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a b s t r a c t 

In this paper, a new type of high order Hermite weighted essentially non-oscillatory (HWENO) meth- 

ods is proposed to solve the Hamilton–Jacobi (HJ) equations on unstructured meshes. We use a fourth 

order accurate scheme to demonstrate our procedure. Both the solution and its spatial derivatives are 

evolved in time. Our schemes have three advantages. First, they are more compact than the one in [38] 

as more information is used at each node which allows us to achieve the same high order accuracy with 

a more compact stencil. Second, the new HWENO approximation on the unstructured mesh allows arbi- 

trary positive linear weights, which enhances the stability of our scheme. Third, the new HWENO proce- 

dure produces an approximation polynomial on each triangle, which allows us to compute all the spatial 

derivatives at the three nodes of each triangle based on this single polynomial, instead of computing each 

derivative individually with different linear weights in the classical HWENO framework, which improves 

the efficiency of our scheme. Extensive numerical experiments are performed to verify the accuracy, high 

resolution and efficiency of this new scheme. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this paper, we consider numerical methods for solving the

amilton–Jacobi (HJ) equations 

φt + H(x, y, t, φx , φy ) = 0 

φ(x, y, 0) = φ0 (x, y ) 
(1.1) 

he HJ equations can be used in many applications such as opti-

al control, differential games, image processing, computer vision

nd so on. It is well known that the solutions of HJ equations are

lways continuous, however their derivatives could become discon-

inuous even if the initial condition is smooth. With the definition

f the viscosity solution by Crandall and Lions [6] , we can obtain

he unique weak solution for the HJ equations. 
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As the spatial derivative of the HJ solution satisfies a conserva-

ion law equation in the one dimensional case, the HJ equation has

 close relationship with conservation laws. Many successful meth-

ds for conservation laws can be adapted to solve the HJ equations.

n general, the HJ equations are easier to solve than their corre-

ponding conservation laws because the solutions of HJ equations

re smoother than those for conservation laws (continuous versus

iscontinuous). 

There are many papers designing numerical schemes for HJ

quations on structured meshes. Crandall and Lion [7] introduced

rst order monotone schemes and proved that the schemes can

onverge to the viscosity solution. Although monotone schemes

re only first order accurate, they serve as the building blocks

or most higher order schemes. Osher and Shu [25] designed high

rder essentially nonoscillatory (ENO) schemes for solving the HJ

quations. Jiang and Peng [11] generalized them to weighted ENO

WENO) schemes, with tremendous success. The WENO schemes

n [11] have become standard choices for solving HJ equations

n structured meshes. Hermite WENO (HWENO) schemes and re-

ated methods have been developed in [27,29,40,44] to achieve

ore compact stencils for the same order of accuracy. Bryson and

evy [2] presented central schemes for solving the HJ equations.

he schemes mentioned above are all designed in the finite dif-

erence framework, namely they approximate point values of the
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solution (and possibly also its spatial derivatives). There are also

many schemes designed in the finite volume or discontinuous

Galerkin (DG) framework, namely they solve for the cell aver-

ages of the solution (and possibly also its higher order moments),

mostly for the conservation law equations satisfied by the spatial

derivatives of the solution but some also for the HJ equations di-

rectly. These schemes can be defined both on structured meshes

and on unstructured meshes. Hu and Shu [9] designed the first DG

scheme of this type. Later, Li and Shu [18] reinterpreted and sim-

plified the DG scheme in [9] . Li and Yakovlev [19] proposed central

DG schemes to solve the HJ equations. Liu and Pollack [21] sug-

gested the alternative evolution DG (AEDG) schemes. Zhu and Qiu

[42] and Zheng and Qiu [39] designed finite volume schemes to

solve the HJ equations. 

We are particularly interested in numerical methods on un-

structured meshes, because of their ability in dealing with prob-

lems in complicated domains. The first paper in this category is

[1] by Abgrall, who designed a Lax-Friedrichs (LF) type monotone

scheme on triangular meshes and proved its convergence to the

viscosity solution. The monotone scheme in [1] is the building

block for most higher order schemes for HJ equations on unstruc-

tured meshes. Li, Yan and Chan [20] also developed a monotone

and convergent scheme based on the weak form of the viscid HJ

equation. Lafon and Osher [14] proposed high order ENO methods

on triangular meshes. Zhang and Shu [38] and Levy et al. [15] de-

veloped high order WENO and central WENO schemes on trian-

gular meshes respectively. Zhu and Qiu [41,43,45] developed high

order HWENO schemes and related schemes on triangular meshes.

For more details of numerical solutions for HJ equations, we refer

to the lecture notes [31] . 

The schemes that we construct in this paper belong to the class

of HWENO schemes. HWENO schemes come from WENO schemes,

originally designed for solving conservation laws in [12,22] . The

WENO method has been applied in many areas, such as magne-

tohydrodynamics equations [4,5] , shallow water equations [26,35] ,

detonation waves [8,34] , multi-phase flow [36,46] , Euler equations

[10,37] and so on. Comparing with earlier ENO schemes, WENO

schemes use a convex combination of several candidate stencils,

instead of using just one of them in the ENO procedure. WENO

schemes can achieve high order accuracy in smooth regions and

can keep sharp and non-oscillatory shock transition when disconti-

nuities appear. Comparing with WENO schemes, HWENO schemes

[28,29] use a more compact stencil for the same order of accu-

racy by evolving both the solution and its derivatives or first or-

der moments in each cell. HWENO schemes can also achieve both

high order accuracy and the essentially non-oscillatory property.

However, one major difficulty in the classical WENO and HWENO

methods is the computation of the linear weights. These linear

weights depend on the particular mesh, and for triangular meshes,

different cells and different quadrature points have different lin-

ear weights. When we implement WENO or HWENO methods on

triangular meshes, we would need to compute and prestore the

linear weights on every cell. This would be particularly expensive

if we use moving meshes. Furthermore, the linear weights, which

depend on the local mesh structure, could become negative, which

could lead to instability. Even though there is a procedure to han-

dle such negative weights [30] , it may not always fix the stability

problem when the negative linear weight is very large [23] . Worse

still, in certain situations the linear weights for optimal accuracy

may fail to exist. Recently, Zhu and Qiu proposed a new type of

WENO method [44] , with similar ideas in earlier work [3,16,17] .

