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In this paper, a new type of finite difference Hermite weighted essentially non-oscillatory 
(HWENO) schemes are constructed for solving Hamilton–Jacobi (HJ) equations. Point values 
of both the solution and its first derivatives are used in the HWENO reconstruction 
and evolved via time advancing. While the evolution of the solution is still through 
the classical numerical fluxes to ensure convergence to weak solutions, the evolution of 
the first derivatives of the solution is through a simple dimension-by-dimension non-
conservative procedure to gain efficiency. The main advantages of this new scheme include 
its compactness in the spatial field and its simplicity in the reconstructions. Extensive 
numerical experiments in one and two dimensional cases are performed to verify the 
accuracy, high resolution and efficiency of this new scheme.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we design a new finite difference Hermite weighted essentially non-oscillatory (HWENO) method to solve 
the following Hamilton–Jacobi (HJ) equation

φt + H(∇xφ) = 0, φ(x,0) = φ0(x) x ∈ � ⊂ Rd

where ∇xφ = (φx1 , φx2 , ..., φxn )
T . We consider only up to two dimensions for simplicity and hence use x and y instead of x1

and x2 in the sequel.
The HJ equations come from many applications, from control theory and geometric optics, to image processing and level 

set method and so on. It is well known that solutions of the nonlinear HJ equation are typically continuous. However, the 
derivatives of the solutions could be discontinuous even though the initial condition φ0(x) is smooth enough. The (weak) 
solution may not be unique unless suitable assumptions (viscosity solutions) are made, see, e.g. [4].

It is well known that HJ equations are closely related to conservation laws, so many successful numerical methods for 
solving conservation laws can be easily adapted to solve HJ equations. Hu and Shu [6] proposed a discontinuous Galerkin 
(DG) method to solve the HJ equation. Li and Shu [10] reinterpreted and simplified the two dimensional method of Hu 
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and Shu. Zhu and Qiu [22,23] used HWENO method for the HJ equations on both structured and unstructured meshes. Tao 
and Qiu [17] made use of the central HWENO method to solve the HJ equation successfully. As most of the finite volume 
methods resort to solving the conservation laws for the derivatives of the solution that seems to be not direct, Cheng and 
Shu [2] designed DG methods to directly solve the HJ equation. Later, Yan and Osher [18] proposed a local DG (LDG) method 
to solve the HJ equation directly. In [3] Cheng and Wang improved the work in [2] by utilizing the Roe speed and entropy 
fix at the cell interface, and based on [3], Zheng and Qiu [20] developed HWENO schemes to directly solve the HJ equations.

Comparing to the finite volume or DG methods, which evolve cell averages or a complete polynomial, the finite difference 
methods, which evolve only point values, may be easier to implement and more efficient in multi-dimensions. Now, let us 
briefly review the early works. Crandall and Lion [5] introduced first order monotone schemes which can converge to 
the viscosity solution. Osher and Shu [11] presented higher order finite difference ENO schemes, and Jiang and Peng [7]
developed higher order finite difference weighted ENO (WENO) schemes. Qiu et al. [14,12] put forward Hermite WENO 
(HWENO) schemes for HJ equations with Runge–Kutta or Lax–Wendroff time discretization. Finite difference schemes on 
unstructured meshes have also been designed. Abgrall [1] proposed first order monotone schemes on triangular meshes. 
Lafon and Osher [9] designed second order schemes. Higher order WENO schemes were developed by Zhang and Shu [19], 
and higher order HWENO schemes were proposed by Zhu and Qiu [21]. For a detailed review of high order HJ equations 
about both the finite difference and finite volume method, we recommend [15].

In this paper, following the methods developed in [13,14,12], both φ and its first derivative (e.g. φx in one dimension) 
at the grid points are used in the HWENO method to reconstruct point values of the derivatives, and both of them are 
evolved by time marching. Comparing with the classical WENO method developed by Jiang and Shu in [8], the HWENO 
method requires extra work and storage but it is much more compact with the same order of accuracy. Comparing with 
DG methods, the HWENO method could achieve high order accuracy by adaptive stencils and hence could maintain the 
essentially non-oscillatory property. Notice that the HJ equations cannot be written in a “conservation form”, hence it would 
seem more natural to use finite difference methods based on point values instead of finite volume methods based on cell 
averages. In this way, we could avoid the costly multi-dimensional reconstructions and could use dimension-by-dimension 
interpolations, thereby reducing the computational cost and improving efficiency. It is important to use numerical fluxes 
(monotone Hamiltonians) to evolve the solution itself for HJ equations to ensure convergence to weak solutions. Since the 
derivatives of the HJ solution satisfy conservation laws, previous HWENO schemes tend to use conservative approximations 
to evolve them as well, hence causing complications and extra computational cost in multi-dimensional reconstruction. In 
this paper, we design a new HWENO scheme which evolves the solution itself through classical numerical fluxes to ensure 
convergence to weak solutions, and evolves the derivatives of the solution in a non-conservative fashion, thereby allowing 
efficient dimension-by-dimension interpolation resulting in a gain of simplicity and efficiency. This strategy is similar to 
solvers for conservation laws, such as discontinuous Galerkin methods or Hermite-type methods, which evolve cell averages 
in a conservative fashion but evolves other degrees of freedom (such as slopes or point values at cell interfaces) in a 
non-conservative fashion, without affecting convergence to weak solutions. Extensive numerical experiments are performed 
to illustrate the good performance of our schemes.

