). Then we have maxi | \bfitx old

i  - \bfitx new
i | = \scrO (\Delta t) and

(2.28) N\varsigma = \scrO 
\biggl( 

\Delta t

min(hold
min, h

new
min)

\biggr) 
,

which increases as the mesh is being refined.

Remark 2.5. The condition (2.23) has been used in [39] to restrict the mesh move-
ment in the MM WENO solution of conservation laws.

Remark 2.6. It is interesting to mention that the interpolation schemes in [11, 36]
for the rezoning MM methods and in [13, 24, 32] for ALE methods can be viewed as
the one-step implementation of some explicit schemes for integrating (2.1) on a moving
mesh. These schemes have been observed in [13, 11, 24, 32, 36] to work only for small
mesh deformation. This may be explained using (2.22) and (2.23); i.e., (2.23) (which
implies small mesh deformation) needs to be held if we want the right-hand side of
(2.22) to be constant. The analysis in this subsection also shows that multiple steps
are needed if large mesh deformation is allowed.

2.4. Preservation of positivity. It should be pointed out that the above-
described DG-interpolation scheme (2.16) cannot preserve the positivity of the so-
lution in general. In this subsection, we consider a PP limiter that uses a linear
scaling around nonnegative cell averages, conserves the cell averages, and maintains
the accuracy order of the original DG-interpolation. The approach we use here is
similar to the general techniques developed in [30, 44, 45] for constructing high-order
PP DG schemes on fixed meshes for scalar conservation laws. To save space, we only
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discuss the forward Euler time discretization here. The conclusion will hold over for
the third-order explicit TVD Runge--Kutta method since it is a convex combination
of the forward Euler scheme.

The Euler scheme for the semidiscrete MM-DG scheme (2.11) is given by\int 
K\nu +1

(uv)\nu +1d\bfitx =

\int 
K\nu 

(uv)\nu d\bfitx 

 - \Delta \varsigma \nu 
\biggl( \sum 

e\in \partial K\nu 

\int 
e

v\nu Fe((u
\nu 
K)in, (u\nu 

K)out)ds+

\int 
K\nu 

(u\nu \.\bfitX \nu ) \cdot \nabla v\nu d\bfitx 

\biggr) 
.(2.29)

Taking v = 1 in (2.29), we obtain the evolution equation of the cell average \=u as

(2.30) | K\nu +1| \=uK\nu +1 = | K\nu | \=uK\nu  - \Delta \varsigma \nu 
\sum 

e\in \partial K\nu 

\int 
e

Fe((u
\nu 
K)in, (u\nu 

K)out)ds.

Proposition 2.7. For (2.29) and (2.30), if \=uK\nu \geq 0 and uK\nu (\^\bfitx ) \geq 0 for all
\^\bfitx \in GK\nu and all K\nu \in \scrT \nu 

h , where GK\nu is a set of special quadrature points (e.g., [45])
on K\nu , then \=uK\nu +1 \geq 0 hold for all K\nu +1 \in \scrT \nu +1

h under the CFL condition

(2.31) \Delta \varsigma \nu \leq 
2
3 \^w1

max
K\nu 

max
e\in \partial K\nu 

| \.\bfitX e \cdot \bfitn e| 
\cdot min

K\nu 

| K\nu | 
| \partial K\nu | 

,

where \^w1 is the first point weight of the ng-point Gauss--Lobatto quadrature (2ng - 3 \geq 
r) and has the value of 1/2 and 1/6 for r = 1 and r = 2, respectively.

This proposition can be proved by following [45] and using the mesh nonsingularity
assumption | K\nu | > 0, which is warranted by the MMPDE method; see section 3.

Once we have \=uK\nu +1 \geq 0, we can apply the linear scaling PP limiter as

\^uK\nu +1 = \lambda K\nu +1(uK\nu +1  - \=uK\nu +1) + \=uK\nu +1 \forall \bfitx \in K\nu +1, K\nu +1 \in \scrT \nu +1
h ,(2.32)

where

\lambda K\nu +1 =
\=uK\nu +1

\=uK\nu +1  - zK\nu +1

, zK\nu +1 = min
\^\bfitx \in GK\nu +1

\bigl\{ 
uK\nu +1(\^\bfitx ), 0

\bigr\} 
.(2.33)

It can be verified that \=\^uK\nu +1 = \=uK\nu +1 , \^uK\nu +1(\^\bfitx ) \geq 0 for all \^\bfitx \in GK\nu +1 , and \^uK\nu +1

maintains the DG convergence order [30, 45].
Finally, we note that if the initial solution is nonnegative, we have \=uK0 \geq 0. By ap-

plying the linear scaling PP limiter, we can obtain an initial approximation that meets
the assumption of Proposition 2.7. Hence, we conclude that the DG-interpolation pre-
serves the nonnegativity of the solution when the PP limiter is applied.

3. The MMPDE method. In this section, we describe the generation of the
new mesh \scrT new

h from the old one \scrT old
h using the MMPDE method [20]. We use

here a new implementation of the method proposed in [17]. Adaptive meshes gen-
erated using this method are used in section 4 for the numerical examination of the
DG-interpolation scheme and in section 6 for the numerical solution of the radiative
transfer equation.