These WENO methods use a convex combination of a high order

polynomial on the large stencil and several low order polynomials

on small stencils. The high order polynomial determines the ac-

curacy and the low order polynomials play a major role in ensur-

ing the non-oscillatory performance when discontinuities appear.
n important property of these WENO methods is that the lin-

ar weights can be chosen as arbitrary positive numbers provided

hat they sum to one, thus the shortcomings of classical WENO

chemes mentioned above can be avoided. In this paper, we exploit

his idea in designing a new type of high order HWENO methods

or solving HJ equations. Our method belongs to the class of finite

ifference schemes, in evolving approximations to the point val-

es of the solution and its first order spatial derivatives at nodes.

nly the evolution of the solution itself is written in numerical

amiltonian form (corresponding to the conservative form for solv-

ng conservation laws). The evolution of the spatial derivatives is

erformed in a non-conservative fashion, thus leading to a much

impler and more efficient algorithm comparing with finite vol-

me type schemes. We note that this will not affect convergence

o viscosity solutions (correct kink location) when the scheme con-

erges. The main procedure of these HWENO schemes is as follows.

irst, we take the spatial derivatives of the original HJ equation to

et a system of partial differential equations (PDEs) satisfied by

hese spatial derivatives. Second, we replace the nonlinear terms

n the original and derived PDEs with numerical Hamiltonian and

pproximate the derivatives using the new type of HWENO pro-

edure. Finally, we evolve the solution and its spatial derivatives

y the Runge–Kutta method. The constructed HWENO schemes has

he following advantages. The scheme is more compact than the

ENO method for the same order of accuracy as it uses informa-

ion not only from the solution but also from its spatial deriva-

ives. We use the new type of HWENO approximation procedure,

hich allows arbitrary positive linear weights as long as they sum

o one, thus simplifying the algorithms significantly on triangular

eshes. The new type of HWENO methods produces an approxi-

ation polynomial on each triangle, which allows us to compute

ll the spatial derivatives at the three nodes of each triangle based

n this single polynomial, instead of computing each derivative in-

ividually with different linear weights in the classical WENO or

WENO framework. This results in a significant saving of compu-

ational cost. Our scheme is analyzed for its formal high order of

ccuracy, measured by local truncation errors, in Section 2.2.1 , see

emark 1 there. 

The organization of this paper is as follows. In Section 2 , we

ntroduce our new HWENO scheme in detail. In Section 3 , we

resent numerical results to demonstrate the performance of our

WENO schemes. Conclusion remarks are given in Section 4 . 

. The HWENO algorithm for 2D unstructured meshes 

In this section, we describe in detail the framework of our

WENO schemes for solving HJ equations and the HWENO approx-

mation procedure on triangular meshes. 

.1. The framework 

We consider the governing Eq. (1.1) solved on a domain �,

hich is partitioned into non-overlapping triangles denoted by

l , l = 1 . . . N. We define | �l | and ( x l , y l ) as the area and the

arycenter of the triangle �l respectively. For every node i , we de-

ne the angular sectors which share the same node i as T 0 , · · · , T k i 
n the anticlockwise order. 

−→ 

n 
l+ 1 

2 
is the unit vector of the half-line

 

l+ 1 
2 

= T l 
⋂ 

T l+1 , and θ l is the inner angle of the sector T l , 0 ≤ l ≤ k i .

ee Fig. 1 . 

We define φi as the numerical approximation to the viscosity

olution of (1.1) at node i , and we denote ( u i , v i ) as the numeri-

al approximation to the spatial derivatives ∇φ at node i . By tak-

ng spatial derivatives on both sides of the Eq. (1.1) , we obtain the
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Fig. 1. Node i and its sectors. 
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Fig. 2. The nodes used for the big stencil. 
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ollowing system for the approximation: 
 

 

 

 

 

dφi 

dt 
= −H(∇φi ) 

du i 
dt 

= −H 1 (∇φi ) u x i − H 2 (∇φi ) v x i 
dv i 
dt 

= −H 1 (∇φi ) u y i − H 2 (∇φi ) v y i 

(2.1) 

here H 1 (u, v ) = 

∂H 
∂u 

and H 2 (u, v ) = 

∂H 
∂v . As u y = v x , we can also

ewrite the system as the following: 
 

 

 

 

 

dφi 

dt 
= −H(∇φi ) 

du i 
dt 

= −H 1 (∇φi ) u x i − H 2 (∇φi ) u y i 

dv i 
dt 

= −H 1 (∇φi ) v x i − H 2 (∇φi ) v y i 

(2.2) 

e introduce approximations to the right hand sides of (2.2) using

ats, and obtain the semi-discrete scheme as 

 

 

 

 

 

dφi 

dt 
= −̂ H i 

du i 
dt 

= − ̂ H 1 u x i + H 2 u y i 

dv i 
dt 

= − ̂ H 1 v x i + H 2 v y i 

(2.3) 

ere, ̂ H i is the LF type monotone Hamiltonian for triangular

eshes introduced by Abgrall [1] . It is an important building block

or our schemes and is defined as follows: 

̂ 

 i = H 

⎛ ⎝ 

k i ∑ 

l=0 

θl (∇φl ) 

2 π

⎞ ⎠ − α
π

k i ∑ 

l=0 

βl+ 1 2 

(
∇ φl + ∇ φl+1 

2 

)
· −→ 

n l+ 1 2 
(2.4) 

here β
l+ 1 

2 
= tan 

(
θl 
2 

)
+ tan 

(
θl+1 

2 

)
, α = 

ax 

{ 

max 
A ≤u ≤B 
C≤v ≤D 

| H 1 (u, v ) | , max 
A ≤u ≤B 
C≤v ≤D 

| H 2 (u, v ) | 
} 

. Here ∇φl is the nu- 

erical approximation to ∇φ at node i in sector T l . [ A, B ] is the

ange of the value φx l 
, and [ C, D ] is the range of the value φy l 

,

ver 0 ≤ l ≤ k i for the local LF Hamiltonian, and over 0 ≤ l ≤ k i and

 ≤ i ≤ N for the global LF Hamiltonian. In this paper, we use the

lobal LF Hamiltonian. 

