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Abstract In this paper, a class of weighted essentially non-oscillatory (WENO) schemes
based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving
one and two dimensional nonlinear hyperbolic conservation law systems is presented. The
construction of HWENO schemes is based on a finite difference formulation, Hermite inter-
polation, and nonlinearly stable Runge–Kutta methods. The idea of the reconstruction in the
HWENO schemes comes from the original WENO schemes, however both the function and
its first derivative values are evolved in time and used in the reconstruction, while only the
function values are evolved and used in the original WENO schemes. Comparing with the
original finite difference WENO schemes of Jiang and Shu (J Comput Phys 126:202–228,
1996), one major advantage of HWENO schemes is its compactness in the reconstruction. For
example, five points are needed in the stencil for a fifth order WENO (WENO5) reconstruc-
tion, while only three points are needed for a fifth order HWENO (HWENO5) reconstruction.
Some benchmark numerical experiments are presented to illustrate efficiency of HWENO
schemes.
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1 Introduction

In this paper, we investigated the finite difference Hermite weighted essentially non-
oscillatory (HWENO) schemes for solving the nonlinear hyperbolic conservation laws:

ut + ∇ · F(u) = 0. (1.1)

Hyperbolic conservation laws (1.1) and convection dominated PDEs play an important
role arise in applications, such as gas dynamics, modeling of shallow waters. There are
special difficulties associated with solving these problems both on mathematical and numer-
ical methods, for discontinuous may appear in the solutions for nonlinear equations, even
though the initial conditions are smooth enough. This is why devising robust, accurate and
efficient methods for numerically solving these problems is of considerable importance and
as expected, has attracted the interest of many researchers and practitioners. Within recent
decades, many high-order numerical methods have been developed to solve these problem.
Among them, we would like to mention essentially non-oscillatory (ENO) and weighted
ENO (WENO) schemes, which have been applied quite successfully to solve the problems
with shocks, contact discontinuities, and complicated smooth solutions.

In 1987, Harten et al. [2,3] introduced finite volume ENO schemes, which is a modifica-
tion of total variation diminishing (TVD) scheme [1]. ENO schemes use an adaptive stencil
based on the local smoothness such that it yields high-order accuracy where the function
is smooth but avoids the Gibbs phenomena at discontinuities. In 1988 and 1989, Shu and
Osher presented a class finite difference ENO schemes [11,12]. One of the popular high order
numerical methods WENO scheme was proposed by Liu et al. [6], which is an improved
version of the ENO technique using a cell-averaged approach for a third order finite vol-
ume version, in which it used a nonlinear convex combination of all the candidate stencils
to improve the accuracy of numerical fluxes without destroying non-oscillatory behaviors
near discontinuities, while additionally obtaining one order of improvement in accuracy. In
1996, third and fifth order finite difference WENO schemes in multi space dimensions are
constructed by Jiang and Shu [5], with a general framework for the design of smoothness
indicators and nonlinear weights. Instead of using just one candidate stencil, a linear combi-
nation of all candidate stencils is used. A key idea in WENO schemes is a linear combination
of lower order fluxes or reconstruction to obtain a higher order approximation. ENO and
WENO schemes have following advantages: uniform high order accuracy in smooth regions
including at smooth extreme, unlike second order TVD schemes which degenerate to first
order accuracy at smooth extreme; sharp and ENO (to the eyes) shock transition; robust for
many physical systems with strong shocks and especially suitable for simulating solutions
containing both discontinuities and complicated smooth solution structure, such as shock
interaction with vortices.

In 2004, following the idea of WENO, Qiu and Shu presented a class of Hermite WENO
(HWENO) schemes [7] in which both the function and its first derivative values are evolved
in time and used in the reconstruction, while only the function values are evolved and used in
the original WENO schemes. The construction of HWENO schemes were based on a finite
volume formulation, and they were applied as the limiters for the Runge–Kutta discontinuous
Galerkin (RKDG) methods [7,8]. Then HWENO schemes were extended to solve two-
dimensional conservation laws in [8,16] and Hamilton-Jacobi equations in [9]. In this paper,
we presented the fifth order finite difference Hermite WENO (HWENO). The construction
of HWENO schemes is based on a finite difference formulation, Hermite interpolation,
and nonlinearly stable Runge–Kutta methods. Comparing with the original finite difference
WENO schemes of Jiang and Shu [5], one major advantage of HWENO schemes is its
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compactness in the reconstruction. For example, five points are needed in the stencil for a
fifth order WENO (WENO5) reconstruction, while only three points are needed for a fifth
order HWENO (HWENO5) reconstruction.

The organization of this paper is as follows: In Sect. 2, we will describe the reconstruc-
tion procedure of finite difference HWENO schemes in one-dimensional cases. In Sect. 3, we
extended the method to two-dimensional cases and a practicable method for the hybrid deriv-
ative terms is discussed. A number of typical numerical examples is provided to demonstrate
the behavior of the HWENO schemes in Sect. 4. Concluding remarks are given in Sect. 5.

2 Description of HWENO Scheme in One Dimensional Case

In this section, we concentrate on describing the fifth-order finite difference HWENO schemes
for hyperbolic conservation laws (1.1). At first, we describe the reconstruction procedure
of finite difference HWENO schemes in one-dimensional scalar cases. Consider the one-
dimensional scalar conservation laws of (1.1):

{
ut + f (u)x = 0, x ∈ (−∞,∞), t ∈ (0,∞)

u(x, 0) = u0(x), x ∈ (−∞,∞)
(2.1)

where u(x, t) is a conserved quantity, f (u(x, t)) is flux, and x and t denote space and time
variable, respectively. We consider an uniform grid defined by the points xi = 1

2 (xi− 1
2

+
xi+ 1

2
), i = 1, . . . , N , which are also called cell centers, with cell boundaries given by

xi+ 1
2

= xi + 1
2�x , where �x = xi+ 1

2
− xi− 1

2
is the uniform grid spacing, the cells denoted

by Ii = [
xi− 1

2
, xi+ 1

2

]
. Denote the derivative of function u(x) as v(x), then from (2.1) and

its spatial derivative, we have the following equations:

{
ut + f (u)x = 0, u(x, 0) = u0(x),
vt + h(u, v)x = 0, v(x, 0) = v0(x),

(2.2)

where h(u, v) = f (u)x = f ′(u)ux = f ′(u)v. A conservative numerical scheme ensures
that a quantity remains conserved by calculating a single flux which describes the flow
of that quantity between neighboring cells. One solves (2.2) directly using a semi-discrete
conservative approximation to the spatial derivatives by the finite differences:

