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Abstract In Liu and Qiu (J Sci Comput 63:548–572, 2015), we presented a class of finite
differenceHermiteweighted essentially non-oscillatory (HWENO) schemes for conservation
laws, in which the reconstruction of fluxes is based on the usual practice of reconstructing the
flux functions. In this follow-up paper, we present an alternative formulation to reconstruct the
numerical fluxes, in which we first use the solution and its derivatives directly to interpolate
point values at interfaces of computational cells, thenweput the point values at interface of cell
in building block to generate numerical fluxes. The building block can be arbitrary monotone
fluxes. Comparing with Liu and Qiu (2015), one major advantage is that arbitrary monotone
fluxes can be used in this framework, while in Liu and Qiu (2015) the traditional practice
of reconstructing flux functions can be applied only to smooth flux splitting. Furthermore,
these new schemes still keep the effectively narrower stencil of HWENO schemes in the
process of reconstruction. Numerical results for both one and two dimensional equations
including Euler equations of compressible gas dynamics are provided to demonstrate the
good performance of the methods.
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1 Introduction

In the recent decades, high resolution methods for hyperbolic systems of conservation laws
have been extensively studied. Especially, HWENO schemes as new high order accurate
numerical methods were developed for solving hyperbolic conservation laws. HWENO
schemes which were first introduced by Qiu and Shu [12] in the form of finite volume
version, and were applied as limiters for the Runge–Kutta discontinuous Galerkin (RKDG)
methods for solving one-dimensional conservation laws. The schemes were extended to
two-dimensional cases in [14,25]. Then the HWENO methods were applied to solve
Hamilton-Jacobi equations in [15] and computational acoustics in [2]. HWENOmethodology
is designed based on the successful WENO schemes [1,6,8,11,16,17,19,20]. Mentioning
WENO schemes, they are quite popular as high order numerical method for solving hyper-
bolic partial differential equations (PDEs). The first WENO schemes were introduced in
1994 by Liu, Osher and Chan in their pioneering paper [11], in which the third accurate
order finite volume WENO in one space dimension was constructed. In 1996, Jiang and Shu
[8] provided a general framework to design arbitrary accurate order finite difference WENO
schemes, which aremore efficient for multidimensional calculations. Very high orderWENO
schemes (seventh to eleventh order) are documented in [1]. For a detailed review of WENO
schemes, we refer to the lecture notes [17,18].

However, in spite of the vast field application of WENO schemes, the classical WENO
schemes still have deficiencies: due to the width of their numerical stencil, the extension to
non-Cartesian meshes is somewhat cumbersome; moreover, a wide stencil is not optimum
either in terms of an accurate treatment of weak fluctuations, or concerning the imposition of
boundary conditions. Considering those limits, a possibility is to introduce more information
of the numerical solution in the neighborhood of any given cell. HWENO schemes, using
the Hermite interpolation, following the original WENO philosophy, the solution and its first
derivative are evolved in time and used into the polynomial reconstruction. That is to say,
HWENO schemes can obtain the higher accuracywhile use relatively less points.Meanwhile,
the HWENO scheme also has a disadvantage, for the same number of grid points, it requires
more computer memory than the regular WENO scheme because of the auxiliary variables
(or derivative equations) which were introduced.

On the other hand, in most of the high order finite difference schemes, for example, the
high order finite difference ENO [20], WENO [1,8,18] and HWENO schemes [10], the
reconstruction of fluxes is based on the usual practice of reconstructing the flux functions
which was based on the procedure presented by Shu and Osher [20], because the procedure is
clean and easy to implement. However, in order to achieve nonlinear stability and incorporate
upwinding into the schemes, the numerical flux with finite difference in flux formulation has
certain limits in its mathematical forms—satisfying the forms of flux splitting. The alter-
native approach to construct numerical fluxes in high order conservative finite difference
schemes were developed in [19], in which the ENO interpolation [3–5] of the solution and
its derivatives are used to directly construct the numerical flux which involves the interpo-
lations directly on the point values of the solution ui , vi (and wi ) rather than on the flux
values. Recently, in [9], Jiang, Shu and Zhang also developed theWENO schemes with Lax–
Wendroff time discretization for conservation laws, the reconstruction of numerical fluxes
were also based on the approach presented in [19], which overcome the defects the above
stated the traditional method, like in [10]. Even though this approach is more expensive than
the standard one, the major advantage is that arbitrary monotone fluxes can be used in this
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framework, while the traditional practice of reconstructing flux functions can be applied only
to smooth flux splitting, as pointed out in [9].

In [10], we presented a class of finite difference Hermite weighted essentially non-
oscillatory (HWENO) schemes for conservation laws, in which the reconstruction of fluxes
is based on the usual practice of reconstructing the flux functions. In view of this, in this sub-
sequent paper, we continues studying the conservative finite difference HWENO methods
but using the alternative formulation to solve the hyperbolic equations{

ut + ∇ · f (u) = 0,
u(x, 0) = u0(x)

(1.1)

where x = (x1, . . . , xd) are d-spatial variables.
In this follow-up paper, we present an alternative formulation to reconstruct the numerical

fluxes, in which we first use the solution and its derivatives directly to interpolate point values
at interfaces of computational cells, thenwe put the point values at interface of cell in building
block to generate numerical fluxes. The building block can be arbitrary monotone fluxes.
Comparing with [10], one major advantage is that arbitrary monotone fluxes can be used in
this framework, while in [10] the traditional practice of reconstructing flux functions can be
applied only to smooth flux splitting. The second advantage is that the new schemes still keep
the the effectively narrower stencil of HWENO schemes in the process of reconstruction.

The paper is organized as follows. In next sectionwe describe in detail the construction and
implementation of the fifth order HWENO schemes, with Runge–Kutta time discretization,
for one dimension scalar and system equations of (1.1).We present the fourthHWENO in two
dimensional case in Sect. 3. In Sect. 4, extensive numerical results are given to demonstrate
the behavior of this method, and some concluding remarks are given in the final section.