We define ̂ H 1 u x i + H 2 u y i in a similar way: 

̂ 

 1 u x i + H 2 u y i = H 1 

⎛ ⎜ ⎜ ⎝ 

k i ∑ 

l=0 

θl (∇φl ) 

2 π

⎞ ⎟ ⎟ ⎠ 

k i ∑ 

l=0 

θl (u x l ) 

2 π
+ H 2 

⎛ ⎜ ⎜ ⎝ 

k i ∑ 

l=0 

θl (∇φl ) 

2 π

⎞ ⎟ ⎟ ⎠ 

k i ∑ 

l=0 

θl (u y l ) 

2 π

− α

π

k i ∑ 

l=0 

βl+ 1 2 

(∇ u l + ∇ u l+1 

2 

)
· −→ 

n l+ 1 2 
(2.5)
n which the definition of the parameters is the same as before.

imilarly, we can define ̂ H 1 v x i + H 2 v y i . 
After we complete the spatial discretization, we can rewrite the

emi-discrete scheme as U t = L (U) , where L denotes the operator

f the spatial discretization. As to the time derivative, we can use

he third-order total variation diminishing (TVD) Runge–Kutta time

iscretization [32] to solve the semi-discrete form (2.3) : 
 

 

 

 

 

U 

(1) = U 

n + �tL (U 

n ) 

U 

(2) = 

3 
4 

U 

n + 

1 
4 
(U 

(1) + �tL (U 

(1) )) 

U 

n +1 = 

1 
3 

U 

n + 

2 
3 
(U 

(2) + �tL (U 

(2) )) 

(2.6) 

Now, we have completed the description of our scheme, except

or the approximation of ∇ φ, ∇ u and ∇ v , which would need to

e obtained by the HWENO method to maintain high order ac-

uracy in the smooth regions and sharp and non-oscillatory per-

ormance when derivative discontinuities appear. In the following

ection, we will describe the detailed procedure of the HWENO ap-

roximation method, using the fourth order version as an example.

.2. Fourth order HWENO approximation 

In this section, we follow similar ideas as in Zhu and Qiu

44,45] to construct fourth order HWENO approximation to the

odes 1,2,3 of the target cell �0 , as shown in Fig. 2 , for ∇ φ, ∇ u

nd ∇v . 

.2.1. Fourth order HWENO approximation for ∇φ
Step 1. In order to get a fourth order approximation to ∇φ, we

ould like to first construct a fourth degree interpolation or least

quare polynomial p 0 ( x, y ). Let ( x 0 , y 0 ) be the barycenter of the tar-

et cell �0 . We define ξ = 

(x −x 0 ) √ | �0 | 
, η = 

(y −y 0 ) √ | �0 | 
. Then, we can write

he polynomial p 0 ( x, y ) as 

p 0 (x, y ) = 

4 ∑ 

j=0 

∑ 

s + r= j 
a r j ξ

s ηr (2.7)

t has 15 degrees of freedom, so we would need to use at least 15

onditions from the nodes. 

Step 2. Given a big stencil S 0 = { 1 , 2 , · · · , 12 } as shown in Fig. 2 ,

e would like to obtain the fourth degree polynomial p 0 ( x, y ) such

hat 

p 0 (x , y ) = φ l = 1 , 2 , 3 (2.8)
l l l 
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and 

p 0 = argmin 

( ∑ 

l 

(p(x l , y l ) − φl ) 
2 + | �0 | 

∑ 

l 

(
∂ 

∂x 
p(x l , y l ) − u l 

)2 

+ | �0 | 
∑ 

l 

(
∂ 

∂y 
p(x l , y l ) − v l 

)2 
) 

(2.9)

where l = 4 , 5 , · · · , 12 , and the minimum is taken over all polyno-

mials p of degree at most 4. The | �0 | factor in front of the deriva-

tive terms is introduced to get the correct scaling with the mesh

size. 

We can rewrite the above problem in the following matrix

form: 

a = argmin 

x 
|| Bx − f || 2 2 

s.t. Aa = b 

(2.10)

where the A is a 3 × 15 matrix coming from the coefficients

of the Eq. (2.8) , b is a 3 × 1 matrix coming from right hand

side of the Eq. (2.8) , B is a 27 × 15 matrix coming from the

Eq. (2.9) and f is 27 × 1 matrix coming from the information of

φl , 
√ | �0 | u l , 

√ | �0 | v l in the Eq. (2.9) . Here a is the vector of coef-

ficients of p 0 ( x, y ) defined in (2.7) . 

In order to solve this constraint least square problem, we can

define the following Lagrange function: 

L (x , λ) = c 

(
1 

2 

x 

T B 

T Bx − f T Bx 

)
− λT (Ax − b ) 

where the second part of the Lagrange function comes from the

constraints and the first part comes from the objective function: 

|| Bx − f || 2 2 = (Bx − f ) T (Bx − f ) 
= x 

T B 

T Bx − 2 f T Bx + f T f 
(2.11)

Here, c is a parameter used to reduce the condition number nu-

merically, and it is taken as 

c = 

1 

27 max 
i, j 

| B (i, j) | , 

where 27 is the number of the rows in the matrix B and B ( i, j )

refers to the elements of B . 

By requiring L x (x , λ) = 0 and L λ(x , λ) = 0 , we have the follow-

ing linear system: {
cB 

T Bx − A 

T λ = cB 

T f 

Ax = b 

(2.12)
Fig. 3. The sample mesh with the number of nodes N = 134 . 

F

e can rewrite the linear system in the matrix form: 

cB 

T B −A 

T 

−A 0 

)(
x 

λ

)
= 

(
cB 

T f 
−b 

)
(2.13)

olving this linear system, we get a = x as the coefficients of the

ourth degree polynomial p 0 , for which ∇p 0 ( x, y ) will be a fourth

rder approximation to ∇φ( x, y ). 

Step 3. We also need to construct four second degree poly-

omials depending on four different small stencils in order to

orm the HWENO approximation. We select these small stencils as

 1 = { 1 , 2 , 3 , 4 , 5 , 6 } , S 2 = { 1 , 2 , 3 , 4 , 7 , 8 } , S 3 = { 1 , 2 , 3 , 5 , 9 , 10 } and

 4 = { 1 , 2 , 3 , 6 , 11 , 12 } . We would like to construct the interpolation

olynomials p k ( x, y ) 

p k (x, y ) = 

2 ∑ 

j=0 

∑ 

s + r= j 
a k r j ξ

s ηr , k = 1 , 2 , 3 , 4 

uch that 

p k (x l , y l ) = φl , l ∈ S k 

hen, each ∇p k ( x, y ) is a second order approximation to ∇φ( x, y ). 

Step 4. We compute the smoothness indicators βl , l =
 , 1 , · · · , 4 , which measures the smoothness of the polynomials p l 
n the target cell � 0 . The smaller the indicators are, the smoother

he polynomials are. We use a similar definition as in [11,38] : 

k = 

∑ 

| l|≥2 

∫ 
�0 

| �0 | | l|−2 

(
∂ | l| 

∂ x l 1 ∂ y l 2 
p k (x, y ) 

)2 

d xd y, k = 0 , 1 , · · · , 4 

here l = (l 1 , l 2 ) and | l| = l 1 + l 2 . 