{ dui (t)
dt = − 1

�x ( f̂i+ 1
2

− f̂i−1/2),

dvi (t)
dt = − 1

�x (ĥi+ 1
2

− ĥi−1/2),
(2.3)

where ui (t) and vi (t) are the numerical approximation to the point value u(xi , t) and v(xi , t),
and the numerical flux

f̂i+ 1
2

= f̂ (ui−r , . . . , ui+s, vi−r , . . . , vi+s),

ĥi+ 1
2

= ĥ(ui−r , . . . , ui+s, vi−r , . . . , vi+s) (2.4)

satisfies the usual conditions, such as f̂i+ 1
2

and ĥi+ 1
2

are all Lipschitz continuous func-

tions with respect to all its arguments, f̂i+ 1
2

and ĥi+ 1
2

are consistent with the physical flux

f̂ (u, . . . , u, v, . . . , v) = f (u) and ĥ(u, . . . , u, v, . . . , v) = h(u, v).
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The scheme (2.3) has the r th order accuracy if
{

1
�x

(
f̂i+ 1

2
− f̂i− 1

2

) = f (u)x |x=xi + O(�xr ),

1
�x

(
ĥi+ 1

2
− ĥi− 1

2

) = h(u, v)x |x=xi + O
(
�xr−1

)
,

(2.5)

when u,v is smooth in the stencil.
Following [5], we define the implicit functions ϕ(x) and ψ(x), such that

1
�x

∫ x+�x
2

x−�x
2
ϕ(ξ)dξ = f (u(x)), 1

�x

∫ x+�x
2

x−�x
2
ψ(η)dη = h(u(x), v(x)), (2.6)

then we have: {
1
�x (ϕ(xi+ 1

2
)− ϕ(xi− 1

2
)) = f (u)x |x=xi ,

1
�x (ψ(xi+ 1

2
)− ψ(xi− 1

2
)) = h(u, v)x |x=xi .

(2.7)

If we choose numerical fluxes f̂i+ 1
2

and ĥi+ 1
2

such that

{
f̂i+ 1

2
= ϕ

(
xi+ 1

2

) + O
(
�xr

)
,

ĥi+ 1
2

= ψ
(
xi+ 1

2

) + O
(
�xr−1

)
,

(2.8)

then the scheme (2.3) has the r th order accuracy.
The definition of ϕ(x) and ψ(x) (2.6) implies that

ϕ̄i = 1

�x

∫ x
i+ 1

2

x
i− 1

2

ϕ(ξ)dξ = f (ui ), ψ̄i = 1

�x

∫ x
i+ 1

2

x
i− 1

2

ψ(η)dη = h(ui , vi ). (2.9)

Using the conditions (2.9), we can reconstruct fluxes f̂i+ 1
2

and ĥi+ 1
2

which satisfy (2.8).
For the purpose of stability, we need consider the upwind quality of the schemes. We

will split fluxes f (u) and h(u, v) into two parts, respectively, f (u) = f +(u) + f −(u)
and h(u, v) = h+(u, v) + h−(u, v), where d

du f +(u) ≥ 0, ∂
∂v

h+(u, v) ≥ 0, d
du f −(u)

≤ 0, ∂
∂v

h−(u, v) ≤ 0. The reconstruction procedure which will be described below

for numerical fluxes f̂i+ 1
2

and ĥi+ 1
2

will also be split into two parts and be applied to

f +(u), h+(u, v) and f −(u), h−(u, v), respectively. Hence, numerical fluxes

f̂i+ 1
2

= f̂ +
i+ 1

2
+ f̂ −

i+ 1
2
, ĥi+ 1

2
= ĥ+

i+ 1
2

+ ĥ−
i+ 1

2
. (2.10)

Then the semi-discrete scheme (2.3), written as an ordinary differential equation (ODE)
system

Ut = L(U ) (2.11)

is then discretized in time by a total variation diminishing (TVD) Runge–Kutta method
[11,12], for example the third order version given by

U (1) = U n +�t L(U n)

U (2) = 3

4
U n + 1

4
U (1) + 1

4
�t L(U (1)) (2.12)

U n+1 = 1

3
U n + 2

3
U (2) + 2

3
�t L(U (2)),

with U = (u, v)T .
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Now we describe the procedure of HWENO reconstruction for numerical fluxes in detail.

Step 1. We first consider the reconstruction of f̂i+ 1
2
, the procedure of the algorithm is as

below.

1.1. Given the nodal value {ui , vi }, we can use the following splitting procedure to
get { f ±(ui ), h±(ui , vi )}:
f +(ui ) = 1

2 ( f (ui )+ αui ), f −(ui ) = 1
2 ( f (ui )− αui );

h+(ui , vi ) = 1
2 (h(ui , vi )+ αvi ), h−(ui , vi ) = 1

2 (h(ui , vi )− αvi ),
(2.13)

with the α = maxu | f ′(u)|.
1.2. Given the small stencils s0 = {xi−1, xi }, s1 = {xi , xi+1}, s2 = {xi−1, xi , xi+1}

and the bigger stencil T = s0 ∪ s1 ∪ s2, we construct quadratic polynomials
p0(x), p1(x), p2(x) and a fourth-degree reconstruction polynomial q(x) such
that:

1

�x

∫
Ik

p0(x)dx = f +(uk), k = i − 1, i,

1

�x

∫
Ii−1

p′
0(x)dx = h+(ui−1, vi−1);

1

�x

∫
Ik

p1(x)dx = f +(uk), k = i, i + 1,

1

�x

∫
Ii+1

p′
1(x)dx = h+(ui+1, vi+1);

1

�x

∫
Ik

p2(x)dx = f +(uk), k = i − 1, i, i + 1;

and
1

�x

∫
Ik

q(x)dx = f +(uk), k = i − 1, i, i + 1,

1

�x

∫
Ik

q ′(x)dx = h+(uk, vk), k = i − 1, i + 1.

Notice that we follow the principle of unilateral choice of derivative condition
in order to consider stability of numerical schemes. We would like to find an
approximation of function p j (x) and q(x) at the half nodes xi+ 1

2
, hence, we

have

p0
(
xi+ 1

2

) = −7

6
f +(

ui−1
) + 13

6
f +(

ui
) − 2

3
�xh+(

ui−1, vi−1
)
,

p1
(
xi+ 1

2

) = 1

6
f +(

ui
) + 5

6
f +(

ui+1
) − 1

3
�xh+(

ui+1, vi+1
)
,

p2
(
xi+ 1

2

) = −1

6
f +(

ui−1
) + 5

6
f +(

ui
) + 1

3
f +(

ui+1
)
, (2.14)

q
(
xi+ 1

2

) = − 23

120
f +(

ui−1
) + 19

30
f +(

ui
)

+ 67

120
f +(

ui+1
) −�x

( 3

40
h+(

ui−1, vi−1
)

+ 7

40
h+(

ui+1, vi+1
))
.
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1.3. A crucial component for HWENO procedure is to write the q(x) as linear
convex combination of polynomial p0(x), p1(x), p2(x) at x = xi+ 1