To describe the MMPDE method, we introduce a computational mesh \scrT c =
\{ \bfitxi 1, . . . , \bfitxi Nv

\} , which serves as an intermediate variable, and an almost uniform
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reference computational mesh \^\scrT c = \{ \^\bfitxi 1, . . . , \^\bfitxi Nv
\} , which keeps fixed in the com-

putation. A key idea of the MMPDE method is to view any nonuniform mesh as a
uniform one in some metric \BbbM [20]. \BbbM = \BbbM (\bfitx ) is a symmetric and uniformly positive
definite matrix-valued function defined on \scrD . It provides the information needed for
determining the size, shape, and orientation of the mesh elements throughout the
domain. Various metric tensors have been proposed; e.g., see [21, 20]. We use here
a metric tensor based on the Hessian of the computed solution. To be specific, we
consider a physical variable u and denote its finite element approximation by uh. Let
HK be a recovered Hessian of uh on K \in \scrT h for a mesh \scrT h. A number of strategies can
be used for Hessian recovery for finite element approximations; e.g., see [7, 22, 47, 48].
Least square fitting [47] is used in our computation. Denoting

| HK | = Qdiag(| \lambda 1| , . . . , | \lambda d| )QT ,

where Qdiag(\lambda 1, . . . , \lambda d)Q
T is the eigendecomposition of HK , the metric tensor is

then defined as

(3.1) \BbbM K = det
\bigl( 
\BbbI + | HK | 

\bigr)  - 1
d+4

\bigl( 
\BbbI + | HK | 

\bigr) 
\forall K \in \scrT h,

where \BbbI is the identity matrix and det(\cdot ) is the determinant of a matrix. The metric
tensor (3.1) is known [21] to be optimal for the L2 norm of linear interpolation error.
For situations with several physical variables, we first compute the metric tensor for
each of the variables and then obtain the final metric tensor by matrix intersection.

When \scrT h is uniform in the metric \BbbM in reference to the computational mesh \scrT c,
it is known [20] that it satisfies the equidistribution and alignment conditions,

| K| 
\sqrt{} 
det(\BbbM K) =

\sigma h| Kc| 
| \scrD c| 

\forall K \in \scrT h,(3.2)

1

d
tr
\bigl( 
(F \prime 

K) - 1\BbbM  - 1
K (F \prime 

K) - T
\bigr) 
= det

\bigl( 
(F \prime 

K) - 1\BbbM  - 1
K (F \prime 

K) - T
\bigr) 1

d \forall K \in \scrT h,(3.3)

where F \prime 
K is the Jacobian matrix of the affine mapping FK : Kc \in \scrT c \rightarrow K \in \scrT h, \BbbM K

is the average of \BbbM over K, tr(\cdot ) denotes the trace of a matrix, and

| \scrD c| =
\sum 

Kc\in \scrT c

| Kc| , \sigma h =
\sum 

K\in \scrT h

| K| det(\BbbM K)
1
2 .

The condition (3.2) determines the size of elements through the metric tensor \BbbM .
On the other hand, (3.3), derived from requiring K (measured in the metric \BbbM K)
to be similar to Kc (measured in the Euclidean metric), determines the shape and
orientation of K through \BbbM and shape of Kc. An energy function associated with
these conditions is given by

\scrI h(\scrT h, \scrT c) =
1

3

\sum 
K\in \scrT h

| K| det(\BbbM K)
1
2

\bigl( 
tr((F \prime 

K) - 1\BbbM  - 1
K (F \prime 

K) - T )
\bigr) 3d

4

+
1

3
d

3d
4

\sum 
K\in \scrT h

| K| det(\BbbM K)
1
2

\Bigl( 
det(F \prime 

K)det(\BbbM K)
1
2

\Bigr)  - 3
2

,

(3.4)

which is a Riemann sum of a continuous functional developed in [20] based on mesh
equidistribution and alignment.

Note that \scrI h(\scrT h, \scrT c) is a function of the vertices \bfitxi i, i = 1, . . . , Nv, of \scrT c and the
vertices \bfitx i, i = 1, . . . , Nv, of \scrT h. Here, we adopt an indirect approach with which we
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take \scrT h as \scrT old
h , minimize \scrI h(\scrT old

h , \scrT c) with respect to \scrT c, and obtain the new physical
mesh through the relation between \scrT old

h and newly obtained \scrT c. The mesh equation
is defined as the gradient system of the energy function (the MMPDE approach), i.e.,

d\bfitxi i
d\varsigma 

=  - det(\BbbM (\bfitx \bfiti ))
1
2

\tau 

\Bigl( \partial \scrI h(\scrT old
h , \scrT c)
\partial \xi \xi \xi i

\Bigr) T

, i = 1, . . . , Nv,(3.5)

where \partial \scrI h/\partial \bfitxi i is considered as a row vector and \tau > 0 is a parameter used to adjust
the response time of mesh movement to the changes in \BbbM .

Let \BbbJ = (F \prime 
K) - 1 = EKcE

 - 1
K with EK = [\bfitx K

1  - \bfitx K
0 , . . . ,\bfitx K

d  - \bfitx K
0 ] and EKc =

[\bfitxi K1  - \bfitxi K0 , . . . , \bfitxi Kd  - \bfitxi K0 ], and define the function G associated with the energy (3.4)
as

(3.6) G(\BbbJ ,det(\BbbJ )) =
1

3
det(\BbbM K)

1
2 (tr(\BbbJ \BbbM  - 1

K \BbbJ T ))
3d
4 +

d
3d
4

3
det(\BbbM K)

1
2

\biggl( 
det(\BbbJ )

det(\BbbM K)
1
2

\biggr) 3
2

.

Using the notion of scalar-by-matrix differentiation, the derivatives of G with
respect to \BbbJ and det(\BbbJ ) can be found [17] as

\partial G

\partial \BbbJ 
=

d

2
det(\BbbM K)

1
2 (tr(\BbbJ \BbbM  - 1

K \BbbJ T ))
3d
4  - 1\BbbM  - 1

K \BbbJ T ,(3.7)

\partial G

\partial det(\BbbJ )
=

1

2
d

3d
4 det(\BbbM K) - 

1
4 det(\BbbJ )

1
2 .(3.8)

With these formulas, we can rewrite (3.5) as (cf. [17])

d\bfitxi i
d\varsigma 

=
det(\BbbM (\bfitx \bfiti ))

1
2

\tau 

\sum 
K\in \omega i

| K| \bfitv K
iK , i = 1, . . . , Nv,(3.9)

where \omega i is the element patch associated with the vertex \bfitx i, iK is the local index of
\bfitx i on K, and \bfitv K

iK
is the local velocity contributed by the element K to the vertex iK .