Step 5. We set the positive linear weights as γk = 0 . 2 for k =
 , 1 , . . . , 4 . Then we can rewrite p 0 ( x, y ) as follows: 

p 0 (x, y ) = γ0 

( 

1 

γ0 

p 0 (x, y ) −
4 ∑ 

k =1 

γk 

γ0 

p k (x, y ) 

) 

+ 

4 ∑ 

k =1 

γk p k (x, y ) . 

Step 6. We compute the nonlinear weights defined as follows: 

 k = 

w k ∑ 

l w l 

, w l = γl 

(
1 + 

τ

ε + βl 

)2 

, l = 0 , 1 , · · · , 4 , 

here the parameter τ is defined as follows: 

= 

4 ∑ 

k =1 

(β0 − βk ) 
2 
ig. 4. The sample mesh for Examples 4 and 5 with the number of nodes N = 1876 . 
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Fig. 5. Burgers equation. T = 1 . 5 /π2 . Left: surface of the solution; right: contour plot of the solution. 

Fig. 6. Nonlinear equation. T = 1 . 5 /π2 . Left: surface of the solution; right: contour plot of the solution. 

H  

b

R  

a  

T  

s

β

a

β

A

w

w

T

ere, we take ε = 10 −6 in order for avoiding the denominator to

ecome zero. 

Step 7 . The final HWENO approximation is given by: 

p(x, y ) = w 0 

( 

1 

γ0 

p 0 (x, y ) −
4 ∑ 

k =1 

γk 

γ0 

p k (x, y ) 

) 

+ 

4 ∑ 

k =1 

w k p k (x, y ) . 

emark 1. We would like to verify that, in smooth regions, the

pproximation to ∇φ can achieve fourth order accuracy. First, by

aylor expansions, we have the following estimate for the β ’s in

mooth regions: 

0 = 

( ∑ 

| l| =2 

(
∂ | l| 

∂ x l 1 ∂ y l 2 
p 0 (x, y ) 

∣∣∣
(x 0 ,y 0 ) 

)2 
) 

| �0 | (1 + O (| �0 | )) 

nd 

k = 

( ∑ 

| l| =2 

(
∂ | l| 

∂ x l 1 ∂ y l 2 
p k (x, y ) 

∣∣∣
(x 0 ,y 0 ) 

)2 
) 

| �0 | (1 + O ( 
√ 

| �0 | )) , 

k = 1 , 2 , 3 , 4 . 
lso by Taylor expansions, we have 

τ

ε + βl 

= O (| �0 | 2 ) , l = 0 , 1 , · · · , 4 

hich leads to 

 l = γl + O (| �0 | 2 ) , l = 0 , 1 , · · · , 4 . 

herefore, we have 

∇p(x, y ) − ∇φ(x, y ) 

= w 0 

( 

1 

γ0 

∇ p 0 (x, y ) −
4 ∑ 

k =1 

γk 

γ0 

∇ p k (x, y ) 

) 

+ 

4 ∑ 

k =1 

w k ∇ p k (x, y ) − ∇φ(x, y ) 

= (γ0 + w 0 − γ0 ) 

( 

1 

γ0 

∇ p 0 (x, y ) −
4 ∑ 

k =1 

γk 

γ0 

∇ p k (x, y ) − ∇φ(x, y ) 

) 
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+ 

4 ∑ 

k =1 

(γk + w k − γk )(∇ p k (x, y ) − ∇φ(x, y )) 

= ∇ p 0 (x, y ) − ∇φ(x, y ) + (w 0 − γ0 ) 

(
1 

γ0 

∇ p 1 (x, y ) 

−
4 ∑ 

k =1 

γk 

γ0 

∇ p k (x, y ) − ∇φ(x, y ) 

) 

+ 

4 ∑ 

k =1 

(w k − γk )(∇ p k (x, y ) − ∇φ(x, y )) 

= O (| �0 | 2 ) + O (| �0 | 2 ) O (| �0 | ) + O (| �0 | 2 ) O (| �0 | ) 
= O (| �0 | 2 ) (2.14)

which verifies fourth order accuracy for ∇φ. 

Remark 2. It is well known that, for general triangular meshes, if

we use exactly 15 pieces of information to determine the fourth

degree polynomial, the interpolation problem may not be well de-

fined, as the linear system could be ill-conditioned or even singu-

lar. It is therefore more prudent to use more than 15 pieces of in-

formation and the least square procedure to determine the fourth

degree polynomial. Also, it appears to be necessary to require the

polynomial to interpolate the function φ at the three nodes 1,2,3 of

the target cell �0 in order to ensure stability. We do observe linear

instability in our numerical experiments when we do not require

exact interpolation at these three nodes and treat them the same

way as the other conditions through the least square procedure. 

Remark 3. In fact, the nodes used in the stencils may not be dif-

ferent. For example, the node 8 and node 9 as shown in Fig. 2 may

be the same in some triangulations. Because of the many slacks in

the least square procedure, our method still works in such situa-

tion. 

2.2.2. Fourth order HWENO approximation for ∇u and ∇v 

The procedure to obtain fourth order HWENO approximations

for ∇u and ∇v is similar to the one described in the previous sec-

tion for approximating ∇φ. 
Fig. 7. The uniform mesh for Example 6 with the number of nodes N = 369 . 

Fig. 8. Convergence study of the nonconvex and nonconcave case. 

s

Step 1. In order to get a fourth order approximation to ∇u , we

ould need to construct a fifth degree polynomial p 0 ( x, y ) as 

p 0 (x, y ) = 

5 ∑ 

j=0 

∑ 

s + r= j 
a r j ξ

s ηr (2.15)

t has 21 degrees of freedom, so we would need to use at least 21

onditions at the nodes. 

Step 2. Given the same big stencil S 0 = { 1 , 2 , · · · , 12 } as shown

n Fig. 2 , we would like to obtain the fifth degree polynomial p 0 ( x,

 ) such that 

p 0 (x l , y l ) = φl l = 1 , 2 , 3 

p 0 x (x l , y l ) = u l l = 1 , 2 , 3 

p 0 y (x l , y l ) = v l l = 1 , 2 , 3 

(2.16)

nd 

p 0 = argmin 

( ∑ 

l 

(p(x l , y l ) − φl ) 
2 + | �0 | 

∑ 

l 

(
∂ 

∂x 
p(x l , y l ) − u l 

)2 

+ | �0 | 
∑ 

l 

(
∂ 

∂y 
p(x l , y l ) − v l 

)2 
) 

(2.17)

here l = 4 , 5 , · · · , 12 , and the minimum is taken over all polyno-

ials p of degree at most 5. 