2 The Fifth Order HWENO Schemes for One Dimensional Conservation
Laws

In this section, we will describe implementation procedure for a finite difference version of
HWENO to solve hyperbolic conservation laws.We first discuss one dimensional scalar con-
servation laws of (1.1).Wewill define the following notation for ourmesh Ii = [xi− 1

2
, xi+ 1

2
],

xi = 1
2 (xi− 1

2
+ xi+ 1

2
), i = 1, . . . , N , where xi+1/2 = xi + �x/2 and �x = xi+1 − xi ,

which is assumed a uniform spatial mesh for simplicity.
We introduce a new function v = ux , the system (1.1) can be written a coupled hyperbolic

system: {
ut + f (u)x = 0, u(x, 0) = u0(x),

vt + h(u, v)x = 0, v(x, 0) = v0(x),
(2.1)

where h(u, v) = f ′(u)ux = f ′(u)v . We can solve (2.1) directly using a conservation
approximation to the spatial derivatives:⎧⎨

⎩
dui (t)

dt = − 1
�x ( f̂i+1/2 − f̂i−1/2)

dvi (t)
dt = − 1

�x (ĥi+1/2 − ĥi−1/2)

(2.2)

where ui (t), vi (t) are the numerical approximation to the nodal value u(xi , t) and v(xi , t)
of the solution to (2.1) in a uniform grid. The numerical fluxes f̂i+ 1

2
and ĥi+ 1

2
are required

to be a Lipschitz continuous function of several neighboring values ui and vi and also to be
consistent with the physical fluxes f (u) and h(u, v).

123

Author's personal copy



J Sci Comput (2016) 66:598–624 601

In [10], the reconstruction of fluxes for HWENO schemes is based on the usual practice
of reconstructing the flux functions [8,20], in this paper we will use an alternative approach
to construct numerical fluxes for high order conservative finite difference schemes based on
the procedure of [19].

If the numerical fluxes f̂i+ 1
2
and ĥi+ 1

2
are designed such that:

⎧⎨
⎩

1
�x

(
f̂i+ 1

2
− f̂i− 1

2

)
= f (u)x |x=xi + O(�xr )

1
�x

(
ĥi+ 1

2
− ĥi− 1

2

)
= h(u, v)x |x=xi + O(�xr−1)

(2.3)

then the conservative difference scheme (2.2) will be the r -th order approximation to Eq.
(2.1), when the solution is smooth. Following the procedure of [19], we divide the fluxes
f̂i+ 1

2
and ĥi+ 1

2
into two parts, respectively,

⎧⎨
⎩

f̂i+ 1
2

= f̂ L
i+ 1

2
+ f̂ H

i+ 1
2

ĥi+ 1
2

= ĥL
i+ 1

2
+ ĥ H

i+ 1
2

(2.4)

where numerical flux f̂ L
i+ 1

2
= f̂ L(u−

i+ 1
2
, u+

i+ 1
2
) and ĥL

i+ 1
2

= ĥL(u−
i+ 1

2
, u+

i+ 1
2
, v−

i+ 1
2
, v+

i+ 1
2
)

can be arbitrary fluxes, u±
i+ 1

2
and v±

i+ 1
2
are approximations to u and v at xi+ 1

2
, respectively.

As in [19], we will adopt the following fluxes in this paper:

f̂ L
i+ 1

2
= f̂ L F

i+ 1
2

= 1

2

(
f

(
u+

i+ 1
2
) + f (u−

i+ 1
2

))
− α

2

(
u+

i+ 1
2

− u−
i+ 1

2

)
, (2.5)

f̂ H
i+ 1

2
≈ a2�x2

(
∂2 f

∂x2

)
i+ 1

2

+ a4�x4
(

∂4 f

∂x4

)
i+ 1

2

, (2.6)

ĥL
i+ 1

2
= ĥL F

i+ 1
2

= 1

2

(
h

(
u−

i+ 1
2
, v−

i+ 1
2

)
+ h

(
u+

i+ 1
2
, v+

i+ 1
2

))
− α

2

(
v+

i+ 1
2

− v−
i+ 1

2

)
, (2.7)

ĥ H
i+ 1

2
≈ a2�x2

(
∂2h

∂x2

)
i+ 1

2

+ a4�x4
(

∂4h

∂x4

)
i+ 1

2

, (2.8)

where α is taken as an upper bound over the whole line for | f ′(u)| in the scalar case, or for the
absolute value of eigenvalues of the Jacobian for the system case, and a2 = − 1

24 , a4 = 7
5760 .

If u±
i+ 1

2
and v±

i+ 1
2
are the fifth order approximations to u and v at xi+ 1

2
, respectively, then the

formula (2.2) with fluxes (2.5)–(2.8) are the fifth order approximation to equation (2.1).

Remark 1 To the low resolution numerical flux f̂ L
i+ 1

2
and ĥL

i+ 1
2
in (2.4), we can use any

monotone flux, this is the one of key benefits of this alternative flux formulation. Since LF
(Lax–Friedrichs) flux is one of the simplest and most widely used numerical flux, we still use
it here. Meanwhile, we also demonstrate some other results such as LLF flux and HLLC flux
[21] to some benchmark examples, to illustrate the alternative performance of our schemes.

2.1 Reconstruction of u±
i+ 1

2
and v±

i+ 1
2
by HWENO Methods

Here we will discuss the reconstruction of polynomial. Interpolation polynomials are con-
structed byHWENOmethodology to approximate u±

i+ 1
2
and v±

i+ 1
2
in (2.4). Aswe know, given

the point values of ui (x) and vi (x), there are many ways to obtain a interpolation polynomial.
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Here, we describe one of the methods to obtain a Hermite WENO reconstruction, that is to
say Hermite type reconstruction which interpolates to approximate the functions u or v at
the cell boundaries. Without loss of generality, we show the procedure of reconstruction to
get a fifth-order HWENO scheme. Procedures to construct HWENO schemes of more higher
orders of accuracy are similar. The construction of u±

i+ 1
2
and v±

i+ 1
2
by HWENO interpolation

consist the following steps.
Step 1.1. Given the nodal value ui and vi , construct Hermite quadratic polynomials p j (x)

( j = 0, 1, 2) over small stencils s0 = {xi−1, xi }, s1 = {xi , xi+1}, s2 = {xi−1, xi , xi+1} and a
fourth-degree polynomial q(x) over the bigger stencil T = s0 ∪ s1 ∪ s2. These polynomials
p0(x), p1(x), p2(x) and q(x) should satisfy

p0(xk) = uk, k = i − 1, i, p′
0(xi−1) = vi−1,

p1(xk) = uk, k = i, i + 1, p′
1(xi+1) = vi+1,

p2(xk) = uk, k = i − 1, i, i + 1;
and

q(xk) = uk, k = i − 1, i, i + 1, q ′(xk) = vk, k = i − 1, i + 1.

Since we only need the values of these polynomials at the cell boundaries, i.e. x = xi+ 1
2
, by

performing some algebraic manipulations we derive the following expressions:

p0
(

xi+ 1
2

)
= −5

4
ui−1 + 9

4
ui − 3

4
�xvi−1,

p1
(

xi+ 1
2

)
= 1

4
ui + 3

4
ui+1 − 1

4
�xvi+1,

p2
(

xi+ 1
2

)
= −1

8
ui−1 + 3

4
ui + 3

8
ui+1, (2.9)

q
(

xi+ 1
2

)
= −1

8
ui−1 + 9

16
ui + 9

16
ui+1 − 3

64
�x(vi−1 + 3vi+1).

