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Abstract In this paper, we present a positivity-preserving high order finite volume Hermite
weighted essentially non-oscillatory (HWENO) scheme for compressible Euler equations
based on the framework for constructing uniformly high order accurate positivity-preserving
discontinuousGalerkin and finite volume schemes for Euler equations proposed in Zhang and
Shu (J Comput Phys 230:1238–1248, 2011). The major advantages of the HWENO schemes
is their compactness in the spacial field because the function and its first derivative are evolved
in time and used in the reconstructions. On the other hand, the HWENO reconstruction tends
to bemore oscillatory than those of conventionalWENO schemes. Thus positivity preserving
techniques are more needed in HWENO schemes for the sake of stability. Numerical tests
will be shown to demonstrate the robustness and high-resolution of the schemes.
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1 Introduction

When solving gas dynamics equations with conservative Eulerian schemes, high order
schemes can produce numerical solutions with better resolution than first order and sec-
ond order ones. To render high order schemes stable for simulating shock waves, limiters
or nonlinear non-oscillatory reconstructions must be used, e.g., a total-variation-bounded
(TVB) limiter for high order discontinuous Galerkin method [2] and weighted essentially
non-oscillatory (WENO) type schemes such as finite difference WENO schemes [6,24] and
finite volume Hermite WENO (HWENO) schemes [11,12,28]. Even though these schemes
have been demonstrated to perform well for a wide range of problems, in practice they may
still be unstable due to loss of positivity for low density or low pressure problems.

For resolving this difficulty, a series of high order positivity-preserving schemes such as
discontinuous Galerkin method, finite volume and finite difference schemes WENO were
developed recently in [19,20,24] following a general methodology as reviewed in [22]. This
method for finite volume schemes can be easily implemented as a post processing step to
limit the high order reconstruction polynomials or high order reconstructed point values
without destroying accuracy and can be easily generalized, for instance, to general equations
of state and Euler system with source terms [21], to controlling the physical entropy in gas
dynamics [27], to unstructured meshes [23], to convection–diffusion equations [25,26] and
to the shallow water equations [17,18].

Finite volume HWENO schemes was proposed in [1,11,12,28]. There are quite a few
advantages using a compact numerical stencil: first, it is easier to deal with boundary con-
ditions and complex geometries; second, for the same formal accuracy, compact stencils are
known to exhibit more resolution of the smaller scales by improving the dispersive and the
dissipative properties of the numerical scheme [8,15].

However, in practiceHWENOschemes are less robust than conventionalWENO schemes.
The HWENO schemes are more unstable numerically for low pressure or low density prob-
lems, in which positivity preserving is a crucial property for the sake of stability. For instance,
the flux limiter in [5] was applied to stabilize the finite difference HWENO schemes [9]. The
method to construct positivity-preserving limiters for finite volume schemes in [19,20] can
be applied to finite volume HWENO scheme to achieve positivity without losing conser-
vation. The limiter will not destroy the high order accuracy of the HWENO scheme for
smooth solutions without vacuum. However, the positivity-preserving limiter in [19,20] is
defined for reconstruction polynomials, which are not available in WENO and HWENO
reconstructions. Such polynomials can be obtained by interpolating reconstructed point val-
ues inWENO [19], but the interpolation step is computationally inefficient especially in high
dimensions. A simpler and more efficient implementation of the positivity-preserving limiter
for WENO reconstruction was discussed in [22]. In this paper, we follow [16,22] to imple-
ment an efficient and robust positivity-preserving limiter for finite volumeHWENO schemes.
With the positivity-preserving limiter, both conservative WENO and HWENO schemes are
guaranteed to have non-negative density/pressure thus L1-stability in density and total energy.
Though the numerical solutions of HWENOwith positivity-preserving limiter might bemore
oscillatory than WENO, the HWENO scheme with this simple limiter will be much more
robust for compressible Euler equations.

The paper is organized as follows. In Sect. 2, we briefly review the finite volume HWENO
schemes in [11,12,28]. In Sect. 3, we introduce positivity-preserving finite volume HWENO
schemes in one dimension and two dimensions for the perfect gas. In Sect. 4, numerical tests
of the fifth order HWENO schemes for one dimensional Euler equations and the fourth order
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finite volume HWENO schemes in two dimensional case are shown. Concluding remarks
are given in Sect. 5.

2 Description of Finite Volume Hermite WENO Schemes

We briefly review the construction of finite volume HWENO schemes for solving conserva-
tion laws {

qt + ∇ · F(q) = 0,
q(x, 0) = q0(x),

(2.1)

in [11,12,28]. Taking the gradient with respect to the spatial variables in (2.1), we have

(∇q)T
t + ∇T (∇ · F(q)) = 0, (2.2)

thus
(∇q)T

t + ∇ · (∇ ⊗ F(q)) = 0, (2.3)

where ⊗ is a tensor product. For instance, the tensor product of two vectors a = (a1 a2) and
b = (b1 b2) is

a ⊗ b = (a1 a2)
T (b1 b2) =

(
a1b1 a1b2
a2b1 a2b2

)
. (2.4)

For using a Hermite interpolation procedure, both the function and its derivative are needed
during the evolution in time. The finite volume HWENO schemes are defined for the equa-
tions:

Ut + ∇ · F(U ) = 0, (2.5)

where U = (q,∇q)T and F(U ) =
(

F(q)

∇ ⊗ F(q)

)
. We integrate the system (2.5) on a

control volume � j , which is an interval [x j− 1
2
, x j+ 1

2
] in one dimensional case or a rectangle

[xi− 1
2
, xi+ 1

2
]× [y j− 1

2
, y j+ 1

2
] in two dimensional cases. After integration by parts, we obtain

the integral form of the equation as :

d

dt
U� j = − 1

|� j |
∫

∂� j

F(U ) · nds (2.6)

where |� j | is the volume of the control volume � j and n represents the outward unit nor-
mal vector to the boundary of the control volume ∂� j . The line integral in (2.6) can be
approximated by a L-point Gaussian quadrature on each side of ∂� j = ⋃S

s=1 ∂� js :

