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Abstract In this paper, we propose a high-order finite volume method for solving multicomponent fluid
problems. Our method couples the quasi-conservative form with the reconstruction of conservative variables in
a characteristic manner. The source term and numerical fluxes are carefully designed to maintain the pressure
and velocity equilibrium for the interface-only problem and preserve the equilibrium of physical parameters
in a single-component fluid. These ingredients enable our scheme to achieve both high-order accuracy in the
smooth region and the high resolution in the discontinuity region of the solution. Extensive numerical tests are
performed to verify the high resolution and accuracy of the scheme.
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1 Introduction

Numerical simulation for multicomponent flows is an important branch in computational fluid dynamics
and plays a significant role in aerospace, chemical engineering, biomedical engineering, hydraulic
engineering, and other fields. There are three main approaches to this problem: the Lagrangian method,
the arbitrary Lagrangian-Eulerian (ALE) method, and the Eulerian method.

The Lagrangian method was first introduced by Neumann and Richtmyer [52]. In the Lagrangian
method, the grid can dynamically change with the fluid evolution during the computation. Consequently,
we can achieve a sharp interface by tracking the nodes at the interface. However, if the interface undergoes
significant deformation, this method may cause grid distortion and entanglement, eventually leading to
code crashes [8].

To overcome such problems in the Lagrangian method, Hirt et al. [22] proposed the ALE method. This
method allows for artificial control of grid velocity and optimization of the grid to solve large deformation
problems. Due to its excellent performance, the ALE method has been continuously improved, for
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example, for multi-material flows [6, 7, 32], for hydrodynamics and magnetohydrodynamics (MHD) [16],
and for climate simulation [48]. However, if the deformation of multi-material problems is further
increased, topological changes may occur, and the ALE method may still suffer from difficulties.

Compared with the Lagrangian method and ALE method, the Eulerian method is designed on a
fixed grid, so there is no need to worry about mesh deformation. The Eulerian method can be divided
into two categories: one is interface-tracking methods, for example, coupling with the cut-cell method
[12,23,28,31,36], and coupling with the ghost fluid method (GFM) [15,29,54]; the other one is interface-
capturing methods, for example, solving the four equations [27], solving the five equations [9, 10, 17, 18],
solving the six equations [42], and solving the seven equations [40]. The interface-capturing method uses a
unique set of equations that combine the multicomponent flows governed by the Euler equations with the
fluid composition described by the transport equations. Compared with the interface-tracking method,
the interface-capturing method is easier to be implemented and generalized to high-dimensional cases. It
allows interfaces to be arbitrarily large, complex deformations, and dynamically created. Additionally,
it can preserve the conservation of the total mass, momentum, and energy of the system. Due to
these advantages, the interface-capturing method has become one of the popular methods for solving
multicomponent flow problems [19].

How to design a satisfying finite volume interface-capturing method for solving the system that
combines the governing equations with the transport equations is a tough job. Numerical experiments
have shown that spurious oscillations will appear if the scheme is not designed carefully [34]. These
oscillations already exist in first-order calculations and are hard to eliminate by using the high-order
method [26]. Abgrall [1] carefully analyzed the reason causing oscillations and proposed a way to eliminate
them. The key ingredients are two parts: on one hand, the transport equations should be designed
in advection form; on the other hand, the transport equations should be consistent with the governing
equations such that the system can maintain the equilibrium of velocity and pressure across the interface.
Shyue [44–46] extended the method to more general equations of state. Abgrall and Saurel [4,40] further
extended the method to the multiphase case. Allaire et al. [5] introduced a new five-equation model and
designed a suitable scheme. More details can be found in [41]. However, due to numerical dissipation, we
may still suffer from oscillation when extending the aforementioned numerical method to the high-order
ones [33]. The oscillation cannot be suppressed by high-order non-oscillatory methods, such as essentially
non-oscillatory (ENO) and weighted ENO (WENO) methods. In [25], Johnsen and Colonius suggested
utilizing the quasi-conservative form coupled with the reconstruction of primitive variables can eliminate
the spurious oscillation no matter whether WENO techniques are implemented in a componentwise or
characteristic way. Following this idea, researchers have designed many satisfying schemes to solve the
multicomponent flows problem [11, 21, 53, 55]. They are all based on finite volume methods, but none
of them can be considered to be truly high-order schemes for two reasons. Firstly, in these methods,
primitive variables are reconstructed to maintain the equilibrium of velocity and pressure, but they are
obtained in a low-order way. Secondly, advection equations are rewritten into a conservation law with a
source term to enhance performance, but this source term is not handled with a high-order of accuracy. As
a result, although these finite volume methods can achieve high-order accuracy for some linear problems,
this is not the case for nonlinear ones. Therefore, it is necessary to develop finite volume methods that
can handle multicomponent fluid problems with truly high-order accuracy.

In this paper, we propose a new high-order finite volume method for solving the multicomponent
fluids problem. Our method can be regarded as an extension of the method presented in [25]. As
for the method presented in [25], due to its low-order calculation of primitive variables and source
terms, it is not truly a high-order method. Our goal is to develop a scheme that can achieve high-
order accuracy in the smooth case, especially when the velocity or pressure is non-equilibrium, while
also maintaining its essentially non-oscillatory property in non-smooth regions. Firstly, we couple the
quasi-conservative form with the reconstruction of conservative variables in a characteristic manner. This
approach maintains the equilibrium of the pressure and velocity for the interface-only problem, eliminates
spurious oscillation along the interface, and achieves high-order accuracy during the reconstruction phase.
Secondly, we employ integration by parts and accurate numerical integration in a high-order manner for
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the source term, allowing our scheme to achieve high-order accuracy in the smooth region. We introduce
a new WENO method to reconstruct the numerical solution. The new WENO method is similar to
the WENO method which was presented by Zhu and Qiu [61], termed as WENO-ZQ, which uses one
big stencil and two small stencils. It enables the method to maintain accuracy in smooth regions and
improve the resolution in discontinuous regions. Specifically, the polynomial within a given cell can be
reconstructed by using the new WENO method, simplifying the computation of the finite volume method.
Furthermore, we carefully design our numerical flux to preserve physical parameters in single-component
fluids. This property further enhances the robustness of the scheme. Finally, both variables are evolved
by using Runge-Kutta time discretization. We performed extensive numerical tests for both one- and
two-dimensional problems to verify the high resolution and accuracy of our scheme. It is noted that
there are other schemes available for solving compressible flow problems, such as the arbitrary high-order
derivative Riemann (ADER) problem, the residual distribution (RD) schemes, the discontinuous Galerkin
(DG) method, the Hermite WENO (HWENO) method, and the semi-Lagrangian (SL) methods. Details
can be found in [2, 3, 13,14,30,38,39,50,51,57–60].