The local velocities \bfitv K
iK
, iK = 1, . . . , d, are given by\left[     

(\bfitv K
1 )T

(\bfitv K
2 )T

...
(\bfitv K

d )T

\right]     =  - E - 1
K

\partial G

\partial \BbbJ 
 - \partial G

\partial det(\BbbJ )
det(EKc

)

det(EK)
E - 1

Kc
, \bfitv K

0 =  - 
d\sum 

iK=1

\bfitv K
iK .(3.10)

Note that the velocities for the boundary nodes need to be modified properly. For
example, the velocities for the corner vertices should be set to be zero. For other
boundary vertices, the velocities should be modified such that they only slide along
the boundary and do not move out of the domain.

Starting with the reference computational mesh \^\scrT c as the initial mesh, the mesh
equation (3.9) is integrated over a physical time step for the case with numerical
solution of RTE (cf. section 6) or from \varsigma = 0 to \varsigma = 1 for DG-interpolation testing
(cf. section 4). The obtained new mesh is denoted by \scrT new

c . Note that \scrT old
h is kept

fixed during the integration and forms a correspondence with \scrT new
c , i.e., \scrT old

h =

\Phi h(\scrT new
c ). Then the new physical mesh \scrT new

h is defined as \scrT new
h = \Phi h( \^\scrT c), which

can be computed using linear interpolation.
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Fig. 1. Example 4.1. The meshes (N = 40) and numerical solutions obtained by P 2-DG
interpolation with or without the PP limiter.

4. Numerical results for DG-interpolation. In this section, we present nu-
merical results in one and two dimensions to demonstrate the accuracy and PP prop-
erty of the DG-interpolation scheme with the PP limiter. The CFL number for pseu-
dotime stepping is taken to be 1/4 for P 1-DG and 1/6 for P 2-DG in one dimension
and 1/4 for P 1-DG and 1/9 for P 2-DG in two dimensions. In the computation, \scrT old

h

is a given initial mesh, and \scrT new
h is obtained using the MMPDE method described

in the previous section. More specifically, the metric tensor is first computed on the
current mesh for a given function (with its Hessian recovered based on nodal values
via quadratic least squares fitting), and then a new physical mesh is obtained through
integrating the mesh equation (3.9) from \varsigma = 0 to \varsigma = 1 with \tau = 0.01 and linear
interpolation. This procedure is iterated five times. No restriction is imposed on the
mesh deformation.

Example 4.1. In this test, we choose the function as

u(x) = cos2(\pi x) + 10 - 14, x \in (0, 1).

Figure 1 shows the meshes and numerical solutions obtained by P 2-DG interpolation
with or without the PP limiter from the old mesh to the new one. It demonstrates
that the PP limiter is able to maintain the positivity of the solution. The convergence
history is plotted in Figure 2(a), (b), which show that the PP DG-interpolation has
the expected convergence order in both L1 and L\infty norms. Figure 2(c) shows the
number (N\varsigma ) of time steps used to reach \varsigma = 1 as N increases for the PP DG-
interpolation. One can see that the curves for P 1-DG and P 2-DG are almost parallel
to N\varsigma = N maxi | \bfitx old

i  - \bfitx new
i | , which is consistent with the analysis for Case 2 in

section 2.3 (cf. (2.27)). For this example, maxi | \bfitx old
i  - \bfitx new

i | stays almost constant
(about 0.023 for large N) as the mesh is being refined.
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Fig. 2. Example 4.1. (a), (b) The convergence history. (c) The number of time steps used to
reach \varsigma = 1 is plotted against N for the PP DG-interpolation. The ``analytical"" stands for the curve
N\varsigma = N maxi | \bfitx old

i  - \bfitx new
i | .
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h

Fig. 3. Example 4.2. The meshes of N = 1600 and solution contours for P 2-DG interpolation
with the PP limiter. The blue dots on the new mesh represent the cells where the PP limiter has
been applied.

Example 4.2. We consider

u(x, y) = 1 - tanh
\Bigl( 
50
\Bigl( 
(x - 0.5)2 + (y - 0.5)2  - 1

16

\Bigr) \Bigr) 
+10 - 14, (x, y) \in (0, 1)\times (0, 1),

which has a sharp jump around the circle (x - 0.5)2 + (y  - 0.5)2 = 1/16.

For this example, we start with a rectangular mesh, randomly perturb the interior
vertices by 40\% of the average element diameter, and obtain the final initial mesh as
the Delaunay mesh associated with the perturbed vertices. For each mesh resolution,
we carry out 20 runs. Figure 3 shows a typical mesh of N = 1600 (starting from a
20 \times 20 rectangular mesh) and corresponding solution contours obtained by PP P 2-
DG interpolation. The mesh elements where the solution becomes negative and the
PP limiter has been applied are indicated by blue dots. The convergence history in L1

and L\infty norms is plotted in Figure 4(a), (b). We can see that the error and N\varsigma have
different values for different runs for the same N due to the randomness of initial
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Fig. 4. Example 4.2. (a), (b) The convergence history. (c) The number of time steps used to
reach \varsigma = 1 is plotted against N for the PP DG-interpolation. The ``analytical"" stands for the curve
N\varsigma =

\surd 
N maxi | \bfitx old

i  - \bfitx new
i | .
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h )
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fixed mesh \scrT n+1
h :