Step 1.2. A crucial component for HWENO procedures is to write the q(x) as a linear con-
vex combination of polynomial p0(x), p1(x), p2(x). Simple algebra gives the combination
coefficients γk(k = 0, 1, 2) (usually referred to as the linear weights) such that

q
(

xi+ 1
2

)
=

2∑
k=0

γk pk

(
xi+ 1

2

)

and
∑2

k=0 γk = 1. Here the coefficients are γ0 = 1
16 , γ1 = 9

16 , γ2 = 3
8 .

Step 1.3. In order to measure the smoothness of the function p j (x) in the corresponding
stencil,weneed to calculate the smoothness indicatorβ j for each stencil s j . This is another key
component introducing the smoothness indicator which change the linear weights obtained
in the Step 1.2. to nonlinear weights, to ensure both accuracy in smooth cases and non-
oscillatory performance when at least one of the small stencils contains a discontinuity of
the function u(x), v(x). We choose the smoothness indicator in [8]

β j =
2∑

k=1

∫
Ii

�x2k−1
(

∂k

∂xk
p j (x)

)2

dx . (2.10)

In the literature, the smoothness indicator β j is a quadratic function of the values of the u and
v in each stencil s j . In this article, the smoothness indicator expressions explicitly in details
are given
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β0 = (−2ui−1 + 2ui − �xvi−1)
2 + 13

3
(−ui−1 + ui − �xvi−1)

2 ,

β1 = (−2ui + 2ui+1 − �xvi+1)
2 + 13

3
(ui − ui+1 + �xvi+1)

2 , (2.11)

β2 = 1

4
(−ui−1 + ui+1)

2 + 13

12
(ui−1 − 2ui + ui+1)

2 .

Step 1.4. Evaluating the nonlinear weights such that the final approximation to u−
i+ 1

2
has

the essentially non-oscillatory property. Here the nonlinear weight is defined by

w j = w̄ j∑
k w̄k

, w̄k = γk

(βk + ε)2
, k = 0, 1, 2,

where γk are the weights determined by the second step above, and ε is a small positive real
number which is introduced to avoid the denominator becoming zero, ε is taken as 10−6 in
all our numerical results.

Step 1.5. Finally, the HWENO reconstruction approximation u−
i+ 1

2
is obtained by

u−
i+ 1

2
≈

2∑
k=0

wk pk

(
xi+ 1

2

)
.

The reconstruction procedure of u+
i+ 1

2
is mirror symmetric with respect to xi+ 1

2
of that for

u−
i+ 1

2
described above.

The reconstruction procedure of the derivative values v±
i+1/2.

Step 2.1. Given the nodal values of ui and vi , we construct Hermite type cubic reconstruc-
tion polynomials p j (x), ( j = 1, 2, 3) and fifth-degree polynomials q(x) in the small stencils
s0 = {xi−1, xi }, s1 = {xi , xi+1}, s2 = {xi−1, xi , xi+1}, and the bigger one T = s0 ∪ s1 ∪ s2,
respectively, such that:

p0(xk) = uk, p′
0(xk) = vk, k = i − 1, i,

p1(xk) = uk, p′
1(xk) = vk, k = i, i + 1,

p2(xk) = uk, k = i − 1, i, i + 1, p′
2(xi ) = vi ;

and

q(xk) = uk, q ′(xk) = vk, k = i − 1, i, i + 1.

Since we only need the values of these polynomials at the cell boundaries, i.e. x = xi+ 1
2
, by

performing some algebraic manipulations we derive the following expression:

p′
0

(
xi+ 1

2

)
= 9

2�x
(ui−1 − ui ) + 7

4
vi−1 + 15

4
vi ,

p′
1

(
xi+ 1

2

)
= 3

2�x
(−ui + ui+1) − 1

4
vi − 1

4
vi+1,

p′
2

(
xi+ 1

2

)
= 1

8�x
(ui−1 − ui + 7ui+1) + 1

4
vi , (2.12)

q ′ (xi+ 1
2

)
= 1

�x

(
3

64
ui−1 − 3

2
ui + 93

64
ui+1

)
+ 1

64
(vi−1 − 12vi − 15vi+1).
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Step 2.2. Again simple algebra gives the linear weights γ ′
k(k = 0, 1, 2) such that

q ′ (xi+ 1
2

)
=

2∑
k=0

γ ′
k p′

k

(
xi+ 1

2

)

and
∑2

k=0 γ ′
k = 1. Here the coefficients are γ ′

0 = 1
112 , γ

′
1 = 15

16 , γ
′
2 = 3

56 .
Step 2.3. To the reconstruction of derivatives, we define the smoothness indicator as

follows:

β j =
3∑

k=2

∫
Ii

�x2k−1
(

∂k

∂xk
p j (x)

)2

dx (2.13)

Note that the summation begins from the second derivative rather than from the first, see [12]
for more details. Substitution of p j (x)( j = 0, 1, 2) defined by (2.12) into (2.13) gives

β0 = 13

12
(12(ui−1 − ui ) + 6�x(vi−1 + vi ))

2 + (6(ui−1 − ui ) + �x(2vi−1 + 4vi ))
2,

β1 = 13

12
(12(ui − ui+1) + 6�x(vi + vi+1))

2 + (−6(ui − ui−1) − �x(4vi + 2vi+1))
2,

β2 = 13

12
(−3ui−1 + 3ui+1 − 6�xvi )

2 + (ui−1 − 2ui + ui+1)
2.

Step 2.4. Compute the nonlinear weights by

w j = w̄ j∑
k w̄k

, w̄k = γ ′
k

(βk + ε)2
, k = 0, 1, 2

where γ ′
k is given by 2. The ε is again taken as 10−6 to avoid the division by zero in the

denominator.
Step 2.5. Finally, the reconstruction derivatives v−

i+ 1
2
is defined as:

v−
i+ 1

2
≈

2∑
k=0

wk p′
k(xi+1/2).

Again the reconstruction procedure of v+
i+ 1

2
is mirror symmetric with respect to xi+ 1

2
of

that for v−
i+ 1

2
described above.

Remark 2 For system cases, such as the Euler equations of gas dynamics, in order to avoid
oscillation, both the reconstructions of u−

i+1/2, v
−
i+1/2 from ui , vi are performed in the local

characteristic directions, for more details of such local characteristic decompositions see
[17].