2
. Simple

algebra gives the combination coefficients γ j ( j = 0, 1, 2) , also called linear
weights, satisfying:

q(xi+ 1
2
) =

2∑
j=0

γ j p j

(
xi+ 1

2

)

with
∑2

j=0 γ j = 1 for all the nodal values of f + and h+ in the bigger stencil
T . This leads to

γ0 = 9

80
, γ1 = 42

80
, γ2 = 29

80
. (2.15)

1.4. We compute the smoothness indicator, denoted by β j for stencil s j , which
measures the smoothness of the function p j (x) in the target cell Ii . The smaller
the value of β j , the smoother the function p j (x) in its target cell. Moreover,
smoothness indicator is the key component changing the linear weights obtained
in the step 3 to nonlinear weights. We take the same form smoothness indicator
as in [7]

β j =
2∑

l=1

∫
Ii

�x2l−1
(
∂ l

∂xl
p j (x)

)2

dx . (2.16)

In fact, it’s an quadratic function of the values of the u and v in each stencil s j .
In this work, the smoothness indicator expressions are

β0 = (−2 f +(ui−1)+ 2 f +(ui )−�xh+(ui−1, vi−1))
2

+13

12
(−2 f +(ui−1)+ 2 f +(ui )− 2�xh+(ui−1, vi−1))

2,

β1 = (−2 f +(ui )+ 2 f +(ui+1)−�xh+(ui+1, vi+1))
2

+13

12
(2 f +(ui )− 2 f +(ui+1)+ 2�xh+(ui+1, vi+1))

2,

β2 = 1

4
(− f +(ui−1)+ f +(ui+1))

2

+ 13

12
( f +(ui−1)− 2 f +(ui )+ f +(ui+1))

2.

1.5. We compute the nonlinear weights w j by

w j = w̄ j∑
k w̄k

, w̄k = γk

(βk + ε)2
, j, k = 0, 1, 2, (2.17)

where γk are determined by (2.15), and the parameter ε is a positive real number
which is introduced to avoid the denominator to be zero, ε is taken as 10−6 in
all our numerical results. For more details one can see [5]. Then, the HWENO
reconstruction approximation

ϕ+
i+ 1

2
≈ f̂ +

i+ 1
2

=
2∑

j=0

ω j p j

(
xi+ 1

2

)
. (2.18)
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The reconstruction procedure of f̂ −
i+ 1

2
from { f −(ui ), h−(ui , vi )} is mirror sym-

metric with respect to xi+ 1
2

of that for f̂ +
i+ 1

2
described above.

1.6. Finally, our numerical flux can be obtained by

f̂i+ 1
2

= f̂ +
i+ 1

2
+ f̂ −

i+ 1
2
. (2.19)

Step 2. The reconstruction of numerical flux ĥi+ 1
2
.

2.1. Compute { f ±(ui ), h±(ui , vi )} as in Step 1.1.
2.2. Given the small stencils s0 = {xi−1, xi }, s1 = {xi , xi+1}, s2 = {xi−1, xi , xi+1}

and the big stencil T = s0 ∪ s1 ∪ s2, we construct Hermite cubic reconstruction
polynomials p0(x), p1(x), p2(x) and a fifth-degree reconstruction polynomial
q(x) such that:

1

�x

∫
Ik

p0(x)dx = f +(uk),
1

�x

∫
Ik

p′
0(x)dx = h+(uk, vk), k = i − 1, i;

1

�x

∫
Ik

p1(x)dx = f +(uk),
1

�x

∫
Ik

p′
1(x)dx = h+(uk, vk), k = i, i + 1;

1

�x

∫
Ik

p2(x)dx = f +(uk), k = i − 1, i, i + 1; 1

�x

∫
Ii

p′
2(x)dx = h+(ui , vi )

and

1

�x

∫
Ik

q(x)dx = f +(uk),
1

�x

∫
Ik

q ′(x)dx = h+(uk, vk), k = i − 1, i, i + 1.

Find an approximation of function p′
j (x) and q ′(x) at the half nodes xi+ 1

2
,

hence, we can have

p′
0(xi+ 1

2
) = 4

�x
( f +(ui−1)− f +(ui ))+ 3

2
h+(ui−1, vi−1)+ 7

2
h+(ui , vi ),

p′
1(xi+ 1

2
) = − 2

�x
( f +(ui )− f +(ui+1))− 1

2
h+(ui , vi )− 1

2
h+(ui+1, vi+1),

p′
2(xi+ 1

2
) = 1

4�x
( f +(ui−1)− 4 f +(ui )+ 3 f +(ui+1))+ 1

2
h+(ui , vi ),

q ′(xi+ 1
2
) = 1

�x
(

1

4
f +(ui−1)− 2 f +(ui )+ 7

4
f +(ui+1))

+ 1

12
h+(ui−1, vi−1)− 1

6
h+(ui , vi )− 5

12
h+(ui+1, vi+1).

(2.20)

2.3. Similarly, compute the linear weights γ ′
j , j = 1, 2, 3, such that

q ′ (xi+ 1
2

)
=

2∑
j=0

γ ′
j p′

j

(
xi+ 1

2

)
,

with
∑2

j=0 γ
′
j = 1, for all the nodal values of f + and h+ in the bigger stencil

T . This leads to

γ ′
0 = 1

18
, γ ′

1 = 5

6
, γ ′

2 = 1

9
. (2.21)
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2.4. Again we define the smoothness indicators for the reconstruction of derivatives
as

β j =
3∑

l=2

∫
Ii

�x2l−1
(
∂ l

∂xl
p j (x)

)2

dx . (2.22)

Then we can express the smoothness indicator explicitly a quadratic function
forms as follows

β0 = 13

3
(6 f +(ui−1)− 6 f +(ui )+ 3�x(h+(ui−1, vi−1)+ h+(ui , vi )))

2

+(6 f +(ui−1)− 6 f +(ui )+ 2�x(h+(ui−1, vi−1)+ 2h+(ui , vi )))
2,

β1 = 13

3
(6 f +(ui )− 6 f +(ui+1)+ 3�x(h+(ui , vi )+ h+(ui+1, vi+1)))

2

+(−6 f +(ui )+ 6 f +(ui+1)− 2�x(2h+(ui , vi )+ h+(ui+1, vi+1)))
2,

β2 = 13

12
(−3 f +(ui−1)+ 3 f +(ui+1)− 6�xh+(ui , vi ))

2

+( f +(ui−1)− 2 f +(ui )+ f +(ui+1))
2.