\~un \rightarrow un+1

Fig. 5. Illustration of the rezoning MM method.

meshes. Moreover, initial meshes are nonsmooth, which leads to a less-than-third-
order convergence rate for the L\infty norm of the P 2-DG error. Nevertheless, the results
show that P 1-DG is second order in both L1 and L\infty norms and P 2-DG is third
order in L1 norm. Figure 4(c) shows that the number of time steps to reach \varsigma = 1
for P 1-DG and P 2-DG have a similar increase rate as N\varsigma =

\surd 
N maxi | \bfitx old

i  - \bfitx new
i | ,

verifying the estimate (2.27). We note that maxi | \bfitx old
i  - \bfitx new

i | stays almost constant
(about 0.007) for large N . This is large compared to the average element diameter

N - 1
2 , which decreases as N increases, indicating a large deformation between the old

and new meshes. A larger number of pseudotime steps is required for larger mesh
deformation.

5. Application of DG-interpolation to MM-DG simulation of RTE. In
this section, as an application, we consider the use of the DG-interpolation in a
rezoning MM-DG method for the numerical solution of RTE in one and two spatial
dimensions. Our goal is to show that the method maintains high-order accuracy of
DG schemes while preserving the positivity of the radiative intensity.

The rezoning MM method is illustrated in Figure 5. As one can see, it involves
three independent steps, generating the new mesh, interpolating the solution from
the old mesh to the new one, and solving the RTE on the new mesh. In this work,
we use the MMPDE method described in section 3 to generate the new mesh, the
DG-interpolation scheme of section 2 to interpolate the physical variables between
the old and new meshes, and a high-order PP DG scheme of [29, 40, 42] to solve the
RTE on the new mesh \scrT n+1

h . Since the first two steps have been discussed in previous
sections, we focus on the last step in this section.

The RTE is an integro-differential equation modeling the conservation of photons
[35]. We consider a case with isotropically scattering radiative transfer. The governing
equation for this case reads as

(5.1)
1

c

\partial I

\partial t
+\Omega \cdot \nabla I + \sigma tI =

\sigma s

4\pi 

\int 
S

I(\bfitx , \~\Omega , t)d\~\Omega + q,
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where c is the speed of photons, \bfitx is the spatial variable, \nabla is the gradient operator
with respect to \bfitx , \Omega is the unit angular variable, S is the unit sphere, t is time,
I(\bfitx ,\Omega , t) is the radiative intensity in the direction \Omega , \sigma s \geq 0 is the scattering coef-
ficient of the medium, \sigma t is the extinction coefficient of the medium which includes
absorption and scattering, and q(\bfitx ,\Omega , t) is a given source term. The vector \bfitx is de-
scribed by the Cartesian coordinates x, y, z, while \Omega = (\zeta , \eta , \mu ) is usually described
by a polar angle \beta measured with respect to the z axis and a corresponding azimuthal
angle \varphi . Denoting \mu = cos\beta , \zeta = sin\beta cos\varphi , \eta = sin\beta sin\varphi ,

d\bfitx = dxdydz, d\Omega = sin\beta d\beta d\varphi =  - d\mu d\varphi .

In this work, we consider the numerical solution of (5.1) in one and two spatial
dimensions.

5.1. PP DG scheme for RTE in one dimension. The one-dimensional form
of (5.1) reads as

(5.2)
1

c

\partial I

\partial t
+ \mu 

\partial I

\partial x
+ \sigma tI =

\sigma s

2

\int 1

 - 1

I(x, \~\mu , t)d\~\mu + q,

where x \in (a, b), \mu \in ( - 1, 1), and t \in (0, T ]. The initial and boundary conditions are

I(x, \mu , 0) = I0(x, \mu ), x \in (a, b)\Biggl\{ 
I(a, \mu , t) = Il(\mu , t), 0 < \mu \leq 1, 0 < t \leq T

I(b, \mu , t) = Ir(\mu , t),  - 1 \leq \mu < 0, 0 < t \leq T.

We first use the DOM [25] to discretize (5.2) in the angular variable. Consider a
Gauss--Legendre quadrature rule with weights wm and nodes \mu m, m = 1, . . . , Na. We
define the discrete-ordinate approximation for RTE as

(5.3)
1

c

\partial Im
\partial t

+ \mu m
\partial Im
\partial x

+ \sigma tIm = \sigma s

Na\sum 
m\prime =1

wm\prime Im\prime + qm, m = 1, . . . , Na,

where Im = Im(x, t) \approx I(x, \mu m, t).
For temporal discretization, if we use an explicit scheme, we will have to take a

small time step as \scrO (1/c) to ensure stability. To avoid this, we use the backward
Euler scheme and have

(5.4) \~\sigma tI
n+1
m + \mu m

\partial In+1
m

\partial x
= \sigma s

Na\sum 
m\prime =1

wm\prime In+1
m\prime + \~qn+1

m , m = 1, . . . , Na,

where In+1
m \approx Im(x, tn+1) and

(5.5) \~\sigma t = \sigma t +
1

c\Delta t
, \~qn+1

m = qn+1
m +

1

c\Delta t
Inm, \Delta t = tn+1  - tn.

We now consider the DG spatial discretization for (5.4) on \scrT n+1
h . We only consider

here the case with \mu m > 0, as a similar procedure can be used for \mu m < 0. Assume
that the cells of \scrT n+1

h can be written as

Kn+1
i = (xn+1

i - 1/2, x
n+1
i+1/2), i = 1, . . . , N.

D
ow

nl
oa

de
d 

10
/1

2/
20

 to
 1

17
.2

8.
25

1.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DG-INTERPOLATION AND APPLICATION A3125

\mu m > 0:

\mu m < 0:

Kn+1
i

Fig. 6. Mesh sweeping directions for \mu m > 0 (top) and \mu m < 0 (bottom).