2.2 Reconstruction of f̂ H
i+ 1

2
and ĥH

i+ 1
2

For stability considering, we use following procedure to reconstruct f̂ H
i+ 1

2
and ĥ H

i+ 1
2
. First we

split fluxes f and h into two parts, respectively, such that:

f = f + + f −, h = h+ + h−
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with

f + = 1

2
( f (u) + αu), f − = 1

2
( f (u) − αu),

h+ =
2
(h(u, v) + αv), h− =

2
(h(u, v) − αv),

where α = max | f ′(u)|, and we can see that

d

du
f + ≥ 0,

d

du
f − ≤ 0,

∂

∂v
h+ ≥ 0,

∂

∂v
h− ≤ 0.

Then we use following finite differences to approximate �x2( ∂2 f
∂x2

)i+ 1
2
, �x4( ∂4 f

∂x4
)i+ 1

2
,

respectively.

f̂ 1
−
i+1/2 + f̂ 1

+
i+1/2 ≈ �x2

(
∂2 f

∂x2

)
i+ 1

2

where

f̂ 1
−
i+1/2 = 5

4
f +
i−1 − f +

i − 1

4
f +
i+1 + 1

2
h+

i−1 + h+
i+1,

f̂ 1
+
i+1/2 = 5

4
f −
i+2 − f −

i+1 − 1

4
f −
i − 1

2
h−

i+2 − h−
i .

f̂ 2
−
i+1/2 + f̂ 2

+
i+1/2 ≈ �x4

(
∂4 f

∂x4

)
i+ 1

2

where

f̂ 2
−
i+1/2 = −12

(
f +
i−1 − 2 f +

i + f +
i+1

) − 6
(
h+

i−1 − h+
i+1

)
,

f̂ 2
+
i+1/2 = −12

(
f −
i−1 − 2 f −

i + f −
i+1

) − 6
(
h−

i−1 − h−
i+1

)
.

Finally, we have:

f̂ H
i+ 1

2
= a2( f̂ 1

−
i+1/2 + f̂ 1

+
i+1/2) + a4( f̂ 2

−
i+1/2 + f̂ 2

+
i+1/2). (2.14)

We can also have the following approximation:

ĥ1
−
i+1/2 + ĥ1

+
i+1/2 ≈ �x2

(
∂2h

∂x2

)
i+ 1

2

, ĥ2
−
i+1/2 + ĥ2

+
i+1/2 ≈ �x4

(
∂4h

∂x4

)
i+ 1

2

,

where

ĥ1
−
i+1/2 = 1

4

(
39 f +

i−1 − 48 f +
i + 9 f +

i+1 + 21h+
i−1 + 12h+

i − 3h+
i+1

)
,

ĥ+
i+1/2 = 1

4

(−9 f −
i−1 + 48 f −

i − 39 f −
i+1 − 3h−

i−1 + 12h−
i + 21h−

i+1

)
.

ĥ2
−
i+1/2 = 30

(
3

(
f +
i−1 − f +

i+1

) + h+
i−1 + 4h+

i + h+
i+1

)
,

ĥ2
+
i+1/2 = 30

(
3

(
f −
i−1 − f −

i+1

) + h−
i−1 + 4h−

i + h−
i+1

)
.

and
ĥ H

i+ 1
2

= a2
(

ĥ1
−
i+1/2 + ĥ1

+
i+1/2

)
+ a4

(
ĥ2

−
i+1/2 + ĥ2

+
i+1/2

)
. (2.15)
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Remark 3 For systems of conservation laws, the procedure of reconstruction of f̂ H
i+ 1

2
and

ĥ H
i+ 1

2
are performed in component by component.

Remark 4 We still use themethodology of flux splitting for these high order derivative terms,
the main reason is to consider the stability and the upwind performance of the scheme. By
testing, we found that the central difference method is not suitable for some strong shock
problems, such as the Double Mach Reflection problem.

Remark 5 Positivity-preserving flux limiter is key point for high-order numerical methods,
which is used to maintain the density ρ and the pressure p to be positive. There are serval
positivity-preserving methods in the literature, such as [7,23,24]. In this paper we take the
technique by Hu, Adams and Shu, for details refer to [7].

2.3 Temporal Discretizations

The semi-discrete scheme (2.2), can be written as an ordinary differential equation (ODE)
system

Ut = L(U ), (2.16)

is then discretized in time by a total variation diminishing (TVD) Runge–Kutta method
[19,20], for example the third order version given by

U (1) = U n + �t L(U n)

U (2) = 3

4
U n + 1

4
U (1) + 1

4
�t L(U (1)) (2.17)

U n+1 = 1

3
U n + 2

3
U (2) + 2

3
�t L(U (2)).

3 The Fourth Order HWENO Scheme for Two Dimensional conservation
laws

In this section we extend the method in section 2 to solve nonlinear two dimensional hyper-
bolic conservation laws. Firstly we consider two dimensional scalar conservation law:⎧⎨

⎩
ut + f (u)x + g(u)y = 0, (x, y) ∈ R2, t ∈ (0,∞)

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,
(3.1)

where u(x, y, t) is a conserved quantity, f (u(x, y, t)) and g(u(x, y, t)) describe its flux in
x direction and y direction. Let v = ux , w = uy , taking the derivative x and y of (3.1)
separately, then we obtain a complete set of equations form that we need to solve as below⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut + f (u)x + g(u)y = 0,

vt + h(u, v)x + r(u, v)y = 0,

wt + q(u, w)x + s(u, w)y = 0,

(3.2)

where

h(u, v) = f ′(u)v, r(u, v) = g′(u)v,

q(u, w) = f ′(u)w, s(u, w) = g′(u)w.
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For simplicity, we assume that themesh is uniformwith the cell size xi+1/2−xi−1/2 = �x ,
y j+1/2− y j−1/2 = �y, and cell centers (xi , y j ) = ( 12 (xi+1/2+xi−1/2),

1
2 (y j+1/2− y j−1/2)).

We also denote the cells by Ii j = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
].

Again the conservative scheme for Eq. (3.2) can be written as a semi-discretization form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dui, j (t)
dt + 1

�x

(
f̂i+ 1

2 , j − f̂i− 1
2 , j

)
+ 1

�y

(
ĝi, j+ 1

2
− ĝi, j− 1

2

)
= 0,

dvi, j (t)
dt + 1

�x

(
ĥi+ 1

2 , j − ĥi− 1
2 , j

)
+ 1

�y

(
r̂i, j+ 1

2
− r̂i, j− 1

2

)
= 0,

dwi, j (t)
dt + 1

�x

(
q̂i+ 1

2 , j − q̂i− 1
2 , j

)
+ 1

�y

(
ŝi, j+ 1

2
− ŝi, j− 1

2

)
= 0.