This paper is organized as follows. In Section 2, we describe the detailed steps about the construction and implementa-
tion of the finite difference HWENO schemes in both one and two dimensions for the HJ equations. In Section 3, we present 
extensive numerical results to verify the accuracy, stability and resolution of our method. Finally, a conclusion is given in 
Section 4.

2. The numerical method for the Hamilton–Jacobi equations

In this section, we will give the framework of the schemes first and then the detailed steps of the HWENO reconstruc-
tions for both one and two dimensional Hamilton–Jacobi equations.

2.1. One dimensional Hamilton–Jacobi equations

The Hamilton–Jacobi equations in the one dimensional case can be written as:

φt + H(φx) = 0 φ(x,0) = φ0(x) x ∈ [a,b]. (2.1)

For simplicity, we consider a uniform mesh that is defined as a = x0 < x1 < · · · < xN−1 < xN = b. However, this assump-
tion is not needed for our schemes. We denote φ j = φ(x j, t) as the numerical approximation to the viscosity solution and 
u j = φx(x j, t) as the numerical approximation to its first derivative. Then, by taking the spatial derivative on both sides 
of (2.1), we obtain the following system of equations:⎧⎪⎪⎨

⎪⎪⎩
dφ j

dt
= − H(φx)|x=x j

du j

dt
= − H1(u j)ux|x=x j

(2.2)

where the H1(u) = ∂ H
∂u . We replace H(φx)|x=x j with a suitable monotone numerical flux, denoted by Ĥ(u−

j , u+
j ), and we 

will use the simple local Lax–Friedrichs flux as an example in the sequel. For stability, we also split H1(u j) into a positive 
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part and a negative part locally, denoted by H+
1 j and H−

1 j respectively, and approximate ux by upwind methods. Then, we 
have the following scheme:⎧⎪⎪⎨

⎪⎪⎩
dφ j

dt
= − Ĥ(u−

j , u+
j )

du j

dt
= − H+

1 ju
−
x j − H−

1 ju
+
x j

(2.3)

where

Ĥ(u−
j , u+

j ) = H(
u−

j + u+
j

2
) − 1

2
α(u+

j − u−
j ) (2.4)

with α = max
u∈D

|H1(u)|, D = [min(u−
j , u+

j ), max(u−
j , u+

j )], and

H−
1 j = 1

2
(H1(

u−
j + u+

j

2
) − |H1(

u−
j + u+

j

2
)|), H+

1 j = 1

2
(H1(

u−
j + u+

j

2
) + |H1(

u−
j + u+

j

2
)|). (2.5)

u±
j and u±

x j , the left and right limits of the point values of u(x j, t) and ux(x j, t), will be approximated by the HWENO 
method which we will describe in detail in the next subsection. Notice that, even though we already have u j as part of our 
numerical solution, we would still want to obtain upwind-biased approximations u±

j through the point values of φ and u
nearby (of course without using u j itself) in order to use the monotone flux to ensure stability and convergence to weak 
solutions.

We observe that either H−
1 j or H+

1 j is equal to zero. In practice, we need to compute u−
x j only when H+

1 j is not equal 
to zero, and compute u+

x j only when H−
1 j is not equal to zero. This will reduce the computational cost because only one of 

the u−
x j and u+

x j needs to be computed.
After the spatial discretization, we can rewrite the scheme as Ut = L(U), where L denotes the operator of the spatial 

discretization, and then use the third-order total variation diminishing (TVD) Runge–Kutta time discretization [16] to solve 
the semi-discrete form (2.3):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(1) = Un + �tL(Un)

U(2) = 3

4
Un + 1

4
(U(1) + �tL(U(1)))

Un+1 = 1

3
Un + 2

3
(U(2) + �tL(U(2))).

(2.6)

2.2. HWENO reconstruction in one dimension

In this subsection, we will describe the HWENO reconstruction procedure for u±
j = φ±

x j and u±
x j .