The rest of this paper is organized as follows. In Section 2, we describe the detailed steps of our
scheme in a one-dimensional case. In Section 3, we perform numerical experiments to verify the numerical
accuracy and efficiency of the scheme. In Section 4, we give a conclusion. In Appendix A, we describe
our scheme in a two-dimensional case.

2 The framework for the one-dimensional case

We consider the following governing five-equation system to solve multicomponent problems with the
stiffened gas equation of state [44]. This system contains three conservative equations and two advective
equations, i.e., 

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + (u(E + p))x = 0,(
1

γ − 1

)
t

+ u

(
1

γ − 1

)
x

= 0,(
γp∞
γ − 1

)
t

+ u

(
γp∞
γ − 1

)
x

= 0.

(2.1)

In [44], we obtain the left and right eigenvector matrices of such a Jacobian matrix as

R =
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and

L =



u(uγ+2c−u)
4 −uγ+c−u

2
γ−1
2 −p(γ−1)

2 −γ−1
2

−γu2+2c2+u2

2 u(γ − 1) 1− γ p(γ − 1) γ − 1

−u(−uγ+2c+u)
4

−uγ+c+u
2

γ−1
2 −p(γ−1)

2 −γ−1
2

0 0 0 1 0

0 0 0 0 1


. (2.3)

Here, ρ is the density, u is the velocity, E is the total energy, p is the pressure, γ and p∞ are the usual ratio
of specific heats and prescribed physical constant, respectively, and c is the sound speed. Furthermore,
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due to the stiffened gas equation of state, we have the following equation:

E =
1

2
ρu2 +

p+ γp∞
γ − 1

, c =

√
γ(p+ p∞)

ρ
.

Physically, the parameters γ and p∞ are used to describe the properties of materials and can be determined
from laboratory experiments via an empirical fit. For example, for air we usually set γ = 1.4 and
p∞ = 0, for helium we usually set γ = 1.67 and p∞ = 0, and for water we can set γ = 7.15 and
p∞ = 3.309× 108 [15, 29].

For simplicity, the computational domain is divided into N uniform cells. We denote the cell by
Ij = [xj− 1

2
, xj+ 1

2
], its cell center by xj = (xj− 1

2
+ xj+ 1

2
)/2, and its cell size by ∆x = xj+ 1

2
− xj− 1

2
.

Furthermore, we take
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)T

,
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,

and

S(U) =

(
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1
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,
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,

and then we can rewrite the system (2.1) into

Ut + F (U)x = S(U)ux, (2.4)

where ux refers to the derivative of velocity. We integrate (2.4) over the cell Ij . Next, to handle the
source term, we employ the integration by part, a technique used in [9, 10, 25]. This allows us to obtain
the following semidiscretization form:

∂Uj(t)

∂t
+
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∆x
(F (U(xj+ 1

2
, t))− F (U(xj− 1

2
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S(U(x, t))xu(x, t)dx, (2.5)

where Uj(t) =
1

∆x

∫ xj+1/2

xj−1/2
U(x, t)dx. Then, we approximate (2.5) by the following formulation:
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Uj refers to the numerical approximation to the cell average Uj(t), and F̂j+ 1
2

and ûj+ 1
2

represent the
numerical flux evaluated at the interface xj+1/2. The expression for the numerical flux is defined by
F̂j+ 1

2
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j+ 1
2
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2
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2
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2
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). In this paper, we choose the HLLC numerical flux
(see [25,49])

F̂j+ 1
2
=

1 + sgn(s∗)

2
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2
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where the intermediate state is defined as
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where k = L,R. wL refers to w−
j+ 1

2

and wR refers to w+
j+ 1

2

. The wave speeds are given by

s− = min(0, sL), s+ = max(0, sR), sL = min((u− c)ROE, uL− cL), sR = max((u+ c)ROE, uR+ cR),

where (u− c)ROE and (u+ c)ROE are the velocities obtained from an intermediate state based on the Roe
average. The intermediate wave speed is computed by

s∗ =
pR − pL + ρLuL(sL − uL)− ρRuR(sR − uR)

ρL(sL − uL)− ρR(sR − uR)
.

As to the velocity in the source term, we define

ûj+ 1
2
=

1 + sgn(s∗)

2
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1− sgn(s∗)

2
[uR + s+(χ∗R − 1)]. (2.8)

In (2.6), wk and Gk are Gauss-Lobatto quadrature points and coefficients, i.e.,
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2
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(2.9)

U±
j+ 1

2

, UGk
, and uxGk

are numerical approximation to the solutions and derivatives at the xj+ 1
2

or Gk

respectively, which are obtained by the WENO reconstruction method described in Subsection 2.1.
Then, we can rewrite the semi-discrete system (2.6) as Ut = L(U), where L denotes the operator of the

spatial discretization, and we use the third-order total variation diminishing (TVD) Runge-Kutta time
discretization [43] to solve the semi-discrete form (2.6):

U(1) = Un +∆tL(Un),

U(2) =
3

4
Un +

1

4
(U(1) +∆tL(U(1))),

Un+1 =
1

3
Un +

2

3
(U(2) +∆tL(U(2))).

(2.10)

2.1 The WENO reconstruction

Now, we list a detailed flowchart of the new WENO reconstruction method.
Step 1. Given one big stencil S0 = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}, two small stencils S1 = {Ii−1, Ii}
and S2 = {Ii, Ii+1}, and three middle stencils S3 = {Ii−2, Ii−1, Ii}, S4 = {Ii−1, Ii, Ii+1}, and S5 =

{Ii, Ii+1, Ii+2}, we need to construct polynomials p0(x), p1(x), p2(x), p3(x), p4(x), and p5(x) such that
1

∆x

∫
Ii+l
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1
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∫
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1

∆x

∫
Ii+l

p5(x)dx = ui+l, l = 0, 1, 2.