(3.3)

Wecan straightforward extend the onedimensionprocedure to the numerical fluxes f̂i± 1
2 , j ,

ĥi± 1
2 , j , ĝi, j± 1

2
and ŝi, j± 1

2
, in a dimension-by-dimension fashion, and we would not describe

it again here.
For the reconstruction of fluxes for the mixed derivative terms in the Eq.(3.2), i.e. q̂i+ 1

2 , j ,
we will adopt the following procedure:

q̂i+ 1
2 , j = 1

2

(
q

(
u+

i+ 1
2 , j

, w+
i+ 1

2 , j

)
+ q

(
u−

i+ 1
2 , j

, w−
i+ 1

2 , j

))
− α

2

(
w+

i+ 1
2 , j

− w−
i+ 1

2 , j

))

− 1

24
�x2

(
∂2q

∂x2

)
i+ 1

2 , j
, (3.4)

where α = maxu | f ′(u)|. In order to keep the compactness of the scheme, we would like
to reconstruct w±

i+1/2, j by third order WENO reconstruction, this leads to the scheme is the
fourth order. We choose two small stencils s1 = {xi−1, j , xi, j } and s2 = {xi, j , xi+1, j } and
big stencil T = {s1, s2}, then we find interpolate polynomials p1(x), p2(x) and Q(x) such
that:

p1(xk) = wk, j (k = i − 1, i), p2(xk) = wk, j (k = i, i + 1),

Q(xk) = wk, j (k = i − 1, i, i + 1)

A simple algebra leads to explicit formula for this two polynomials at the cell boundaries

p1
(

xi+ 1
2

)
= −1

2
wi−1, j + 3

2
wi, j ,

p2
(

xi+ 1
2

)
= 1

2
wi, j + 1

2
wi+1, j ,

Q
(

xi+ 1
2

)
= −1

8
wi−1, j + 3

4
wi, j + 3

8
wi+1, j .

The approximation Q(xi+ 1
2
) can be written as a linear convex combination of the two

second order approximations p1(xi+ 1
2
) and p2(xi+ 1

2
). Denoting the linear weights by γ1, γ2

such that

Q
(

xi+ 1
2

)
= γ1 p1

(
xi+ 1

2

)
+ γ2 p2

(
xi+ 1

2

)
,

where the constants γ1, γ2 satisfying γ1 + γ2 = 1. And here the linear weights are given as
γ1 = 1

4 , γ2 = 3
4 .

Then the WENO procedure is to change the linear weights to nonlinear weights. This is
achieved through a choice of the so-called smoothness indicator β j . In this paper, we use the
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same formula with (2.10) obtaining the smoothness indicator expressions:

β1 = (−wi−1, j + wi, j )
2;

β2 = (−wi, j + wi+1, j )
2.

The nonlinear weights ω j are defined by

ω j = ω̄ j

ω̄1 + ω̄2
, ω̄ j = γ j

(ε + β j )2
, j = 1, 2;

where ε is a small positive number to avoid the denominator to become zero.
Finally, the approximation of w−

i+ 1
2 , j

is achieved as

w−
i+ 1

2 , j
= ω1 p1

(
xi+ 1

2

)
+ ω2 p2

(
xi+ 1

2

)
. (3.5)

The procedure of reconstruction of w+
i+ 1

2 , j
is mirror symmetric with respect to xi+ 1

2 , j of

that for w−
i+ 1

2 , j
described above.

For the reconstruction of the second term �x2( ∂2q
∂x2

)i+ 1
2 , j in (3.4), we will adopt the

following procedure. For stability, we first split the q into two parts, q = q+ + q−, with
∂

∂w
q+ ≥ 0, ∂

∂w
q− ≤ 0, for example, we use:

q+
i j = 1

2
(q(ui j , wi j ) + αwi j ), q−

i j = 1

2
(q(ui j , wi j ) − αwi j ),

and have the following approximation:

�x2
(

∂2q

∂x2

)
i+ 1

2 , j
≈ q+

i−1, j − 2q+
i, j + q+

i+1, j + q−
i, j − 2q−

i+1, j + q−
i+2, j .

Again, for system cases, the reconstruction procedure of w±
i+1/2, j are performed in the

local characteristic directions, and �x2( ∂2q
∂x2

)i+ 1
2 , j are performed in component by compo-

nent.
The reconstruction procedure of r̂i, j+ 1

2
is similar to that for q̂i+ 1

2 , j , we perform it on y
direction.

4 Numerical Results

In this section, we will devote to implement extensive numerical experiments for hyperbolic
conservation laws to illustrate the performance of ourmethods. In all the numerical examples,
we adopt the third order Runge–Kutta method for the time discretization and C F L number
is taken to be 0.2 for one and two dimensional cases, except for the accuracy tests where a
suitably reduced time step is used to guarantee that spatial error dominates.

4.1 Accuracy Tests for One Dimensional Case

Example 4.1 We consider the nonlinear Burgers’ equation⎧⎨
⎩

ut + (u2/2)x = 0,

u(x, 0) = 0.5 + sin(πx), 0 ≤ x ≤ 2.
(4.1)
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Table 1 One-dimensional Burgers’ equation, the comparison of error and order for HWENO method and
WENO method

N HWENO5 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 2.85E−03 7.81E−03 1.90E−02 7.42E−02

20 1.98E−04 3.84 9.03E−04 3.11 2.07E−03 3.20 1.22E−02 2.61

40 1.24E−05 4.01 9.72E−05 3.22 1.32E−04 3.97 1.04E−03 3.55

80 5.31E−07 4.54 4.87E−06 4.32 4.61E−06 4.84 4.73E−05 4.46

160 2.29E−08 4.54 4.00E−07 3.61 1.79E−07 4.69 1.50E−06 4.98

320 7.00E−10 5.03 1.77E−08 4.50 6.90E−09 4.70 1.37E−07 3.45

640 2.06E−11 5.08 4.70E−10 5.23 2.02E−10 5.09 7.63E−09 4.17

Table 2 One-dimensional Euler equation, the comparison of error and order for HWENOmethod andWENO
method

N HWENO5 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 2.75E−03 3.91E−03 5.73E−03 8.11E−03

20 1.01E−04 4.77 1.79E−04 4.45 2.76E−04 4.37 4.40E−04 4.20

40 2.98E−06 5.08 5.53E−06 5.02 8.53E−06 5.02 1.58E−05 4.80

80 9.16E−08 5.02 1.72E−07 5.00 2.66E−07 5.00 4.95E−07 4.99

160 2.82E−09 5.02 5.06E−09 5.09 8.23E−09 5.01 1.47E−08 5.08

320 8.48E−11 5.06 1.43E−10 5.14 2.48E−10 5.05 4.16E−10 5.14

640 2.31E−12 5.20 3.78E−12 5.25 6.85E−12 5.18 2.13E−11 4.28

with periodic boundary conditions. We compute the solution up to t = 0.5/π , when the
solution is still smooth. The errors and numerical orders of HWENO5 comparing toWENO5
are shown inTable 1.Numerical results show that the designedfifth order accuracy is achieved
for the HWENO5 spatial discretization and the errors by HWENO5 are smaller than those
by the classical finite difference WENO5 with the same grid points.