Multiplying (5.4) with a test function, integrating the resulting equation over Kn+1
i ,

taking integration by part for the second term, and applying the upwind numerical flux
at the cell boundaries, we obtain the DG formulation as follows: Find In+1

m \in V r
h (tn+1)

such that, for \forall \phi \in P r(Kn+1
i ), i = 1, . . . , N ,\int 

Kn+1
i

\~\sigma tI
n+1
m,i \phi dx - \mu m

\int 
Kn+1

i

In+1
m,i \phi 

\prime dx+ \mu m

\bigl( 
In+1
m,i \phi 

\bigr) 
| xn+1

i+1/2
(5.6)

=

\int 
Kn+1

i

\sigma s\Psi 
n+1
i \phi dx+

\int 
Kn+1

i

\~qn+1
m,i \phi dx+ \mu m

\bigl( 
In+1
m,i - 1\phi 

\bigr) 
| xn+1

i - 1/2
,

where In+1
m,i = In+1

m (x)| Kn+1
i

, \~Inm is the DG-interpolant of Inm from \scrT n
h to \scrT n+1

h and

\Psi n+1
i =

Na\sum 
m=1

wmIn+1
m,i , \~qn+1

m,i = qn+1
m,i +

1

c\Delta t
\~Inm,i.

Notice that the unknown variables in different angular directions are coupled in
(5.6) through \Psi n+1

i . The so-called source iteration (SI) [26] is commonly employed

to solve the equations separately. Denote the \ell th iterate of the solution by I
n+1,(\ell )
m,i .

Then the scheme reads as\int 
Kn+1

i

I
n+1,(\ell +1)
m,i

\bigl( 
\~\sigma t\phi  - \mu m\phi \prime \bigr) dx+ \mu m

\bigl( 
I
n+1,(\ell +1)
m,i \phi 

\bigr) 
| xn+1

i+1/2
(5.7)

=

\int 
Kn+1

i

\bigl( 
\sigma s\Psi 

n+1,(\ast )
i + \~qn+1

m,i

\bigr) 
\phi dx+ \mu m

\bigl( 
I
n+1,(\ell +1)
m,i - 1 \phi 

\bigr) 
| xn+1

i - 1/2
, \forall \phi \in P r(Kn+1

i ),

where \Psi 
n+1,(\ast )
i =

\sum Na

m=1 wmI
n+1,(\ast )
m,i and I

n+1,(\ast )
m,i is taken as I

n+1,(\ell +1)
m,i when it is

available and otherwise as I
n+1,(\ell )
m,i . The sweeping direction in space is indicated

in Figure 6. The iteration is stopped when the maximum norm of the difference
between any two consecutive iterates is smaller than 10 - 12. The radiative intensity
is positive in physics. However, a numerical approximation may contain negative
values, especially for high-order methods. The appearance of spurious negative values
could lead to instability in the computation and slow iterative convergence. Thus, it is
important to develop schemes that preserve the positivity of the radiative intensity. To
this end, we mention that it has been proved in [29] that any P r-DG scheme (including
the one described above) produces the positive cell averages for the one-dimensional
RTE on fixed meshes provided that both the inflow boundary condition from the
upstream cell (including the physical boundary condition for the first cell) and the
source term are positive and the initial condition is nonnegative. As a consequence,
the linear scaling PP limiter [30, 44] can be used to preserve the positivity of the
radiative intensity. The reader is referred to section 2.4 and [29, 40] for detail.
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With the PP property of the DG scheme (5.7) and that of the PP DG-interpolation,
we can claim (cf. Figure 5) that the rezoning MM-DG method preserves the nonneg-
ativity of the radiative intensity.

5.2. PP DG scheme for RTE on triangular meshes. The two-dimensional
form of (5.1) reads as

(5.8)
1

c

\partial I

\partial t
+\Omega \cdot \nabla I + \sigma tI =

\sigma s

4\pi 

\int 
S

I(x, y, \~\Omega , t)d\~\Omega + q,

where (x, y) \in \scrD , t \in (0, T ], \Omega = (\zeta , \eta ), and

\zeta =
\sqrt{} 

1 - \mu 2 cos\varphi \in ( - 1, 1), \eta =
\sqrt{} 
1 - \mu 2 sin\varphi \in ( - 1, 1), \mu \in ( - 1, 1), \varphi \in (0, 2\pi ).

The initial and inflow boundary conditions are

I(x, y,\Omega , 0) = I0(x, y,\Omega ), (x, y) \in \scrD , \Omega \in S,

I(x, y,\Omega , t) = Ib(x, y,\Omega , t), (x, y) \in \partial \scrD in, \Omega \in S, t \in (0, T ].

Here, I0(x, y,\Omega ) and Ib(x, y,\Omega , t) are given functions, \partial \scrD in = \{ (x, y) \in \partial \scrD | \bfitn (x, y) \cdot 
\Omega < 0\} , and \bfitn (x, y) is the unit outward normal vector of the boundary. It is worth
pointing out that no boundary condition is needed in the \Omega -direction.