Again, we can rewrite the above problem into a matrix form

s before, facilitating its implementation. We skip the details here

o save space. The fifth degree polynomial p 0 thus obtained would

ave the following properties: p 0 xx ( x, y ) would be a fourth order

pproximation to φxx ( x, y ), p 0 xy ( x, y ) would be a fourth order ap-

roximation to φxy ( x, y ), and p 0 yy ( x, y ) would be a fourth order ap-

roximation to φyy ( x, y ). We have therefore obtained fourth order

pproximations to ∇ u and ∇ v . 

Step 3. We also need to construct four third degree polyno-

ials depending on four different small stencils in order to form

he HWENO approximation. We select these small stencils as S 1 =
 1 , 2 , 3 , 4 , 5 , 6 } , S 2 = { 1 , 2 , 3 , 4 , 7 , 8 } , S 3 = { 1 , 2 , 3 , 5 , 9 , 10 } and S 4 =
 1 , 2 , 3 , 6 , 11 , 12 } . We would like to construct the least square poly-

omials p k ( x, y ) 

p k (x, y ) = 

3 ∑ 

j=0 

∑ 

s + r= j 
a k r j ξ

s ηr , k = 1 , 2 , 3 , 4 

uch that 

p k (x l 1 , y l 1 ) = φl 1 
Fig. 9. The mesh for Example 7 with the number of nodes N = 4138 . 
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Fig. 10. Control problem. Left: surface of the solution; Right: the optimal control ω = sign (φy ) . 
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Fig. 11. The mesh for Example 8 with the number of nodes N = 1876 . 
nd 

p k = argmin 

( ∑ 

l 2 

(p(x l 2 , y l 2 ) −φl 2 ) 
2 + | �0 | 

∑ 

l 1 

(
∂ 

∂x 
p(x l 1 , y l 1 ) −u l 1 

)2

+ | �0 | 
∑ 

l 1 

(
∂ 

∂y 
p(x l 1 , y l 1 ) − v l 1 

)2 
) 

here l 1 = 1 , 2 , 3 and l 2 ∈ S k �{1, 2, 3}. The minimum is taken over

ll the polynomials p k of degree at most 3. Then, p k xx ( x, y ) is a sec-

nd order approximation to φxx ( x, y ), p k xy ( x, y ) is a second order

pproximation to φxy ( x, y ) and p k yy ( x, y ) is a second order approx-

mation to φyy ( x, y ), hence we have obtained four second order

pproximations to ∇ u and ∇ v . 

Step 4. We compute the smoothness indicators βl , l =
 , 1 , · · · , 4 as follows: 

k = 

∑ 

| l|≥3 

∫ 
�0 

| �0 | | l|−3 

(
∂ | l| 

∂ x l 1 ∂ y l 2 
p k (x, y ) 

)2 

d xd y, k = 0 , 1 , · · · , 4 

here l = (l 1 , l 2 ) and | l| = l 1 + l 2 . 

The remaining Step 5 through Step 7 are identical to the ones

escribed in the previous subsection for approximating φ. Once

he final fifth degree HWENO approximation polynomial p ( x, y ) is

btained in Step 7, we can take its second derivatives to obtain ap-

roximations to ∇u and ∇v . By Taylor expansions, we can verify

hat the HWENO approximations are indeed fourth order accurate

n smooth regions. 

. Numerical results 

In this section, we present numerical experiments using the

ourth order HWENO method on triangular meshes. The time step

s taken as 

t = 

1 

2 

√ | �| min 

α

here | �| min = min 

i 
| �i | , α is the parameter in the LF type mono-

one Hamiltonian. The only exception is for the accuracy test which

eeds smaller time step to guarantee that the spatial error dom-

nates. For the sake of evaluating the performance of different

hoices of the linear weights, we set three different types of lin-

ar weights for the accuracy tests: (1) γ = γ = γ = γ = γ =
0 1 2 3 4 
 . 2 ; (2) γ0 = 0 . 96 and γ1 = γ2 = γ3 = γ4 = 0 . 01 ; (3) γ0 = 0 . 04 and

1 = γ2 = γ3 = γ4 = 0 . 24 . We also present the results of the lin-

ar scheme, which use the linear weights instead of the nonlinear

eights, to make the comparison with our HWENO schemes. All

he numerical tests are nondimensionalized. 

xample 1. We solve the two dimensional linear scalar equation 

φt + φx + φy = 0 , −2 ≤ x, y ≤ 2 

ith the initial datum φ(x, y, 0) = − cos ( π2 (x + y )) and periodic

oundary condition. A sample mesh with boundary triangle size

 = 0 . 4 is shown in Fig. 3 . We compute the result up to t = 2 to

est the accuracy of φ and ∇φ of both the linear scheme and the

WENO schemes. The errors and numerical orders of accuracy are

hown in Tables 1 and 2 , where HWENO( i ) refers to the ( i )th choice

f the linear weights indicated above, for i = 1 , 2 , 3 . We can see

hat the HWENO schemes can achieve its designed order of accu-

acy, at least in L 1 and L 2 norms. We also notice that the differ-

nt choices of the linear weights do not change the results signifi-

antly. We list the CPU time of these schemes as well, see Table 3 .
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Table 1 

φt + φx + φy = 0 , φ(x, y, 0) = − cos ( π
2 
(x + y )) . Periodic boundary conditions. t = 2 . 

Linear: φ HWENO(1): φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 3.60E-02 1.76E-02 4.93E-01 3.15E-01 

492 1.78E-03 4.34 8.57E-04 4.36 7.02E-02 2.81 2.97E-02 3.40 

1876 1.01E-04 4.15 4.84E-05 4.15 1.32E-03 5.73 2.67E-04 6.80 

7337 6.18E-06 4.03 2.98E-06 4.02 2.29E-05 5.85 4.19E-06 6.00 

29204 3.57E-07 4.11 1.81E-07 4.04 5.32E-07 5.43 1.86E-07 4.49 

HWENO(2): φ HWENO(3): φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 1.82E-01 1.14E-01 5.05E-01 3.23E-01 

492 6.53E-03 4.80 1.91E-03 5.90 7.51E-02 2.75 3.30E-02 3.29 

1876 1.71E-04 5.25 5.46E-05 5.13 1.51E-03 5.64 3.16E-04 6.71 

7337 6.93E-06 4.63 3.02E-06 4.18 2.64E-05 5.84 4.57E-06 6.11 

29204 3.61E-07 4.26 1.82E-07 4.06 5.68E-07 5.54 1.87E-07 4.61 

Table 2 

φt + φx + φy = 0 , φ(x, y, 0) = − cos ( π
2 
(x + y )) . Periodic boundary conditions. t = 2 . 