Example 4.2 Euler equations. We solve the following nonlinear system of Euler equations
ut + f (u)x = 0, with

u = (ρ, ρv, E)T , f (u) = (ρv, ρv2 + p, v(E + p))T ,

where ρ is the density, v is the velocity , E is the total energy, and p is the pressure, which is
related to the total energy by E = p/(γ − 1) + 1/2ρv2 with γ = 1.4. The initial condition
is set to be ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1. The domain of interest
in the x − t plane are points (x, t) we choose here −1 < x < 1 and t > 0. We compute
the solution up to t = 2. The errors and numerical orders of accuracy of the density ρ by
the HWENO scheme comparison with those by WENO5 scheme are shown in Table 2. We
can also see that the designed fifth order accuracy is achieved for the HWENO5 and the
errors by HWENO5 are smaller than those by the classical finite difference WENO5 with
the same grid points. In addition, we list the errors and numerical order which are computed
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Table 3 One-dimensional Euler
equation

L1 and L∞ errors and orders of
the three kind of fluxes

N L1 errors Order L∞ errors Order

LF

10 2.75E−03 3.91E−03

20 1.01E−04 4.77 1.79E−04 4.45

40 2.98E−06 5.08 5.53E−06 5.02

80 9.16E−08 5.02 1.72E−07 5.00

160 2.82E−09 5.02 5.06E−09 5.09

320 8.48E−11 5.06 1.43E−10 5.14

LLF

10 2.73E−03 3.89E−03

20 1.00E−04 4.77 1.78E−04 4.45

40 2.95E−06 5.08 5.48E−06 5.02

80 9.08E−08 5.02 1.71E−07 5.00

160 2.80E−09 5.02 5.01E−09 5.09

320 8.41E−11 5.06 1.43E−10 5.13

HLLC

10 2.75E−03 3.88E−03

20 1.01E−04 4.77 1.78E−04 4.44

40 2.98E−06 5.08 5.52E−06 5.02

80 9.18E−08 5.02 1.73E−07 5.00

160 2.83E−09 5.02 5.06E−09 5.09

320 8.50E−11 5.06 1.44E−10 5.13

by HWENO with LF flux, LLF(local LF) flux and HLLC flux in Table 3. We can see that the
numerical results are similar for HWENO with three different numerical fluxes.

4.2 Tests Cases with Shocks for One Dimensional Case

Example 4.3 Burgers’ equation.
We solve the same nonlinear Burgers’ equation ut +(u2/2)x = 0 as Example 4.1, with the

initial condition u(x, 0) = 0.5+ sin(πx), 0 ≤ x ≤ 2. We plot the results at t = 1.5/π when
a shock has already appeared in the solution. In Fig. 1, the computational result is displayed,
we can see that the shock is captured very well.

Example 4.4 Non-convex problem.
We solve the nonlinear non-convex scalar Buckley–Leverett problem

ut +
(

4u2

4u2 + (1 − u)2

)
x

= 0,

with the initial data u = 1 in − 1
2 ≤ x ≤ 0 and u = 0 elsewhere to test convergence to

the physically correct entropy solutions. The solution is computed up to t = 0.4. The exact
solution is a shock-rarefaction-contact discontinuity mixture. In Fig. 2, the solutions are
shown, the solid line is the exact solution while the plus and square are numerical solutions
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Fig. 1 Burgers equation. t = 1.5/π, N = 80. The comparison of HWENO method and WENO method.
Solid line: exact solution; “plus”: HWENO, “square”: WENO
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Fig. 2 The Buckley–Leverett problem. t = 0.4, N = 80. The comparison of HWENO method and WENO
method. The solid line: exact solution; “plus”: HWENO, “square”: WENO

by HWENO5 and finite difference WENO5, respectively. Once more, we can clearly see
the same conclusion as above: the HWENO5 scheme approximates the exact solution more
precisely.

Example 4.5 Nonlinear Euler equation.
We solve the Euler equations in Example 4.2, with a Riemann initial condition for

the Lax Problem (ρ, m, E) = (0.445, 0.31061, 8.928) f or x ≤ 0, (ρ, m, E) =
(0.5, 0, 0.571) f or x > 0. We choose the domain of computation in [−5, 5]. The com-
puted density ρ, pressure p and velocity v are plotted at t = 1.3 against the exact solution.
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The numerical results with N = 200 uniform points and a comparison with the results using
WENO5 scheme in the same uniform points are shown in Fig. 3. In Figure 4, we show the
numerical results by HWENO with LF flux, LLF flux and HLLC flux, we can see that the
result by method with HLLC flux has the slightly better performance than those the others.

Example 4.6 We solve the Euler equations in Example 4.2, with a Riemann initial condition
for the Shu-Osher Problem (ρ, v, p) = (3.857143, 2.629369, 10.333333) f or x ≤ −4,
(ρ, v, p) = (1 + ε sin 5x, 0, 1) f or x ≥ −4, where a Mach 3 shock wave interacts with a
density disturbance and generates a flow field that has a combination of smooth structures
and discontinuities. This problem is a good model for the kinds of interactions that occur in
simulations of compressible turbulence.We choose the domain of computation in [−5, 5], and
take ε = 0.2. The computed density ρ, pressure p and velocity v are plotted at t = 1.8 against
the ”exact” solution, which are the converged solution computed by the fifth-order finite
difference WENO scheme [8] with 2000 grid points. The numerical results with N = 300
uniform points and a comparison with the results usingWENO5 scheme in the same uniform
points are shown in Fig. 5. We can see that the numerical results by the HWENO are better
than those by WENO schemes. In Fig. 6, we show the numerical results by HWENO with
LF flux, LLF flux and HLLC flux, we can see that the results by method with LLF or HLLC
flux has better performance than those by HWENO with LF flux.