Step 2. We compute the smoothness indicators, denoted by β0, β1, β2, β3, β4, and β5, respectively.
The smoothness indicators are based on the formula in [24]:

βm =
1

∆x

r∑
k=1

∫
Ii

(
∆xk ∂k

∂xk
pm(x)

)2

dx, m = 0, 1, 2, 3, 4, 5,
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where r = 4 for p0(x), r = 1 for p1(x) and p2(x), and r = 2 for p3(x), p4(x), and p5(x).

Step 3. We take the linear weights as

r0 = 0.2, r1 = 0.4, r2 = 0.4,

and
s0 = 0.7, s3 = 0.1, s4 = 0.1, s5 = 0.1.

Then, we can rewrite p0(x) as

p0(x) =

(
1− (1− r0)(1− s0)

2

(
1− s0

s0

)2)
p0(x) + (1− s0)

2

(
1− s0

s0

)2

(r1p1(x) + r2p2(x)). (2.11)

Step 4. We compute the nonlinear weights

ωk =
ωk

ω0 + ω1 + ω2
, ωk =

rk
(βk + ε)2

, k = 0, 1, 2,

and
µ0 =

µ0

µ0 + µ3 + µ4 + µ5

, µk =
sk

(βk + ε)2
, k = 0, 3, 4, 5,

where ε = 10−12 to avoid dividing by zero. Then, we have

p(x) =

(
1− (1− ω0)(1− µ0)

2

(
1− µ0

s0

)2)
p0(x) + (1− µ0)

2

(
1− µ0

s0

)2

(ω1p1(x) + ω2p2(x)) (2.12)

and

p′(x) =

(
1− (1− ω0)(1− µ0)

2

(
1− µ0

s0

)2)
p′0(x) + (1− µ0)

2

(
1− µ0

s0

)2

(ω1p
′
1(x) + ω2p

′
2(x)). (2.13)

Now, we give a brief analysis of the method.
When the solution is smooth in the stencil S0, through the Taylor expansion analysis, we have

µ0 = s0 +O(∆x2).

It implies that the method can realize the fifth-order accuracy, i.e.,

p(x)− u(x) = (1− µ0)
2

(
1− µ0

s0

)2

(ω1(p1(x)− u(x)) + ω2(p2(x)− u(x)))

+

(
1− (1− ω0)(1− µ0)

2

(
1− µ0

s0

)2)
(p0(x)− u(x))

= O(∆x4)(ω1O(∆x2) + ω2O(∆x2)) + (1− (1− ω0)O(∆x4))O(∆x5)

= O(∆x5).

When the solution is discontinuous in the stencil S0, we have β0 = O(1). If the solution is smooth in
the stencil Sm, then βm = O(∆x2). As to the nonlinear weights µ0 and ωm, we have µ0 = O(∆x4) and
ωm = O(∆x4) when the solution is discontinuous in the stencil Sm, and ωm = O(1) when the solution is
smooth in the stencil Sm. Therefore, the method maintains the ENO property.
Remark 1. We provide a simple explanation of the equation (2.12). The equation (2.13) is similar.
The final reconstruction (2.12) is a convex combination of p0(x), p1(x), and p2(x). We expect p0(x) to
play the main role when the solution is smooth in the big stencil, while p1(x) or p2(x) becomes the major
component to maintain the ENO property when the solution is rough in the big stencil. If we simply
define the (2.12) as ω0p0(x) + ω1p1(x) + ω2p2(x), it can clearly maintain the ENO property. However,
the scheme would degrade its optimal fifth-order accuracy due to insufficient accuracy of nonlinear weights
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Figure 1 (Color online) The plot of parameter θ

ωk and the low-order approximation of p1(x) and p2(x). The final reconstructions (2.12) can be rewritten
as

p(x) = θp0(x) + (1− θ)(ω0p0(x) + ω1p1(x) + ω2p2(x)), (2.14)

where

θ = 1− (1− µ0)
2

(
1− µ0

s0

)2

. (2.15)

Therefore, (2.12) can be seen as a correction of ω0p0(x) + ω1p1(x) + ω2p2(x). Figure 1 shows the plot of
the parameter θ. From Figure 1 and (2.12), we can observe the property of the parameter θ.

• θ → 0, when µ0 → 0.
• θ = 1, when µ0 = 1.
• θ = 1 +O(∆x4), when µ0 = s0 +O(∆x2).

• 0 < θ ⩽ 1.

Property 1 ensures the second term in (2.14) plays the major role when the solution in the big stencil
is discontinuous, while the properties 2 and 3 ensure that the first term in (2.14) becomes the major
component and maintains the accuracy at the same time when the solution in the big stencil is smooth.
Property 4 ensures the stability of the WENO reconstruction. As we know, p1(x) and p2(x) will become
much smoother near the critical point than p0(x) which would lead to a degradation in the optimal order
of the parameter µ0. Hence, we introduce p3(x), p4(x), p5(x), and p0(x) to compute the parameter µ0

in (2.15) in order to ensure the accuracy of the parameter µ0.

2.2 Algorithm

Now, we list the algorithm of the high-order finite volume method for the multicomponent fluid problem
(see Algorithm 1).

2.3 Properties of the schemes

The proposed high-order finite volume scheme has attractive features for the simulation of multicompo-
nent flows. The two major properties are listed in the following propositions. For the convenience of
proof, we introduce the following notations:

m = ρu, Γ =
1

γ − 1
, Π =

γp∞
γ − 1

.

Proposition 1. The high-order finite volume scheme (2.6) with the numerical fluxes (2.7) and (2.8)

preserves the equilibrium of the constants γ and p∞ in a single-component fluid.
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Algorithm 1 Algorithm of the scheme
1. At interface xj+1/2, compute the Roe average state Uj+1/2.

2. Compute the right eigenvectors and the left eigenvectors following (2.3) and (2.2), and denote them by

R = R(Uj+1/2), L = L(Uj+1/2).

3. Project all the values in the potential stencil of the WENO method to the local characteristic fields, and denote them by

Wi = LUi, i = j − 2, . . . , j + 3.

4. Based on the principle of proximity, for each component of the {Wi}j+3
j−2, perform the WENO method at Gauss-Lobatto

quadrature points G3 and G4 in the cell Ij and G1 and G2 in cell Ij+1, denote them by

WG1 j+1
, WG2 j+1

, WG3 j
, WG4 j

.