∫
∂� j

F(U ) · nds ≈
S∑

s=1

|∂� js |
L∑

l=1

ωlF(U (Gsl , t)) · n, (2.7)

where Gsl and ωl are Gaussian quadrature points on ∂� js and weights respectively. The flux
F(U (Gsl , t)) ·n at Gaussian quadrature point is replaced by a numerical flux (approximate or
exact Riemann solvers). For example, one could use the simple Lax–Friedrichs flux, which
is given by

F(U (Gsl , t))·n ≈ 1

2

[F(U−(Gsl , t)) + F(U+(Gsl , t))
]·n−α

(
U+(Gsl , t) − U−(Gsl , t)

)
,

(2.8)
where α is taken as an upper bound for the eigenvalues of the Jacobian along the direction n,
and U− and U+ are the reconstructed values of U at the Gaussian point Gsl in the inside and
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the outside� j . The procedures of finite volumeHermiteWENOreconstruction ofU±(Gsl , t)
in one-dimensional and two-dimensional cases are given in detail in [11,28], respectively.
Finally, the semi-discretization HWENO scheme (2.6) can be written in the following ODE
form:

d

dt
U� j = L (

U
)
� j

. (2.9)

The method of lines ODE (2.9) is then discretized in time by a SSP Runge–Kutta method
in [14]. The third-order version in [14] is used in this paper,

U
(1) = U

n + �tL
(

U
n
)

,

U
(2) = 3

4
U

n + 1

4

(
U

(1) + �tL
(

U
(1)
))

,

U
n+1 = 1

3
U

n + 2

3

(
U

(2) + �tL
(

U
(2)
))

. (2.10)

3 Positivity-Preserving Limiters for Finite Volume HWENO Schemes

We present positivity-preserving limiters for finite volume HWENO schemes based on the
work in [20,22] for compressible Euler equations and their improvement in [16] for reactive
Euler equations. We apply the method in [16,20,22] to (2.1) and leave derivative terms
unchanged, since derivative terms do not affect the positivity in this method.

3.1 Positivity-Preserving High Order Finite Volume HWENO Schemes
for Solving One-Dimensional Euler Equations

Consider the one dimensional Euler equations for the perfect gas being given by

qt + f (q)x = 0, t � 0, x ∈ R, (3.1)

q =
⎛
⎝ρ

m
E

⎞
⎠ , f (q) =

⎛
⎝ρu

ρu2 + p
(E + p)u

⎞
⎠ (3.2)

with

m = ρu, E = 1

2
ρu2 + ρe, p = (γ − 1)ρe,

where ρ is the density, u is the velocity, m is the momentum, E is the total energy, p is
the pressure, e is the internal energy, and γ > 1 is a constant (γ = 1.4 for the air). The
speed of sound is given by c = √

γ p/ρ and the three eigenvalues of the Jacobian f ′(q) are
u − c, u, u + c.

Let p(q) = (γ − 1)
(

E − 1
2

m2

ρ

)
be the pressure function. It can be easily verified that

p is a concave function of q = (ρ, m, E)T if ρ > 0. For q1 = (ρ1, m1, E1)
T and q2 =

(ρ2, m2, E2)
T , Jensen’s inequality implies, for 0 � s � 1,

p(sq1 + (1 − s)q2) � sp(q1) + (1 − s)p(q2), if ρ1 � 0, ρ2 � 0. (3.3)

Define the set of admissible states by
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G =
⎧⎨
⎩q =

⎛
⎝ρ

m
E

⎞
⎠
∣∣∣∣∣∣ ρ > 0 and p = (γ − 1)

(
E − 1

2

m2

ρ

)
> 0

⎫⎬
⎭ , (3.4)

then G is a convex set.
The time discretization is used in HWENO schemes as the high order strong stability

preserving (SSP) methods which are convex combinations of Euler forward. Due to the
convexity of G, if Euler forward is positivity-preserving, then so are the high order SSP time
discretizations. Thus we only need to discuss the Euler forward in time.

Let ξ = qx . Taking the derivative of (3.1), we obtain

ξt + H(q, ξ)x = 0,

where H(q, ξ) = f ′(q)ξ.

Then the Euler forward temporal discretization for the the semi-discretization HWENO
scheme of (2.9) can be written as⎧⎪⎪⎨
⎪⎪⎩

qn+1
j = qn

j − �t
�x

[
f̂

(
q−

j+ 1
2
, q+

j+ 1
2

)
− f̂

(
q−

j− 1
2
, q+

j− 1
2

)]
,

ξ
n+1
j = ξ

n
j − �t

�x

[
Ĥ
(

q−
j+ 1

2
, q+

j+ 1
2
; ξ−

j+ 1
2
, ξ+

j+ 1
2

)
− Ĥ

(
q−

j− 1
2
, q+

j− 1
2
; ξ−

j− 1
2
, ξ+

j− 1
2

)]
,

(3.5)
where qn

j is the approximation of the cell average of the exact solution q(x, t) in the cell

I j =
[
x j− 1

2
, x j+ 1

2

]
at time level n, and q−

j+ 1
2
, q+

j+ 1
2
are the high order approximations of

the point values q
(

x j+ 1
2
, tn

)
within the cells I j and I j+1 respectively. These values are

reconstructed from qn
j and ξ

n
j by the HWENO reconstruction. We assume that there is a

vector of degree k polynomials q j (x) = (ρ j (x), m j (x), E j (x))T which are (k + 1)-th order
accurate approximations to smooth exact solutions q(x, t) on I j , and satisfy that qn

j is the

cell average of q j (x) on I j , q+
j− 1

2
= q j

(
x j− 1

2

)
and q−

j+ 1
2

= q j

(
x j+ 1

2

)
. The existence of

such polynomials can be established by the interpolation involving q−
j+ 1

2
, q+

j− 1
2
and qn

j .