2.5. Compute the nonlinear weights based on the smoothness indicators in step 2.4,
we have

w′
j = w̄′

j∑
k w̄

′
k
, w̄′

k = γ ′
k

(βk + ε)2
, j, k = 0, 1, 2, (2.23)

where γ ′
k are the weights determined by (2.21), and the parameter ε is again a

positive real number to avoid the denominator to be zero, ε is taken as 10−6 in
all our numerical results. Then, the HWENO reconstruction approximation

ϕ+
i+ 1

2
≈ ĥ+

i+ 1
2

=
2∑

j=0

ω′
j p′

j

(
xi+ 1

2

)
. (2.24)

Again, the reconstruction procedure of ĥ−
i+ 1

2
from { f −(ui ), h−(ui , vi )} is mir-

ror symmetric with respect to xi+ 1
2

of that for ĥ+
i+ 1

2
described above.

2.6. Finally, our numerical flux can be obtained by

ĥi+ 1
2

= ĥ+
i+ 1

2
+ ĥ−

i+ 1
2

(2.25)

Remark 1 For systems of conservation laws, the procedure of reconstruction of numerical
fluxes are performed in the local characteristic directions to avoid oscillation.

Remark 2 Positivity-preserving flux limiter is key point for high-order numerical methods,
which is used to maintain the density ρ and the pressure p to be positive. There are serval
positivity-preserving methods in the literature, such as [4,14,15]. In this paper we take the
technique by Hu et al. [4], for details refer to [4].
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3 Description of HWENO Scheme in Two Dimensional Case

In this section we extend the method in Sect. 2 to solve nonlinear hyperbolic conservation
laws. Firstly we consider 2D scalar conservation laws{

ut + f (u)x + g(u)y = 0, (x, y) ∈ R2, t ∈ (0,∞)

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,
(3.1)

where u(x, y, t) is a conserved quantity, f (u(x, y, t)) and g(u(x, y, t)) describes its flux
in x direction and y direction. Let v = ux , w = uy , taking the derivative x and y of (3.1)
separately, then we obtain the whole equations form that we need to solve as below⎧⎨

⎩
ut + f (u)x + g(u)y = 0,
vt + h(u, v)x + r(u, v)y = 0,
wt + q(u, w)x + s(u, w)y = 0,

(3.2)

where

h(u, v) = f ′(u)v, r(u, v) = g′(u)v,
q(u, w) = f ′(u)w, s(u, w) = g′(u)w.

In this section, the domain [a, b] × [c, d] is divided as a = x 1
2
< x 3

2
. . . < xNx + 1

2= b, c = y 1
2
< y 3

2
. . . < yNy+ 1

2
= d with uniformly distributed grid points, i.e. xi =

a+i�x, y j = c+ j�y. We define the cell size xi+ 1
2
−xi−1/2 = �x, y j+1/2−y j−1/2 = �y,

and cell centers (xi , y j ) = ( 1
2 (xi+ 1

2
+xi−1/2),

1
2 (y j+1/2−y j−1/2)). Note that the components

in both Eqs. (3.2) and (2.2) have the similar form, we can extend the algorithm for one
dimensional case in a dimension-by-dimension fashion to two dimensional case. But it is
difficult to approximate the mixed derivative terms ( f ′(u)w)x and (g′(u)v)y with the same
order of accuracy. The key point is how to reconstruct the numerical fluxes for the mixed
derivative terms. In this paper the conventional 3-point WENO reconstruction is employed
in mixed derivative terms, therefore the accuracy of two dimensional scheme is fourth order.

Again we approximate (3.2) by the following conservative schemes
⎧⎪⎪⎨
⎪⎪⎩

dui, j (t)
dt + 1

�x

(
f̂i+ 1

2 , j − f̂i− 1
2 , j

) + 1
�y

(
ĝi, j+ 1

2
− ĝi, j− 1

2

) = 0,
dvi, j (t)

dt + 1
�x

(
ĥi+ 1

2 , j − ĥi− 1
2 , j

) + 1
�y

(
r̂i, j+ 1

2
− r̂i, j− 1

2

) = 0,
dwi, j (t)

dt + 1
�x

(
q̂i+ 1

2 , j − q̂i− 1
2 , j

) + 1
�y

(
ŝi, j+ 1

2
− ŝi, j− 1

2

) = 0,

(3.3)

where the numerical fluxes f̂i± 1
2 , j , ĥi± 1

2 , j , ĝi, j± 1
2
, and ŝi, j± 1

2
, were reconstructed by the

straightforward extended from the one dimensional methods in a dimension-by-dimension
fashion.

For the reconstruction of the numerical fluxes q̂i± 1
2 , j for the mixed derivative terms qx ,

we would like to adopt the following WENO procedure.

1. For any fixed y = y j , we split the fluxes into positive and negative parts by:

q+
i, j = 1

2

(
q
(
ui, j , wi, j

) + αwi, j
)
,

q−
i, j = 1

2

(
q
(
ui+1, j , wi+1, j

) − αwi+1, j
)
,

where q(ui, j , wi, j ) = qi, j = f ′(ui, j )wi, j , and α = maxu | f ′(u)|.
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2. Reconstruction the approximation using the WENO procedure. We choose the small
stencils s1 = {xi−1, xi }, s2 = {xi , xi+1} and a big stencil T = {xi−1, xi , xi+1} at
y = y j . We interpolate linear polynomials p1(x), p2(x), satisfying

1

�x

∫
Ik

p1(x)dx = q+
k, j (k = i − 1, i),

1

�x

∫
Ik

p2(x)dx = q+
k, j (k = i, i + 1),

(3.4)

and Q(x) in big stencil such that:

1

�x

∫
Ik

Q(x)dx = q+
k, j (k = i − 1, i, i + 1).

A simple algebra leads to these polynomials at the cell boundaries x = xi+1/2:

p1

(
x−

i+ 1
2

)
= −1

2
q+

i−1, j + 3

2
q+

i, j ,

p2

(
x−

i+ 1
2

)
= 1

2
q+

i, j + 1

2
q+

i+1, j .

and

Q

(
x−

i+ 1
2

)
= −1

6
q+

i−1, j + 5

6
q+

i, j + 1

3
q+

i+1, j .

3. The approximation Q(x−
i+ 1

2 , j
) can be written as a linear convex combination of the

two second order approximations p1(x
−
i+ 1

2 , j
) and p2(x

−
i+ 1

2 , j
), defined in the above step.

Denoting the linear weights by γ1, γ2 such that

Q

(
x−

i+ 1
2

)
= γ1 p1

(
x−

i+ 1
2

)
+ γ2 p2

(
x−

i+ 1
2

)
.

where the constants γ1, γ2 satisfying γ1 + γ2 = 1. And here the linear weights are given
as γ1 = 1

3 , γ2 = 2
3 .

4. Finally, we change the linear weights obtained in the third step to nonlinear weights.
This is achieved through a choice of the so-called smoothness indicator β j ( j = 1, 2).
In this paper, we use the same formula with (2.16) obtaining the smoothness indicator
expressions are

β1 = (q+
i−1, j − q+

i, j )
2, β2 = (−q+

i, j + q+
i+1, j )

2.