5. Project back into physical space by using

UGj+k = RWGj+k, G = G1, G2, G3, G4, k = 1 for G1 and G2 and k = 0 for G3 and G4.

6. Perform the WENO method to obtain S(U)xGk
(k = 1, 2, 3, 4).

7. Compute ûj± 1
2
, F̂j± 1

2
, S(U∓

j± 1
2

), and S(U)xGk
in (2.6) and form the scheme.

8. Evolve the scheme by the TVD Runge-Kutta method (2.10).

Proof. In order to prove this property, we only need to verify that the parameters Γ and Π can maintain
equilibrium during the evolution. Without loss of generality, we give the proof for the equation of Γ, and
the proof for the equation of Π is similar. The scheme for Γ is given as

∂Γj

∂t
+

1

∆x
(ûΓj+ 1

2
− ûΓj− 1

2
) =

1

∆x

(
Γ−
j+ 1

2

ûj+ 1
2
− Γ+

j− 1
2

ûj− 1
2
−∆x

∑
k

wkΓxGk
uGk

)
. (2.16)

Due to the equilibrium of constant γ, we have

ûΓj± 1
2
= Γûj± 1

2
, Γ±

j∓ 1
2

= Γ, ΓxGk
= 0.

Therefore, the terms in the brackets in the equation (2.16) cancel each other. Then, we have

∂Γj

∂t
= 0.

It indicates that Γ can maintain equilibrium when the solution evolves.

Proposition 2. The high-order finite volume scheme (2.6) with the numerical fluxes (2.7) and (2.8)

preserves the equilibrium of the pressure and velocity for the interface-only problem.
Proof. The same as before, we only need to verify that the velocity u and pressure p can maintain
equilibrium during the evolution.

First, we implement the WENO method in a characteristic way with the conservative variables. We
assume that the conservative variables Uj = (ρj ,mj , Ej ,Γj ,Πj) maintains the equilibrium of the pressure
and velocity. Then, we have the following equality:

mj = ρju, Ej =
1

2
ρju

2 + pΓj +Πj ,

where u and p denote the equilibrium values of the velocity and pressure, respectively.
We use the Roe average to linearize the right and left eigenvector matrices in (2.2) and (2.3) at interface

x = xj+ 1
2

of the cells, i.e.,

R =



1
c2

1
c2

1
c2

0 0
u−c
c2

u
c2

u+c
c2

0 0
1
2 (

u
c )

2 + 1
γ−1 − u

c
1
2 (

u
c )

2 1
2 (

u
c )

2 + 1
γ−1 + u

c p 1

0 0 0 1 0

0 0 0 0 1


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and

L =



u(u γ+2c−u)
4 −u γ+c−u

2
γ−1
2 −p(γ−1)

2 −γ−1
2

−γ u2+2c2+u2

2 u(γ − 1) 1− γ p(γ − 1) γ − 1

−u(−u γ+2c+u)
4

−u γ+c+u
2

γ−1
2 −p(γ−1)

2 −γ−1
2

0 0 0 1 0

0 0 0 0 1


.

We project conservative variables

Uj =

(
ρj , ρju,

1

2
ρju

2 + pΓj +Πj ,Γj ,Πj

)T

into the characteristic space

Wj = LUj =



u(u γ+2c−u)
4 −u γ+c−u

2
γ−1
2 −p(γ−1)

2 −γ−1
2

−γ u2+2c2+u2

2 u(γ − 1) 1− γ p(γ − 1) γ − 1

−u(−u γ+2c+u)
4

−u γ+c+u
2

γ−1
2 −p(γ−1)

2 −γ−1
2

0 0 0 1 0

0 0 0 0 1





ρj

ρju
1
2ρju

2 + pΓj +Πj

Γj

Πj


=



0

c2ρj

0

Γj

Πj


.

After the WENO reconstruction, we denote the obtained variables by

W±
j+ 1

2

=



0

c2w2

0

w4

w5



±

j+ 1
2

.

Then, we project the obtained variables back into the physical space. We have

U±
j+ 1

2

= RW±
j+ 1

2

=



1
c2

1
c2

1
c2

0 0
u−c
c2

u
c2

u+c
c2

0 0
1
2 (

u
c )

2 + 1
γ−1 − u

c
1
2 (

u
c )

2 1
2 (

u
c )

2 + 1
γ−1 + u

c p 1

0 0 0 1 0

0 0 0 0 1





0

c2w2

0

w4

w5



±

j+ 1
2

=



w2

w2u
1
2w2u

2 + pw4 + w5

w4

w5



±

j+ 1
2

.

Then, U±
j+ 1

2

are used to compute the HLLC flux F̂j+ 1
2
. Due to the equilibrium of the pressure and

velocity, we have
uL = uR = u, pL = pR = p, ûj± 1

2
= u.

Therefore, we have
s∗ = u, U∗k = Uk,
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and

F̂j+ 1
2
=

1 + sgn(s∗)

2
FL +

1− sgn(s∗)

2
FR =



ρ̃u

ρ̃u2 + p

u( 12 ρ̃u
2 + pΓ̃ + Π̃ + p)

Γ̃

Π̃


,

where q̃ = 1+sgn(s∗)
2 qL + 1−sgn(s∗)

2 qR and q = ρ,Γ,Π.

As to the source term, due to the equilibrium of the velocity, we have

S(U−
j+ 1

2

)ûj+ 1
2
− S(U+

j− 1
2

)ûj− 1
2
−∆x

∑
k

wkS(U)xGk
uGk

= S(U−
j+ 1

2

)u− S(U+
j− 1

2

)u−∆xu
∑
k

wkS(U)xGk

= S(U−
j+ 1

2

)u− S(U+
j− 1

2

)u− u

∫ x
j+1

2

x
j− 1

2

S(U)xdx

= (S(U−
j+ 1

2

)u− S(U+
j− 1

2

)u)− u(S(U−
j+ 1

2

)− S(U+
j− 1

2

))

= 0, (2.17)

where from the second to third equations, we use the fact that the four-point Gauss-Lobatto quadrature
rule is exact for the polynomial degree up to five. Therefore, we have

∂

∂t



ρ

ρu

E

Γ

Π


j

= − 1

∆x





ρ̃u

ρ̃u2 + p

u( 12 ρ̃u
2 + pΓ̃ + Π̃ + p)

uΓ̃

uΠ̃


j+ 1

2

−



ρ̃u

ρ̃u2 + p

u( 12 ρ̃u
2 + pΓ̃ + Π̃ + p)

uΓ̃

uΠ̃


j− 1

2


.