The numerical fluxes f̂ (a, b) and Ĥ(a, b; c, d) used in this paper are the following global
Lax–Friedrichs fluxes:

f̂ (a, b) = 1
2 [ f (a) + f (b) − α(b − a)] ,

Ĥ(a, b; c, d) = 1
2

[
f ′(a)c + f ′(b)d − α(d − c)

]
.

(3.6)

where α = ‖(|u| + c)‖∞.
We need the N -point Legendre Gauss-Lobatto quadrature rule on the interval I j =[

x j− 1
2
, x j+ 1

2

]
, which is exact for the integral of polynomials of degree up to 2N − 3. We

would need to choose N such that 2N − 3 � k. The smallest N = 4 is chosen for satisfying
2N − 3 ≥ 4. Denote these quadrature points on I j as

S j =
{

x j− 1
2

= x̂1j , x̂2j , . . . , x̂ N−1
j , x̂ N

j = x j+ 1
2

}
. (3.7)

Let ω̂ j denote weights in N -point Gauss-Lobatto quadrature for the reference cell [− 1
2 ,

1
2 ],

then the smallest weight for N = 4 is ω̂1 = ω̂4 = 1
12 .

A general framework to construct a high order positivity preserving finite volume scheme
for the Euler equations was introduced in [20], in which a sufficient condition for qn+1

j ∈ G
is that, all the nodal value q j (̂xα

j ) ∈ G for all j and α under suitable CFL conditions
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λ‖(|u| + c)‖∞ ≤ ω̂1α0, (3.8)

where α0 = 1 for the Lax–Friedrichs flux. The positivity-preserving limiter in [20] can
enforce this sufficient condition without destroying conservation and accuracy. For more
detailed description of such a positivity-preserving method, see [20,22]. However, neither
the polynomial q j (x) nor the nodal values q j (̂xα

j ) (α = 2, . . . , N − 1) are available from the
WENO type reconstruction, which poses additional chanllenge to implementing an efficient
limiter. In [16,22], simpler implementations of the limiter were discussed.

Following Section 5 in [22], for preserving positivity in the finite volumeHWENO scheme
(3.5), we have the following weaker sufficient condition which can be enforced without
constructing the polynomials q j (x).

Theorem 1 Let q j (x) = (ρ j (x), m j (x), E j (x))T be the approximation polynomials
approximating q in the HWENO scheme (3.5). For the scheme (3.5), if

qn
j − ω̂1q+

j− 1
2

− ω̂N q−
j+ 1

2

1 − 2ω̂1
∈ G, and q±

j± 1
2

∈ G, (3.9)

then qn+1
j ∈ G under the CFL condition λ‖(|u| + c)‖∞ � ω̂1α0, where α0 = 1 for the

Lax–Friedrichs flux.

Remark 1 In HWENO reconstruction, only point values q±
j± 1

2
and q±

j∓ 1
2
are reconstructed.

In Theorem 1, we need the existence of the approximation polynomials q j (x)which is a high
order accurate approximation to q and has cell average qn

j and cell end values q+
j− 1

2
, q−

j+ 1
2
.

The existence of such polynomials can be established by interpolation, see [19].

Remark 2 Notice that ω̂1 = ω̂N and qn
j = 1

�x j

∫
I j

q j (x) dx =
N∑

α=1
q j (̂xα

j )ω̂ j , thus we have

qn
j − ω̂1q+

j− 1
2

− ω̂N q−
j+ 1

2

1 − 2ω̂1
=

N−1∑
α=2

ω̂ j

1 − 2ω̂1
q j (̂xα

j ),

which is a convex combination of q j (xα
j ) (α = 2, . . . , N − 1). By the mean value theorem,

there exist some points x1j , x2j , x3j in I j such that

(
ρ j (x1j ), m j (x2j ), E j (x3j )

)T =
N−1∑
α=2

ω̂ j

1 − 2ω̂1
q j (̂xα

j ) =
qn

j − ω̂1q+
j− 1

2
− ω̂N q−

j+ 1
2

1 − 2ω̂1
.

Even though the points x1j , x2j , x3j are three different points, for convenience we will treat

(ρ j (x1j ), m j (x2j ), E j (x3j ))
T as if it is q j (x) evaluated at one point in the following discussion.

For each cell I j , given qn
j ∈ G and nodal values q∓

j± 1
2
constructed in HWENO procedure,

the following limiter can be used to enforce the sufficient condition (3.9).

1. Set up a small number ε = min j {10−13, ρn
j , p(qn

j )}.
2. In each cell, evaluate θ1 = min

{∣∣∣∣ ρn
j −ε

ρn
j −ρmin

∣∣∣∣ , 1
}
where

ρmin = min

{
ρ−

j+ 1
2
, ρ+

j− 1
2
, ρ j (x1j )

}
, ρ j (x1j ) =

ρn
j − ω̂1ρ

+
j− 1

2
− ω̂N ρ−

j+ 1
2

1 − 2ω̂1
.

3. Modify the density first: set
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ρ̂−
j+ 1

2
= θ1

(
ρ−

j+ 1
2

− ρn
j

)
+ ρn

j , ρ̂+
j− 1

2
= θ1

(
ρ+

j− 1
2

− ρn
j

)
+ ρn

j .

Then denote

q̂1
j = q̂−

j+ 1
2

=
(

ρ̂−
j+ 1

2
, m−

j+ 1
2
, E−

j+ 1
2

)T

, q̂2
j = q̂+

j− 1
2

=
(

ρ̂+
j− 1

2
, m+

j− 1
2
, E+

j− 1
2

)T

,

and q̂3
j = (ρ̂ j (x1j ), m j (x2j ), E j (x3j ))

T =
qn

j −ω̂1q̂+
j− 1

2
−ω̂N q̂−

j+ 1
2

1−2ω̂1
. Here ρ̂ j (x) denotes the

polynomial ρ̂ j (x) = θ1(q j (x) − ρn
j ) + ρn

j . Notice that we only need to compute three
nodal values of ρ̂ j (x).