The linear weights γ j in the third step is then replaced by the nonlinear weights ω j ,
defined by

ω j = ω̄ j

ω̄1 + ω̄2
, ω̄ j = γ j

(ε + β j )2
, j = 1, 2;

where ε is a small positive number to avoid the denominator to become zero. Then the
approximation of q+

i+ 1
2 , j

is achieved as

q̂+
i+ 1

2 , j
= ω1 p1

(
x−

i+ 1
2

)
+ ω2 p2

(
x−

i+ 1
2

)
.
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5. Again, the reconstruction procedure of q̂−
i+ 1

2 , j
, from q−

i, j is mirror symmetric with respect

to xi+ 1
2

of that for q̂+
i+ 1

2 , j
described above. Finally, we obtain numerical fluxes q̂i+ 1

2 , j
as:

q̂i+ 1
2 , j = q̂−

i+ 1
2 , j

+ q̂+
i+ 1

2 , j
.

Notice that again for systems of conservation laws, such as the Euler equations of gas
dynamics, all of the reconstructions are performed in the local characteristic directions of
f ′(u) to avoid spurious oscillatory.

An analogous procedure is performed to the mixed derivative term r̂i, j± 1
2

in the
y-direction, and for systems case, all of the reconstructions are performed in the local char-
acteristic directions of g′(u).

Remark 3 The disadvantage of using this method to treat the mixed derivatives is that the
scheme is only the forth order of accuracy.

Remark 4 If we use following linear finite difference to approximate mixed derivatives:

q̂i+ 1
2 , j = 1

12�x
(−qi−1, j + 7qi, j + 7qi+1, j − qi+2, j ),

then the scheme is the fifth order of accuracy, but when we use it to simulate the problem
with strong discontinuity, spurious oscillatory will appear.

4 Numerical Results

In this section we perform a number of typical numerical experiments to test the performances
of finite difference HWENO schemes. For all the numerical tests in this paper, the third order
Runge–Kutta method (2.12) is used for time evolution, and CFL number is taken to be 0.2
for one and two dimensional cases, except for the accuracy tests where a suitably reduced
time step is used to guarantee that spatial error dominates.

4.1 Scalar Conservation Laws in One Dimension

Example 4.1 The linear advection problem. We consider the linear advection equation:{
ut + ux = 0, −1 ≤ x < 1, t > 0,
u(x, 0) = u0(x).

(4.1)

The exact solution of this problem is u(x, t) = u0(x − t).

First we would like to test accuracy of HWENO scheme when it apply to solve the equation
(4.1) with initial condition:

u(x, 0) = sin(πx), (4.2)

and periodic boundary condition. We compute the solution up to t = 2, i.e., after one time
period. In Table 1 the L1, L∞ errors and the numerical orders by HWENO and WENO
schemes are shown, respectively. One can see that both the fifth-order HWENO and WENO
schemes achieve their designed order of accuracy. We can also see that errors by HWENO
are smaller than those by WENO under the same number grid points.
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Table 1 Linear equation

N HWENO5 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.79E-03 3.10E−03 3.82E−03 6.66E−03
20 5.52E−05 5.02 1.00E−04 4.95 1.50E−04 4.67 2.95E−04 4.50
40 1.49E−06 5.21 2.97E−06 5.08 4.21E−06 5.16 8.81E−06 5.07
80 4.52E−08 5.04 9.28E−08 5.00 1.25E−07 5.07 2.75E−07 5.00
160 1.40E−09 5.02 2.80E−09 5.05 3.86E−09 5.02 8.25E−09 5.06
320 4.33E−11 5.01 7.87E−11 5.15 1.19E−10 5.01 2.36E−10 5.13
640 1.34E−12 5.01 2.34E−12 5.08 3.70E−12 5.01 6.56E−12 5.17

L1 and L∞ errors and numerical order of accuracy

Next, we test Eq. (4.1) with initial condition which is discontinuous to show resolution of
HWENO schemes. The initial condition is consisting of a Gaussian, a square pulse, a sharp
triangle, and a combination of semi-ellipses, given by

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 [G(x, β, z − δ)+ 4G(x, β, z)+ G(x, β, z + δ)], −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,

1 − |10(x − 0.1)|, 0 ≤ x ≤ 0.2,

1
6 [F(x, β, a − δ)+ 4F(x, β, a)+ F(x, β, a + δ)], 0.4 ≤ x ≤ 0.6,

0, otherwise,

(4.3)

G(x, β, z) = e−β(x−z)2 , F(x, α, a) =
√

max(1 − α2(x − a)2, 0),

where the constants are a = 0.5, z = −0.7, δ = 0.005, α = 10 and β = log2
36δ2 . We solve the

problem on a 100 element uniform mesh with periodic boundary conditions and the results
of HWENO are compared against the classic WENO until the final time t = 8, shown in
Fig. 1. The solid line is the exact solution. We observe that the solution is better resolved.
There is a good agreement between the exact and computed solution by HWENO. We also
note that the HWENO behaves quantitatively equivalent to WENO schemes.

Example 4.2 Convex f (u) with smooth initial data. In this example we test our scheme on
the nonlinear Burgers’ equation

{
ut + (u2/2)x = 0,
u(x, 0) = 0.5 + sin(πx)

(4.4)

with a 2-periodic boundary conditions.

When t = 0.5/π the solution is still smooth, and the numerical errors and accuracy orders
by the HWENO5 methods and WENO5 methods are shown in Table 2. We can see that
the HWENO5 schemes achieve its designed accuracy order. Comparing with the WENO5
schemes, the errors generated by HWENO5 are smaller than WENO5 schemes under the same
grids, and the accuracy orders are higher than WENO5 schemes. In Fig. 2 we show the solution
with N = 80 at the final time t = 1.5/π compared against the classic WENO5 schemes. We
observe that the HWENO5 schemes and WENO5 schemes have similar resolution for this
test case.
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Fig. 1 Numerical solution of the linear advection equation with the discontinuous initial condition (4.3) as
computed by the HWENO and WENO with N = 100 at t = 8. Solid line exact solution, plus signs HWENO,
square signs WENO

Table 2 Burgers’ equation

N HWENO5 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 3.21E−02 6.71E−02 1.91E−02 7.47E−02
20 2.51E−03 3.68 7.98E−03 3.07 2.07E−03 3.21 1.21E−02 2.62
40 1.05E−04 4.58 4.82E−04 4.05 1.32E−04 3.97 1.04E−03 3.54
80 3.36E−06 4.96 1.68E−05 4.84 4.61E−06 4.84 4.73E−05 4.46
160 1.22E−07 4.78 6.53E−07 4.69 1.79E−07 4.69 1.50E−06 4.98
320 3.48E−09 5.13 3.20E−08 4.35 6.90E−09 4.70 1.37E−07 3.45
640 7.90E−11 5.46 4.42E−10 6.18 2.02E−10 5.09 7.63E−09 4.17

L1 and L∞ errors and numerical order of accuracy are measured at the center of each element. Using N
equally spaced cells

Example 4.3 Riemann initial value problem (IVP) for nonconvex f (u) [2]. We solve the
nonlinear nonconvex Riemann IVP

ut + 1
4 (u

2 − 1)(u2 − 4) = 0,

u(x, 0) =
{

uL x < 0,
u R x > 0,

(4.5)

with two different initial Riemann conditions.