Example 4.7 We have run the interacting blast wave problem with the Euler equations in
Example 4.2, with a Riemann initial condition (ρ, v, p) = (1, 0, 1000) f or 0 ≤ x ≤ 0.1,
(ρ, v, p) = (1, 0, 0.01) f or 0.1 ≤ x ≤ 0.9, (ρ, v, p) = (1, 0, 100) f or x ≥ 0.9. We take
the domain of computation in [0, 1] and a reflecting boundary condition is applied to both
ends. The computed density ρ, pressure p and velocity v are plotted at t = 0.038 against
the ”exact” solution, which are the converged solution computed by the fifth-order finite
difference WENO scheme [8] with 2000 grid points. The numerical results with N = 400
uniform points and a comparison with the results usingWENO5 scheme in the same uniform
points are shown in Fig. 7. We also see that the result profile from the 400-zone simulation
is very close to the converged result profile and the HWENO5 is slightly better than the
WENO5. In Fig. 8, we show the numerical results by HWENO with LF flux, LLF flux
and HLLC flux, we can see that the results by method with LLF or HLLC flux has better
performance than those by HWENO with LF flux.

Example 4.8 We consider shock entropy wave interactions problem[8,17,26]. In order to
illustrate the versatility of the methods developed here and their applicability to other hyper-
bolic systems, we apply them to a wave-like problem. This famous test case is very suitable
for high accuracy order schemes (such as WENO/HWENO schemes) and shock capturing
schemes. In this example we test the HWENO schemes on a model that involves a moving
shock interacting with an entropy wave of small amplitude. We solve the Euler equations in
Example 4.2, with a Riemann initial condition

(ρ, u, p)T =
{

(3.85714, 2.629369, 10.33333)T , 0 ≤ x ≤ 0.5,
(e−ε sin(κπ), 0, 1)T , 0.5 ≤ x ≤ 5,

(4.2)

where ε and κ are the amplitude and wave number of the entropy wave, respectively. The
detailed descriptionof this see [8]. In our tests,we take ε = 0.01 andκ = 13, 26. InFigs. 9, 10,
11 and 12 we show the results of the HWENO schemes by pluses comparing with theWENO
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Fig. 4 The Euler equations Lax problem. Solid line: exact solution; “plus”: HWENOwith LF flux, “triangle”:
HWENO with LLF flux, “circle”: HWENO with HLLC flux

schemes by squares. The reference entropy solution is a convergent solution computed by the
WENO (fifth-order) schemes with 5000 points for κ = 13, 26. We observe that the structure
of the solution in the calculations has developed very well. To obtain a comparable quality
in the solution from a HWENO scheme would have required doing the problem on a grid
of different number zones, like 400, 800 etc. This illustrates the considerable advantages of
the fifth order HWENO schemes designed here. Thus using the fifth order schemes designed
here improves the representation of like-wave problem than the fifth order WENO schemes.

Example 4.9 In this test, we solve the Euler equations with a moving sine wave in density

(ρ, u, p)T =

⎧⎪⎪⎨
⎪⎪⎩

(1, 1, 1)T , −1 ≤ x ≤ 0,

(1 + 0.2| sin(κπx)|, 1, 1)T , 0 ≤ x ≤ 1,

(1, 1, 1)T , 1 ≤ x ≤ 2.

(4.3)

In Fig. 13, we show the results of the HWENO schemes by pluses comparing with theWENO
schemes by squares for ε = 3 and 5. The reference entropy solution is a convergent solution
computed by theWENO (fifth-order) schemeswith 5000 nodes.We observe that the structure
of the solution in the calculations has developed very well. The results of HWENO schemes
have an advantage over the classic WENO schemes especially in the local smooth extremum
and the quantity of the amplitude decreases much less. And we also find that the HWENO
scheme can keep even more sharp resolutions and high frequency vibration after a vast time
of evolution.

4.3 Tests for Two Dimensional Case

Example 4.10 Burgers’ equation.
We solve the non-linear scalar Burgers’ equation ut + (u2/2)x + (u2/2)y = 0, 0 ≤

x ≤ 4, u(x, y, 0) = u0(x, y), with periodic boundary conditions. Here we consider the
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Fig. 6 The Euler equations Shu–osher problem. Solid line: the “exact” reference solution; “plus”: HWENO
with LF flux, “triangle”: HWENO with LLF flux, “circle”: HWENO with HLLC flux.

hyperbolic conservation laws on test problems with exact solution case. The initial condition
is u0(x + y) = 0.5 + sin((x + y)π/2). We list the L1 and L∞ errors for the nodal value
at time t = 0.5/π in Table 4. We can see clearly that the designed fourth order accuracy is
achieved in the two norms for both of schemes.

Example 4.11 Euler equations.
We consider the two-dimensional Euler equations by the present HermitWENO schemes.

The PDEs of two-dimensional Euler equations in the Cartesian coordinate (x, y) are as
follows ⎡

⎢⎢⎣
ρ

ρu
ρv

E

⎤
⎥⎥⎦

t

+

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv

u(E + p)

⎤
⎥⎥⎦

x

+

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦

y

= 0, (4.4)

where ρ is the density, u and v are the velocity in x− and y−direction, respectively, E is
the total energy, and p is the pressure, which is related to the total energy by E = p

γ − 1 +
1
2ρ(u2+v2)with γ = 1.4.The initial condition is set to beρ(x, y, 0) = 1+0.2 sin(π(x+y)),

u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1. We compute the solution up to t = 2.
The exact solution is ρ(x, y, t) = 1+0.2 sin(π(x + y−(u+v)t)), u = 0.7, v = 0.3, p = 1.
The errors and numerical orders of accuracy of the density ρ for the HWENO schemes are
shown in Table 5, which are quite satisfactory.

Example 4.12 Shock vortex interaction.
In this test, we use the HWENO schemes to simulate the model of the interaction between

a stationary shock and vortex. The computational domain is chosen to be [0, 2] × [0, 1].
A stationary Mach 1.1 shock is positioned at x = 0.5 and normal to the x-axis. A
uniform mesh of 251 × 100 in the computational domain is used. There is a small vor-
tex at the flow left to the shock, its center is (xc, yc) = (0.25, 0.5). The initial left
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Fig. 8 The Euler equations Blast-wave problem. Solid line: the “exact” reference solution; “plus”: HWENO
with LF flux, “triangle”: HWENO with LLF flux, “circle”: HWENO with HLLC flux
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Fig. 9 The shock wave interaction tests. κ = 13 with 400 points. “plus”: HWENO, “square”: WENO. The
reference solution is solid line and the zoom are given in bottom

state is (ρ, u, v, p) = (1, 1.1
√

γ , 0, 1). Its right state can be easily make sure by the
Rankine − Hugoniot condition. The problem is initialized by the vortex as a perturba-
tion to the velocity (u, v), temperature (T = p/ρ), and entropy (S = ln(p/ργ )) of the mean
flow and we can denote them by the following values:
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Fig. 10 The shock wave interaction tests. κ = 13 with 800 points. “plus”: HWENO, “square”: WENO. The
reference solution is solid line and the zoom are given in bottom
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Fig. 11 The shock wave interaction tests. κ = 26 with 900 points. “plus”: HWENO, “square”: WENO. The
reference solution is solid line and the zoom are given in bottom