4. Thenmodify the pressure: for l = 1, 2, 3, if p(̂ql
j ) < ε, then solve the following quadratic

equation for t l
ε ∈ [0, 1],

p
[(

1 − t l
ε

)
qn

j + t l
εq̂α

j

]
= ε. (3.10)

The convexity of the set {(ρ, m, E)T : ρ > 0, p ≥ ε} implies the solution to this
quadratic equation is unique in the interval [0, 1]. If p(̂ql

j ) � ε, then set t l
ε = 1. Set

θ2 = min
α=1,2,3

t l
ε.

5. For modifying the pressure, an easier yet more robust alternative was introduced in [16]:
for l = 1, 2, 3, if p(̂ql

j ) < ε, set

t l
ε = p(qn

j ) − ε

p(qn
j ) − p(̂ql

j )
. (3.11)

if p(̂ql
j ) � ε, then set t l

ε = 1. Set θ2 = min
l=1,2,3

t l
ε . By Jensen’s inequality on the concave

pressure function, we can see that t l
ε computed in (3.11) is smaller than the one computed

in (3.10). In other words, (3.10) results in less modification than (3.11). Nonetheless,
both approaches are accurate modifications for smooth solutions without vacuum.

6. Compute

q̃−
j+ 1

2
= θ2

(
q̂−

j+ 1
2

− qn
j

)
+ qn

j , q̃+
j− 1

2
= θ2

(
q̂+

j− 1
2

− qn
j

)
+ qn

j . (3.12)

It is straightforward to check that q̃±
j± 1

2
and qn

j satisfy the condition (3.9).

7. Use q̃±
j± 1

2
instead of q±

j± 1
2
, in the scheme (3.5) with the CFL condition (3.8), where

‖|u| + c‖∞ is the maximum of eigenvalues of the Jacobian f ′(q) over the set consisting
of qn

j , q̃−
j+ 1

2
, q̃+

j− 1
2
for all j .

To see why the simplified limiter discussed above is still an accurate modification, we
can compare it to the one in [20] enforcing the stronger condition q j (̂xα

j ) ∈ G for all α. For
simplicity, we omit the subscript j here. We only discuss the case for enforcing positivity
of pressure since the discussion for density will be similar. Given the cell average q ∈ G
satisfying p[q] ≥ ε and the high order accurate reconstructed point values q+ and q− on the
cell I , we assume the density of q+ and q− are already positive. Let q(x) be a high order
accurate approximation polynomial satisfying that q is its cell average on I and q+ and q−
are its left and right end point values on I . We compare the following two limiters:

1. Let θ̂ = min
α=1,...,N

tαε where tαε = 1 if p[q (̂xα)] ≥ ε and tαε ∈ [0, 1] solves the quadratic
equation p[θ(q (̂xα) − q) + q] = ε for the unknown θ ∈ [0, 1] otherwise.
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2. Let θ̄ = min
l=1,2,3

t l
ε where t l

ε = 1 if p[ql ] ≥ ε and t l
ε ∈ [0, 1] solves the quadratic equation

p[θ(ql − q) + q] = ε for the unknown θ ∈ [0, 1] otherwise. Here q1 = q− = q (̂x N ),

q2 = q+ = q (̂x1) and q3 = q−ω̂1q+−ω̂N q−
1−2ω̂1

.

Define

qθ (x) = θ(q(x) − q) + q, θ ∈ [0, 1].
Then θ = θ̄ is the largest number in [0, 1] such that the following inequalities hold,

p
[
qθ (̂x1)

] ≥ ε, p
[
qθ (̂x N )

]
≥ ε, p

[
q − ω̂1qθ (̂x1) − ω̂N qθ (̂x N )

1 − 2ω̂1

]
≥ ε. (3.13)

On the other hand, θ = θ̂ also satisfies (3.13) due to the Jensen’s inequality for the concave
pressure function and the fact that the following convex combination holds for any θ ,

q − ω̂1qθ (̂x1) − ω̂N qθ (̂x N )

1 − 2ω̂1
=

N−1∑
α=2

ω̂ j

1 − 2ω̂1
qθ (̂xα

j ).

Therefore we have shown that θ̄ ≥ θ̂ thus the simplified limiter results in less modification
than the limiter in [20] enforcing the stronger sufficient condition q (̂xα) ∈ G for all α.

Remark 3 For the vacuum regions in which density of the numerical solution is lower than
some threshold (such as ε = 10−13), then the velocity of numerical solution in vacuum
regions should be either defined as zero or as momentum divided by the threshold ε. The
positivity-preserving limitermodifies the point values used computing in the numerical fluxes
so that these point values have non-negative density/pressure, which may or may not result
in a non-zero flux for vacuum regions.

3.2 Positivity-Preserving Limiter for Finite Volume HWENO Schemes in Two
Dimensions on Cartesian Meshes

In this section we consider two dimensional Euler equations

qt + f (q)x + g(q)y = 0, t ≥ 0, (x, y) ∈ R2, (3.14)

where

q =

⎛
⎜⎜⎝

ρ

m
n
E

⎞
⎟⎟⎠ , f (q) =

⎛
⎜⎜⎝

ρu
ρu2 + p
ρuv

(E + p)u

⎞
⎟⎟⎠ , g(q) =

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p
(E + p)v

⎞
⎟⎟⎠ (3.15)

with

m = ρu, n = ρv, E = 1

2
ρu2 + 1

2
ρv2 + ρe, p = (γ − 1)ρe,

where ρ is the density, u is the velocity in x direction, v is the velocity in y direction, m and
n are the momenta, E is the total energy, p is the pressure, e is the internal energy. The speed
of sound is given by c = √