Step 1. Reconstruction of φ−
x j by the HWENO method from the point values {φi, ui}

1.1. Given the small stencils S0 = {x j−2, x j−1, x j}, S1 = {x j−1, x j, x j+1}, S2 = {x j−2, x j−1, x j, x j+1}, and the big stencil 
T = {S0, S1, S2}, we construct Hermite cubic polynomials p0(x), p1(x), p2(x), and a fifth-degree polynomial q(x) such that:

p0(x j+i) = φ j+i, i = −2,−1,0, p′
0(x j−1) = u j−1

p1(x j+i) = φ j+i, i = −1,0,1, p′
1(x j+1) = u j+1

p2(x j+i) = φ j+i, i = −2,−1,0,1,

q(x j+i) = φ j+i, i = −2,−1,0,1, q′(x j±1) = u j±1.

In fact, we only need the derivative values of these polynomials at the point x = x j , which have the following expressions:

p0x(x j) = −φ j−2 + 4φ j−1 − 5φ j + 4u j−1�x

2�x

p1x(x j) = −φ j−1 + 4φ j − 5φ j+1 + 2u j+1�x

4�x

p2x(x j) = φ j−2 − 6φ j−1 + 3φ j + 2φ j+1

6�x

qx(x j) = −φ j−2 + 18φ j−1 − 9φ j − 10φ j+1 + 9u j−1�x + 3u j+1�x
.

18�x
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1.2. For each small stencil Sm , m = 0, 1, 2, we compute the smoothness indicator, which measures the smoothness of the 
polynomials in each stencil: the smaller the indicator is, the smoother the polynomial is in the stencil. We use the formula 
similar to [8] to figure out the indicators, denoted by βm , m = 0, 1, 2:

βm =
3∑

l=2

�x2l−1(
∂ l

∂xl
pm(x j))

2 m = 0,1,2 (2.7)

1.3. We compute the linear weights, denoted by γm , m = 0, 1, 2, satisfying:

qx(x j) =
2∑

m=0

γm pmx(x j)

for all the point values of {φi} and {ui} in the big stencil T , which leads to

γ0 = 1

4
, γ1 = 1

3
, γ2 = 5

12
.

1.4. We compute the nonlinear weights based on the linear weights and the smoothness indicators by:

ωm = ω̄m∑2
k=0 ω̄k

, ω̄m = γm

(βm + ε)2
, m = 0,1,2 (2.8)

where ε is a small positive number to avoid the denominator becoming zero. In our numerical tests, we use ε = 10−6. The 
final HWENO approximation expression is:

φ−
x j =

2∑
m=0

ωm pmx(x j).

The reconstruction of u+
j is mirror symmetric with respect to x j of the above procedure.

Step 2. Reconstruction of u−
x j by the HWENO method from the point values {φi, ui}

2.1. Given the small stencils S0 = {x j−2, x j−1, x j}, S1 = {x j−1, x j, x j+1}, S2 = {x j−2, x j−1, x j, x j+1}, and the big stencil 
T = {S0, S1, S2}, we construct Hermite quartic polynomials p0(x), p1(x), p2(x), and a sixth-degree polynomial q(x) such 
that:

p0(x j+i) = φ j+i, i = −2,−1,0, p′
0(x j+i) = u j+i, i = −1,0

p1(x j+i) = φ j+i, i = −1,0,1, p′
1(x j+i) = u j+i, i = 0,1

p2(x j+i) = φ j+i, i = −2,−1,0,1, p′
1(x j) = u j

q(x j+i) = φ j+i, i = −2,−1,0,1, q′(x j+i) = u j+1, i = −1,0,1.

Again, we only need the second order derivative values of these polynomials at the point x j , which have the following 
expressions:

p0xx(x j) = 10u j�x + 8u j−1�x + φ j−2 + 16φ j−1 − 17φ j

2(�x)2

p1xx(x j) = −4u j�x − 2u j+1�x + φ j−1 − 8φ j + 7φ j+1

2(�x)2

p2xx(x j) = 6u j�x − φ j−2 + 12φ j−1 − 15φ j + 4φ j+1

6(�x)2

qxx(x j) = 18u j�x + 18u j−1�x − 6u j+1�x + φ j−2 + 54φ j−1 − 81φ j + 26φ j+1

18(�x)2
.

2.2. For each small stencil Sm , m = 0, 1, 2, we compute the smoothness indicators respectively:

βm =
4∑

�x2l−1(
∂ l

∂xl
pm(x j))

2, m = 0,1,2. (2.9)

l=3
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2.3. We compute the linear weights, denoted by γm , m = 0, 1, 2, satisfying:

qxx =
2∑

m=0

γm pmxx(x j)

for all the point values of {φi} and {ui} in the big stencil T , which leads to

γ0 = 1

4
, γ1 = 1

3
, γ2 = 5

12
.

2.4. We compute the nonlinear weights ωm as in (2.8), the final HWENO approximation expression is:

u−
x j =

2∑
m=0

ωm pmxx(x j).