Once again, we use the DOM for the discretization in \Omega . Specifically, a Legendre--
Chebyshev quadrature rule with weights wm's and nodes \Omega m = (\zeta m, \eta m)'s, m =
1, . . . , Na \equiv NlNc is used to approximate the integral in (5.8). (The meanings of Nl

and Nc are given below.) The nodes \Omega m = (\zeta m, \eta m)'s are given by

\zeta m =
\sqrt{} 

1 - \mu 2
i cos\varphi j , \eta m =

\sqrt{} 
1 - \mu 2

i sin\varphi j , m = (i - 1)Nc + j,

where \mu i, i = 1, . . . , Nl denote the roots of the Legendre polynomial of degree Nl and
\varphi j = (2j  - 1)\pi /Nc, j = 1, . . . , Nc are the nodes based on a Chebyshev polynomial.
Once the discrete angles are defined, the DOM approximation in (\zeta , \eta ), the DG dis-
cretization in (x, y), and the PP limiter for (5.8) are similar to those in one dimension.
To save space, we omit the detail here. The interested reader is referred to [41, 42].
We remark that the PP limiter uses a set of special quadrature points on triangle
K [45]. The limiter guarantees the nonnegativity of the approximate radiative in-

tensity \^I
n+1,(\ell +1)
m,K at the quadrature points while maintaining the mass conservation

and high-order accuracy if the cell averages are nonnegative. Ling, Cheng, and Shu
[29] give a counterexample showing that P r-DG or Qr-DG schemes on rectangular
meshes can result in negative cell averages for the two-dimensional RTE even if both
the inflow boundary value and the source term are positive and the initial condition
is nonnegative. On the other hand, we have not observed in our limited numerical
experience that P r-DG schemes lead to negative cell averages on triangular meshes
(cf. section 6), and thus we use the linear scaling PP limiter (cf. section 2.4) in our
computation. It is interesting to point out that the rotational PP limiter on triangular
meshes [42] can be used for situations with negative cell averages. Since this limiter
is nonconservative, we will not discuss it further in this work.

To conclude this section, we emphasize that since the DG-interpolation with
the PP limiter is positivity preserving, our rezoning MM-DG method with DG-
interpolation is positivity preserving as long as the physical PDE solver on a fixed
mesh is positivity preserving.
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(a) FM N = 1600 (b) FM N = 57600 (c) MM N = 1600
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Fig. 7. Example 6.3. The radiative intensity contours (and mesh) at t = 0.1 is obtained by the
P 2-DG method with the PP limiter. (d) and (e) The radiative intensity cut along the line y = 0.495.

6. Numerical results for RTE. In this section, we present numerical results
obtained for the one- and two-dimensional versions of RTE using the rezoning MM-
DG method with and without the PP limiter as described in the previous section.
For comparison purposes, we consider three variants of the DG method:

\bullet The fixed mesh (FM) DG method with the PP limiter: The PP limiter is
applied to the DG solution of RTE.

\bullet The MM-DG method with the PP limiter: The PP limiter is applied to both
the DG solution of RTE and the DG-interpolation.

\bullet The MM-DG method without the PP limiter: The PP limiter is applied to
neither the DG solution of RTE nor the DG-interpolation.

The numerical results are presented to demonstrate the performance of the DG-
interpolation scheme in the adaptive MM solution of RTE. They also show that the
proposed MM-DG method with the PP limiter can maintain high-order accuracy of
the DG method, preserve the positivity of radiative intensity, and be able to adapt
the mesh to the dynamic structures in the solution.

Unless otherwise stated, we use the Gauss--Legendre P8 and Legendre--Chebyshev
P8-T8 rules to discretize angular variables for one- and two-dimensional problems,
respectively, and take the final time T = 0.1 and the time step size \Delta t = 2 \times 10 - 4.
For mesh movement, we take \tau = 0.01. The photon speed is c = 3.0 \times 108. For
the cases with exact solutions, the error in the computed solution is measured in the

(global) L1 and L\infty norms, i.e.,
\int T

0
\| eh(\cdot , t)\| L1dt,

\int T

0
\| eh(\cdot , t)\| L\infty dt. For two spatial

dimensional examples, the initial triangular mesh is obtained by dividing each element
of a rectangular mesh into four triangles; cf. Figure 7(f).

Example 6.1 (a discontinuous example of one-dimensional RTE for the absorbing-
scattering model). In this example, we take the scattering coefficient \sigma s = 1 and the
extinction coefficient and source term as
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(a) P 1-DG: \mu = 0.5255
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(b) P 1-DG: \mu = 0.9603
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(c) P 2-DG: \mu = 0.5255
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(d) P 2-DG: \mu = 0.9603

Fig. 8. Example 6.1. The computed radiative intensity at the final time in the directions
\mu = 0.5255 and 0.9603 are obtained by the MM P 1-DG (top) and P 2-DG (bottom) methods with
and without the PP limiter and with N = 40. The dots represent the radiative intensity at the first
Gauss--Lobatto points on each cell.

\sigma t =

\left\{     
1 for 0 \leq x < 0.2,

900 for 0.2 \leq x < 0.6,

90 for 0.6 \leq x \leq 1,

and q(x, \mu , t) =

\left\{     
100e - t for 0 \leq x < 0.2,

1 for 0.2 \leq x < 0.6,

1000e3t for 0.6 \leq x \leq 1.

The initial condition is I(x, \mu , 0) = 15x, and the boundary condition is\Biggl\{ 
I(0, \mu , t) = 0 for 0 < \mu \leq 1, 0 < t \leq T,

I(1, \mu , t) = 15 + 2t for  - 1 \leq \mu < 0, 0 < t \leq T.

The solution of this problem has two sharp layers. Since its analytical form is
unavailable, for comparison purposes we take the numerical solution obtained by the
P 2-DG method with the PP limiter and a fixed mesh of N = 10000 as the reference
solution. The solutions at the final time in the directions \mu = 0.5255 and 0.9603
obtained by the MM P 1-DG and P 2-DG methods (N = 40) with and without the PP
limiter are shown in Figure 8. We can see that the computed radiative intensity can
have negative values for both P 1-DG and P 2-DG and for fixed and moving meshes,
while those using the PP limiter can stay nonnegative.