(γ p/ρ). The eigenvalues of the Jacobian f ′(q) are u − c, u, u
and u + c and the eigenvalues of the Jacobian g′(q) are v − c, v, v and v + c. The pressure
function p is concave with respect to q if ρ ≥ 0. Thus the set of admissible states
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G =

⎧⎪⎪⎨
⎪⎪⎩

q =

⎛
⎜⎜⎝

ρ

m
n
E

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
ρ > 0 and p = (γ − 1)

(
E − 1

2

m2

ρ
− 1

2

n2

ρ

)
> 0

⎫⎪⎪⎬
⎪⎪⎭

is still convex.
For simplicity we assume we have a uniform rectangular mesh. At time level n, we have

a vector of approximation polynomials of degree k, qi j (x, y) = (ρi j (x, y), mi j (x, y), ni j

(x, y), Ei j (x, y))T with the cell average qm
i j = (ρn

i j , mn
i j , nn

i j , E
n
i j )

T on the (i, j) cell denoted
by Ii j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
]. Let �x = xi+ 1

2
− xi− 1

2
and �y = y j+ 1

2
− y j− 1

2
.

Let ξ = ∂q
∂x , η = ∂q

∂y . Taking the derivatives of (3.14), we obtain

ξt + H(q, ξ)x + R(q, ξ)y = 0, (3.16)

ηt + K(q, η)x + S(q, η)y = 0, (3.17)

where H(q, ξ) = f ′(q)ξ,R(q, ξ) = g′(q)ξ,K(q, η) = f ′(q)η,S(q, η) = g′(q)η.
We first integrate the Eqs. (3.14), (3.16) and (3.17) on Ii j :

d

dt
qi j = − 1

�x�y

∫
∂ Ii j

F · nds, (3.18)

d

dt
ξ i j = − 1

�y

∫
∂ Ii j

H · nds, (3.19)

d

dt
ηi j = − 1

�x

∫
∂ Ii j

Q · nds, (3.20)

where

qi j = 1

�x�y

∫
Ii j

qdxdy, ξ i j = 1

�y

∫
Ii j

∂q

∂x
dxdy, ηi j = 1

�x

∫
Ii j

∂q

∂y
dxdy

and F = ( f, g)T , H = (H,R)T , Q = (K,S)T .
The line integral in (3.18)–(3.20) are approximated by a L-point Gauss quadrature on

each side of ∂ Ii j = ⋃4
s=1 ∂ Ii j s ,

∫
∂ Ii j

F · nds ≈
4∑

s=1

|∂ Ii j s |
L∑

l=1

ωl F(q(Gsl , t)) · n, (3.21)

∫
∂ Ii j

H · nds ≈
4∑

s=1

|∂ Ii j s |
L∑

l=1

ωl H(q(Gsl , t), ξ(Gsl , t)) · n, (3.22)

∫
∂ Ii j

Q · nds ≈
4∑

s=1

|∂ Ii j s |
L∑

l=1

ωl Q(q(Gsl , t), η(Gsl , t)) · n, (3.23)

where ωl (l = 1, . . . , L) denote the Gauss quadrature weights for the reference interval
[− 1

2 ,
1
2 ].

Since we are constructing schemes up to fourth-order accuracy, two-point Gaussian
will be used in each line integration, and F(q(Gsl , t)) · n, H(q(Gsl , t), ξ(Gsl , t)) ·
n, Q(q(Gsl , t), η(Gsl , t)) · n are replaced by numerical fluxes such as the global Lax–
Friedrichs fluxes:
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f̂
(
q−(Gsl , t), q+(Gsl , t)

)
= 1

2

[
f (q−(Gsl , t)) + f (q+(Gsl , t)) − α(q+(Gsl , t) − q−(Gsl , t))

]
, (3.24)

Ĥ (
q−(Gsl , t), q+(Gsl , t); ξ−(Gsl , t), ξ+(Gsl , t)

)
= 1

2

[H (
q−(Gsl , t), ξ−(Gsl , t)

) + H (
q+(Gsl , t), ξ+(Gsl , t)

)
−α

(
ξ+(Gsl , t) − ξ−(Gsl , t)

)]
, (3.25)

K̂ (
q−(Gsl , t), q+(Gsl , t); η−(Gsl , t), η+(Gsl , t)

)
= 1

2

[K (
q−(Gsl , t), η−(Gsl , t)

) + K (
q+(Gsl , t), η+(Gsl , t)

)
−α

(
η+(Gsl , t) − η−(Gsl , t)

)]
, (3.26)

where α = max{‖(|u| + c)‖∞, ‖(|v| + c)‖∞} and for Gsl = (xi± 1
2
, y j±√

3/6),

q±(Gsl , t), ξ±(Gsl , t), η±(Gsl , t) are the left and right limits of the solutions u, v, w at
the cell interface Gsl respectively; and

ĝ
(
q−(Gsl , t), q+(Gsl , t)

)
= 1

2

[
g(q−(Gsl , t)) + g(q+(Gsl , t)) − α(q+(Gsl , t) − q−(Gsl , t))

]
, (3.27)

R̂ (
q−(Gsl , t), q+(Gsl , t); ξ−(Gsl , t), ξ+(Gsl , t)

)
= 1

2

[R(q−(Gsl , t), ξ−(Gsl , t))

+R(q+(Gsl , t), ξ+(Gsl , t)) − α
(
ξ+(Gsl , t) − ξ−(Gsl , t)

)]
, (3.28)

Ŝ(q−(Gsl , t), q+(Gsl , t); η−(Gsl , t), η+(Gsl , t))

= 1

2

[S(q−(Gsl , t), η−(Gsl , t))

+S(q+(Gsl , t), η+(Gsl , t)) − α
(
η+(Gsl , t) − η−(Gsl , t)

)]
, (3.29)

where Gsl = (xi±√
3/6, y j± 1

2
), q±(Gsl , t), ξ±(Gsl , t), η±(Gsl , t) are the bottom and top

limits of the solutions u, v, w at the cell interface Gsl respectively. The procedure of recon-
struction of q±(Gsl , t), ξ±(Gsl , t), η±(Gsl , t) from qi j , ξ i j , ηi j is given in detail in [12,28].