The reconstruction of u+
x j is mirror symmetric with respect to x j of the above procedure.

2.3. Two dimensional Hamilton–Jacobi equations

The Hamilton–Jacobi equation in the two dimensional case is written as

φt + H(φx, φy) = 0 φ(x, y,0) = φ0(x, y) (x, y) ∈ [a,b] × [c,d] (2.10)

For simplicity, we also assume the computational domain has been uniformly meshed as a = x0 < x1 < · · · < xN−1 < xN = b
and c = y0 < y1 < · · · < yN−1 < yN = d. Furthermore, we define φi j = φ(xi, y j, t) as the numerical approximation to the 
viscosity solution, and uij = φx(xi, y j, t) and vij = φy(xi, y j, t) as the numerical approximations to its first order partial 
derivatives with respect to the variables x and y, respectively. Then, by taking spatial derivatives on both sides of (2.10), we 
have the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dφi j

dt
= − H(φx, φy)

duij

dt
= − H1(u, v)ux − H2(u, v)vx

dvij

dt
= − H1(u, v)u y − H2(u, v)v y

(2.11)

where the H1(u) = ∂ H
∂u and H2(u) = ∂ H

∂v . As u y is equal to vx in the smooth case, we can also rewrite the system of 
equations as the following:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dφi j

dt
= − H(φx, φy)

duij

dt
= − H1(u, v)ux − H2(u, v)u y

dvij

dt
= − H1(u, v)vx − H2(u, v)v y .

(2.12)

In the same way as before, we replace H(φx, φy) with a monotone numerical flux, and split H1(u, v) and H2(u, v) into 
a positive part and a negative part respectively. Then we discretize (2.12) into the following⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dφi j

dt
= − Ĥ(u−

i j , u+
i j , v−

i j , v+
i j )

duij

dt
= − H+

1 i ju
−
x i j − H−

1 i ju
+
x i j − H2i ju y i j

dvi j

dt
= − H1i j vxi j − H+

2 i j v−
y i j

− H−
2 i j v+

y i j

(2.13)

where Ĥ(u−
i j , u

+
i j , v

−
i j , v

+
i j ) refers to a two-dimensional monotone flux, such as the simple local Lax–Friedrichs flux defined 

as

Ĥ(u−
i j , u+

i j , v−
i j , v+

i j ) = H(
u−

i j + u+
i j

2
,

v−
i j + v+

i j

2
) − 1

2
α(u+

i j − u−
i j ) − 1

2
β(v+

i j − v−
i j ),

where α = max
u∈D,v∈E

|H1(u, v)| and β = max
u∈D,v∈E

|H2(u, v)|. With regard to α, we take D as a local region and E as a global 

region, namely D = [min(u−, u+), max(u−, u+)] and E = [min(v−, v+), max(v−, v+)]|[c,d] . We compute the coefficient β
i j i j i j i j
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Table 1
CPU time (in seconds) for the HWENO-NC and HWENO-C schemes.

Example 3.1 Example 3.2 Example 3.3 Example 3.4

HWENO-NC 2.2152 0.4680 0.1092 246.9964
HWENO-C 3.5568 0.6708 0.1248 268.7273

similarly, except that we then take D globally and E locally. This way of computing the local Lax–Friedrichs flux is needed 
to ensure monotonicity, see [11]. H1 i j , H2 i j are the average values of H1 and H2 at (xi, y j) defined as the following:

H1i j = H1(
u−

i j + u+
i j

2
,

v−
i j + v+

i j

2
), H2i j = H2(

u−
i j + u+

i j

2
,

v−
i j + v+

i j

2
),

and H−
1 , H+

1 , H−
2 , H+

2 as the negative and positive parts of H1 and H2 respectively, defined as follows:

H−
1 i j = 1

2
(H1i j − |H1i j|), H+

1 i j = 1

2
(H1i j + |H1i j|),

H−
2 i j = 1

2
(H2i j − |H2i j|), H+

2 i j = 1

2
(H2i j + |H2i j|).

φ±
x i j , u±

x i j and v±
x i j are the left and right limits of the point values u(xi , y j, t), ux(xi, y j, t) and vx(xi, y j, t) with respect 

to the variable x, and φ±
y i j

, u±
y i j

and v±
y i j

are the left and right limits of the point values v(xi, y j, t), u y(xi, y j, t) and 
v y(xi, y j, t) with respect to the variable y. The values of φ±

x i j , φ
±
y i j

, u±
x i j and v±

y i j
are reconstructed with the one dimen-

sional method in each direction with the other direction fixed. As to the mixed derivatives vx, u y , we simply use the fourth 
order central approximations in the x and y directions, for there is reason to believe the mixed derivatives play lesser role 
on spurious oscillations according to [14]:

vxi j = −vi+2, j + 8vi+1, j − 8vi−1, j + vi−2, j

12�x
,

u y ij = −ui, j+2 + 8ui, j+1 − 8ui, j−1 + ui, j−2

12�y
.