Linear: ∇φ HWENO(1): ∇φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 6.47E-02 2.75E-02 8.67E-01 4.41E-01 

492 3.70E-03 4.13 1.43E-03 4.27 2.15E-01 2.01 1.12E-01 1.97 

1876 2.38E-04 3.96 7.93E-05 4.17 9.87E-03 4.44 1.81E-03 5.95 

7337 1.76E-05 3.76 5.03E-06 3.98 2.22E-04 5.47 2.68E-05 6.08 

29204 1.43E-06 3.62 3.03E-07 4.05 4.59E-06 5.60 4.99E-07 5.75 

HWENO(2): ∇φ HWENO(3): ∇φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 3.98E-01 1.49E-01 8.84E-01 4.53E-01 

492 2.55E-02 3.96 7.03E-03 4.40 2.26E-01 1.97 1.17E-01 1.96 

1876 7.19E-04 5.15 1.45E-04 5.60 1.16E-02 4.29 2.16E-03 5.75 

7337 2.52E-05 4.83 5.67E-06 4.68 2.65E-04 5.44 3.14E-05 6.11 

29204 1.43E-06 4.14 3.08E-07 4.20 5.30E-06 5.65 5.43E-07 5.85 

Table 3 

CPU time (in seconds) for φt + φx + φy = 0 , φ(x, y, 0) = − cos ( π
2 
(x + y )) . Periodic boundary con- 

ditions. t = 2 . 

N 134 492 1876 7337 29,204 

Linear scheme 0.72 8.17 78.82 914.32 9039.87 

Average time for three HWENO schemes 1.03 11.75 113.20 1328.17 13211.49 
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Example 2. We solve the two dimensional Burgers equation 

φt + 

1 
2 
(φx + φy + 1) 2 = 0 , −2 ≤ x, y ≤ 2 

with the initial datum φ(x, y, 0) = − cos ( π2 (x + y )) and periodic

boundary condition. The coarsest mesh with h = 0 . 4 is shown in

Fig. 3 . We compute the result up to t = 

0 . 5 
π2 . At this time, the so-

lution is still smooth. Both the linear scheme and the HWENO

schemes are tested in this case and the errors and the orders of

accuracy of φ and ∇φ are listed in Tables 4 and 5 . We can see that

the HWENO schemes can reach its designed order of accuracy. We

also list the CPU time of these schemes, see Table 6 . 

Example 3. We solve the two dimensional nonlinear equation 

φt − cos (φx + φy + 1) = 0 , −2 ≤ x, y ≤ 2 

with the initial datum φ(x, y, 0) = − cos ( π2 (x + y )) and periodic

boundary condition. The coarsest mesh with h = 0 . 4 is shown in

Fig. 3 . We compute the result up to t = 

0 . 5 
π2 . At this time, the so-

lution is still smooth. Again, we test the accuracy of φ and ∇φ
of both the linear scheme and the HWENO scheme. From Tables 7

and 8 , we can see that the HWENO schemes can reach the ex-

pected order of accuracy. We also list the CPU time of these

schemes, see Table 9 . 
For the following examples, we will use the first choice of the

inear weights, namely γ0 = γ1 = γ2 = γ3 = γ4 = 0 . 2 . 

xample 4. We solve the two dimensional Burgers equation 

φt + 

1 
2 
(φx + φy + 1) 2 = 0 , −2 ≤ x, y ≤ 2 

ith the initial datum φ(x, y, 0) = − cos ( π2 (x + y )) and periodic

oundary condition, and compute the result up to t = 1 . 5 /π2 . At

his time, the solution is not smooth any more. We compute the

WENO scheme with the mesh shown in Fig. 4 and plot the results

n Fig. 5 . From the figure, we can see that the HWENO scheme can

chieve good resolution in this case. 

xample 5. We solve the two dimensional equation 

φt − cos (φx + φy + 1) = 0 , −2 ≤ x, y ≤ 2 

ith the initial datum φ(x, y, 0) = − cos ( π2 (x + y )) and periodic

oundary condition, see [25] . The mesh is shown in Fig. 4 . We

ompute the result up to t = 1 . 5 /π2 when the solution is not

mooth any more. From Fig. 6 , we can see that the scheme can

chieve high resolution in this example. 

xample 6. We solve the problem 

φt + 

1 
4 
(φ2 

x − 1)(φ2 
x − 4) = 0 
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Table 4 

φt + 

1 
2 
(φx + φy + 1) 2 = 0 , φ(x, y, 0) = − cos ( π

2 
(x + y )) . Periodic boundary conditions. t = 0 . 5 /π2 . 

Linear: φ HWENO(1): φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 2.42E-02 3.55E-03 1.07E-01 3.11E-02 

492 2.60E-03 3.22 2.84E-04 3.65 1.70E-02 2.65 3.75E-03 3.05 

1876 1.87E-04 3.80 1.26E-05 4.50 4.09E-04 5.38 5.74E-05 6.03 

7337 1.39E-05 3.75 6.10E-07 4.36 1.18E-05 5.11 7.99E-07 6.17 

29204 4.96E-07 4.80 2.37E-08 4.69 4.80E-07 4.62 2.46E-08 5.02 

HWENO(2): φ HWENO(3): φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 5.75E-02 1.42E-02 1.10E-01 3.23E-02 

492 4.74E-03 3.60 4.87E-04 4.86 1.83E-02 2.59 4.15E-03 2.96 

1876 1.81E-04 4.71 1.17E-05 5.37 4.74E-04 5.27 6.76E-05 5.94 

7337 1.36E-05 3.73 5.97E-07 4.30 1.16E-05 5.36 8.67E-07 6.29 

29204 4.96E-07 4.78 2.36E-08 4.66 4.77E-07 4.60 2.51E-08 5.11 

Table 5 

φt + 

1 
2 
(φx + φy + 1) 2 = 0 , φ(x, y, 0) = − cos ( π

2 
(x + y )) . Periodic boundary conditions. t = 0 . 5 /π2 . 