123

Author's personal copy



620 J Sci Comput (2016) 66:598–624

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++
+
+
+
+
+
+++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
++
+
+
+
+
+
+
+
++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++
+
+
+
+
+
++++
+
+
+
+
+
+
+
++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
++++
+
+
+
+
+
+
+
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
+
+++
+
+
+
+
+
+
++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
+++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
+++
+
+
+
+
+
+
++
++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++
+++++++

x

E
n
tr
o
p
y

543210
-0.1

-0.05

0

0.05

0.1

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++
+
+
+
+
+
+++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
+++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++
+
+
+
+
+
+++++
+
+
+
+
+
+
+
++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
++++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
++
+++
+
+
+
+
+
+
++++
+
+
+
+
+
+
+
+++++
+
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++
+
+
+
+
+
+++++
+
+
+
+
+
+
++
+++++++++++++++++

x

E
n
tr
o
p
y

4.543.532.5
-0.1

-0.05

0

0.05

0.1

Fig. 12 The shock wave interaction tests. κ = 26 with 1800 points. “plus”: HWENO, “square”: WENO. The
reference solution is solid line and the zoom are given in bottom
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Fig. 13 The moving sine wave tests. κ = 3 (left) with 100 points, κ = 5 (right) with 200 points. “plus”:
HWENO, “square”: WENO. The reference solution is solid line computed by WENO with 5000 points

u′ = ετeα(1−τ 2) sin θ,

v′ = −ετeα(1−τ 2) cos θ,

T ′ = − (γ − 1)ε2e2α(1−τ 2)

4αγ
,

S′ = 0,

where τ = r/rc, r = √
(x − x0)2 + (y − y0)2, ε = 0.3, rc = 0.05 and α = 0.204.

Note that here the ε, α and rc indicate the strength , the decay rate and the radius (maximum
strength) of the vortex. For more details, one can see [17]. The reflective boundary conditions
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Table 4 HWENO spatial discretization schemes, for the two dimensional Burgers’ equation ut + (u2/2)x +
(u2/2)y = 0 with initial condition u0(x) = 0.5 + sin((x + y)π/2), t = 0.5/π

N x × N y L1 error Order L2 error Order L∞ error Order

10×10 6.58E−03 1.32E−02 3.15E−02

20×20 5.95E−04 3.47 8.86E−04 3.90 2.43E−03 3.69

40×40 1.47E−04 2.02 2.88E−04 1.62 1.07E−03 1.19

80×80 3.05E−05 2.27 1.02E−04 1.50 5.41E−04 0.98

160×160 1.44E−06 4.41 5.99E−06 4.09 4.04E−05 3.74

320×320 1.45E−08 6.63 5.14E−08 6.87 3.05E−07 7.05

640×640 7.13E−10 4.53 1.52E−09 5.12 6.33E−09 5.62

Table 5 The two-dimensional Euler equation. L1, L2 and L∞ errors and numerical order of accuracy by
HWENO are measured at the center of each element. Using N equally spaced cells

N x × N y L1 error Order L2 error Order L∞ error Order

10×10 1.75E−02 2.01E−02 3.16E−02

20×20 3.25E−03 2.43 3.86E−03 2.38 7.20E−03 2.13

40×40 2.53E−04 3.69 3.57E−04 3.44 9.00E−04 3.00

80×80 3.62E−06 6.13 5.00E−06 6.16 1.19E−05 6.25

160×160 1.06E−07 5.10 1.20E−07 5.38 1.88E−07 5.98

320×320 6.33E−09 4.06 7.03E−09 4.09 9.97E−09 4.24

640×640 3.95E−10 4.00 4.38E−10 4.00 6.20E−10 4.01

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1b

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1c

0.45 0.95 1.45
0

0.2

0.4

0.6

0.8

1d

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1e

Fig. 14 2D shock vortex interaction
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Fig. 15 Double Mach reflection. 30 equally spaced density contours from 1.5 to 22.7. a 960 × 240 cells,
b 1920 × 480 cells

are used at the upper and lower boundaries. The density contours obtained by HWENO at
time t = 0.05, t = 0.2, t = 0.35, t = 0.6 and t = 0.8 in Fig. 14. Comparing the qualitative
to [17], we can see that the results show the present HWENOmethod can attain high accuracy
order and capture the vortex and the shock very well.

Example 4.13 Double Mach Reflection.
Double Mach reflection problem: This is again a standard test case for high-resolution

schemes. The computational domain for this problem is taken to be [0, 4] × [0, 1]. Consider
the reflection of a planar Mach shock in air from a wedge. The setup of a Mach 10 shock
which initially makes a 60 degree angle with a reflecting wall (upper left). When the shock
hits the sloping wall, a complicated shock reflection occurs. The wave pattern consists of two
Mach stems with two contact discontinuities (lower wall). The reflecting wall of wedge lies
at the bottom of the computational domain starting from x = 1/6. A detailed description of
this problem can be found in [14,22]. Figure 15 shows quite pleasing results of the present
HWENO scheme with 960 × 240 and 1280 × 480 in the computational domain. All the
figures show 30 equally spaced density contours from 1.5 to 22.7.
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5 Concluding Remarks

In this paper, we present an alternative formulation to reconstruct the numerical fluxes for
finite difference HermiteWENO, in whichwe first use the solution and its derivatives directly
to interpolate point values at interfaces of computational cells, then we put the point values
at interface of cell in building block to generate numerical fluxes. The building block can
be arbitrary monotone fluxes. Comparing with [10], one major advantage is that arbitrary
monotone fluxes can be used in this framework, while in [10] the traditional practice of recon-
structing flux functions can be applied only to smooth flux splitting. In addition, comparing
with classic WENO scheme, one major advantage of HWENO scheme is its compactness
in the reconstruction. The numerical errors by HWENO are smaller than WENO schemes
under the same grids in our test cases, and numerical results by HWENO scheme are better
or comparable to those by WENO scheme for test cases with shock. As in [10], we would
also like to point out that HWENO scheme requires more computer memory and CPU time
comparing with the original WENO scheme when using the same number of grid points, this
is a weak point of HWENO comparing with the original WENO scheme. We have investi-
gated the performance of different numerical fluxes instead of Lax–Friedrichs flux in (2.5)
based on the HWENO methods, we observe that the schemes with other flux, such as the
LLF flux or HLLC flux, have better performance than the scheme with LF flux. The research
of HWENO with different time discretization, such as Lax–Wendroff time discretization is
going on.
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