In practice, we only need to compute either u−
x i j or u+

x i j but not both. v−
y i j

and v+
y i j

can be computed similarly.

Then, we can rewrite the scheme (2.13) as Ut =L(U), where L denotes the operator of spatial discretization, and use the 
third-order total variation diminishing (TVD) Runge–Kutta time discretization (2.6) to solve the semi-discrete form (2.13).

3. Numerical results

In this section, we provide numerical experiments for the fifth order HWENO method in one and two dimensional 
cases. In all the accuracy tests, we set �t = 0.6�x

5
3 /α in the one dimensional case and �t = 1

α

0.6�x
5
3

+ β

0.6�y
5
3

in the two 

dimensional case, in order to guarantee that spatial numerical errors dominate. In other tests, we simply take �t = 0.6�x/α
and �t = 1

α
0.6�x + β

0.6�y

in the one and two dimensional cases respectively, unless otherwise indicated. The HWENO method 

for HJ equations with conservative approximations to the derivative variables (HWENO-C), developed by Qiu and Shu [14], 
using the same mesh partition, time steps and local Lax–Friedrichs flux, is used for comparison in some of the numerical 
examples.

In Table 1, we provide a CPU time comparison between the method developed in this paper which uses non-conservative 
approximation for the derivative variables (HWENO-NC) and the HWENO-C method for accuracy tests in Examples 3.1, 3.2, 
3.3 and 3.4 below. The total CPU time for N = 10, 20, 40, 80, 160 and 320 cells is recorded. We observe that the HWENO-NC 
method spends less CPU time than the HWENO-C method. The computations are performed on a Dell Vostro 2420 with 
4 GB RAM.

Example 3.1. We solve the following linear scalar equation:

φt + φx = 0, 0 ≤ x ≤ 2

with the initial condition φ(x, 0) = sin(πx), and periodic boundary condition. We compute the solution up to t = 2, the 
numerical errors and numerical orders of accuracy for the HWENO-NC method are shown in Table 2. We can see that the 
scheme achieves or exceeds fifth order accuracy, and it actually yields smaller errors than the HWENO-C method.
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Table 2
φt + φx = 0, φ(x, 0) = sin(πx). Periodic boundary conditions. t = 2.

N HWENO-NC HWENO-C

L∞ error Order L1 error Order L∞ error Order L1 error Order

10 2.58E−02 1.06E−02 3.49E−02 2.58E−02
20 9.42E−04 4.77 4.40E−04 4.59 1.76E−03 4.31 1.16E−03 4.48
40 2.75E−05 5.10 1.56E−05 4.81 7.28E−05 4.59 4.49E−05 4.69
80 8.34E−07 5.05 4.95E−07 4.98 2.48E−06 4.87 1.54E−06 4.86
160 1.94E−08 5.43 1.02E−08 5.61 5.99E−08 5.37 3.62E−08 5.41
320 1.68E−10 6.86 8.66E−11 6.88 5.41E−10 6.79 3.22E−10 6.82

Table 3
φt + 1

2 (φx + 1)2 = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 0.5/π2.

N HWENO-NC HWENO-C

L∞ error Order L1 error Order L∞ error Order L1 error Order

10 2.20E−03 8.04E−04 1.76E−03 6.95E−04
20 1.64E−04 3.75 3.24E−05 4.63 1.15E−04 3.94 2.74E−05 4.66
40 1.27E−05 3.69 1.88E−06 4.11 1.50E−05 2.94 1.81E−06 3.92
80 5.10E−07 4.63 5.95E−08 4.98 6.25E−07 4.58 6.63E−08 4.77
160 1.70E−08 4.91 1.05E−09 5.82 2.11E−08 4.89 1.34E−09 5.63
320 2.87E−10 5.88 1.93E−11 5.76 4.08E−10 5.69 2.96E−11 5.50

Table 4
φt − cos(φx + 1) = 0, φ(x, 0) = − cos(πx). Periodic boundary conditions. t = 0.5/π2.

N HWENO-NC HWENO-C

L∞ error Order L1 error Order L∞ error Order L1 error Order

10 1.54E−03 7.38E−04 1.91E−03 8.74E−04
20 1.68E−04 3.20 2.96E−05 4.64 2.12E−04 3.17 4.62E−05 4.24
40 1.64E−05 3.35 1.96E−06 3.92 2.34E−05 3.18 2.66E−06 4.12
80 9.62E−07 4.10 7.24E−08 4.76 1.31E−06 4.16 1.08E−07 4.62
160 5.49E−08 4.13 2.64E−09 4.78 7.19E−08 4.19 4.06E−09 4.73
320 1.40E−09 5.29 7.60E−11 5.12 2.07E−09 5.12 1.27E−10 5.00

Example 3.2. We solve the Burgers equation:

φt + 1

2
(φx + 1)2 = 0, −1 ≤ x ≤ 1

with the initial condition φ(x, 0) = − cos(πx), and periodic boundary condition. We compute the solution up to t = 0.5
π2 . At 

this time, the solution is still smooth. The numerical results are shown in Table 3. Again, we can see that the scheme can 
reach its designed order of accuracy, and actually yields smaller errors than the HWENO-C method for the more refined 
meshes.