Linear: ∇φ HWENO(1): ∇φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 7.87E-02 1.44E-02 1.95E-01 5.52E-02 

492 1.47E-02 2.42 1.65E-03 3.12 6.35E-02 1.62 9.32E-03 2.57 

1876 1.54E-03 3.25 9.69E-05 4.09 6.00E-03 3.40 5.58E-04 4.06 

7337 1.95E-04 2.98 5.70E-06 4.09 7.70E-04 2.96 1.95E-05 4.84 

29,204 1.19E-05 4.04 2.22E-07 4.68 1.69E-05 5.51 3.01E-07 6.02 

HWENO(2): ∇φ HWENO(3): ∇φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 1.48E-01 3.15E-02 1.96E-01 5.66E-02 

492 2.68E-02 2.47 2.58E-03 3.61 6.68E-02 1.55 1.01E-02 2.48 

1876 5.30E-03 2.34 1.78E-04 3.86 6.02E-03 3.47 6.17E-04 4.04 

7337 3.02E-04 4.13 6.58E-06 4.76 7.91E-04 2.93 2.17E-05 4.83 

29204 1.19E-05 4.67 2.24E-07 4.88 1.81E-05 5.45 3.21E-07 6.08 

Table 6 

CPU time (in seconds) for φt + 

1 
2 
(φx + φy + 1) 2 = 0 , φ(x, y, 0) = − cos ( π

2 
(x + y )) . Peri- 

odic boundary conditions. t = 0 . 5 /π2 . 

N 134 492 1876 7337 29,204 

Linear scheme 0.10 0.86 8.34 93.08 938.36 

Average time for HWENO schemes 0.13 1.12 10.88 122.01 1093.53 
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ith the initial datum φ(x, y, 0) = −2 | x | , see [38] . The periodic

oundary condition is applied in the y -direction. We solve the

roblem in the domain [ −1 , 1] × [ −0 . 2 , 0 . 2] with the sample mesh

hown in Fig. 7 . This is a demanding test case, many schemes can

ot obtain satisfactory results, some of them may even fail to con-

erge to the correct viscosity solution. We compute the results up

o t = 1 with h = 

1 
20 , 

1 
40 , 

1 
80 , and plot the solution along the cut

ine y = 0 . From Fig. 8 , we can see that the HWENO scheme can

onverge to the correct viscosity solution with mesh refinement. 

xample 7. We solve a problem from optimal control: 

φt + sin (y ) φx + ( sin (x ) + sign (φy )) φy − 1 

2 
sin 

2 (y ) + cos (x ) − 1 = 0 , 

−π < x, y < π

ith φ(x, y, 0) = 0 and periodic boundary conditions, see [25] . No-

ice that this is a HJ equation with a Hamiltonian which also de-

ends on x and y : 

t + H(φx , φy , x, y ) = 0 
he scheme in this case is the same 
 

 

 

 

 

dφi 

dt 
= −̂ H i 

du i 
dt 

= − ̂ H 1 u x i + H 2 u y i − H x i 

dv i 
dt 

= − ̂ H 1 v x i + H 2 v y i − H y i 

(3.1) 

n which the definition of ̂ H i , 
̂ H 1 u x i + H 2 u y i , 

̂ H 1 v x i + H 2 v y i , H x and

 y are similar as before, just adding x i and y i inside the Hamilto-

ians. The mesh is shown in Fig. 9 . The solution at t = 1 is shown

n Fig. 10 , and we can see that our scheme can obtain good result

or this example. 

xample 8. We solve the two dimensional Riemann problem: 

φt + sin (φx + φy ) = 0 , −1 ≤ x, y ≤ 1 

ith φ(x, y, 0) = π(| y | − | x | ) , see [25] . The mesh is shown in

ig. 11 . We compute the solution up to t = 1 . The solution is shown

n Fig. 12 . Again, we observe our scheme can achieve good result. 

xample 9. We solve the level set equation 

φt + sign (φ0 ) 
(√ 

φ2 
x + φ2 

y − 1 

)
= 0 , 1 

2 
< 

√ 

x 2 + y 2 < 1 

(3.2) 
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Table 7 

φt − cos (φx + φy + 1) = 0 , φ(x, y, 0) = − cos ( π
2 
(x + y )) . Periodic boundary conditions. t = 0 . 5 /π2 . 

Linear: φ HWENO(1): φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 5.77E-03 1.80E-03 2.47E-02 7.73E-03 

492 1.57E-03 1.88 2.52E-04 2.84 3.63E-03 2.77 8.14E-04 3.25 

1876 3.61E-04 2.12 1.92E-05 3.71 3.77E-04 3.27 2.39E-05 5.09 

7337 4.88E-05 2.89 1.55E-06 3.64 4.80E-05 2.97 1.47E-06 4.02 

29204 2.94E-06 4.05 7.02E-08 4.46 2.86E-06 4.07 6.76E-08 4.44 

116012 1.17E-07 4.65 2.96E-09 4.56 1.17E-07 4.61 2.96E-09 4.51 

HWENO(2): φ HWENO(3): φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 1.75E-02 3.55E-03 2.48E-02 8.05E-03 

492 1.59E-03 3.46 2.70E-04 3.72 3.77E-03 2.72 8.91E-04 3.18 

1876 3.61E-04 2.14 1.91E-05 3.82 3.80E-04 3.31 2.53E-05 5.14 

7337 4.86E-05 2.89 1.53E-06 3.64 4.79E-05 2.99 1.47E-06 4.11 

29204 2.94E-06 4.05 7.00E-08 4.45 2.84E-06 4.08 6.73E-08 4.45 

116,012 1.17E-07 4.65 2.96E-09 4.56 1.17E-07 4.60 2.96E-09 4.51 

Table 8 

φt − cos (φx + φy + 1) = 0 , φ(x, y, 0) = − cos ( π
2 
(x + y )) . Periodic boundary conditions. t = 0 . 5 /π2 . 

Linear: ∇φ HWENO(1): ∇φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 4.79E-02 7.15E-03 9.19E-02 1.74E-02 

492 1.74E-02 1.46 1.81E-03 1.98 2.84E-02 1.70 2.80E-03 2.63 

1876 4.42E-03 1.97 2.42E-04 2.91 6.90E-03 2.04 4.38E-04 2.68 

7337 7.71E-04 2.52 2.80E-05 3.11 1.70E-03 2.02 5.51E-05 2.99 

29,204 7.69E-05 3.33 1.48E-06 4.24 2.26E-04 2.91 2.95E-06 4.23 

116,012 5.58E-06 3.78 6.10E-08 4.60 7.14E-06 4.99 7.70E-08 5.26 

HWENO(2): ∇φ HWENO(3): ∇φ

N L ∞ error Order L 1 error Order L ∞ error Order L 1 error Order 

134 7.59E-02 9.75E-03 9.25E-02 1.77E-02 

492 2.25E-02 1.75 1.96E-03 2.32 2.87E-02 1.69 2.88E-03 2.62 

1876 5.25E-03 2.10 3.13E-04 2.64 6.98E-03 2.04 4.53E-04 2.67 

7337 1.10E-03 2.25 3.37E-05 3.22 1.75E-03 2.00 5.72E-05 2.99 

29204 1.08E-04 3.34 1.60E-06 4.40 2.36E-04 2.88 3.12E-06 4.20 

116,012 5.59E-06 4.28 6.18E-08 4.69 8.22E-06 4.85 8.02E-08 5.28 

Table 9 

CPU time (in seconds) for φt − cos (φx + φy + 1) = 0 , φ(x, y, 0) = − cos ( π
2 
(x + y )) . Periodic boundary 

conditions. t = 0 . 5 /π2 . 

