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In this paper, we present a class of new Hermite weighted essentially non-oscillatory 
(HWENO) schemes based on finite volume framework to directly solve the Hamilton–
Jacobi (HJ) equations. For HWENO reconstruction, both the cell average and the first 
moment of the solution are evolved, and for two dimensional case, HWENO reconstruction 
is based on a dimension-by-dimension strategy which is the first used in HWENO 
reconstruction. For spatial discretization, one of key points for directly solving HJ equation 
is the reconstruction of numerical fluxes. We follow the idea put forward by Cheng and 
Wang (2014) [3] to reconstruct the values of solution at Gauss–Lobatto quadrature points 
and numerical fluxes at the interfaces of cells, and for neither the convex nor concave 
Hamiltonian case, the monotone modification of numerical fluxes is added, which can 
guarantee the precision in the smooth region and converge to the entropy solution when 
derivative discontinuities come up. The third order TVD Runge–Kutta method is used 
for the time discretization. Extensive numerical experiments in one dimensional and two 
dimensional cases are performed to verify the efficiency of the methods.

© 2015 Published by Elsevier Inc.

1. Introduction

In this paper, we use the finite volume Hermite weighted essentially non-oscillatory (HWENO) method for directly solv-
ing the Hamilton–Jacobi (HJ) equation:

φt + H(∇xφ,x) = 0, φ(x,0) = φ0(x) x ∈ � ⊂ R
d

where ∇xφ = (φx1 , φx2 , . . . , φxn )
T .

The HJ equation arises from many applications, such as control theory, geometric optics, image processing, level set 
method and so on. It is well known that the solutions of the nonlinear HJ equation are typically continuous, and the 
derivatives would be discontinuous even though the initial condition φ0(x) is smooth enough. After suitable assumption [4], 
we can obtain the generalized solution, namely the viscosity solution, and the existence and uniqueness can be held.

Many successful numerical schemes for conservation laws have been successfully developed for HJ equations. Now, 
we briefly review the early works. First, we would like to mention the Crandall and Lion [5], they introduced a class 
of the monotone schemes, and proved that the solutions of those schemes converge to the viscosity solution. Osher and 
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Sethian [11] developed a second order essentially non-oscillatory, termed ENO schemes, and later Osher and Shu [12] pro-
posed high order ENO schemes. Further, Jiang and Peng [7] presented the high order Weighted ENO, termed WENO, which 
can refer to [19], scheme to solve the HJ equations. Qiu and his colleagues [15,13] developed Hermite WENO, termed 
HWENO, schemes for HJ equations with Runge–Kutta or Lax–Wendroff time discretization, the first HWENO was presented 
by Qiu and Shu [14], and also used as limiter procedure for discontinuous Galerkin (DG) method. The schemes designed 
above are in the structured mesh. There are also schemes solving the HJ equations on the unstructured mesh. Abgrall [1]
proposed the monotone schemes on triangular meshes, good property as it is, unfortunately it is only one order. Lafon and 
Osher [9] designed the second order schemes, and high order WENO schemes are developed by Zhang and Shu [23]. For a 
detail review of high order HJ equations, we refer to the lecture notes [18].

We have mentioned the different methods in solving HJ equations, and each of them can achieve good performance. 
But many of the schemes are based on finite difference method instead of finite volume method which may be more 
preferable on unstructured meshes. Hu and Shu [6] proposed a DG method to solve the HJ equation. Later, Li and Shu [10]
reinterpreted the method of Hu and Shu. These methods are based on the fact that the derivatives of the solution φ satisfy 
the conservation laws, which is correct in one dimensional case but only weakly hyperbolic in multi-dimensional case. 
What’s more, since they should recover the solution φ from its derivatives, the methods appear to be complicated and 
indirect. Cheng and Shu [2] apply the DG method directly to the HJ equation. As to the variable coefficient linear equation, 
this method is equivalent to the traditional DG method for conservation laws with source term. Due to this property, the 
stability and the error estimate can be easily performed. Later, Yan and Osher [22] proposed the local DG (LDG) method to 
deal with HJ equation, and we can see that the method is the general extension of the monotone schemes. Recently, Cheng 
and Wang [3] also improved their early work by utilizing the Roe speed and entropy fix at the cell interface.

The new methods presented in this paper have some advantages. First, we use the HWENO method, the WENO and 
HWENO methods have the similar building block to solve the HJ equations. Both of them can achieve the high order ac-
curacy and maintain the essentially non-oscillatory property, based on using the adaptive stencils. The major difference 
between the HWENO and the WENO method is that the former one need extra work and storage but it is much more 
compact than the latter one in the same accuracy, owing to using both the cell average and its first moment in the recon-
struction and evolving both of them. Second, our schemes can directly solve the HJ equation. The HJ equations cannot be 
written in a “conservation form”, they are hard to be solved by finite volume method. As the HJ equations are closely related 
to the conservation laws, the former are simply the integral version of the latter one in one dimensional case. Many meth-
ods designed for conservation laws can be easily developed for HJ equations. However, they are indirect and complicated. 
Our schemes can achieve the goal to solve the HJ equations directly by carefully designing the Hamiltonian flux which is 
developed in [3] and adding monotone modification in neither convex nor concave case which is able to keep the precision 
in smooth area and ensure the convergence when the derivatives discontinuity appear. Third, the HWENO reconstruction in 
two dimensional case is based on the dimension-by-dimension strategy, which is the first used in HWENO reconstruction. 
The dimension-by-dimension strategy of HWENO reconstruction can achieve the same essentially non-oscillatory property 
as the genuine two-dimensional strategy, and it is less expensive and easier to code than the latter one.

In this paper, we follow the idea to reconstruct numerical fluxes at the interfaces of cells by Cheng and Wang [3] which 
is designed in DG methods, and for neither the convex nor concave case the monotone modification is added. HWENO 
procedure is applied to reconstruct the values of solution at Gauss–Lobatto quadrature points and the interfaces of the cell, 
the reconstruction procedure is similar to that as limiter for DG methods in [14], and in two dimensional case, HWENO 
reconstruction is based on a dimension-by-dimension strategy. The third order TVD Runge–Kutta method [20] is used for 
the time discretization.

The paper is organized as follows. In Section 2, we describe in detail the reconstruction and implementation of the 
finite volume HWENO schemes in one dimension and two dimension for directly solving the HJ equations. In Section 3, 
we present extensive numerical results to verify the accuracy and the stability of the method. Finally, a conclusion is given 
in Section 4.

2. The numerical method for the Hamilton–Jacobi equations

In this section, we will design the numerical method for both one and two dimensional Hamilton–Jacobi equations.

2.1. One dimensional Hamilton–Jacobi equations

The Hamilton–Jacobi equations in one dimensional case can be written as:

φt + H(φx, x) = 0 φ(x,0) = φ0(x). (2.1)

For simplicity, we assume the computational domain has been uniformly divided into cells I j = [x j− 1
2
, x j+ 1

2
], j = 1,

· · · , N . The cell center and the mesh size is denoted as x j = (x j− 1
2
+ x j+ 1

2
)/2 and �x = x j+ 1

2
− x j− 1

2
. Furthermore, we define

U j = 1

�x

ˆ
φ(x, t)dx, V j = 1

�x

ˆ
φ(x, t)

x − x j

�x
dx
I j I j
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as the numerical approximate to the viscosity solution and its first moment of (2.1). We multiply (2.1) by 1 and x−x j
�x and 

integrate them on cell I j , respectively, then we have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dU j

dt
= − 1

�x

ˆ
I j

H(φx, x)dx

dV j

dt
= − 1

�x

ˆ
I j

H(φx, x)
x − x j

�x
dx

(2.2)

The integrals in (2.2) are computed by four point Gauss–Lobatto quadrature formula, respectively. For stability, following 
the directly solving HJ equation by discontinuous Galerkin (DG) method which was developed by Cheng and Wang [3], 
we add penalty terms for numerical fluxes at the interfaces of computational cells, and we have the following schemes:

dU j

dt
= − 1

�x
(�x

∑
Gl

ωl H(φx, Gl) + min(H̃φ(x j+ 1
2
),0)[φ] j+ 1

2
+ max(H̃φ(x j− 1

2
),0)[φ] j− 1

2
)

+ C(Sφ(x j+ 1
2
) − |H̃φ(x j+ 1

2
)|)[φx] j+ 1

2
+ C(Sφ(x j− 1

2
) − |H̃φ(x j− 1

2
)|)[φx] j− 1

2

dV j

dt
= − 1

�x
(�x

∑
Gl

ωlGl H(φx, Gl) + 1

2
min(H̃φ(x j+ 1

2
),0)[φ] j+ 1

2

− 1

2
max(H̃φ(x j− 1

2
),0)[φ] j− 1

2
)

+ 1

2
C(Sφ(x j+ 1

2
) − |H̃φ(x j+ 1

2
)|)[φx] j+ 1

2
− 1

2
C(Sφ(x j− 1

2
) − |H̃φ(x j− 1

2
)|)[φx] j− 1

2
(2.3)

where Gl , ωl are Gauss–Lobatto quadrature points and coefficients, respectively,

G1 = x j− 1
2
, G2 = x

j−
√

5
10

, G3 = x
j+

√
5

10
, G4 = x j+ 1

2

ω1 = 1

12
, ω2 = 5

12
, ω3 = 5

12
, ω4 = 1

12
,

and [u] = u+ − u− denotes the jump of u at the cell interface, and the superscripts +, − denote the right, and left limits of 
a function. C is a positive penalty parameter taken as 0.25, H̃φ and Sφ are the Roe speed and the parameter to identify the 
entropy violating cells, which are defined as following, respectively.