Let λ1 = �t
�x and λ2 = �t

�y , then Euler forward temporal discretization for the the semi-
discretization HWENO scheme of (3.18)–(3.20) associated with approximation polynomials
qi j (x, y) = (ρi j (x, y), mi j (x, y), ni j (x, y), Ei j (x, y))T becomes

qn+1
i j = qn

i j − λ1

L∑
β=1

ωβ

[
f̂

(
q−

i+ 1
2 ,β

, q+
i+ 1

2 ,β

)
− f̂

(
q−

i− 1
2 ,β

, q+
i− 1

2 ,β

)]

− λ2

L∑
β=1

ωβ

[
ĝ

(
q−
β, j+ 1

2
, q+

β, j+ 1
2

)
− ĝ

(
q−
β, j− 1

2
, q+

β, j− 1
2

)]
, (3.30)

ξ
n+1
i j = ξ

n
i j − λ1

L∑
β=1

ωβ

[
Ĥ
(

q−
i+ 1

2 ,β
, q+

i+ 1
2 ,β

; ξ−
i+ 1

2 ,β
, ξ+

i+ 1
2 ,β

)

− Ĥ
(

q−
i− 1

2 ,β
, q+

i− 1
2 ,β

; ξ−
i− 1

2 ,β
, ξ+

i− 1
2 ,β

)]
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− λ2

L∑
β=1

ωβ

[
R̂
(

q−
β, j+ 1

2
, q+

β, j+ 1
2
; ξ−

β, j+ 1
2
, ξ+

β, j+ 1
2

)

− R̂
(

q−
β, j− 1

2
, q+

β, j− 1
2
; ξ−

β, j− 1
2
, ξ+

β, j− 1
2

)]
, (3.31)

ηn+1
i j = ηn

i j − λ1

L∑
β=1

ωβ

[
K̂
(

q−
i+ 1

2 ,β
, q+

i+ 1
2 ,β

; η−
i+ 1

2 ,β
, η+

i+ 1
2 ,β

)

− K̂
(

q−
i− 1

2 ,β
, q+

i− 1
2 ,β

; η−
i− 1

2 ,β
, η+

i− 1
2 ,β

)]

− λ2

L∑
β=1

ωβ

[
Ŝ
(

q−
β, j+ 1

2
, q+

β, j+ 1
2
; η−

β, j+ 1
2
, η+

β, j+ 1
2

)

−Ŝ
(

q−
β, j− 1

2
, q+

β, j− 1
2
; η−

β, j− 1
2
, η+

β, j− 1
2

)]
, (3.32)

Let μ1 = �t
�x α

�t
�x α+ �t

�y α
= �t

�x
�t
�x + �t

�y
and μ2 =

�t
�y α

�t
�x α+ �t

�y α
= 1 − μ1. The extension of the

discussion in previous subsection to the two-dimensional case is straightforward. Following
Theorem 1 in previous subsection and Theorem 10 in [22], we have

Theorem 2 Let qi j (x, y) = (ρi j (x, y), mi j (x, y), ni j (x, y), Ei j (x, y))T be the approxima-
tion polynomials in (i, j) cell approximating q in the HWENO scheme (3.30). By the mean
value theorem, there exist some points (x1i , y1j ), (x2i , y2j ), (x3i , y3j ), (x4i , y4j ) in (i, j) cell such
that (

ρi j (x1i , y1j ), mi j (x2i , y2j ), ni j (x3i , y3j ), Ei j (x4i , y4j )
)T

=
qn

i j −
L∑

β=1
ωβω̂1

[
μ1

(
q−

i+ 1
2 ,β

+ q+
i− 1

2 ,β

)
+ μ2

(
q−
β, j+ 1

2
+ q+

β, j− 1
2

)]

1 − 2ω̂1
.

For the scheme (3.30), if

(
ρi j (x1i , y1j ), mi j (x2i , y2j ), ni j (x3i , y3j ), Ei j (x4i , y4j )

)T
, q±

β, j± 1
2
, q±

i± 1
2 ,β

, q±
β, j∓ 1

2
, q±

i∓ 1
2 ,β

∈ G,

(3.33)
then qn+1

i j ∈ G under the CFL condition (λ1+λ2)max{‖(|u|+c)‖∞, ‖(|v|+c)‖∞} � ω̂1α0,
where α0 = 1 for the Lax–Friedrichs flux.

For each cell (i, j), given qn
i j ∈ G and nodal values q±

β, j± 1
2
, q±

i± 1
2 ,β

, q±
β, j∓ 1

2
, q±

i∓ 1
2 ,β

constructed in HWENO procedure, the following limiter can be used to enforce the sufficient
condition (3.33).

1. Set up a small number ε = mini, j {10−13, ρn
i j , p(qn

i j )}.
2. In each cell, evaluate

θ1 = min

{∣∣∣∣∣
ρn

i j − ε

ρn
i j − ρmin

∣∣∣∣∣ , 1
}

,

ρmin = min

{
ρ±

β, j± 1
2
, ρ±

i± 1
2 ,β

, ρ±
β, j∓ 1

2
, ρ±

i∓ 1
2 ,β

, ρi j

(
x1i , y1j

)}
(3.34)
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3. Modify the density first: set

ρ̂+
β, j− 1

2
= θ1

(
ρ+

β, j− 1
2

− ρn
i j

)
+ ρn

i j ,

ρ̂+
i− 1

2 ,β
= θ1

(
ρ+

i− 1
2 ,β

− ρn
i j

)
+ ρn

i j .

ρ̂−
β, j+ 1

2
= θ1

(
ρ−

β, j+ 1
2

− ρn
i j

)
+ ρn

i j ,

ρ̂−
i+ 1

2 ,β
= θ1

(
ρ−

i+ 1
2 ,β

− ρn
i j

)
+ ρn

i j .