N 134 492 1876 7337 29,204 116012 

Linear scheme 0.03 0.31 2.44 24.41 246.24 2554.30 

Average time for three HWENO schemes 0.03 0.38 3.00 29.65 300.55 2955.74 
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with the initial datum φ(x, y, 0) = φ0 (x, y ) . This problem comes

from Sussman et al. [33] . The solution has the same zero level set

as the initial condition φ0 , and the steady state solution is the dis-

tance function to that zero level curve. In this example, the exact

solution is the distance function to the inner circle of the domain.

It is difficult to use rectangular meshes for this problem. Instead

we use the triangle mesh shown in Fig. 13 left. We compute the

problem to reach a steady state solution, using the exact solution

of the steady state as the boundary condition. The numerical so-

lution is shown in Fig. 13 right. We can see that the scheme can

obtain good result for this test. 

Example 10. We solve the two dimensional eikonal equation 

φt + 

√ 

φ2 
x + φ2 

y + 1 = 0 , 0 ≤ x, y < 1 

with the initial datum φ(x, y, 0) = 

1 
4 ( cos (2 πx ) − 1)( cos (2 πy ) −

1) − 1 . This problem comes from Jin and Xin [13] . We compute the

solution up to t = 0 . 6 on the mesh shown in Fig. 14 . The solution is

shown in Fig. 15 . High resolutions are observed with our scheme. 
⎪⎩
xample 11. We solve 

φt − (1 − εK) 
√ 

φ2 
x + φ2 

y + 1 = 0 , 0 ≤ x, y < 1 

here K is the mean curvature defined by: 

 = −φxx (1 + φ2 
y ) − 2 φxy φx φy + φyy (1 + φ2 

x ) 

(1 + φ2 
x + φ2 

y ) 
3 / 2 

nd ε is a small constant, with the initial datum φ(x, y, 0) = 1 −
1 
4 ( cos (2 πx ) − 1)( cos (2 πy ) − 1) and periodic boundary condition

s used. This problem comes from Osher and Sethian [24] . 

When ε = 0 , we can treat the equation with the same method

s before. When ε � = 0, we can rewrite the equation as follows: 

t + H(φx , φy , φxx , φxy , φyy ) = 0 . 

hen, we have 

 

 

 

 

 

dφi 

dt 
= −̂ H (φx , φy , φxx , φxy , φyy ) 

du i 
dt 

= − ̂ H 1 u x + H 2 u y − H 3 u xx − H 4 u xy − H 5 u yy 

dv i = − ̂ H 1 v x + H 2 v y − H 3 v xx − H 4 v xy − H 5 v yy 

(3.3)
dt 
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Fig. 12. Two dimensional Riemann problem with nonconvex and nonconcave flux. Left: surface of the solution; Right: the contour plot of the solution. 

Fig. 13. The level set equation. Left: the sample of the mesh; Right: the surface of the solution. 

Fig. 14. The mesh for Examples 10 and 11 with the number of nodes N = 7357 . 
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φ

H
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d

q

a

q
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p  

d  

t  
ere, H 3 , H 4 and H 5 are the partial derivatives of H with respect to

xx , φxy and φyy , respectively. We take H 3 as 

 3 = H 3 

⎛ ⎜ ⎜ ⎝ 

k i ∑ 

l=0 

θl φx l 

2 π
, 

k i ∑ 

l=0 

θl φy l 

2 π
, 

k i ∑ 

l=0 

θl u x l 

2 π
, 

k i ∑ 

l=0 

θl ( u y l + v x l ) 

4 π
, 

k i ∑ 

l=0 

θl v y l 

2 π

⎞ ⎟ ⎟ ⎠ 

nd define H 4 and H 5 similarly. In order to obtain the approxima-

ion to the second derivatives u xx , u xy , u yy , we simply find a third

egree polynomial q 0 ( x, y ), such that: 

 0 (x l , y l ) = u l l = 1 , 2 , 3 

nd 

 0 = argmin 

( ∑ 

l 

(p(x l , y l ) − u l ) 
2 

) 

here l = 4 , 5 , · · · , 12 , and the minimum is taken over all the

olynomials p of degree at most 3. Then, we take the second

erivatives of the obtained polynomial q 0 as approximations to

he second derivatives u xx , u xy , u yy . In a similar way, we can obtain
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Fig. 15. Two dimensional Eikonal equation, Left: the surface of the solution; Right; the contour plot of the solution. 

Fig. 16. Propagating surface with 14,392 cells. Left: ε = 0 ; Right: ε = 0 . 1 . 
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pproximations to the second derivatives v xx , v xy , v yy . The time

tep is taken as 

t = 

1 

max 

{ 

α

0 . 5 
√ | �| min 

, 
γ1 

0 . 25 | �| min 
, 

γ2 

0 . 25 | �| min 
, 

γ3 

0 . 25 | �| min 

} , 

here γ1 = max | H 3 | , γ2 = max | H 4 | , γ3 = max | H 5 | . We compute

he solution on the mesh shown in Fig. 14 , and list the results

f ε = 0 (pure convection) and ε = 0 . 1 in Fig. 16 . The surfaces

t t = 0 for ε = 0 and for ε = 0 . 1 , and at t = 0 . 1 for ε = 0 . 1 are

hifted downward in order to show the details of the solution at

ater time. We can see that our scheme can obtain good result in

his case. 

. Conclusion 

In this paper, we design a fourth order finite difference HWENO

cheme for the Hamilton–Jacobi equations on triangle meshes. The

ain advantage of this scheme is its compactness and efficiency.

xtensive numerical experiments show that the scheme can main-

ain high order accuracy in the smooth case and can keep high

esolution in the non-smooth case. 
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