H̃φ(x j± 1
2
) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(φx(x+
j± 1

2
), x+

j± 1
2
) − H(φx(x−

j± 1
2
), x−

j± 1
2
)

φx(x+
j± 1

2
) − φx(x−

j± 1
2
)

, φx(x+
j± 1

2
) �= φx(x−

j± 1
2
)

1

2
H1(φx(x+

j± 1
2
), x+

j± 1
2
) + 1

2
H1(φx(x−

j± 1
2
), x−

j± 1
2
), φx(x+

j± 1
2
) = φx(x−

j± 1
2
),

δφ(x j± 1
2
) = max(0, H̃φ(x j± 1

2
) − H1(φx(x−

j± 1
2
), x−

j± 1
2
), H1(φx(x+

j± 1
2
), x+

j± 1
2
) − H̃φ(x j± 1

2
))

and

Sφ(x j± 1
2
) = max(δφ(x j± 1

2
), |H̃φ(x j± 1

2
)|),

where H1 = ∂ H/∂φx is the partial derivative of Hamiltonian with respect to φx .
The values of φ and φx at the Gauss–Lobatto points and the cell interface will be reconstructed by fifth order HWENO 

method, which will be described in subsection 2.2. Then, we can rewrite the schemes as Ut = L(U), where the L denotes 
the operator of spatial discretization, and use the third-order total variation diminishing (TVD) Runge–Kutta time discretiza-
tion [20] to solve the semi-discrete form (2.3):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(1) = Un + �tL(Un)

U(2) = 3

4
Un + 1

4
(U(1) + �tL(U(1)))

Un+1 = 1

3
Un + 2

3
(U(2) + �tL(U(2)))

(2.4)
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2.2. HWENO reconstruction in one dimensional case

In this subsection, we will describe the HWENO reconstruction procedure for the φ±
j+ 1

2
, φ±

j− 1
2

, φx
±
j+ 1

2
, φx

±
j− 1

2
and φx j±

√
5

10
.

Step 1. Reconstruction of φ∓
j± 1

2
by HWENO method from the cell averages {U j, V j}

1.1. Given the small stencils S0 = {I j−1, I j}, S1 = {I j, I j+1}, S2 = {I j−1, I j, I j+1}, and the bigger stencils T = {S0, S1, S2}, 
we construct Hermite cubic polynomials p0(x), p1(x), p2(x), and a fifth-degree polynomial q(x) such that:

1

�x

ˆ
Ii+ j

p0(x)dx = Ui+ j,
1

�x

ˆ
Ii+ j

p0(x)
x − xi+ j

�x
dx = V i+ j, i = −1,0, (2.5)

1

�x

ˆ
Ii+ j

p1(x)dx = Ui+ j,
1

�x

ˆ
Ii+ j

p1(x)
x − xi+ j

�x
dx = V i+ j, i = 0,1, (2.6)

1

�x

ˆ
Ii+ j

p2(x)dx = Ui+ j,
1

�x

ˆ
I j

p2(x)
x − x j

�x
dx = V j, i = −1,0,1, (2.7)

1

�x

ˆ
Ii+ j

q(x)dx = Ui+ j,
1

�x

ˆ
Ii+ j

q(x)
x − xi+ j

�x
dx = V i+ j, i = −1,0,1, (2.8)

we only need the values of these polynomials at the boundary x∓
j± 1

2
, which have the following expressions:

p0(x−
j+ 1

2
) = 3

4
U j−1 + 1

4
U j + 7

2
V j−1 + 23

2
V j

p1(x−
j+ 1

2
) = 1

2
U j + 1

2
U j+1 + 2V j − 2V j+1

p2(x−
j+ 1

2
) = 2

33
U j−1 + 5

6
U j + 7

66
U j+1 + 60

11
V j

q(x−
j+ 1

2
) = 13

108
U j−1 + 7

12
U j + 8

27
U j+1 + 25

54
V j−1 + 241

54
V j − 28

27
V j+1

p0(x+
j− 1

2
) = 1

2
U j−1 + 1

2
U j + 2V j−1 − 2V j

p1(x+
j− 1

2
) = 1

4
U j + 3

4
U j+1 − 23

2
V j − 7

2
V j+1

p2(x+
j− 1

2
) = 7

66
U j−1 + 5

6
U j + 2

33
U j+1 − 60

11
V j

q(x+
j− 1

2
) = 8

27
U j−1 + 7

12
U j + 13

108
U j+1 + 28

27
V j−1 − 241

54
V j − 25

54
V j+1

1.2. For each small stencils Sm , m = 0, 1, 2, we compute the smooth indicators respectively, which measure the smooth-
ness of the reconstructed polynomials pm(x), m = 0, 1, 2 in the target cell I j . The smaller the indicator is, the smoother the 
polynomial is in the target cells. We define the smooth indicators as in [8]:

βm =
3∑

l=1

ˆ
I j

�x2l−1(
∂ l

∂xl
pm(x))2dx m = 0,1,2 (2.9)

1.3. We compute the linear weights, denoted by γm(x∓
j± 1

2
), m = 0, 1, 2, satisfying:

q(x∓
j± 1

2
) =

2∑
m=0

γm(x∓
j± 1

2
)pm(x∓

j± 1
2
)

for all the cell averages of {U j} and {V j} in the bigger stencils T , which leads to

γ0(x−
j+ 1

2
) = 25

189
, γ1(x−

j+ 1
2
) = 14

27
, γ2(x−

j+ 1
2
) = 22

63

γ0(x+
1 ) = 14

, γ1(x+
1 ) = 25

, γ2(x+
1 ) = 22
j− 2 27 j− 2 189 j− 2 63
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1.4. We compute the nonlinear weights based on the linear weights and the smooth indicators by:

ωm(x∓
j± 1

2
) =

ωm(x∓
j± 1

2
)∑

k ωk(x∓
j± 1

2
)

ωm(x∓
j± 1

2
) =

γm(x∓
j± 1

2
)

(βm + ε)2
m = 0,1,2 (2.10)

where the ε is a small positive number to avoid the denominator becoming zero. In our paper, we use ε = 10−6. The final 
HWENO approximation expression is:

φ∓
j± 1

2
≈

2∑
m=0

ωm(x∓
j± 1

2
)pm(x∓

j± 1
2
),

Step 2. Reconstruction of {φx
∓
j± 1

2
} and {φx j±

√
5

10
} by fifth order HWENO from the cell average {U j, V j}

2.1. Given the small stencils S0 = {I j−1, I j}, S1 = {I j, I j+1}, S2 = {I j−1, I j, I j+1}, and the bigger stencils T = {S0, S1, S2}, 
we construct Hermite cubic reconstruction polynomials p0(x), p1(x), p2(x), and a fifth-degree reconstruction polynomial 
q(x), such that the polynomials satisfy the conditions (2.5), (2.6), (2.7), (2.8). We need the derivative values of these poly-
nomials at the four Gauss–Lobatto quadrature points x−

j+ 1
2

, x
j+

√
5

10
, x

j−
√

5
10

and x+
j− 1

2
denoted as G1, G2, G3, G4 respectively, 

which have the following polynomial expressions:

p′
0(x) = 1

�x
[−3

8
U j−1 + 3

8
U j − 9

4
V j−1 + 39

4
V j + (

15

2
U j−1 − 15

2
U j + 33V j−1 + 57V j)(

x − x j

�x
)