Example 3.3. We solve the nonlinear scalar equation:

φt − cos(φx + 1) = 0, −1 < x < 1

with the initial condition φ(x, 0) = − cos(πx), and periodic boundary condition. When t = 0.5
π2 , the solution is still smooth. 

The numerical results are shown in Table 4. Again, we observe that the scheme can achieve its designed accuracy, and 
actually yields smaller errors than the HWENO-C method for the more refined meshes.

Example 3.4. We solve the two dimensional Burgers equation

φt + 1

2
(φx + φy + 1)2 = 0 − 2 ≤ x, y ≤ 2

with the initial data φ(x, y, 0) = − cos( π
2 (x + y)) and periodic boundary condition. We compute the result up to t = 0.5/π2

and the solution is still smooth at that time. Again, from Table 5, we can see that the scheme achieves its designed order. 
The errors we obtain are comparable with the one obtained by the HWENO-C method.

Example 3.5. We solve the linear equation:

φt + φx = 0
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Table 5
φt + 1

2 (φx + φy + 1)2 = 0, φ(x, y, 0) = − cos( π
2 (x + y)). Periodic boundary conditions. t = 0.5/π2.

N HWENO-NC HWENO-C

L∞ error Order L1 error Order L∞ error Order L1 error Order

10 × 10 1.78E−03 8.31E−04 1.83E−03 8.96E−04
20 × 20 3.64E−04 2.29 5.49E−05 3.92 4.19E−04 2.13 6.10E−05 3.88
40 × 40 3.21E−05 3.51 2.97E−06 4.21 3.62E−05 3.54 3.16E−06 4.27
80 × 80 1.36E−06 4.56 1.06E−07 4.81 1.46E−06 4.63 1.11E−07 4.84
160 × 160 4.51E−08 4.91 3.17E−09 5.06 4.64E−08 4.98 2.61E−09 5.41
320 × 320 9.86E−10 5.51 8.71E−11 5.19 8.74E−10 5.73 4.99E−11 5.71

Fig. 1. One dimensional linear equation. N = 100 cells. (a) t = 2.0, (b) t = 8.0. Solid line: the exact solution; square symbol: the HWENO-NC scheme; plus
symbol: the HWENO-C scheme.

with the initial condition φ(x, 0) = φ0(x − 0.5) together with the periodic boundary condition, where

φ0(x) = −(

√
3

2
+ 9

2
+ 2π

3
)(x + 1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 cos(
3πx2

2
) − √

3 −1 ≤x < −1

3
,

3

2
+ 3 cos(2πx) −1

3
≤x < 0,

15

2
− 3 cos(2πx) 0 ≤x <

1

3
,

28 + 4π + cos(3πx)

3
+ 6πx(x − 1)

1

3
≤x < 1.

We plot the results at t = 2.0 and t = 8.0 in Fig. 1(a) and Fig. 1(b) respectively, and observe that our scheme can reach 
comparable resolution for the corner singularity with the one obtained by the HWENO-C method.

Example 3.6. We solve one dimensional Burgers equation:

φt + 1

2
(φx + 1)2 = 0 − 1 ≤ x ≤ 1

with φ(x, 0) = − cos(πx) and periodic boundary conditions. We compute the solution up to t = 3.5/π2. At this time, the 
discontinuous derivative has already appeared in the solution. We show the numerical results with the meshes N = 40 and 
N = 80 in Fig. 2(a) and Fig. 2(b) respectively. We can see that both schemes give high resolution for this problem. We also 
plot the derivatives of schemes with the meshes N = 40 and N = 80 in Fig. 3(a) and Fig. 3(b) respectively, and we observe 
sharp resolution with correct shock location for both schemes. This verifies the claim that our non-conservative treatments 
of the solution derivatives does not affect convergence to weak solutions with correct shock speeds.
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Fig. 2. One dimensional Burgers equation. t = 3.5/π2. (a) N = 40 and (b) N = 80. Solid line: the exact solution; square symbol: the HWENO-NC scheme; 
plus symbol: the HWENO-C scheme.

Fig. 3. The derivative of the one dimensional Burgers equation. t = 3.5/π2. (a) N = 40 and (b) N = 80. Solid line: the exact solution; square symbol: the 
HWENO-NC scheme; plus symbol: the HWENO-C scheme.