Case (i). uL = 2, u R = −2. The exact solution in this case is

u(x, t) =
⎧⎨
⎩

2, x/t < −0.5281529,
f ′−1(x/t), |x |/t < 0.5281529,
−2, x/t > 0.5281529.

(4.6)
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Fig. 2 Numerical solution of the Burgers’ equation as computed by the HWENO and WENO with N = 80
at t = 1.5/π
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Fig. 3 Numerical solution of the nonlinear nonconvex problem with the Riemann initial condition as computed
by the HWENO and WENO with N = 80. Left for case (i); right for case (ii)

Case (ii). uL = −3, u R = 3. The exact solution in this case is

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

−3, x/t < −19.5,
f ′−1(x/t), −19.5 ≤ x/t ≤ 0,
− f ′−1(−x/t), 0 ≤ x/t ≤ 19.5,
3, x/t ≥ 19.5.

(4.7)

In Fig. 3, we show the results of the HWENO schemes for these two cases compared to the
WENO schemes. We observe that the location of the computed shocks is accurate in these
two calculations. Although we observe that the computed shocks ahead of the correct location
or lags behind the correct location, we find that the quality of the numerical approximation
in both schemes is similar.
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Table 3 The Euler equation

N HWENO5 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 3.38E−03 5.18E−03 3.82E−03 6.66E−03
20 1.28E−04 4.72 2.43E−04 4.41 1.50E−04 4.67 2.95E−04 4.50
40 3.77E−06 5.09 7.25E−06 5.07 4.21E−06 5.16 8.81E−06 5.07
80 1.15E−07 5.04 2.22E−07 5.03 1.25E−07 5.07 2.75E−07 5.00
160 3.49E−09 5.04 6.31E−09 5.14 3.86E−09 5.02 8.25E−09 5.06
320 1.05E−10 5.06 1.79E−10 5.14 1.19E−10 5.01 2.36E−10 5.13

L1 and L∞ errors and numerical order of accuracy are measured at the center of each element. Using N
equally spaced cells

4.2 Euler System of Gas Dynamics in One Dimension

In this subsection, we present numerical experiments with the one dimensional system of the
Euler equations for gas dynamics in conservation form:⎛

⎝ ρ

ρu
E

⎞
⎠

t

+
⎛
⎝ ρu
ρu2 + p
u(E + p)

⎞
⎠

x

= 0, (4.8)

here ρ is the density, u is the velocity, E is the total energy, p is the pressure, which is related
to the total energy by E = p

γ−1 + 1
2ρu2 with γ = 1.4.

Example 4.4 Accuracy tests. We solve the nonlinear system of Euler equations. The domain
we take [−1, 1], the initial condition is set to be ρ(x, t) = 1 + 0.2 sin(πx), v(x, 0) =
1, p(x, 0) = 1. Periodic boundary condition are used for original Euler equations and
its derivative equations. The exact solution is ρ(x, t) = 1 + 0.2 sin(π(x − t)), v(x, t) =
1, p(x, t) = 1.

We present errors in the L1 and L∞ norm and theirs numerical orders of accuracy of the
density ρ at t = 2 on uniform meshes having 10, 20, 40, 80, 160, and 320 elements for the
HWENO schemes in Table 3, in comparison with the results of classical WENO methods
[5,10] for this numerical example. Obviously, the HWENO schemes achieve their designed
fifth order accuracy. We observe that the errors of the WENO scheme are significantly bigger
than those for the schemes designed in this paper in Table 3.

Following we consider here three well known Riemann problems involving very strong
discontinuities problems.

Example 4.5 Riemann initial value problems: Lax and Sod’s problem. Here we show that
the HWENO scheme passes the test of the Riemann initial value problems, also known as
the Lax problem and Sod’s problem. The numerical experiments were conducted using 200
grid points. For the Lax problems, the density ρ, velocity u and pressure p in the left and the
right stages of the shock are:

(ρ, v, p) =
{
(0.445, 0.698, 3.528) if x ≤ 0,
(0.5, 0, 0.571) if x > 0,

and the Sod’s problem,

(ρ, v, p) =
{
(1, 0, 1) if x ≤ 0,
(0.125, 0, 0.1) if x > 0,
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Fig. 4 Numerical solution of the Lax problem with the Riemann initial condition as computed by the HWENO
and WENO with N = 200

and the final time is t = 1.3 (for Lax problem) and t = 2 (for Sod’s problem) for both
problems separately. The computational domain is [−5, 5]. We use the constant boundaries
for equations and its derivative equations. The numerical results (symbols) of density, pressure
and velocity are shown along with the exact solutions (solid black lines).

The numerical results are presented in Figs. 4 and 5. We note that figures are the comparable
HWENO schemes with classical WENO schemes. We can see that this paper’s schemes give
the correct solution with good resolution. The improvement in the resolution of shock waves
is more apparent from figures. We observe also that the numerical results for our schemes
keep sharp transition, but according to our experience with expensive numerical testing, for
this scheme, especially for the Lax problem, it is tough and the oscillations can easily appear.
Here the classical WENO scheme performs better than our schemes, although it gives basic
correct conclusions as the exact solution.

Example 4.6 The shock density wave interaction problem [11]. The solution of this problem
contains both shocks and complex smooth regions, i.e. solving the Euler equation with a
moving Mach=3 shock interacting with the sine waves in density, specified by the following
initial conditions:

123

Author's personal copy



564 J Sci Comput (2015) 63:548–572

+++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++++++++++++++++++++++++++++++++++++++++++++

+++
+

+

+

+

+
++++++++++++++++++++++++++++++

+

+

+++++++++++++++++++++++++++++

x

D
en

si
ty

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1

Exact
HWENO
WENO

+

++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+++++++++++++++++++++++++++++

x

P
re

ss
u

re

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1

Exact
HWENO
WENO

+

++++++++++++++++++++++++++++++++++++++++++++++++++
++

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+

++++++++++++++++++++++++++++

x

V
el

oc
ity

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

Exact
HWENO
WENO

+

Fig. 5 Numerical solution of the sod’s problem with the Riemann initial condition as computed by the
HWENO and WENO with N = 200

(ρ, v, p) =
{
(3.857143, 2.629369, 10.333333) if x < −4,
(1 + ε sin(5x), 0, 1) if x ≥ −4.