+ (
15

2
U j−1 − 15

2
U j + 45V j−1 + 45V j)(

x − x j

�x
)2],

p′
1(x) = 1

�x
[−3

8
U j + 3

8
U j+1 + 39

4
V j − 9

4
V j+1 + (−15

2
U j + 15

2
U j+1 − 57V j − 33V j+1)(

x − x j

�x
)

+ (
15

2
U j − 15

2
U j+1 + 45V j + 45V j+1)(

x − x j

�x
)2],

p′
2(x) = 1

�x
[ 3

44
U j−1 − 3

44
U j+1 + 150

11
V j + (U j−1 − 2U j + U j+1)(

x − x j

�x
)

+ (−15

11
U j−1 + 15

11
U j+1 − 360

11
V j)(

x − x j

�x
)2],

q′(x) = 1

�x
[(167

576
U j−1 − 167

576
U j+1 + 281

288
V j−1 + 2449

144
V j + 281

288
V j+1)

+ (
23

8
U j−1 − 23

4
U j + 23

8
U j+1 + 45

4
V j−1 − 45

4
V j+1)(

x − x j

�x
)

+ (−455

72
U j−1 + 455

72
U j+1 − 785

36
V j−1 − 1945

18
V j − 785

36
V j+1)(

x − x j

�x
)2

+ (−5

2
U j−1 + 5U j − 5

2
U j+1 − 15V j−1 + 15V j+1)(

x − x j

�x
)3

+ (
175

36
U j−1 − 175

36
U j+1 + 385

18
V j−1 + 665

9
V j + 385

18
V j+1)(

x − x j

�x
)4].

2.2. We define the smooth indicators as in [8]:

βm =
3∑

l=2

ˆ
I j

�x2l−1(
∂ l pm(x)

∂xl
)2dx, m = 0,1,2 (2.11)

2.3. We compute the linear weights, denoted by γm(Gl), l = 1, 2, 3, 4, such that:

q′(Gl) =
2∑

m=0

γm(Gl)p′
m(Gl), l = 1,2,3,4,

for all the cell averages of {U j} and {V j} in the bigger stencils T , which leads to

γ0(G1) = 11

459
, γ1(G1) = 124

135
, γ2(G1) = 44

765

γ0(G2) = − 1√ + 7
, γ1(G2) = 1√ + 7

, γ2(G2) = 4
54 5 22 54 5 22 11
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γ0(G3) = 1

54
√

5
+ 7

22
, γ1(G3) = − 1

54
√

5
+ 7

22
, γ2(G3) = 4

11

γ0(G4) = 124

135
, γ1(G4) = 11

459
, γ2(G4) = 44

765

2.4. We compute the nonlinear weights by (2.10). The final HWENO approximation expressions are:

φx(Gl) ≈
2∑

m=0

ωm(Gl)p′
m(Gl), l = 1,2,3,4,

respectively.
If H is a neither convex nor concave Hamiltonian, our method would not necessarily converge to the unique entropy 

solution. Inspired by [16], we also add the extra monotone modification into each Runge–Kutta step, which can help our 
method converge to the viscosity solution in general neither convex nor concave case and maintain the high order in smooth 
regions.

Before modify our method, we should design the discontinuity indicator on cell I j , termed ϕ j . Here we recommend the 
indicator [21], which is defined as follows:

ϕ j = β j

β j + γ j

where

α j = |W j−1 − W j|2 + ε ξ j = |W j−1 − W j+1|2 + ε

β j = ξ j

α j−1
+ ξ j

α j+2
, γ j = M(

|Wmax − Wmin|2
α j

+ |Wmax − Wmin|2
α j+1

)

Here, W j denotes the cell average of the derivative of the solution φ on I j , which is computed by Gauss–Lobatto quadrature 
formula numerically, and ε = 10−6 in order to avoid the denominator becoming zero. Wmax and Wmin are the maximum 
and minimum of W j respectively. M is a discontinuity parameter, and we hereby choose M = 10 000. The discontinuity 
indicator ϕ j has the properties: (a). 0 ≤ ϕ j ≤ 1; (b). ϕ j is O (�x2) in smooth region; (c). ϕ j close to O (1) near the derivative 
discontinuity. Now we modify our method by following steps for one dimensional method:

(1) Identify the troubled cell in which the Hamiltonian H(u) is neither convex nor concave. We call cell I j a good cell if 
φ±

j− 1
2

and φ±
j+ 1

2
all fall into the same convex or concave region of the Hamiltonian H(u), otherwise we define the cell 

as a troubled cell [16].
(2) When I j is identified as a troubled cell, the solution Un+1

j will be modified by following method.

(a). Define Un+1mono
j by:

Un+1mono
j = Un

j − �t(H(
Un

j+1 − Un
j−1

2�x
) − 1

2
α(

Un
j+1 − 2Un

j + Un
j−1

�x
)) (2.12)

with α = max
u

|H ′(u)|.
(b). Modify Un+1

j by combination of Un+1
j and Un+1mono

j :

Un+1mod
j = (1 − ϕ2

j )Un+1
j + ϕ2

j Un+1mono
j (2.13)

The advantage of the method we design above is the self-adaptive: if the derivative of the solution is with a strong 
discontinuity, ϕ j is close to O (1), then the monotone scheme comes into effect; if the derivative of the solution is 
in a smooth area, ϕ j is close to O (�x2); what’s more, 0 ≤ φ j ≤ 1. We denote (2.3) as Un+1

j = Un
j + �tL1(U ) and 

denote (2.12) as Un+1
j = Un

j + �tL2(U ), so we can rewrite (2.13) as

Un+1mod
j = Un

j + �t(1 − ϕ2
j )L1(U ) + �tϕ2

j L2(U ).

For space discretization L1(U ) is fifth order approximation to H(u) and the L2(U ) is the first order approximation to 
H(u), so in the smooth region of solution, we have:

ϕ2
j |L1(U ) −L2(U )| ∼ O (�x5),
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that is, the modification does not change the accurate of the schemes, and after modified procedure, we denote U n+1mod
j

as Un+1
j .

(3) If Un+1
j is modified, then we will modify V n+1

j by Step 3.

Step 3. Reconstruction of V n+1mod
j by fifth order HWENO from the cell average {Un+1

j , V n+1
j }

3.1. Given the small stencils S0 = {I j−1, I j}, S1 = {I j, I j+1}, S2 = {I j−1, I j, I j+1} and the bigger stencils T = {S0, S1, S2}, 
we construct Hermite quadratic reconstruction polynomials p0(x), p1(x), p2(x), and a quartic reconstruction polynomial q(x)
respectively, such that the polynomials satisfy the conditions.

1

�x

ˆ
Ii+ j

p0(x)dx = Un+1
i+ j ,

1

�x

ˆ
I j−1

p0(x)
x − x j−1

�x
dx = V n+1

j−1 , i = −1,0

1

�x

ˆ
Ii+ j

p1(x)dx = Un+1
i+ j ,

1

�x

ˆ
I j+1

p1(x)
x − x j+1

�x
dx = V n+1

j+1 , i = 0,1

1

�x

ˆ
Ii+ j

p2(x)dx = Un+1
i+ j , i = −1,0,1.

1

�x

ˆ
Ii+ j

q(x)dx = Un+1
i+ j ,

1

�x

ˆ
I j±1

q(x)
x − x j±1

�x
dx = V n+1

j±1 , i = −1,0,1

We only need the first moment of these polynomials in the cell I j , which have the following polynomial expressions:

1

�x

ˆ
I j

p0(x)
x − x j

�x
dx = −1

6
Un+1

j−1 + 1

6
Un+1

j − V n+1
j−1 ,

1

�x

ˆ
I j

p1(x)
x − x j

�x
dx = 1

6
Un+1

j+1 − 1

6
Un+1

j − V n+1
j+1 ,

1

�x

ˆ
I j

p2(x)
x − x j

�x
dx = 1

24
Un+1

j+1 − 1

24
Un+1

j−1 ,

1

�x

ˆ
I j

q(x)
x − x j

�x
dx = − 5

76
Un+1

j−1 + 5

76
Un+1

j+1 − 11

38
V n+1

j−1 − 11

38
V n+1

j+1 . (2.14)

3.2. We define the smooth indicator as in [8]:

βm =
2∑

l=1

ˆ
I j

�x2l−1(
∂ l pm(x)

∂xl
)2dx m = 0,1,2.