Example 3.7. We solve the nonlinear equation with a non-convex/non-concave flux

φt − cos(φx + 1) = 0

with the initial data φ(x, 0) = − cos(πx) and periodic boundary conditions. This time, we compute the solution up to 
t = 1.5/π2. We observe the results with N = 40 and N = 80, which are shown in Fig. 4, and find that both methods give 
high resolution in this case. We also plot the derivatives of the schemes with the meshes N = 40 and N = 80 in Fig. 5, and 
observe that both give correct shock location and good resolution.

Example 3.8. We solve the problem

φt + 1

4
(φ2

x − 1)(φ2
x − 4) = 0 − 1 < x < 1

with the initial data φ(x, 0) = −2|x|. As the derivative of φ(x, 0) is discontinuous, the initial value of u is undefined at x = 0
which is a grid point. We simply take u(0, 0) = 0 in our code, and observe that the value of u(0, 0) makes little influence 
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Fig. 4. H(u) = − cos(u + 1). t = 1.5/π2. (a) N = 40 and (b) N = 80. Solid line: the exact solution; square symbol: the HWENO-NC scheme; plus symbol: 
the HWENO-C scheme.

Fig. 5. The derivative plot, H(u) = − cos(u + 1). t = 1.5/π2. (a) N = 40 and (b) N = 80. Solid line: the exact solution; square symbol: the HWENO-NC 
scheme; plus symbol: the HWENO-C scheme.

on the final result in our numerical experiment. We plot the results at t = 1 with N = 40 and N = 80 cells in Fig. 6 and 
Fig. 7, observe that both the function values and its derivatives give good results for both schemes.

Example 3.9. We solve the two dimensional Burgers equation

φt + 1

2
(φx + φy + 1)2 = 0 − 2 ≤ x, y ≤ 2

with the initial data φ(x, y, 0) = − cos( π
2 (x + y)) and periodic boundary condition. We compute the result up to t = 1.5/π2

and the derivative discontinuity has appeared in the solution. We plot the results with 40 × 40 cells in Fig. 8 and observe 
high resolution in this example.

Example 3.10. We solve a problem from optimal control:

φt + sin(y)φx + (sin(x) + sign(φy))φy − 1
sin2(y) + cos(x) − 1 = 0, −π < x, y < π
2
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Fig. 6. H(u) = (1/4)(u2 − 1)(u2 − 4). t = 1. (a) N = 40 and (b) N = 80. Solid line: the exact solution; square symbol: the HWENO-NC scheme; plus symbol: 
the HWENO-C scheme.

Fig. 7. The derivatives plot, H(u) = (1/4)(u2 − 1)(u2 − 4). t = 1. (a) N = 40 and (b) N = 80. Solid line: the exact solution; square symbol: the HWENO-NC 
scheme; plus symbol: the HWENO-C scheme.

with φ(x, y, 0) = 0 and periodic boundary conditions. In this case, the equation can be denoted as φt + H(φx, φy, x, y) = 0, 
and our scheme can be obtained through the following system of equations as before:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dφi j

dt
= − H(φx, φy, x, y)

duij

dt
= − H1(u, v, x, y)ux − H2(u, v, x, y)u y − Hx(u, v, x, y)

dvij

dt
= − H1(u, v, x, y)vx − H2(u, v, x, y)v y − H y(u, v, x, y).

Following (2.13), we can easily deal with the terms H(φx, φy, x, y), H1(u, v, x, y), H2(u, v, x, y). The additional terms 
Hx(u, v, x, y) and H y(u, v, x, y) can be approximated as

Hx(u, v, x, y) |x=xi ,y=y j ≈ Hx(
u−

i j + u+
i j

,
v−

i j + v+
i j

, xi, y j)
2 2
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Fig. 8. Two dimensional Burgers equation. t = 1.5/π2 with the HWENO-NC schemes with 40 × 40 cells. Contours of the solution in (a) and the surface of 
the solution in (b).

Fig. 9. The optimal control problem. t = 1 with the HWENO-NC schemes with 60 × 60 cells. Surface of the solution in (a) and of the optimal control 
ω = sign(φy) in (b).

H y(u, v, x, y) |x=xi ,y=y j ≈ H y(
u−

i j + u+
i j

2
,

v−
i j + v+

i j

2
, xi, y j).

The time step is still taken as �t = 1
α

0.6�x + β
0.6�y

. The solution and optimal control ω = sign(φ) at t = 1 are plotted in Fig. 9(a) 

and Fig. 9(b), respectively. Again, we can observe that high resolution is achieved by our method.