The mesh trajectories for the MM P 2-DG method with the PP limiter are shown
in Figure 9(a), which demonstrates the ability of the method to concentrate mesh
points in the regions of sharp layers. The solution in the direction \mu =  - 0.1834 and
0.1834 obtained by the MM P 2-DG method (N = 80) with the PP limiter is compared
with the P 2-DG method with the PP limiter and the fixed mesh of N = 80 and 1280
in Figures 10 and 11, respectively. The results show that the MM solution (N = 80)
is more accurate than those with fixed meshes of N = 80 and 1280. The figures
also show that our MM method with the PP limiter has the ability to preserve the
radiative intensity positivity.

D
ow

nl
oa

de
d 

10
/1

2/
20

 to
 1

17
.2

8.
25

1.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DG-INTERPOLATION AND APPLICATION A3129

0 0.2 0.4 0.6 0.8 1

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

(a) Mesh trajectories, P 2-DG
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Fig. 9. Example 6.1. (a) The mesh trajectories are obtained by the MM P 2-DG method with
the PP limiter and N = 80. (b), (c) The average number of time steps used in the DG-interpolation
for the MM-DG method with the PP limiter.
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Fig. 10. Example 6.1. The computed radiative intensity at the final time in the direction
\mu =  - 0.1834 obtained by the MM P 2-DG method (N = 80) with the PP limiter is compared with
those obtained by the FM P 2-DG method with the PP limiter of N = 80 and 1280. The dots
represent the radiative intensity at the midpoints on each cell.

To show the cost of the DG-interpolation in the MM-DG method with the PP
limiter, we plot the average number of time steps N\varsigma in Figure 9(b), (c). One can see
that N\varsigma is increasing as the mesh is being refined when a fixed time step size \Delta t =
1/5000 = 2\times 10 - 4 is used. On the other hand, N\varsigma stays almost constant when the time
step size is chosen as \Delta t = 0.5min(hold

min, h
new
min) and 0.1min(hold

min, h
new
min) and is larger

for the former than the latter. These are consistent with the analysis in section 2.3.

Example 6.2 (an accuracy test of two-dimensional RTE for the absorbing-scattering
model). In this example, we take \sigma t = 22000, \sigma s = 1. The source term and initial
and boundary conditions are chosen such that the exact solution is given by

I(x, y, \zeta , \eta , t) = et
\bigl( 
(\zeta 2 + \eta 2) cos4

\Bigl( \pi 
2
(x+ y)) + 10 - 14

\Bigr) 
.

For this problem, the computed radiative intensity can have negative values for
both the P 1-DG and P 2-DG methods. The error and convergence order for P 2-
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Fig. 11. Example 6.1. The computed radiative intensity at the final time in the direction
\mu = 0.1834 obtained by the MM P 2-DG method (N = 80) with the PP limiter is compared with
those obtained by the FM P 2-DG method with the PP limiter of N = 80 and 1280. The dots
represent the radiative intensity at the midpoints on each cell.

DG methods is shown in Table 1. (The results for P 1-DG method are omitted here
to save space. They are similar to those for P 2-DG.) We can see that the third-
order convergence for P 2-DG is achieved for fixed and moving meshes and with or
without the PP limiter. The average number of time steps N\varsigma used in the DG-
interpolation for the MM-DGmethod is small (almost one) for relatively coarse meshes
and then increases as the mesh is being refined. This is because the mesh deformation
over a time step (with a fixed time step size) is small compared to the minimum
element diameter for small N and then becomes larger for large N . This observation
is consistent with that for the previous one-dimensional example and the analysis in
section 2.3.

Example 6.3 (a discontinuous example of two-dimensional RTE for the transpar-
ent model). In this test, we take \sigma t = 0, \sigma s = 0, q = 0, \zeta = 0.3, and \eta = 0.5. The
computational domain is (0, 1)\times (0, 1). The initial and boundary conditions are

I(x, y, \zeta , \eta , 0) =

\Biggl\{ 
\varepsilon for y < \eta 

\zeta x,

cos6
\bigl( 
\pi 
2 y

\bigr) 
otherwise,

I(0, y, \zeta , \eta , t) = cos6
\Bigl( \pi 
2
y
\Bigr) 
cos10(t), I(x, 0, \zeta , \eta , t) = \varepsilon ,

where \varepsilon = 10 - 14. The exact solution of this example is

I(x, y, \zeta , \eta , t) =

\Biggl\{ 
\varepsilon for y < \eta 

\zeta x,

cos6
\bigl( 
\pi 
2 (y  - 

\eta 
\zeta x)

\bigr) 
cos10(t - x

c\zeta ) otherwise,

which is discontinuous along y = \eta 
\zeta x.
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Table 1
Example 6.2. Error and convergence order for three P 2-DG methods.

N L1-error order L\infty -error order limiter (\%) N\varsigma 

FM P 2-DG method with PP limiter

1600 7.400E-07 1.031E-05 5.00 -
6400 9.242E-08 3.001 1.295E-06 2.993 2.50 -
25600 1.152E-08 3.004 1.639E-07 2.982 1.25 -
57600 3.407E-09 3.005 4.909E-08 2.973 0.83 -

MM P 2-DG method with PP limiter

1600 8.163E-07 2.561E-05 5.00 1.02
6400 1.008E-07 3.017 3.711E-06 2.787 2.50 1.07
25600 1.177E-08 3.099 3.538E-07 3.391 1.25 1.17
57600 3.441E-09 3.033 9.399E-08 3.269 0.83 1.67

MM P 2-DG method without PP limiter

1600 8.117E-07 2.561E-05 - 1.02
6400 1.007E-07 3.011 3.711E-06 2.787 - 1.07
25600 1.177E-08 3.097 3.538E-07 3.391 - 1.17
57600 3.440E-09 3.032 9.398E-08 3.269 - 1.67

(a)
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Fig. 12. Example 6.3. (a) The radiative intensity contours are obtained by the MM P 2-DG
method with the PP limiter (N = 1600). The white dots represent the cells where the PP limiter
has been applied. (b) The radiative intensity cut along the line y = 0.495 is obtained by the MM
P 2-DG method with and without the PP limiter (N = 1600).