3.3. We compute the linear weights, denoted by γm, m = 0, 1, 2, satisfying:

1

�x

ˆ
I j

q(x)
x − x j

�x
dx =

2∑
m=0

γm
1

�x

ˆ
I j

pm(x)
x − x j

�x
dx,

for all the cell averages of {Un+1
j } and {V n+1

j } in the bigger stencils T , which leads to

γ0 = 11

38
, γ1 = 11

38
, γ2 = 8

19
.

3.4. We compute the nonlinear weights as (2.10), and the V n+1mod
j approximation expression is:

V n+1mod
j =

2∑
m=0

ωm
1

�x

ˆ
I j

pm(x)
x − x j

�x
dx.

3.5. We denote V n+1mod
j as V n+1

j .

2.3. Two dimensional Hamilton–Jacobi equations

The Hamilton–Jacobi equations in two dimensional case are written as

φt + H(φx, φy, x, y) = 0 φ(x, y,0) = φ0(x, y) (2.15)
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for simplicity, we also assume the computational domain has been uniformly divided into cells Ii j = [xi− 1
2
, xi+ 1

2
] ×

[y j− 1
2
, y j+ 1

2
], J i = [xi− 1

2
, xi+ 1

2
], K j = [y j− 1

2
, y j+ 1

2
], i = 1, · · · , N , j = 1, · · · , N . We also denote the cell center as (xi, y j) =

((xi− 1
2

+ xi+ 1
2
)/2, (y j− 1

2
+ y j+ 1

2
)/2), and the mesh size as �x = xi+ 1

2
− xi− 1

2
, �y = y j+ 1

2
− y j− 1

2
. Furthermore, we define

Ui, j = 1

�x�y

¨
Ii, j

φ(x, y, t)dxdy, V i, j = 1

�x�y

¨
Ii, j

φ(x, y, t)
x − xi

�x
dxdy,

W i, j = 1

�x�y

¨
Ii, j

φ(x, y, t)
y − y j

�y
dxdy, Ti, j = 1

�x�y

¨
Ii, j

φ(x, y, t)
x − xi

�x

y − y j

�y
dxdy.

Multiply (2.15) by v(x, y), which is equal to 1, x−xi
�x , y−y j

�y and x−xi
�x

y−y j
�y respectively, and integrate them on cell Ii, j , 

respectively, then we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dUi, j

dt
= − 1

�x�y

¨
Ii, j

H(φx, φy, x, y)dxdy,

dV i, j

dt
= − 1

�x�y

¨
Ii, j

H(φx, φy, x, y)
x − xi

�x
dxdy,

dW i, j

dt
= − 1

�x�y

¨
Ii, j

H(φx, φy, x, y)
y − y j

�y
dxdy,

dTi, j

dt
= − 1

�x�y

¨
Ii, j

H(φx, φy, x, y)
x − xi

�x

y − y j

�y
dxdy.

(2.16)

The integrals (2.16) are computed by 16 points Gauss–Lobatto quadrature formula respectively. For stability, resorting 
to the method developed by Cheng and Wang [3], we also add penalty terms for numerical fluxes at the interfaces of 
computational cells, and we have the following schemes:

d

dt
(

1

�x�y

¨
Ii, j

φ(x, y, t)v(x, y)dxdy)

= −
∑
l,k

ωlωk H(φ(xGl, yGk, t)x, φ(xGl, yGk, t)y, xGl, yGk)v(xGl, yGk)

− 1

�x

∑
k

ωk min(H̃1,φ(xi+ 1
2
, yGk),0)[φ](xi+ 1

2
, yGk)v(x−

i+ 1
2
, yGk)

− 1

�x

∑
k

ωk max(H̃1,φ(xi− 1
2
, yGk),0)[φ](xi− 1

2
, yGk)v(x+

i− 1
2
, yGk)

− 1

�y

∑
l

ωl min(H̃2,φ(xGl, y j+ 1
2
),0)[φ](xGl, y j+ 1

2
)v(xGl, y−

j+ 1
2
)

− 1

�y

∑
l

ωl max(H̃2,φ(xGl, y j− 1
2
),0)[φ](xGl, y j− 1

2
)v(xGl, y+

j− 1
2
)

+ C
∑

k

ωk(S1,φ(xi+ 1
2
, yGk) − |H̃1,φ(xi+ 1

2
, yGk)|)[φx](xi+ 1

2
, yGk)v(x−

i+ 1
2
, yGk)

+ C
∑

k

ωk(S1,φ(xi− 1
2
, yGk) − |H̃1,φ(xi− 1

2
, yGk)|)[φx](xi− 1

2
, yGk)v(x+

i− 1
2
, yGk)

+ C
∑

l

ωl(S2,φ(xGl, y j+ 1
2
) − |H̃2,φ(xGl, y j+ 1

2
)|)[φy](xGl, y j+ 1

2
)v(xGl, y−

j+ 1
2
)

+ C
∑

l

ωl(S2,φ(xGl, y j− 1
2
) − |H̃2,φ(xGl, y j− 1

2
)|)[φy](xGl, y j− 1

2
)v(xGl, y+

j− 1
2
) (2.17)

where v(x, y) refers to 1, x−xi
�x , y−y j

�y and x−xi
�x

y−y j
�y . xGl , yGk , ωl , ωk are the Gauss–Lobatto quadrature points and weights 

in x and y direction respectively:
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xG1 = xi− 1
2
, xG2 = x

i−
√

5
10

, xG3 = x
i+

√
5

10
, xG4 = xi+ 1

2

yG1 = y j− 1
2
, yG2 = y

j−
√

5
10

, yG3 = y
j+

√
5

10
, yG4 = y j+ 1

2

ω1 = 1

12
, ω2 = 5

12
, ω3 = 5

12
, ω4 = 1

12

The symbol [u] = u+ − u− denotes the jump of u at the cell interface, and the superscripts +, − denote the right and left 
or top and bottom limits of a function. C is a positive penalty parameter taken as 0.25 and H̃1,φ is the Roe speed in the x
direction defined as follows:

H̃1,φ(xi± 1
2
, y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(φx(x+
i± 1

2
,y),φy ,x+

i± 1
2
,y)−H(φx(x−

i± 1
2
,y),φy ,x−

i± 1
2
,y)

φx(x+
i± 1

2
,y)−φx(x−

i± 1
2
,y)

, φx(x+
i± 1

2
, y) �= φx(x−

i± 1
2
, y)

1
2 H1(φx(x+

i± 1
2
, y), φy, x+

i± 1
2
, y) + 1

2 H1(φx(x−
i± 1

2
, y), φy, x−

i± 1
2
, y), φx(x+

i± 1
2
, y) = φx(x−

i± 1
2
, y),

where, H1 = ∂ H/∂φx refers to the partial derivative of Hamiltonian with respect to φx , and

φy = 1

2
(φy(x+

i± 1
2
, y) + φy(x−

i± 1
2
, y))

is the average of the tangential derivative.

δ1,φ(xi± 1
2
, y)

= max(0, H̃1,φ(xi± 1
2
, y) − H1(φx(x−

i± 1
2
, y), φy, x−

i± 1
2
, y), H1(φx(x+

i± 1
2
, y), φy, x+

i± 1
2
, y) − H̃1,φ(xi± 1

2
, y))

and

S1,φ(xi± 1
2
, y) = max(δ1,φ(xi± 1

2
, y), |H̃1,φ(xi± 1

2
, y)|)

are the arguments which are used to detect the entropy violating cells in the x direction.
Similarly, the Roe speed in the y direction defined as:

H̃2,φ(x, y j± 1
2
)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(φx,φy(x,y+
j± 1

2
),x,y+

j± 1
2
)−H(φx,φy(x,y−

j± 1
2
),x,y−

j± 1
2
)

φy(x,y+
j± 1

2
)−φy(x,y−

j± 1
2
)

, φy(x, y+
j± 1

2
) �= φy(x, y−

j± 1
2
)

1
2 H2(φx, φy(x, y+

j± 1
2
), x, y+

j± 1
2
) + 1

2 H2(φx, φy(x, y−
j± 1

2
), x, y−

j± 1
2
), φy(x, y+

j± 1
2
) = φy(x, y−

j± 1
2
),

where, H2 = ∂ H/∂φy refers to the partial derivative of Hamiltonian with respect to φy , and

φx = 1

2
(φx(x, y+

j± 1
2
) + φx(x, y−

j± 1
2
))

is the average of the tangential derivative.