Example 3.11. We solve the problem with another neither convex nor concave Hamiltonian

φt + sin(φx + φy) = 0, −1 < x, y < 1

with φ(x, y, 0) = π(|y| − |x|). In this case, u(x, y, 0) is undefined along x = 0 and v(x, y, 0) is undefined along y = 0, and 
we simply take u(0, y, 0) = 0 and v(x, 0, 0) = 0 respectively. We compute the solution up to t = 1. The solution is shown in 
Fig. 10. Again, we observe our schemes can achieve high resolution.
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Fig. 10. Two dimensional equation with a neither convex nor concave Hamiltonian. t = 1 by the HWENO-NC schemes with 40 × 40 cells. Contours of the 
solution in (a) and surface of the solution in (b).

Fig. 11. Eikonal equation. t = 0.6 by the HWENO-NC schemes with 80 × 80 cells. Contours of the solution in (a) and surface of the solution in (b).

Example 3.12. We solve the two dimensional Eikonal equation

φt +
√

φ2
x + φ2

y + 1 = 0, 0 ≤ x, y < 1

with the initial data φ(x, y, 0) = 1
4 (cos(2πx) − 1)(cos(2π y) − 1) − 1. We compute the solution up to t = 0.6. The solution is 

shown in Fig. 11. High resolutions are observed with our scheme.

Example 3.13. We solve⎧⎪⎨
⎪⎩

φt − (1 − εK )

√
φ2

x + φ2
y + 1 = 0, 0 ≤ x, y < 1

φ(x, y,0) = 1 − 1

4
(cos(2πx) − 1)(cos(2π y) − 1)

where K is the mean curvature defined by:
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Fig. 12. Propagating surface. 60 × 60 cells. (a) ε = 0; (b) ε = 0.1.

K = −φxx(1 + φ2
y) − 2φxyφxφy + φyy(1 + φ2

x )

(1 + φ2
x + φ2

y)
3/2

and ε is a small constant, with the initial data φ(x, y, 0) = 1 − 1
4 (cos(2πx) − 1)(cos(2π y) − 1) and periodic boundary 

condition. When ε �= 0, the equation can be denoted as φt + H(φx, φy, φxx, φxy, φyy) = 0. The system of equations to be 
approximated then becomes⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dφi j

dt
= − H(φx, φy, φxx, φxy, φyy)

duij

dt
= − Hφx ux − Hφy u y − Hφxx uxx − Hφxy uxy − Hφyy u yy

dvij

dt
= − Hφx vx − Hφy v y − Hφxx vxx − Hφxy vxy − Hφyy v yy .

The procedure to deal with the terms H , Hφx and Hφy are the same as before. Here, we simply use fourth order central 
differences in each direction with the other direction fixed to approximate the terms uxx, u yy :

uxxi j = −ui+2, j − 16ui+1, j + 30ui, j − 16ui−1, j + ui−2, j

12�x2

u yy i j = −ui, j+2 − 16ui, j+1 + 30ui, j − 16ui, j−1 + ui, j−2

12�y2
.

As to the term uxy , we take the following Qk polynomial approximation using the values {ukl, k = i − 2, · · · , i + 2, l =
j − 2, · · · , j + 2}:

uxy i j = − 1

144�x�y
(ui−2, j−2 − 8ui−2, j−1 + 8ui−2, j+1 − ui−2, j+2 − 8ui−1, j−2 + 64ui−1, j−1

− 64ui−1, j+1 + 8ui−1, j+2 + 8ui+1, j−2 − 64ui+1, j−1 + 64ui+1, j+1 − 8ui+1, j+2

− ui+2, j−2 + 8ui+2, j−1 − 8ui+2, j+1 + ui+2, j+2).

The approximation to the terms vxx, vxy, v yy can be obtained in a similar way. The time step is taken as �t =
1

α + β + γ1 + γ2 + γ3 , where γ1 = max
φxx

|Hφxx |, γ2 = max
φxy

|Hφxy |, γ3 = max
φyy

|Hφyy | and α, β are defined the same as 

0.6�x 0.6�y 0.3�x2 0.3�x�y 0.3�y2
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before. The results of ε = 0 (pure convection) and ε = 0.1 by the HWENO-NC method with 60 × 60 cells are presented in 
Fig. 12(a) and Fig. 12(b) respectively. The surfaces at t = 0 for ε = 0 and for ε = 0.1, and at t = 0.1 for ε = 0.1, are shifted 
downward in order to show the details of the solution at later time.

4. Conclusion

In this paper, we present a high order scheme based on the finite difference framework for the Hamilton–Jacobi equa-
tions in one and two dimensions. The main advantage of this scheme is its compactness and efficiency. Both the solution 
values and its first derivatives are used in the HWENO reconstruction and evolved via time marching. Extensive numerical 
experiments in one dimensional and two dimensional cases show that the scheme can achieve high order accuracy in the 
smooth region and can maintain high resolution when the derivative becomes discontinuous.
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