In our test, we take ε = 0.2. The computational domain is x ∈ [−5, 5]. The solution of
this problem consists of a number of shocklets and fine scales structures which are located
behind a right-going mains hock. Generally for the shock or disconnect problems, our key
concern is resolution and sharp transition of the solution, but the accuracy of schemes is
not so important. The goal of this test is to show the advantage of HWENO schemes that is
a higher order scheme, when the solution contains both shock and complex smooth region
structures.

We take the periodic boundary conditions for this problem. In Fig. 6, we provide a com-
parison of the density, pressure and velocity for HWENO and WENO schemes at t = 1.8
with N = 300 against the reference solutions, which is a converged solution computed by
fifth order finite difference WENO method with 2,000 grid points. We can see that HWENO
schemes converge properly to reference solution and capture fine scale structure of the solu-
tion, particularly at the high-frequency waves behind the shock. And comparing with the
WENO scheme, HWENO schemes have better sharp transition or resolution.
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Fig. 6 Numerical solution of the Shu–Osher problem with the Riemann initial condition as computed by the
HWENO and WENO with N = 300

4.3 Scalar Conservation Laws in Two Dimensions

Example 4.7 The two dimensional linear advection problem. We consider the two dimen-
sional linear advection equation:{

ut + ux + uy = 0, (x, y) ∈ R2, t > 0,
u(x, y, 0) = u0(x, y).

(4.9)

The exact solution of this problem is u(x, y, t) = u0(x − t, y − t). We would like to test
accuracy of HWENO scheme when it apply to solve the equation (4.9) with initial condition:

u(x, y, 0) = 0.5 + sin(π(x + y)), (4.10)

and periodic boundary condition. We compute the solution up to t = 1. In Table 4 the L1,
L2 and L∞ errors and the numerical orders by HWENO scheme are shown, respectively. We
can see that the fourth-order HWENO scheme achieves its designed order of accuracy.

Example 4.8 Burgers’ equation. We solve the two-dimensional nonlinear Burgers’ equation
ut + (u2/2)x + (u2/2)y = 0, 0 ≤ x ≤ 4, u(x, y, 0) = u0(x, y), with periodic boundary
conditions. Here we consider the hyperbolic conservation laws on test problems with exact
solution case. The initial condition is u0(x + y) = 0.5 + sin((x + y)π/2). We list the L1
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Table 4 Fourth order HWENO spatial discretization scheme, for the two dimensional linear equation with
initial condition u0(x) = 0.5 + sin(π(x + y)), t = 1

N x × N y L1 error Order L2 error Order L∞ error Order

10 * 10 3.70E−01 4.08E−01 5.61E−01
20 * 20 7.52E−02 2.30 8.98E−02 2.19 1.59E−01 1.82
40 * 40 1.89E−02 1.99 2.19E−02 2.03 4.19E−02 1.92
80 * 80 5.07E−03 1.90 6.39E−03 1.78 1.31E−02 1.67
160 * 160 1.06E−04 5.58 1.74E−04 5.20 5.34E−04 4.62
320 * 320 7.18E−07 7.21 1.06E−06 7.36 2.84E−06 7.55
640 * 640 1.09E−08 6.04 1.43E−08 6.22 3.23E−08 6.46

Table 5 Fourth order HWENO spatial discretization scheme, for the two dimensional Burgers’ equation
ut + (u2/2)x + (u2/2)y = 0 with initial condition u0(x) = 0.5 + sin((x + y)π/2), t = 0.5/π

N x × N y L1 error Order L2 error Order L∞ error Order

10 * 10 6.41E−02 5.89E−02 6.94E−02
20 * 20 5.47E−03 3.55 4.06E−03 3.86 6.74E−03 3.36
40 * 40 8.13E−04 2.75 5.58E−04 2.86 9.19E−04 2.87
80 * 80 1.97E−04 2.05 2.53E−04 1.14 6.23E−04 0.56
160 * 160 1.02E−05 4.27 1.69E−05 3.90 5.37E−05 3.54
320 * 320 9.28E−08 6.77 1.28E−07 7.05 4.08E−07 7.04
640 * 640 2.87E−09 5.02 2.98E−09 5.43 6.90E−09 5.89

Table 6 The two-dimensional Euler equation

N x × N y L1 error Order L2 error Order L∞ error Order

10*10 3.32E−02 4.03E−02 6.75E−02
20*20 5.70E−03 2.54 7.82E−03 2.36 1.82E−02 1.89
40*40 2.43E−03 1.23 3.09E−03 1.34 7.27E−03 1.33
80*80 8.47E−06 8.17 1.16E−05 8.06 2.91E−05 7.97
160*160 1.32E−07 6.00 1.58E−07 6.20 2.84E−07 6.68
320*320 7.30E−09 4.18 8.18E−09 4.27 1.74E−08 4.03
640*640 4.52E−10 4.01 5.02E−10 4.02 7.10E−10 4.04

L1, L2 and L∞ errors and numerical order of accuracy by HWENO are measured at the center of each element.
Using N equally spaced cells

and L∞ errors for the nodal value at time t = 0.5/π in Table 5. We can see that the designed
fourth order accuracy is achieved in the three norms for both of schemes.

4.4 Euler System in Two Dimensions

In this section, we apply the HWENO schemes to solve the two dimensional Euler equation,
including the Riemann problem, Shock–vortex (SV) interaction, double mach reflection
problem and the forward step problem. The governing equations are the two-dimensional
Euler equations in Cartesian coordinates given by
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Fig. 7 Numerical solution of the four Riemann problems computed by the HWENO with N = 400 × 400.
30 equally spaced density contours are plotted, respectively
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= 0, (4.11)

here ρ is the density, (u, v) is the velocity in x-dir. and y-dir., E is the total energy, p is the
pressure, which is related to the total energy by E = p

γ−1 + 1
2ρ(u

2 + v2) with γ = 1.4. The
computations are carried out with a CFL number of 0.2.

Example 4.9 Accuracy test. We solve the two dimensional nonlinear systems of Euler equa-
tions (4.11). The initial condition is set to be ρ(x, y, t) = 1+0.2 sin(π(x + y)), u(x, y, 0) =
0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1. We consider this problem in the domain of
[0, 2] × [0, 2]. Periodic boundary condition is used for original Euler equations and its
derivative equations. We compute the solution up to t = 2. The exact solution is ρ(x, y, t) =
1 + 0.2 sin(π((x + y)− (u + v)t)), u(x, y, t) = 0.7, v(x, y, t) = 0.3, p(x, y, t) = 1.

123

Author's personal copy



568 J Sci Comput (2015) 63:548–572

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

1.450.950.45
0

0.2

0.4

0.6

0.8

1

(d)
0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

(e)

Fig. 8 2D shock vortex interaction. Pressure. 30 contours for (a)–(c) and (e), d 90 contours. a t = 0.05.,
b t = 0.2., c t = 0.35., d t = 0.6. e t = 0.8.