δ2,φ(x, y j± 1
2
)

= max(0, H̃2,φ(x, y j± 1
2
) − H2(φx, φy(x, y−

j± 1
2
), x, y−

j± 1
2
), H2(φx, φy(x, y+

j± 1
2
), x, y+

j± 1
2
) − H̃2,φ(x, y j± 1

2
))

and

S2,φ(x, y j± 1
2
) = max(δ2,φ(x, y j± 1

2
), |H̃2,φ(x, y j± 1

2
)|)

are the arguments which are used to detect the entropy violating cells in the y direction.
The values of φ, φx , φy at Gauss–Lobatto points and cell interface in (2.17) will be reconstructed by the fifth order 

HWENO method, which will be described in subsection 2.4. Then, we can rewrite the schemes (2.17) as Ut = L(U), where 
the L denotes the operator of spatial discretization, and use the third-order total variation diminishing (TVD) Runge–Kutta 
time discretization (2.4) to solve the semi-discrete form (2.17).
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2.4. HWENO reconstruction in two dimensional case

In this subsection, we will describe the reconstruction procedures for φ, φx and φy at Gauss–Lobatto points and cell 
interface in (2.17) by HWENO method. We can use dimension-by-dimension strategy to reconstruct these point values. Now, 
we list the procedures of these reconstructions in the following.

Step 4. Reconstruction of {φ} at Gauss–Lobatto quadrature points in the cell Ii, j by HWENO method from the cell averages 
{Ui, j, V i, j, W i, j, Ti, j}. We make the construction at the point (x−

i+ 1
2
, y−

j+ 1
2
) as example.

• We perform HWENO method which was described in Step 1 in subsection 2.2 in the x direction, from the cell average 
{Ui, j, V i, j}, we can get 1

�y

´
K j

φ(x−
i+ 1

2
, y, t)dy, which is the point value in x direction and the cell average in y direction.

• Then, we perform the similar procedure from the cell average {W i, j, Ti, j}, we can get the one dimensional cell average 
1

�y

´
K j

φ(x−
i+ 1

2
, y, t) y−y j

�y dy.

• Finally, we perform the same HWENO method in the y direction, from { 1
�y

´
K j

φ(x−
i+ 1

2
, y, t)dy}, and { 1

�y

´
K j

φ(x−
i+ 1

2
,

y, t) y−y j
�y dy}, we can get the point value φ(x−

i+ 1
2
, y−

j+ 1
2
).

Remark.

(i). The reconstruction of {φ} at other Gauss–Lobatto quadrature points is similar to the procedure above.
(ii). When using the dimension-by-dimension strategy, the HWENO reconstruction procedures for point values at xG2, xG3

(or yG2, yG3) is similar to those for xG1, xG4 (or yG1, yG4), but the linear weights will become negative. For stability, 
the technique to treat the reconstruction procedure with negative weights is needed, for this technique we refer to [17].

Step 5. Reconstruction of {φx} at Gauss–Lobatto quadrature points in the cell Ii, j by HWENO method from the cell 
averages {Ui, j, V i, j, W i, j, Ti, j}. Also, we make the construction at the point (x−

i+ 1
2
, y−

j+ 1
2
) as example.

• We perform HWENO method in Step 1 in subsection 2.2 in the y direction from the cell average {Ui, j, W i, j}, which we 
can get the one dimensional cell average 1

�x

´
J i

φ(x, y−
j+ 1

2
, t)dx.

• Then, we perform the similar procedure from the cell average {V i, j, Ti, j}, which we can get the one dimensional cell 
average 1

�x

´
J i

φ(x, y−
j+ 1

2
, t) x−xi

�x dx.

• Finally, we perform HWENO method in Step 2 in subsection 2.2 in the x direction from { 1
�x

´
J i

φ(x, y−
j+ 1

2
, t)dx,

1
�x

´
J i

φ(x, y−
j+ 1

2
, t) x−xi

�x dx}, we can get the point value φx(x−
i+ 1

2
, y−

j+ 1
2
).

Remark.

(i). The reconstruction of {φx} at other Gauss–Lobatto quadrature points is also similar to the procedure above.
(ii). The procedure to reconstruct {φy} at Gauss–Lobatto quadrature points in the cell Ii, j by HWENO method from the cell 

averages {Ui, j, V i, j, W i, j, Ti, j}, is similar to that for {φx}, we will not repeat here.

Similar to one dimensional case, if H is a neither convex nor concave Hamiltonian, we also need the extra monotone 
modification in every Runge–Kutta step, which can help our method converge to the entropy solution. First, we should 
design the discontinuity indicator. Here we use the indicator [21] defined as follows:

ϕx
i, j = βx

i, j

βx
i, j + γ x

i, j

where

α1,x
i, j = |Xi−1, j − Xi, j|2 + ε ξ

1,x
i, j = |Xi−1, j − Xi+1, j|2 + ε

α2,x
i, j = |Xi, j−1 − Xi, j|2 + ε ξ

2,x
i, j = |Xi, j−1 − Xi, j+1|2 + ε

βx
i, j = ξ

1,x
i, j

α1,x
i−1, j

+ ξ
1,x
i, j

α1,x
i+2, j

+ ξ
2,x
i, j

α2,x
i, j−1

+ ξ
2,x
i, j

α2,x
i, j+2

γ x
i, j = M(

|Xmax − Xmin|2
α1,x

+ |Xmax − Xmin|2
α1,x

+ |Xmax − Xmin|2
α2,x

+ |Xmax − Xmin|2
α2,x

)

i, j i+1, j i, j i, j+1
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and

ϕ
y
i, j = β

y
i, j

β
y
i, j + γ

y
i, j

where

α
1,y
i, j = |Yi−1, j − Yi, j|2 + ε ξ

1,y
i, j = |Yi−1, j − Yi+1, j|2 + ε

α
2,y
i, j = |Yi, j−1 − Yi, j|2 + ε ξ

2,y
i, j = |Yi, j−1 − Yi, j+1|2 + ε

β
y
i, j = ξ

1,y
i, j

α
1,y
i−1, j

+ ξ
1,y
i, j

α
1,y
i+2, j

+ ξ
2,y
i, j

α
2,y
i, j−1

+ ξ
2,y
i, j

α
2,y
i, j+2

γ
y

i, j = M(
|Ymax − Ymin|2

α
1,y
i, j

+ |Ymax − Ymin|2
α

1,y
i+1, j

+ |Ymax − Ymin|2
α

2,y
i, j

+ |Ymax − Ymin|2
α

2,y
i, j+1

)

and take φi, j = max{ϕx
i, j, ϕ

y
i, j}, where, Xi, j and Yi, j denote the cell average of φx of φy on Ii, j , respectively, which are com-

puted by Gauss–Lobatto quadrature formula numerically, and ε = 10−6 in order to make sure the denominator would not 
be zero, and Xmax, Xmin, Ymax and Ymin are the maximum and minimum of Xi, j and Yi, j respectively. M is a discontinuity 
parameter and we also choose M = 10 000. The discontinuity indicator ϕi, j has the property that: (a). 0 ≤ ϕi, j ≤ 1; (b). ϕi, j

is O (�x2, �y2) in smooth region; (c). ϕi, j close to O (1) near the derivative discontinuity. Now we modify our method as 
follows:

(1) Identify the neither convex nor concave troubled cell: we call cell Ii j a good cell if φ(x−
i+ 1

2
, y−

j+ 1
2
), φ(x+

i− 1
2
, y−

j+ 1
2
), 

φ(x−
i+ 1

2
, y+

j− 1
2
), φ(x+

i− 1
2
, y+

j− 1
2
) all fall into the same convex or concave region of the Hamiltonian H(u, v), otherwise we 

define the cell as a troubled cell, see [16].
(2) If the cell Ii j is identified as a troubled cell, then Un+1

i, j , V n+1
i, j , W n+1

i, j , T n+1
i, j should be modified. Introduce one order 

monotone scheme, again, we simply use the one order monotone scheme with Lax–Friedrichs Hamiltonian flux:

Un+1mono
i, j = Un

i, j − �t(H(
Un

i+1, j − Un
i−1, j

2�x
,

Un
i, j+1 − Un

i, j−1

2�y
))

+ 1

2
�tα(

Un
i+1, j − 2Un

i, j + Un
i−1, j

�x
)

+ 1

2
�tβ(

Un
i, j+1 − 2Un

i, j + Un
i, j−1

�y
), (2.18)

where α = max
u

|H ′
u(u, v)| and β = max

v
|H ′

v(u, v)|.
(3) Modify Un+1

i, j with the monotone scheme. We combine the solution of (2.17) with (2.18) at t = tn+1 convexly

Un+1mod
i, j = (1 − ϕ2

i, j)Un+1
i, j + ϕ2

i, j U
n+1mono
i, j . (2.19)

For the same reason as the one dimensional case, the modification doesn’t affect the fifth order accurate of the schemes. 
After modified procedure, we denote Un+1mod

i, j as Un+1
i, j .