From the density and momentum equations, we have
∂(ρu)j
∂t

= u
∂ρj
∂t

,

which means that the velocity will remain uniform when the solution evolves.
Now, we consider the pressure by comparing the energy equation with density and momentum

equations, which are given as
∂(pΓ + Π)j

∂t
= − 1

∆x
((pΓ̃j+ 1

2
u+ Π̃j+ 1

2
u)− (pΓ̃j+ 1

2
u+ Π̃j+ 1

2
u)).

By resorting to the Γ equation and the Π equation, we can further simplify the above equation and obtain
∂(pΓ)j
∂t

= p
∂Γj

∂t
,

which means that the pressure will remain uniform when the solution evolves.

Remark 2. The one-dimensional framework can be extended to a two-dimensional case. We provide
the detailed steps in Appendix A.

3 The numerical test

In this section, we show the numerical result using the reconstruction of conservative variables by the
finite volume method (denoted by ‘FVCV’) with the Courant-Friedrichs-Lewy (CFL) number set to 0.5.
For comparison, we also list the computational result using reconstruction of primitive variables by finite
volume method (denoted by ‘FVPV’) in the one-dimensional case [25].
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Example 1. We consider the following accuracy test:

ρ(x, 0) = 1 + 0.2 sin(πx), u(x, 0) = 1, p(x, 0) = 1.

We choose
1

γ(x, 0)− 1
=

1

γL − 1

(
1

2
+

1

2
sin(πx)

)
+

1

γR − 1

(
1

2
− 1

2
sin(πx)

)
,

and
γ(x, 0)p∞(x, 0)

γ(x, 0)− 1
=

γLp∞L

γL − 1

(
1

2
+

1

2
sin(πx)

)
+

γRp∞R

γR − 1

(
1

2
− 1

2
sin(πx)

)
,

where γL = 1.4, γR = 4, and p∞L = 0, p∞R = 1. The computational domain is [0, 2]. Periodic boundary
conditions are used in this test. The exact solution of ρ is

ρ(x, t) = 1 + 0.2 sin(π(x− t)).

We set the final time t = 2. The results and a comparison with FVPV are listed in Table 1. We can see
that our method achieves the designed fifth-order accuracy, and the numerical errors are smaller than
the ones obtained by the FVPV.
Example 2. We consider the artificial accuracy test. We choose the following initial conditions:

ρ(x, 0) =
1 + 0.2 sin(x)

2
√
γ

, u(x, 0) =
√
γρ(x, 0), p(x, 0) = ρ(x, 0)γ , γ(x, 0) = 3, p∞(x, 0) = 0.

The computational domain is [0, 2π]. Periodic boundary conditions are used in this test. By the special
choice of the parameter γ, initial conditions, and boundary conditions, we can verify that 2

√
γρ(x, t) is

the exact solution of the following Burgers equation:

µt +
1

2
(µ2)x = 0, µ(x, 0) = 1 + 0.2 sin(x).

The velocity, pressure, γ, and p∞ satisfy the following relations:

u(x, t) =
√
γρ(x, t), p(x, t) = ρ(x, t)γ , γ(x, 0) = 3, p∞(x, 0) = 0.

It is easy to verify that the solution of the Burgers equation above is smooth up to time T = 5. We
set the final time as T = 3. At this time, the solution is still smooth. We list the error and numerical
accuracy order in Table 2. We can see that the FVPV can only achieve second-order accuracy due to the
velocity and pressure being in non-equilibrium. However, our method can achieve the expected fifth-order
of accuracy. We also plot the γ and p∞ at the final time using N = 320 (see Figure 2). The base of γ
and p∞ have been subtracted. We can see that the method can reach a round-off error.

Table 1 The accuracy test for the Euler system in 1D

FVCV FVPV
Mesh size L∞ error Order L1 error Order L∞ error Order L1 error Order

10 2.66E−03 1.30E−03 9.33E−03 5.79E−03
20 6.66E−05 5.32 3.97E−05 5.04 5.03E−04 4.21 2.86E−04 4.34
40 2.07E−06 5.01 1.27E−06 4.97 1.76E−05 4.84 8.94E−06 5.00
80 6.44E−08 5.00 3.98E−08 4.99 5.54E−07 4.99 2.78E−07 5.01
160 2.00E−09 5.01 1.25E−09 5.00 1.57E−08 5.14 8.60E−09 5.02
320 6.23E−11 5.01 3.89E−11 5.00 4.41E−10 5.15 2.58E−10 5.06



740 Zheng F et al. Sci China Math March 2025 Vol. 68 No. 3

Table 2 The accuracy test for the density in 1D

FVCV FVPV
Mesh size L∞ error Order L1 error Order L∞ error Order L1 error Order

10 2.21E−02 9.50E−03 3.08E−02 1.02E−02
20 5.60E−03 1.98 1.57E−03 2.60 9.48E−03 1.70 1.59E−03 2.68
40 1.44E−03 1.95 1.57E−04 3.32 2.50E−03 1.92 3.64E−04 2.13
80 2.70E−04 2.42 1.47E−05 3.42 4.70E−04 2.41 7.54E−05 2.27
160 6.15E−06 5.45 3.08E−07 5.58 1.04E−04 2.18 1.76E−05 2.10
320 2.00E−07 4.95 8.94E−09 5.11 2.57E−05 2.01 4.35E−06 2.02

+
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x

γ

0 1 2 3 4 5 6
−1E−15

−5E−16

0

5E−16

1E−15

FVCV

FVPV

Exact

+

(a)

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

p
∞

0 1 2 3 4 5 6
−1E−15

−5E−16

0

5E−16

1E−15

FVCV

FVPV

Exact

+

(b)

Figure 2 Numerical results for Example 2. From (a)–(b): figures of γ and p∞. The base γ0 = 3 and p∞0 = 0

Example 3. We solve a Riemann problem consisting of a single contact discontinuity in gas dynamics,
i.e.,

(ρ, u, p, γ, p∞) =

{
(1, 1, 1, 1.4, 0), x < 0.5,

(0.125, 1, 1, 4, 1), x ⩾ 0.5.