Then denote

q̂1
i j = q̂+

i−
√
3
6 , j− 1

2

=
(

ρ̂+
i−

√
3
6 , j− 1

2

, m+
i−

√
3
6 , j− 1

2

, n+
i−

√
3
6 , j− 1

2

, E+
i−

√
3
6 , j− 1

2

)T

,

q̂2
i j = q̂+

i+
√
3
6 , j− 1

2

=
(

ρ̂+
i+

√
3
6 , j− 1

2

, m+
i+

√
3
6 , j− 1

2

, n+
i+

√
3
6 , j− 1

2

, E+
i+

√
3
6 , j− 1

2

)T

,

q̂3
i j = q̂+

i− 1
2 , j−

√
3
6

=
(

ρ̂+
i− 1

2 , j−
√
3
6

, m+
i− 1

2 , j−
√
3
6

, n+
i− 1

2 , j−
√
3
6

, E+
i− 1

2 , j−
√
3
6

)T

,

q̂4
i j = q̂+

i− 1
2 , j+

√
3
6

=
(

ρ̂+
i− 1

2 , j+
√
3
6

, m+
i− 1

2 , j+
√
3
6

, n+
i− 1

2 , j+
√
3
6

, E+
i− 1

2 , j+
√
3
6

)T

,

q̂5
i j = q̂−

i−
√
3
6 , j+ 1

2

=
(

ρ̂−
i−

√
3
6 , j+ 1

2

, m−
i−

√
3
6 , j+ 1

2

, n−
i−

√
3
6 , j+ 1

2

, E−
i−

√
3
6 , j+ 1

2

)T

,

q̂6
i j = q̂−

i+
√
3
6 , j+ 1

2

=
(

ρ̂−
i+

√
3
6 , j+ 1

2

, m−
i+

√
3
6 , j+ 1

2

, n−
i+

√
3
6 , j+ 1

2

, E−
i+

√
3
6 , j+ 1

2

)T

,

q̂7
i j = q̂−

i+ 1
2 , j−

√
3
6

=
(

ρ̂−
i+ 1

2 , j−
√
3
6

, m−
i+ 1

2 , j−
√
3
6

, n−
i+ 1

2 , j−
√
3
6

, E−
i+ 1

2 , j−
√
3
6

)T

,

q̂8
i j = q̂−

i+ 1
2 , j+

√
3
6

=
(

ρ̂−
i+ 1

2 , j+
√
3
6

, m−
i+ 1

2 , j+
√
3
6

, n−
i+ 1

2 , j+
√
3
6

, E−
i+ 1

2 , j+
√
3
6

)T

,

and

q̂9
i j =

(
ρ̂i j (x1i , y1j ), mi j (x2i , y2j ), ni j (x3i , y3j ), Ei j (x4i , y4j )

)T

=
qn

i j −
L∑

β=1
ωβω̂1

[
μ1

(
q̂−

i+ 1
2 ,β

+ q̂+
i− 1

2 ,β

)
+ μ2

(
q̂−
β, j+ 1

2
+ q̂+

β, j− 1
2

)]

1 − 2ω̂1

4. Then modify the pressure: for l = 1, 2, . . . , 9, if p(̂ql
i j ) < ε, set

t l
ε = p(qn

i j ) − ε

p(qn
i j ) − p(̂ql

i j )
. (3.35)

if p(̂ql
i j ) � ε, then set t l

ε = 1. θ2 = min
l=1,2,...,9

t l
ε .
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Get

q̃−
β, j+ 1

2
= θ2 (̂q

−
β, j+ 1

2
− qn

i j ) + qn
i j , q̃+

β, j− 1
2

= θ2 (̂q
+
β, j− 1

2
− qn

i j ) + qn
i j

q̃−
i+ 1

2 ,β
= θ2 (̂q

−
i+ 1

2 ,β
− qn

i j ) + qn
i j , q̃+

i− 1
2 ,β

= θ2 (̂q
+
i− 1

2 ,β
− qn

i j ) + qn
i j

5. Use q̃±
β, j± 1

2
, q̃±

i± 1
2 ,β

instead of q±
β, j± 1

2
, q±

i± 1
2 ,β

, in the scheme (3.30) with the CFL con-

dition (λ1 + λ2)max{‖(|u| + c)‖∞, ‖(|v| + c)‖∞} � 1
12 , where the maximum is taken

over qn
i j , q̃±

β, j± 1
2
, q̃±

i± 1
2 ,β

for all i, j .

3.3 The Algorithm for SSP Runge–Kutta Time Discretization

By Theorem 1, the fourth order finite volumeHWENO scheme is positivity-preserving under
the suitableCFL condition �t

�x ‖|u|+c‖∞ ≤ 1
12 . But this CFL condition should be satisfied for

each time stage of Runge–Kutta thus we need ‖|u|+c‖∞ in each time stage. Given solutions
at time step n, it is hard to accurately estimate ‖|u| + c‖∞ in the two inner time stages in the
third order SSP Runge–Kutta. On the other hand, the CFL condition �t

�x ‖|u| + c‖∞ ≤ 1
12

is sufficient rather than necessary for the sake of preserving the positivity of cell averages.
To evolve to time step n + 1, we can start with a larger CFL (e.g., �t

�x ‖|u| + c‖∞ ≤ 1
3 for a

fourth order finite volume scheme) in time step n to save computational cost. If negative cell
averages emerge in any of three stage in one step of Runge–Kutta, then return to stage one in
time step n and restart the computation with the stringent CFL condition. Such an efficient
algorithm was used in [16].

This algorithm for the scheme in Sect. 3.1 with the third order SSP Runge–Kutta method
(2.10) can be implemented as follows:

1. At time level n, in each cell I j , given qn
j ∈ G and reconstructed point values q−

j+ 1
2
and

q+
j− 1

2
, apply the limiter to obtain q̃−

j+ 1
2
, q̃+

j− 1
2

∈ G.