(4) Modify V n+1
i, j , W n+1

i, j , T n+1
i, j by the following steps.

Step 6. Reconstruction of V n+1mod
i, j , W n+1mod

i, j , T n+1mod
i, j by HWENO method from the cell averages {Un+1

i, j , V n+1
i, j , W n+1

i, j , T n+1
i, j }

The reconstructions of V n+1mod
i, j and W n+1mod

i, j were performed in x direction and y direction by one dimensional fifth 
order HWENO method which is described in Step 3 in subsection 2.2 from cell average {Un+1

i, j , V n+1
i, j } and {Un+1

i, j , W n+1
i, j }, 

respectively. Again we denote V n+1mod
i, j and W n+1mod

i, j as V n+1
i, j and W n+1

i, j .

The procedure to reconstruct T n+1mod
i, j is divided into two parts; firstly we perform the reconstruction Step 3 in x direction 

from {Un+1
i, j , V n+1

i, j }, {W n+1
i, j , T n+1

i, j }, and obtain the new cell average Ṽ n+1
i, j , T̃ n+1

i, j , then we perform the reconstruction Step 3 

in y direction from {Ṽ n+1, ̃T n+1} and obtain T n+1mod , which is also denoted as T n+1.
i, j i, j i, j i, j
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Table 1
φt + φx = 0, φ(x, 0) = sin(πx). Periodic boundary conditions. t = 2.

N L∞ error L∞ order L1 error L1 order

10 1.92E−03 8.47E−04
20 6.01E−05 5.00 2.66E−05 4.99
40 1.89E−06 4.99 8.22E−07 5.02
80 5.79E−08 5.03 2.57E−08 5.00

160 1.63E−09 5.15 8.04E−10 5.00
320 4.08E−11 5.32 2.52E−11 5.00

Table 2
φt + sin(x)φx = 0, φ(x, 0) = sin(x). Periodic boundary conditions. t = 1.

N L∞ error L∞ order L1 error L1 order

10 5.76E−02 1.24E−02
20 4.85E−04 6.89 1.12E−04 6.79
40 5.91E−05 3.04 5.09E−06 4.46
80 1.22E−06 5.59 1.32E−07 5.27

160 2.38E−08 5.69 3.49E−09 5.24
320 4.00E−10 5.89 9.17E−11 5.25

3. Numerical result

In this section, we provide the numerical experiments for fifth order HWENO method in one dimension and two dimen-

sion. In all numerical experiments, we set �t = 0.8�x
5
3 in the one dimensional case and �t = 0.8 1

α

(�x)5/3 + β

(�y)5/3

in the two 

dimensional case, where α = max
u

|H ′
u(u, v)| and β = max

v
|H ′

v(u, v)|, in order to guarantee that spatial numerical errors are 
dominated.

3.1. One dimensional case with accurate test

Example 3.1. We solve the following linear scalar equation:

φt + φx = 0, 0 ≤ x ≤ 2

with the initial condition φ(x, 0) = sin(πx), and periodic boundary condition. We compute the solution up to t = 2, the 
numerical errors and numerical order of HWENO method are shown in Table 1. We can see that the scheme achieves our 
design accuracy.

Example 3.2. We solve the following variable coefficient linear equation:

φt + sin(x)φx = 0, 0 < x < 2π

with the initial condition φ(x, 0) = sin(x), and periodic boundary condition, see [22]. The exact solution is

φ(x, t) = sin(2 arctan(e−t tan(
x

2
)))

We compute the solution up to t = 1, the numerical errors and numerical order of HWENO method are shown in Table 2. 
Again, we observe that, the fifth order is obtained by HWENO method.

Example 3.3. We solve the Burgers equation:

φt + 1

2
(φx + 1)2 = 0, −1 ≤ x ≤ 1

with the initial condition φ(x, 0) = − cos(πx), and periodic boundary condition. We compute the solution up to t = 0.5
π2 . 

At this time, the solution is still smooth. The numerical results are shown in Table 3. Again, we can see the scheme meet 
our design accuracy.

Example 3.4. We solve the nonlinear scalar equation:

φt − cos(φx + 1) = 0, −1 < x < 1

with the initial condition φ(x, 0) = − cos(πx), and periodic boundary condition. When t = 0.5
π2 , the solution is still smooth. 

The numerical results are shown in Table 4. As the Hamiltonian H(u) = − cos(u + 1) is neither convex nor concave, the 
monotone modification is used. Again, we observe that the scheme can achieve its design accuracy both with and without 
the monotone modification.



F. Zheng, J. Qiu / Journal of Computational Physics 307 (2016) 423–445 435
Table 3
φt + 1

2 (φx + 1)2 = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 0.5/π2.

N L∞ error L∞ order L1 error L1 order

10 3.64E−03 5.62E−04
20 2.97E−04 3.61 2.27E−05 4.63
40 3.04E−06 6.61 2.98E−07 6.25
80 5.38E−08 5.82 4.38E−09 6.09

160 8.22E−10 6.03 7.58E−11 5.85
320 8.54E−12 6.59 1.88E−12 5.34

Table 4
φt − cos(φx + 1) = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 0.5/π2.

N With the monotone modification Without the monotone modification

L∞ error L∞ order L1 error L1 order L∞ error L∞ order L1 error L1 order

10 6.71E−03 2.96E−03 7.48E−03 1.08E−03
20 3.65E−04 4.20 9.77E−05 4.92 2.34E−04 5.00 3.05E−05 5.15
40 3.00E−05 3.60 2.71E−06 5.17 3.14E−05 2.90 1.40E−06 4.45
80 1.21E−06 4.63 8.67E−08 4.97 1.06E−06 4.88 3.09E−08 5.50

160 9.58E−08 3.66 2.69E−09 5.01 1.61E−08 6.05 5.13E−10 5.91
320 2.84E−09 5.07 5.52E−11 5.61 2.22E−10 6.18 8.50E−12 5.91

3.2. One dimensional case with discontinuous derivative

Example 3.5. We solve the linear equation:

φt + φx = 0

with the initial condition φ(x, 0) = φ0(x − 0.5) together with the periodic boundary condition, where

φ0(x) = −(

√
3

2
+ 9

2
+ 2π

3
)(x + 1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 cos(
3πx2

2
) − √

3 −1 ≤ x < − 1
3 ,

3

2
+ 3 cos(2πx) − 1

3 ≤ x < 0,

15

2
− 3 cos(2πx) 0 ≤ x < 1

3 ,

28 + 4π + cos(3πx)

3
+ 6πx(x − 1) 1

3 ≤ x < 1.

We plot the result at t = 2.0 and t = 8.0 in Fig. 1(a) and Fig. 1(b) respectively. We observe that the HWENO schemes have 
good resolution for the corner singularity.

Example 3.6. We solve the problem:

φt + sign(cos(x))φx = 0 0 ≤ x ≤ 2π

with initial φ(x, 0) = sin(x) and periodic boundary condition [2]. For the viscosity solution, a shock and a rarefaction wave 
are forming at x = π/2 and x = 3π/2, respectively. We compute the errors in smooth region [0, 1] ⋃[2, 3.4] ⋃[6, 2π ], and 
the result is listed in Table 5. We can see that the method reach the fifth order accurate as we expect. We also plot the 
result at time t = 1.0 with mesh N = 40 and N = 80 in Fig. 2(a) and Fig. 2(b) respectively. We observe that the HWENO 
schemes can converge to the viscosity solution.

Example 3.7. We solve one dimensional Burgers’ equation:

φt + 1

2
(φx + 1)2 = 0 − 1 ≤ x ≤ 1

with φ(x, 0) = − cos(πx) and periodic boundary conditions. We compute the solution up to t = 3.5/π2. At this time, 
the discontinuous derivative has already appeared in the solution. We compute the L1 and L∞ in smooth region 
[−1, −0.95] ⋃[−0.35, 1], the result is listed in Table 6. We can see that the method reach the fifth order accurate as we 
expect. Also, we show the numerical results with mesh N = 40 and N = 80 in Fig. 3(a) and Fig. 3(b) respectively. We can 
see that the schemes give good results for this problem.
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Fig. 1. One dimensional linear equation. N = 100 cells. (a). t = 2.0, (b). t = 8.0. Solid line: the exact solution; Square symbol: the HWENO scheme.