We set the computational domain as [0, 1], the periodic condition, the final time T = 2, and N = 200.
Figure 3 shows the results. The base velocity and pressure have been subtracted. From the figures, we
can see that our method can obtain comparable results with the one obtained by the FVPV method.
Example 4. This example is taken from [37]. We consider the following initial conditions:

(ρ, u, p, γ, p∞) =


(1.3333, 0.3535

√
105, 1.5× 105, 1.4, 0), x < 0.05,

(1.0, 0, 105, 1.4, 0), 0.05 ⩽ x < 0.5,

(0.1379, 0, 105, 5/3, 0), x ⩾ 0.5.

The computational domain is [0, 1]. We compute the solution of this problem to T = 0.0012 with N = 200

and show the final result in Figure 4. From the figures, we can see that our method matches the exact
solution well.
Example 5. This example is taken from [37]. We consider the following initial conditions:

(ρ, u, p, γ, p∞) =


(4.3333, 3.2817

√
105, 15× 105, 1.4, 0), x < 0.05,

(1.0, 0, 105, 1.4, 0), 0.05 ⩽ x < 0.5,

(3.1538, 0, 105, 1.249, 0), x ⩾ 0.5.

The computational domain is [0, 1]. We compute the solution of this problem to T = 0.0007 with N = 200

and show the final result in Figure 5. From the figures, we can see that our method can obtain satisfying
results.
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Figure 3 Numerical results for Example 3. From (a)–(e): figures of density, velocity, pressure, γ, and p∞. The base
u0 = 1 and p0 = 1

Example 6. This example is taken from [56]. Now, we consider the following similar test:

(ρ, u, p, γ, p∞) =


(1, 0, 1000.0, 1.4, 0), x < 0.1,

(1, 0, 0.01, 1.4, 0), 0.1 ⩽ x < 0.5,

(1, 0, 0.01, 5/3, 0), 0.5 ⩽ x < 0.9,

(1, 0, 100.0, 5/3, 0), x ⩾ 0.9.

The computational domain is [0, 1]. We compute the solution of this problem to T = 0.038 with N = 200.
The reference solution is obtained by the same method with N = 10000. We show the final results in
Figure 6. From the figures, we can see that our method can obtain satisfying results.
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Figure 4 Numerical results for Example 4. From (a)–(e): figures of density, velocity, pressure, γ, and p∞

Example 7. We consider the following initial conditions:

(ρ, u, p, γ, p∞) =

{
(1270, 0, 8× 108, 1.4, 0), x < 0.5,

(1000, 0, 105, 7.15, 3.309× 108), x ⩾ 0.5.

The example is taken from [37]. The domain is [0, 1], the grid number is N = 200, and the final time is
T = 0.00016. We list the results using the present method and the one in [25] in Figure 7. It is clear that
both methods can capture the features of the exact solution very well.
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Figure 5 Numerical results for Example 5. From (a)–(e): figures of density, velocity, pressure, γ, and p∞

Example 8. We consider the following initial conditions:

(ρ, u, p, γ, p∞) =

{
(1630, 0, 7.81× 109, 1.4, 0), x < 0.5,

(1000, 0, 105, 7.15, 3.309× 108), x ⩾ 0.5.

The example is taken from [37]. The domain is [0, 1] and the grid number N = 200. We list the results
using both the current method and the one in [25] at time t = 0.0001 in Figure 8. From the figures, we
can see that both methods obtain the correct interface location and high resolution.
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Figure 6 Numerical results for Example 6. From (a)–(e): figures of density, velocity, pressure, γ, and p∞

Example 9. We consider the following initial conditions:

(ρ, u, p, γ, p∞) =


(1037.3620, 0.1897, 1000, 7.15, 3309), x < 0.05,

(1000, 0, 1, 7.15, 3309), 0.05 ⩽ x < 0.5,

(1, 0, 1, 1.4, 0), x ⩾ 0.5.

The example is taken from [29]. The domain is [0, 1] and the grid number is N = 200. In this case, a very
strong rarefaction wave is reflected back into the water, which leads to the pressure being more than 500
times smaller than the incident shock pressure. We show the results at time t = 0.15 in Figure 9. From
the figures, we can see that both methods can capture the main features of the solution well.
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Figure 7 Numerical results for Example 7. From (a)–(e): figures of density, velocity, pressure, γ, and p∞

Example 10. We consider the following initial conditions:

(ρ, u, p, γ, p∞) =


(5.9652, 28.8362, 1000, 1.4, 0), x < 0.05,

(1, 0, 1, 1.4, 0), 0.05 ⩽ x < 0.5,

(1000, 0, 1, 7.15, 3309), x ⩾ 0.5.

The example is taken from [29]. The domain is [0, 1] and the grid number is N = 200. In this case, a very
strong shock wave is reflected back into the air. We plot the numerical results at time t = 0.05. From
Figure 10 and zoom-in figure, it is evident that our method performs much better than the approach
presented in [25] as it yields superior results and closely matches the exact solution.
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Figure 8 Numerical results for Example 8. From (a)–(e): figures of density, velocity, pressure, γ, and p∞

Example 11. We consider the following two initial conditions:

I : (ρ, u, p, γ, p∞) =

{
(1000, 0, 109, 4.4, 6× 108), x < 0.5,

(50, 0, 105, 1.4, 0), x ⩾ 0.5,

II : (ρ, u, p, γ, p∞) =

{
(1000, 0, 109, 4.4, 6× 108), x < 0.5,

(1, 0, 105, 1.4, 0), x ⩾ 0.5.

The domain is [−0.2, 1] and the grid number is N = 200. In this case, very strong shock waves are reflected
back into the air. We plot the numerical results at time t = 0.0002. It is a tough test, and many methods
fail. From Figures 11 and 12, we can see that both methods exhibit overshoots or undershoots in the plots
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Figure 9 Numerical results for Example 9. From (a)–(e): figures of density, velocity, pressure, γ, and p∞

of density velocity and pressure. Additionally, The shock locations in density and velocity plots are not
well captured.

Example 12. We consider the following accuracy test:

ρ(x, y, 0) = 1 + 0.2 sin(π(x+ y)), u(x, y, 0) = 1, v(x, y, 0) = 1, p(x, y, 0) = 1.