We present errors in the L1 and L∞ norm and theirs numerical orders of accuracy of the
density ρ on uniform meshes for the HWENO scheme in Table 6. Obviously, the HWENO
schemes achieve their designed order of accuracy.

Example 4.10 The Riemann problem. In this example we present numerical experiments with
the HWENO schemes for four two-dimensional Riemann problems, the initial conditions are
as follows, respectively:

a. (ρ, u, v, p)T =

⎧⎪⎪⎨
⎪⎪⎩

(0.5313, 0, 0, 0.4)T , x > 0.5, y > 0.5,
(1, 0.7276, 0, 1)T , x < 0.5, y > 0.5,
(0.8, 0, 0, 1)T , x < 0.5, y < 0.5,
(1, 0, 0.7276, 1)T , x > 0.5, y < 0.5,

(4.12)

b. (ρ, u, v, p)T =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0.1, 0, 1)T , x > 0.5, y > 0.5,
(0.5313, 0.8276, 0, 0.4)T , x < 0.5, y > 0.5,
(0.8, 0.1, 0, 0.4)T , x < 0.5, y < 0.5,
(0.5313, 0.1, 0.7276, 0.4)T , x > 0.5, y < 0.5,

(4.13)

c. (ρ, u, v, p)T =

⎧⎪⎪⎨
⎪⎪⎩

(0.5313, 0.1, 0.1, 0.4)T , x > 0.5, y > 0.5,
(1.0222,−0.6179, 0.1, 1)T , x < 0.5, y > 0.5,
(0.8, 0.1, 0.1, 1)T , x < 0.5, y < 0.5,
(1, 0.1, 0.8276, 1)T , x > 0.5, y < 0.5,

(4.14)
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Fig. 9 Density plot for double mach reflection

d. (ρ, u, v, p)T =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0.75,−0.5, 1)T , x > 0.5, y > 0.5,
(2, 0.75, 0.5, 1)T , x < 0.5, y > 0.5,
(1,−0.75, 0.5, 1)T , x < 0.5, y < 0.5,
(3,−0.75,−0.5, 1)T , x > 0.5, y < 0.5.

(4.15)

The computational domain is taken to be [0, 1] × [0, 1], with 400 × 400 grid points, and
the final computational times are a. t = 0.25, b. t = 0.3, c. t = 0.2, d.t = 0.3 for the
four Riemann problems, respectively. In the Fig. 7 the computational densities by HWENO
schemes for the Riemann problems are shown. We can observe that most of the flow features
are captured well for all these Riemann problems.

Example 4.11 Shock–vortex interaction. In this test, we use the HWENO schemes to simulate
the model of the interaction between a stationary shock and vortex. The computational domain
is chosen to be [0, 2] × [0, 1]. A stationary Mach 1.1 shock is positioned at x = 0.5 and
normal to the x-axis. A uniform mesh of 251 × 100 in the computational domain is used.
There is a small vortex at the flow left to the shock, its center is (xc, yc) = (0.25, 0.5).
The initial left state is (ρ, u, v, p) = (1, 1.1

√
γ , 0, 1). Its right state can be easily make

sure by the Rankine − Hugoniot condition. The problem is initialized by the vortex as a
perturbation to the velocity (u, v), temperature (T = p/ρ), and entropy (S = ln(p/ργ )) of
the mean flow and we can denote them by the following values:

u′ = ετeα(1−τ 2) sin θ,

v′ = −ετeα(1−τ 2) cos θ,
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Fig. 10 Forward step problem with 240 × 80 cells. 30 equally spaced density and pressure contours from
0.32 to 6.3 and from 0.35 to 13, separately

T ′ = − (γ − 1)ε2e2α(1−τ 2)

4αγ
,

S′ = 0,

where τ = r/rc, r = √
(x − x0)2 + (y − y0)2, ε = 0.3, rc = 0.05 and α = 0.204. Note

that here the ε, α and rc indicate the strength, the decay rate and the radius (maximum strength)
of the vortex. For more details, one can see [5,10]. The reflective boundary conditions are used
at the upper and lower boundaries. In the SV interaction, an acoustic wave front is generated
and fine scale structures are formed behind the main shock. These are well captured by
HWENO schemes. The pressure contours obtained by HWENO at time t = 0.05, t =
0.2, t = 0.35, t = 0.6 and t = 0.8 are shown in Fig. 8. Comparing the qualitative to [5],
we can see that the results show the present HWENO method can attain high accuracy order
and capture the vortex and the shock very well.

Example 4.12 Double Mach reflection. This problem is originally from [13]. The computa-
tional domain for this problem is [0, 4]×[0, 1]. The reflecting wall lies at the bottom, starting
from x = 1

6 . Initially a right-moving Mach 10 shock is positioned at x = 1
6 , y = 0 and

makes a 60◦ angle with the x-axis. For the bottom boundary, the exact post-shock condition
is imposed for the part from x = 0 to x = 1

6 and a reflective boundary condition is used for
the rest. At the top boundary, the flow values are set to describe the exact motion of a Mach
10 shock. Free stream inflow and out flow boundary conditions are imposed in the inflow and
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the out flow boundaries. We compute the solution up to t = 0.2. 30 equally spaced density
contours from 0.9 to 22.6, with two different uniform meshes 960 × 240 and 1,920 × 480,
are plotted in Fig. 9.

Example 4.13 A Mach 3 wind tunnel with a step. This model problem is also originally
from [13]. The setup of the problem is as follows. The wind tunnel is 1 length unit wide
and 3 length units long. The step is 0.2 length units high and is located 0.6 length units
from the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3
flow. Reflective boundary conditions are applied along the wall of the tunnel and in/out flow
boundary conditions are applied at the entrance/exit. The corner of the step is a singular point
and we treat it the same way as in [13], which is based on the assumption of a nearly steady
flow in the region near the corner. The density is plotted at t = 4.0 are given in Fig. 10 with
30 equally spaced density contours from 0.32 to 6.3, pressure contours from 0.35 to 13.

5 Concluding Remarks

In 2004, the HWENO method was developed by Qiu and Shu [7,8], in which the construction
of HWENO schemes was based on a finite volume formulation. In this paper, we presented
another version of scheme, finite difference HWENO method. Finite difference formulation
have proved to be more computationally efficient than the finite volume formulation to the
high accuracy order schemes when they are applied to multi-dimensional cases. One major
advantage of HWENO schemes is its compactness in the reconstruction. For example, five
points are needed in the stencil for a fifth order WENO reconstruction, while only three points
are needed for a fifth order HWENO (HWENO5) reconstruction. The numerical errors by
HWENO5 are smaller than WENO5 schemes under the same grids in our test cases. But we
would also like to point out that HWENO scheme requires about double computer memory
and CPU time comparing with the original WENO scheme when using the same number of
grid points, this is a weak point of HWENO comparing with the original WENO scheme.
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