Table 5
φt + sign(cos(x))φx = 0, φ(x, 0) = sin(x). Periodic boundary conditions. t = 1.

N L∞ error L∞ order L1 error L1 order

10 3.66E−03 2.69E−03
20 3.51E−04 3.99 1.68E−04 4.72
40 8.44E−05 2.06 1.79E−05 3.23
80 4.92E−06 4.28 5.75E−07 5.17

160 2.45E−07 4.33 6.64E−09 6.43
320 5.84E−10 8.90 3.65E−11 7.67

Fig. 2. One dimensional linear problem with non-smooth variable coefficient. t = 1. (a). N = 40 and (b). N = 80. Solid line: the exact solution; Square 
symbol: the HWENO scheme.

Example 3.8. We solve nonlinear equation with a non-convex flux

φt − cos(φx + 1) = 0

with the initial data φ(x, 0) = − cos(πx) and periodic boundary conditions. This time, we compute the solution up to 
t = 1.5/π2. As the Hamiltonian H(u) = − cos(u + 1) is neither convex nor concave, we use the monotone modification in 
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Table 6
φt + 1

2 (φx + 1)2 = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 3.5/π2.

N L∞ error L∞ order L1 error L1 order

10 2.19E−04 9.38E−05
20 6.18E−06 5.68 1.35E−06 6.74
40 1.58E−07 5.29 2.74E−08 5.63
80 1.43E−09 7.14 6.61E−10 5.65

160 4.37E−11 5.16 1.97E−11 5.19
320 1.36E−12 5.07 6.12E−13 5.08

Fig. 3. One dimensional Burgers’ equation. t = 3.5/π2. (a). N = 40 and (b). N = 80. Solid line: the exact solution; Square symbol: the HWENO scheme.

Fig. 4. H(u) = − cos(u + 1). t = 1.5/π2. (a). N = 40 and (b). N = 80. Solid line: the exact solution; Square symbol: the HWENO scheme with modification; 
Plus symbol: the HWENO scheme without modification.

this case. However, we observe the figures before and after the monotone modification with N = 40 and N = 80, which 
are shown in Fig. 4, and find that the modification is dispensable in this case. In fact, only Examples 3.9 and 3.16 in this 
paper absolutely need the monotone modification. We also record the troubled cell rate at each time level, which is shown 
in Fig. 5, the average of the troubled cells rate at all time levels is 10.62% for N = 40 and 5.174% for N = 80 respectively. 
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Fig. 5. The troubled cell at each time level when N = 40 and N = 80. Square symbol: the troubled cell.

Table 7
φt − cos(φx + 1) = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 1.5/π2.

N With the monotone modification Without the monotone modification

L∞ error L∞ order L1 error L1 order L∞ error L∞ order L1 error L1 order

10 2.02E−02 5.67E−03 9.54E−03 4.34E−03
20 1.36E−03 4.68 3.82E−04 4.69 1.41E−03 3.32 4.73E−04 3.86
40 4.10E−04 2.02 4.12E−05 3.74 3.20E−04 2.49 3.86E−05 4.21
80 2.63E−05 4.29 1.75E−06 4.93 2.57E−05 3.94 1.75E−06 4.83

160 7.29E−07 5.39 4.35E−08 5.56 7.29E−07 5.36 4.35E−08 5.55
320 1.06E−08 6.23 1.02E−09 5.52 1.06E−08 6.23 1.02E−09 5.52

Table 8
φt + 1

4 (φ2
x − 1)(φ2

x − 4) = 0, φ(x, 0) = −2|x|. t = 1.

N Even N Odd

L∞ error Order L1 error Order L∞ error Order L1 error Order

10 2.80E−01 9.43E−02 11 5.73E−02 1.74E−02
20 9.17E−02 1.90 1.10E−02 3.66 21 2.88E−02 1.17 3.30E−03 2.82
40 4.39E−03 4.78 2.60E−04 5.89 41 8.64E−04 5.51 6.04E−05 6.29
80 4.53E−05 6.90 1.46E−06 7.81 81 1.19E−05 5.93 4.71E−07 6.72

160 1.44E−07 8.12 2.71E−09 8.88 161 5.67E−08 8.23 1.77E−09 8.60
320 1.90E−09 6.17 3.06E−11 6.40 321 8.86E−10 5.94 4.66E−11 5.19

Finally, we compute the error in smooth region [−0.7, 0.0] ⋃[0.4, 1], the result is listed in Table 7. We can see that the 
method reach the expected precision.

Example 3.9. We solve the problem

φt + 1

4
(φ2

x − 1)(φ2
x − 4) = 0 − 1 < x < 1

with initial data φ(x, 0) = −2|x|. The Hamiltonian H(u) = 1
4 (u2 −1)(u2 −4) is neither convex nor concave, and the monotone 

modification is indispensable in this case. We compute error in smooth area [−1, −0.58] ⋃[0.58, 1] for odd and even values 
of N , which is shown in Table 8, and we observe that this method can reach fifth precision. Fig. 6 list the result with and 
without modification at t = 1 with N = 80 and N = 81 by our scheme. The different behaviors result from the singular 
point x = 0 is exactly located at the cell interface when N is even while the point is inside the cell when N is odd at t = 0. 
We observe that the method with monotone modification can correctly converge to the viscosity solution for both even and 
odd N . We also record the troubled cell rate at each time level, which is shown at Fig. 7, and the average of the troubled 
cells rate at all time levels is 3.120% and 3.090% for N = 80 and N = 81 respectively.
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Fig. 6. H(u) = (1/4)(u2 −1)(u2 −4). t = 1. (a). N = 80 and (b). N = 81. Solid line: the exact solution; Square symbol: the HWENO scheme with modification; 
Plus symbol: the HWENO scheme without modification.

Fig. 7. The troubled cell at each time level when N = 80 and N = 81. Square symbol: the troubled cell.

3.3. Two dimensional case with accurate test

Example 3.10. We solve the two dimensional linear scaler equation.

φt + φx + φy = 0 − 2 ≤ x, y ≤ 2

with initial data φ(x, y, 0) = sin(π(x + y)/2) and periodic condition. The result when t = 2 is listed in Table 9. We see that 
the schemes can achieve the design accuracy.

Example 3.11. We solve the two dimensional Burgers’ equation

φt + 1

2
(φx + φy + 1)2 = 0 − 2 ≤ x, y ≤ 2

with initial data φ(x, y, 0) = − cos( π
2 (x + y)) and periodic condition. We compute the result up to t = 0.5/π2 and the 

solution is still smooth at that time. Again, from Table 10, we can see the scheme can achieve the design order.
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Table 9
φt + φx + φy = 0, φ(x, y, 0) = sin(π(x + y)/2). Periodic boundary conditions. t = 2.

N L∞ error L∞ order L1 error L1 order

10 × 10 5.82E−03 3.44E−03
20 × 20 1.83E−04 4.99 1.07E−04 5.01
40 × 40 5.82E−06 4.98 3.32E−06 5.01
80 × 80 1.82E−07 5.00 1.04E−07 5.00
160 × 160 5.48E−09 5.05 3.23E−09 5.00
320 × 320 1.60E−10 5.09 1.01E−10 5.00

Table 10
φt + 1

2 (φx + φy + 1)2 = 0, φ(x, y, 0) = − cos( π
2 (x + y)). Periodic boundary conditions. t = 0.5/π2.

N L∞ error L∞ order L1 error L1 order

10 × 10 3.36E−03 9.14E−04
20 × 20 3.87E−04 3.12 3.21E−05 4.83
40 × 40 6.37E−06 5.92 6.47E−07 5.63
80 × 80 1.20E−07 5.73 1.21E−08 5.74
160 × 160 1.82E−09 6.05 2.55E−10 5.56
320 × 320 3.30E−11 5.78 6.86E−12 5.22

Table 11
φt − cos(φx + φy + 1) = 0, φ(x, y, 0) = − cos( π

2 (x + y)). Periodic boundary conditions. t = 0.5/π2.