The radiative intensity obtained by the MM P 2-DG method with the PP limiter
and N = 1600 are plotted in Figure 12(a), and the radiative intensity cut along the
line y = 0.495 obtained with and without the PP limiter is shown in Figure 12(b).
The cells where the PP limiter has been applied are marked with white dots. The
computed radiative intensity can have negative values for this example for the DG
schemes without the PP limiter.

The contours of the radiative intensity obtained by the P 2-DG method with the
PP limiter on a moving mesh of N = 1600 and fixed meshes of N = 1600 and 57600
are shown in Figure 7(a), (b), (c). The corresponding cut along the line y = 0.495
is plotted in Figure 7(d), (e). The results show that the MM solution (N = 1600) is
more accurate than that with the fixed mesh of N = 1600 and is comparable with
that with the fixed mesh of N = 57600. The figures also show that our MM P 2-DG
method with the PP limiter produces the positive radiative intensity.

The error and convergence history in the L1 norm are shown in Figure 13(a) for
the FM-DG and MM-DG methods with the PP limiter. One can see that both fixed
and moving meshes lead to almost the same convergence order. It is worth pointing
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Fig. 13. Example 6.3. Results are obtained by DG methods with the PP limiter. (a) Conver-
gence history. (b) The average number of time steps used in the DG-interpolation for the MM-DG
computation. (c) The L1 norm of the error is plotted against the CPU time (in seconds).
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Fig. 14. Example 6.3. The L1 norm of the error is plotted against the CPU time (in seconds)
for the rezoning MM-DG method (this work) and the quasi-Lagrangian MM-DG method [41].

out that we cannot expect that the FM/MM DG can achieve the optimal order for
this problem since the solution is discontinuous. The actual order of P 1-DG is about
0.5th and 1st for P 2-DG. Moreover, the figures show that a moving mesh produces
a more accurate solution than a fixed mesh of the same number of elements for this
example.

To show the efficiency of the MM-DG method with the PP limiter, we plot the
average number of time steps used in the DG-interpolation in Figure 13(b), which
indicates that N\varsigma increases as the mesh is being refined. We also plot the L1 norm of
the error against the CPU time in Figure 13(c). It shows that the MM-DG method
is more efficient than the FM method and that P 2-DG is more efficient than P 1-DG.

It is interesting to mention that a quasi-Lagrangian MM-DG method has been
developed in [41] for RTE. Compared to the method in the current work, it does not
require interpolation of the physical variables between old and new meshes, although
extra work is needed to compute a convection term in the DG formulation of RTE
that is caused by mesh movement. It is unclear to us yet how to preserve the radiative
intensity in the quasi-Lagrangian method, which is an interesting future research topic.
To obtain a rough comparison, we plot in Figure 14 the L1 norm of the error against
CPU time for both the quasi-Lagrangian and rezoning MM-DG methods (without
the PP limiter). We can see that both methods have comparable efficiency, while
the rezoning method is slightly more efficient when the mesh is not very fine. As the
mesh is being refined, the DG-interpolation will need more steps and become more
expensive, and then the quasi-Lagrangian method becomes more efficient. It should
also be pointed that this comparison is done with a fixed time step size. The situation
may be different when a variable time step size is used.
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7. Conclusions. In the previous sections, we have presented a high-order DG-
interpolation scheme for deforming unstructured meshes based on the pseudotime-
dependent linear equation (2.1). Such a scheme can be used for indirect ALE and
rezoning MMmethods in numerical solution of PDEs. We have shown that the scheme
is conservative. It is also positivity preserving when a linear scaling limiter is used.
The scheme places no restrictions on the deformation of the old mesh to the new
one. The cost of the scheme has been investigated. The total cost of each use of the
DG-interpolation is \scrO (NvN\varsigma ), where Nv is the number of mesh vertices and N\varsigma is
the number of time steps used to integrate (2.1) from \varsigma = 0 to \varsigma = 1. It is shown
that N\varsigma depends on the magnitude of mesh deformation relative to the size of mesh
elements. It stays constant as the mesh is being refined if the mesh deformation is
in the order of the minimum element diameter, which is typical in the MM solution
of conservation laws with an explicit scheme. On the other hand, N\varsigma will increase as
the mesh is being refined if the magnitude of the mesh deformation stays constant, a
common situation as in the MM solution of PDEs with a fixed time step or with an
implicit scheme. Moreover, the larger the mesh deformation is, the more time steps
are needed. Numerical examples in one and two dimensions have been presented
to verify the convergence order, mass conservation, positivity preservation, and cost
analysis of the scheme.

As an application example, we have considered the use of the DG-interpolation
scheme in the rezoning MM-DG solution of RTE. RTE has been discretized in our
computation in angular directions using the DOM, in space using the DG method,
and in time using the backward Euler scheme. At each time step, the new mesh is
generated using the MMPDE method, and then the radiative intensity is interpolated
from the old mesh to the new one using the DG-interpolation scheme. Numerical
results obtained for examples in one and two spatial dimensions with various settings
have demonstrated that the resulting rezoning MM-DG method is second order with
P 1-DG and third order with P 2-DG, more efficient than the method with a fixed mesh,
and able to preserve the positivity of the radiative intensity when the PP limiter is
used. It is also shown that the scheme is comparable in efficiency for not very fine
meshes with a quasi-Lagrangian MM-DG method developed in [41] for RTE when a
fixed time step size is used. It is still unclear if the latter can be made to preserve the
positivity of the radiative positivity.
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