We choose

1

γ(x, y, 0)− 1
=

1

γL − 1

(
1

2
+

1

2
sin(π(x+ y))

)
+

1

γR − 1

(
1

2
− 1

2
sin(π(x+ y))

)
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Figure 10 Numerical results for Example 10. From (a)–(e): figures of density, velocity, pressure, γ, and p∞

and

γ(x, y, 0)p∞(x, y, 0)

γ(x, y, 0)− 1
=

γLp∞L

γL − 1

(
1

2
+

1

2
sin(π(x+ y))

)
+

γRp∞R

γR − 1

(
1

2
− 1

2
sin(π(x+ y))

)
,

where γL = 1.4, γR = 4 and p∞L = 0, p∞R = 1. The computational domain is [0, 2] × [0, 2]. Periodic
boundary conditions are used in this test. The exact solution of ρ is

ρ(x, t) = 1 + 0.2 sin(π(x+ y − 2t)).

We set the final time t = 1. We list the error in Table 3. We can also see that our method achieves the
designed fifth-order accuracy.
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Figure 11 Numerical results for the initial condition I in Example 11. From (a)–(e): figures of density, velocity, pressure,
γ, and p∞

Example 13. We consider the 2D artificial accuracy test. We take γ = 3 and p∞ = 0. Then, the
system (2.1) becomes a single-component problem. Furthermore, we choose the following special initial
conditions:

ρ(x, y, 0) =
1 + 0.2 sin(x+y

2 )
√
2γ

, u(x, y, 0) = v(x, y, 0) =

√
γ

2
ρ(x, y, 0), p(x, y, 0) = ρ(x, y, 0)γ .

The computational domain is [0, 4π]× [0, 4π]. Periodic boundary conditions are used in this test. By the
special choice of parameter γ and p∞, initial conditions, and boundary conditions, we can verify that
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Figure 12 Numerical results for the initial condition II in Example 11. From (a)–(e): figures of density, velocity, pressure,
γ, and p∞

Table 3 The accuracy test for the Euler system in 2D

Mesh size L∞ error Order L2 error Order L1 error Order
10× 10 2.24E−03 1.54E−03 1.33E−03
20× 20 6.79E−05 5.04 4.46E−05 5.11 3.99E−05 5.06
40× 40 2.08E−06 5.03 1.41E−06 4.98 1.27E−06 4.97
80× 80 6.43E−08 5.01 4.42E−08 5.00 3.98E−08 4.99

160× 160 2.00E−09 5.01 1.38E−09 5.00 1.25E−09 5.00
320× 320 6.22E−11 5.00 4.32E−11 5.00 3.89E−11 5.00
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√
2γρ(x, y, t) is the exact solution of the following Burgers equation:

µt +
1

2
(µ2)x +

1

2
(µ2)y = 0, µ(x, y, 0) = 1 + 0.2 sin

(
x+ y

2

)
.

The velocity and pressure satisfy the relation

u(x, y, t) = v(x, y, t) =

√
γ

2
ρ(x, y, t),

p(x, y, t) = ρ(x, y, t)γ .

It is easy to verify that the solution of the above Burgers equation is smooth up to time T = 5. We set
the final time T = 3. At this time, the solution is still smooth. We list the error and numerical accuracy
order in Table 4. We can see that our method can achieve the designed fifth-order accuracy.
Example 14. We consider the single-mode Richtmyer-Meshkov instability, which has been studied
in [9, 35]. The schematic for this problem is given in Figure 13.

The computational domain is [0, 4] × [0, 1]. The initial position of the air-SF6 interface is located at
x = 2.9 − 0.1 sin(2π(y + 0.25)). A shock wave with the Mach number 1.24 at x = 3.2 in air is moving
from right to left. It collides with the interface and triggers the instability. The initial conditions are

(ρ, u, v, p, γ, p∞) =


(5.04, 0, 0, 1.0, 1.093, 0), SF6,

(1.0, 0, 0, 1.0, 1.4, 0), pre-shock in air,
(1.4112,−0.4275, 0, 1.6272, 1.4, 0), post-shock in air.

The non-reflection boundary conditions are applied in the x-direction, and periodical boundary conditions
are used in the y-direction. In Figure 14, we show that the density solution contours at different times
using 1200× 300 cells. We can see that when the shock moves from the light into the heavy gas region, it
generates vorticity and rollups due to the initial perturbation of the interface. In Figure 15, the history
of the leading edges for the bubble xb and spike xs along with the thickness of the mixing layer defined
as hmix = xs − xb are presented for three different grid resolutions: 300× 75, 600× 150, and 1200× 300.
The results are consistent across the three different grid sizes.

Table 4 The accuracy test for the density in 2D

Mesh size L∞ error Order L2 error Order L1 error Order
10× 10 2.33E−02 1.13E−02 8.67E−03
20× 20 1.04E−02 1.17 2.64E−03 2.10 1.39E−03 2.64
40× 40 1.64E−03 2.66 4.32E−04 2.61 2.13E−04 2.71
80× 80 2.27E−04 2.85 4.24E−05 3.35 1.64E−05 3.70

160× 160 6.61E−06 5.10 1.01E−06 5.39 3.50E−07 5.55
320× 320 2.00E−07 5.04 3.06E−08 5.05 9.17E−09 5.26

Figure 13 Schematic for Example 14
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Figure 14 (Color online) Density contours for Example 14. From top to bottom: t = 2.31s, t = 4.62s, t = 6.93s, and
t = 9.24s

Example 15. We consider a weak shock in the air interacting with a bubble of Refrigerant-22 (R22).
This problem has been studied experimentally in [20] and numerically in [15, 35, 53]. The schematic for
this problem is given in Figure 16. The computational domain is [0, 0.295] × [0, 0.089]. A R22 bubble
with 0.05 diameter is initially located at (0.16, 0.0445). A planar shock in the air with the Mach number
1.22 moves from right to left and strikes the bubble. The initial conditions are

(ρ, u, v, p, γ, p∞) =


(3.1539, 0, 0, 105, 1.249, 0), R22,

(1, 0, 0, 105, 1.4, 0), pre-shock in air,
(1.3764,−124.8241, 0, 1.5698× 105, 1.4, 0), post-shock in air.
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Figure 15 (Color online) Positions of the bubble and spike and thickness of the mixing layer for Example 14

Figure 16 Schematic for Example 15

The non-reflection boundary conditions are applied in the x-direction, and periodic boundary conditions
are used in the y-direction. We show that the density solution numerical schlieren images at different times
using 2360 × 712 cells, which is approximately 400 cells per initial bubble’s diameter. From Figures 17
and 18, we can see that our simulations are comparable with those in [35], especially in resolving the
shape of the bubble, the transmitted, reflection wave, the interface instabilities, and the R22 jet.
Example 16. We consider a model underwater explosion problem. This problem has been studied
in [35, 47]. The schematic for this problem is given in Figure 19. The computational domain is [−2, 2]

× [−1.5, 1]. A horizontal air-water interface is located at y = 0. The explosion zone is represented as a
highly pressurized gas bubble in water with the center (x0, y0) = (0,−0.3) and the radius r0 = 0.12. The
initial conditions are

(ρ, u, v, p, γ, p∞) =


(1.225, 0, 0, 101325, 1.4, 0), air1,
(1250, 0, 0, 109, 1.4, 0), air2,
(1000, 0, 0, 101325, 4.4, 6× 108), water.