N With monotone modify Without monotone modify

L∞ error L∞ order L1 error L1 order L∞ error L∞ order L1 error L1 order

10 × 10 4.10E−02 8.73E−03 1.53E−02 2.31E−03
20 × 20 8.11E−04 5.66 1.37E−04 5.99 5.69E−04 4.75 5.96E−05 5.28
40 × 40 6.65E−05 3.61 6.50E−06 4.40 6.15E−05 3.21 2.87E−06 4.38
80 × 80 5.36E−06 3.63 1.82E−07 5.16 2.04E−06 4.91 6.37E−08 5.49
160 × 160 1.98E−07 4.76 3.90E−09 5.55 3.53E−08 5.85 1.17E−09 5.76
320 × 320 6.00E−09 5.05 7.21E−11 5.76 4.99E−10 6.15 2.17E−11 5.75

Table 12
φt + 1

2 (φx + φy + 1)2 = 0, φ(x, y, 0) = − cos( π
2 (x + y)). Periodic boundary conditions. t = 1.5/π2.

N L∞ error L∞ order L1 error L1 order

10 × 10 1.93E−04 1.02E−04
20 × 20 2.18E−05 3.15 3.64E−06 4.81
40 × 40 1.06E−06 4.36 1.34E−07 4.77
80 × 80 4.57E−08 4.53 4.62E−09 4.86
160 × 160 1.66E−09 4.78 1.54E−10 4.90
320 × 320 5.62E−11 4.88 6.63E−12 4.54

Example 3.12.

φt − cos(φx + φy + 1) = 0 − 2 ≤ x, y ≤ 2

with initial data φ(x, 0) = − cos( π
2 (x + y)) with periodic condition. We also compute the result up to t = 0.5/π2 and the 

solution is still smooth at that time. The Hamiltonian H(u, v) = − cos(u + v + 1) is neither convex nor concave, so we 
use the monotone modification. Again, from Table 11 we can see the scheme can achieve the design order both with and 
without the modification.

3.4. Two dimensional case with discontinuous derivative

Example 3.13. We solve the two dimensional Burgers’ equation

φt + 1

2
(φx + φy + 1)2 = 0 − 2 ≤ x, y ≤ 2

with initial data φ(x, y, 0) = − cos( π
2 (x + y)). We compute the result up to t = 1.5/π2 and the derivative discontinuity 

is appeared in the solution. Numerical error is shown in Table 12, which is computed in smooth subregion [0, 1.2] ×
[−0.4, 0.8], we observe that the result can achieve the fifth precision. We also plot the results with 40 × 40 cells in Fig. 8(a) 
and Fig. 8(b). We observe good resolutions in this example.
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Fig. 8. Two dimensional Burgers equation. t = 1.5/π2 with the HWENO schemes with 40 × 40 cells. Contours of the solution (a) and the surface of the 
solution (b).

Fig. 9. The optimal control problem. t = 1 with the HWENO schemes with 60 × 60 cells. Surface of the solution (a) and of the optimal control 
ω = sign(φy) (b).

Example 3.14. We solve the problem from optimal control:

φt + sin(y)φx + (sin(x) + sign(φy))φy − 1

2
sin2(y) + cos(x) − 1 = 0, −π < x, y < π

with φ(x, y, 0) = 0 and periodic conditions. The solution is plotted at t = 1 and the optimal control ω = sign(φ) are shown 
is Fig. 9(a) and Fig. 9(b), respectively. Again, we can observe the good resolution is achieved by our method.

Example 3.15. We solve the problem

φt − cos(φx + φy + 1) = 0, −2 < x, y < 2
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Table 13
φt − cos(φx + φy + 1) = 0, φ(x, y, 0) = − cos( π

2 (x + y)). Periodic boundary conditions. t = 1.5/π2.

N With monotone modify Without monotone modify

L∞ error L∞ order L1 error L1 order L∞ error L∞ order L1 error L1 order

10 × 10 4.10E−02 8.73E−03 1.53E−02 2.31E−03
20 × 20 8.11E−04 5.66 1.37E−04 5.99 5.69E−04 4.75 5.96E−05 5.28
40 × 40 6.65E−05 3.61 6.50E−06 4.40 6.15E−05 3.21 2.87E−06 4.38
80 × 80 5.36E−06 3.63 1.82E−07 5.16 2.04E−06 4.91 6.37E−08 5.49
160 × 160 1.98E−07 4.76 3.90E−09 5.55 3.53E−08 5.85 1.17E−09 5.76
320 × 320 6.00E−09 5.05 7.21E−11 5.76 4.99E−10 6.15 2.17E−11 5.75

Fig. 10. Two dimensional equation with a neither convex nor concave Hamiltonian. t = 1.5/π2 with the HWENO schemes with 40 × 40 cells. Contours of 
the solution (a) and surface of the solution (b).

with φ(x, y, 0) = − cos( π
2 (x + y)) and periodic conditions. We also compute the solution up to t = 1.5/π2 and the solution 

develop the discontinuous derivative. Although the Hamiltonian is neither convex nor concave in this case, the modification 
is dispensable. We compute the numerical error in subregion [0, 0.4] ×[−0.4, 0], which is shown in Table 13. Fifth precision 
is achieved by our method. The results with 40 × 40 cells by HWENO method after modification are shown in Fig. 10(a) and 
Fig. 10(b). We observe good resolutions for this example. We record the troubled cells rate at each time level, the average 
of the troubled cells rate at all time levels is 19.75%. See Fig. 11.

Example 3.16. We solve the problem with neither convex nor concave Hamiltonian

φt + sin(φx + φy) = 0, −1 < x, y < 1

with φ(x, y, 0) = π(|y| − |x|). The monotone modification is indispensable in this case. The solution are shown in Fig. 12. 
Again, we observe good resolution for this example. We record the troubled cells rate at each time level, the average of the 
troubled cells rate at all time levels is 45.45%. See Fig. 13.

Example 3.17. We solve the two dimensional Eikonal equation

φt +
√

φ2
x + φ2

y + 1 = 0, 0 ≤ x, y < 1

with the initial data φ(x, y, 0) = 1
4 (cos(2πx) − 1)(cos(2π y) − 1) − 1. The solution are shown in Fig. 14(a) and 14(b) respec-

tively. We observe good resolutions for this example.
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Fig. 11. The troubled cells at t = 1.5/π2. Square symbol: the troubled cell.

Fig. 12. Two dimensional equation with a neither convex nor concave Hamiltonian. t = 1 by the HWENO schemes with 40 × 40 cells. Contours of the 
solution (a) and surface of the solution (b).

Example 3.18.⎧⎪⎨
⎪⎩

φt − (1 − εK )

√
φ2

x + φ2
y + 1 = 0, 0 ≤ x, y < 1

φ(x, y,0) = 1 − 1

4
(cos(2πx) − 1)(cos(2π y) − 1)

where K is the mean curvature defined by:

K = −φxx(1 + φ2
y) − 2φxyφxφy + φyy(1 + φ2

x )

(1 + φ2
x + φ2

y)
3/2

and ε is a small constant, the initial data φ(x, y, 0) = 1 − 1
4 (cos(2πx) − 1)(cos(2π y) − 1) and the periodic condition. The 

approximation of the second derivatives are constructed by the method similar to that of the first derivative terms. The 
results of ε = 0 (pure convection) and ε = 0.1 by the HWENO method with 60 × 60 cells are presented in Fig. 15(a) and 
Fig. 15(b). The surfaces at t = 0 for ε = 0 and for ε = 0.1, and at t = 0.1 for ε = 0.1, are shifted downward in order to show 
the detail of the solution at later time.
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Fig. 13. The troubled cell at t = 1. Square symbol: the troubled cell.

Fig. 14. Eikonal equation. t = 1 by the HWENO schemes with 60 × 60 cells. Contours of the solution (a) and surface of the solution (b).

4. Conclusion

In this paper, we present a class of new HWENO schemes based on finite volume framework to directly solve the HJ 
equations in one and two dimensions. The main advantage of this schemes are their compactness and directly. For HWENO 
reconstruction, both the cell average and the first moment of the solution are evolved, and for two dimensional case, 
HWENO reconstruction is based on a dimension-by-dimension strategy which is the first used in HWENO reconstruction. 
Extensive numerical experiments in one dimensional and two dimensional cases show that the schemes developed in this 
paper have high order accuracy when the solution is smooth and high resolution in the region where the solution is with 
discontinuous derivatives. For future work, we will consider evolving the point values φ and its derivatives u = φx and 
v = φy by interpolation and their relevant PDEs, for φ, use monotone Hamiltonian and for u, v , use the nonconservative 
form of the PDEs they satisfy, to get one simpler HWENO scheme for HJ equation.
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Fig. 15. Propagating surface. 60 × 60 cells. (a) ε = 0; (b) ε = 0.1.
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