The non-reflection boundary conditions are applied at the top, left, and right boundaries of the
computational domain. Reflection boundary conditions are used at the bottom. In Figure 20, we show
the density and pressure solution numerical schlieren images at different times using 800 × 500 cells.
Initially, all the fluids are in an equilibrium state. Due to the pressure difference between the fluids, it
results in the formation of out-going shock waves and in-going rarefaction waves. The interface between
gas and water separates the two fluids and changes shape from a circular to an oval shape after diffraction
through the nearby air-water interface. As time evolves, the gas bubble continues to rise upwards, causing
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Figure 17 Numerical schlieren images for Example 15. From top to bottom: t = 60µs, t = 120µs, t = 200µs, and
t = 280µs

further deformation of the horizontal air-water interface. Compared with the numerical results in [35,47],
our scheme successfully captures all the major features and presents a satisfying result.

4 Conclusion

In this paper, a high-order finite volume method is constructed for solving multicomponent fluid
problems. The key is that the conservative variables instead of primitive variables are reconstructed in a
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characteristic manner, and the source term and numerical fluxes are designed properly. These ingredients
enable our scheme to achieve high-order accuracy in the smooth region and the high resolution when
discontinuities appear. We have proved that the scheme can maintain the equilibrium of the pressure
and velocity for the interface-only problem and preserve the equilibrium of physical parameters in a
single-component fluid. Extensive numerical tests have been performed to verify the high resolution and
high accuracy of the scheme.

The research on coupling our scheme with a more complex equation of state is ongoing.

Figure 18 Numerical schlieren images for Example 15. From top to bottom: t = 340µs, t = 460µs, and t = 560µs

Air1

Air2

Water

Figure 19 Schematic for Example 16
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Figure 20 Numerical schlieren images for Example 16. Left: numerical schlieren images for density. Right: numerical
schlieren images for pressure. From top to bottom: t = 0.2ms, t = 0.4ms, t = 0.8ms, and t = 1.2ms
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Appendix A The framework for the two-dimensional case
For simplicity, the computational domain is equally divided, i.e.,

a = x1/2 < x3/2 < · · · < xNx+1/2 = b, c = y1/2 < y3/2 < · · · < yNy+1/2 = d.

The cell is denoted by
Ii,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2],

the cell center is denoted by (xi, yj), and the mesh size is denoted by

∆x = xi+1/2 − xi−1/2, ∆y = yj+1/2 − yj−1/2.

Furthermore, we take

U =

(
ρ, ρu, ρv,E,

1

γ − 1
,
γp∞
γ − 1

)T

,

F (U) =

(
ρu, ρu2 + p, ρvu, u(E + p),

u

γ − 1
,
uγp∞
γ − 1

)T

,

G(U) =

(
ρv, ρuv, ρv2 + p, v(E + p),

v

γ − 1
,
vγp∞
γ − 1

)T

,

and

S(U) =

(
0, 0, 0, 0,

1

γ − 1
,
γp∞
γ − 1

)T

,

and then we can rewrite the system (2.1) into

Ut + F (U)x +G(U)y = S(U)(ux + vy), (A.1)

where ux and vy refer to the derivative of velocities u and v in the x and y directions. We integrate (A.1)
over the cell Ii,j , and then we obtain the following semidiscretization form:

∂U(t)i,j
∂t

+
1

∆x∆y

(∫ yj+1/2

yj−1/2

F (U(xi+ 1
2
, y, t))dy −

∫ yj+1/2

yj−1/2

F (U(xi− 1
2
, y, t))dy

)
+

1

∆x∆y

(∫ xi+1/2

xi−1/2

G(U(x, yj+ 1
2
, t))dx−

∫ xi+1/2

xi−1/2

G(U(x, yj− 1
2
, t))dx

)
=

1

∆x∆y

(∫ yj+1/2

yj−1/2

S(U(xi+ 1
2
, y, t))u(xi+ 1

2
, y, t)dy −

∫ yj+1/2

yj−1/2

S(U(xi− 1
2
, y, t))u(xi− 1

2
, y, t)dy

)
+

1

∆x∆y
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S(U(x, yj+ 1
2
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2
, t)dx−
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2
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where
U(t)i,j =

1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

U(x, y, t)dxdy.

Then, we approximate (A.2) by the following formulation:

∂Ui,j
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2 ,Gk
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2 ,Gk
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)
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=
1

∆x

4∑
k=1

(S(U−
i+ 1

2 ,Gk
)ûi+ 1

2 ,Gk
− S(U+

i− 1
2 ,Gk

)ûi− 1
2 ,Gk

)

+
1

∆y

4∑
k=1

(S(U−
Gk,j+

1
2

)v̂Gk,j+
1
2
− S(U+

Gk,j− 1
2

)v̂Gk,j− 1
2
)

−
( 4∑

k=1

4∑
l=1

wkwl(S(U)xGk,Gl
uGk,Gl

+ S(U)yGk,Gl
vGk,Gl

)

)
. (A.3)

Here, Ui,j refers to the numerical approximation to the cell average U(t)i,j , and F̂i+ 1
2 ,Gk

, ĜGk,j+
1
2
,

ûi+ 1
2 ,Gk

, and v̂Gk,j+
1
2

represent the HLLC numerical flux evaluated at the Gauss-Lobatto quadrature
points. The left and right states of the flux are obtained by the WENO method in the dimension by
dimension way. Then, we also rewrite the semi-discrete system (A.3) as Ut = L(U), and evolved by the
third-order TVD Runge-Kutta time discretization [43].
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