2. Compute max ‖|u| + c‖∞ by taking the maximum over qn
j , q̃−

j+ 1
2
and q̃+

j− 1
2
for all j .

3. Set the time step �t = a �x
max ‖|u|+c‖∞ where a is a linearly stable CFL number for a

fourth order finite volume scheme. For example, we can use a = 1
3 in practice.

4. Compute the first stage, denoted by q(1)
j .

• If the cell averages q(1)
j are positive, then proceed to the next step.

• If the cell averages q(1)
j contain negative density or pressure, then recompute the

first stage with the stringent CFL, �t = 1
12

�x
max ‖|u|+c‖∞ . Notice that Theorem 1

guarantees that the cell averages q(1)
j will be positive with this CFL.

5. Given q(1)
j ∈ G and reconstructed point values q−,(1)

j+ 1
2

and q+,(1)
j− 1

2
, apply the limiter to

obtain q̃−,(1)
j+ 1

2
, q̃+,(1)

j− 1
2

∈ G. Compute the second stage, denoted by q(2)
j .

• If the cell averages q(2)
j are positive, then proceed to the next step.

• If the cell averages q(2)
j contain negative density or pressure, then return to Step 4

and restart the computation with half time step. Notice that even if the time step is
already �t = 1

12
�x

max ‖|u|+c‖∞ in Step 4, there is no guarantee that q(2)
j should be

123

Author's personal copy



J Sci Comput (2016) 68:464–483 477

positive because the wave speed max ‖|u| + c‖∞ was computed based on qn
j rather

than q(1)
j .

6. Given q(2)
j ∈ G and reconstructed point values q−,(2)

j+ 1
2

and q+,(2)
j− 1

2
, apply the limiter to

obtain q̃−,(2)
j+ 1

2
, q̃+,(2)

j− 1
2

∈ G. Compute qn+1
j .

• If the cell averages qn+1
j are positive, then computation to time step n + 1 is done.

• If the cell averages qn+1
j contain negative density or pressure, then return to Step 4

and restart the computation with half time step.

Remark 4 Theorem 1 implies that the implementation above will not result in any endless
loop. When time step is small enough such that �t ≤ 1

12
�x
α∗ where α∗ is larger than or equal

to the maximum wave speed in all inner stages, qn+1
j will be positive.

4 Numerical Tests for the Ideal Gas

In this section, we perform a detailed comparison of the fifth order finite volume HWENO
scheme with the positivity-preserving limiter (HWENO5) and the fifth order finite volume
WENO scheme with the positivity-preserving limiter (WENO5) in 1D dimensional cases
and show some results of the fourth order finite volume HWENO scheme in two dimensional
case with the positivity-preserving limiter (HWENO4) for several demanding examples. The
HWENO schemes without the positivity-preserving limiter will blow up for most examples
in this section.

Example 1 Accuracy test.

Consider the vortex evolution problem [24] for (2.1). The mean flow is ρ = p = u = v = 1.
Add to the mean flow an isentropic vortex perturbation centered at (x0, y0) in (u, v) and
T = p/ρ, no perturbation in S = p/ργ ,

(δu, δv) = ε

2π
e0.5(1−r2)(−y, x), δT = (γ − 1)ε2

8γπ2 e1−r2 ,

where (x, y) = (x − x0, y − y0), r2 = x2 + y2. The exact solution is the passive convection
of the vortex with the mean velocity.

The domain is taken as [−5, 15]×[−5, 15] and (x0, y0) = (5, 5). The boundary condition
is periodic. We set γ = 1.4 and the vortex strength ε = 10.0828 such that the lowest density
and lowest pressure of the exact solution are 7.8 × 10−15 and 1.7 × 10−20. We test the
accuracy of positivity-preserving limiter on the fourth order finite volume HWENO scheme
with the third order SSP Runge–Kutta at T = 0.01 with �x = �y under C F L = 0.2.

In Table 1, we find the finite volume HWENO scheme with positivity-preserving limiter
can ensure the positivity of densityρ and pressure p. To see howmany positivity limiterswere
actually used in this example, we recorded the number of cells where positivity-preserving
limiter was activated (namely, θ < 1). For each time stage, the percentage of the such cells
is listed as well. We clearly observe the accuracy of the HWENO scheme with limiters is
formally fourth order in both L1 norm and L∞ norm.
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Table 1 Fourth order finite volume HWENO scheme with the positivity-preserving limiter, for the vortex
evolution problem, T = 0.01, and �x = �y

N L1 error Order L∞ error Order ρmin pmin Limited (%)

20 2.68E−04 – 1.71E−02 – 1.96E−01 1.43E−01 ≤22

40 5.29E−05 2.34 3.42E−03 2.32 1.60E−02 5.29E−03 ≤8.31

80 5.69E−06 3.22 1.09E−03 1.65 8.11E−04 1.23E−04 ≤3.95

160 6.43E−07 3.14 2.07E−04 2.40 3.90E−05 2.00E−06 ≤1.93

320 3.23E−08 4.32 2.23E−05 3.21 1.13E−06 9.97E−08 ≤0.94

640 1.62E−09 4.32 1.05E−06 4.41 6.78E−08 1.99E−9 ≤0.47

ρmin and pmin are minimum density and pressure of the numerical solution respectively

Fig. 1 1D Sedov blast. T=0.001. �x = 0.01. HWENO5 and WENO5. The solid line is the exact solution.
Squares numerical solution of WENO5; Pluses numerical solution of HWENO5

Example 2 Sedov blast waves.

The Sedov point-blast wave is a typical low density and low pressure problem involving
shocks. The exact solution formula can be found in [7,13].

The computational domain is taken to be [−2, 2]. The boundary condition is outflow.
For the initial condition, the density is 1, velocity is zero, total energy is 10−13 everywhere
except that the energy in the center cell is the constant E0

�x with E0 = 3, 200, 000 (emulating
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Fig. 2 Double rarefaction. T=0.6. left 1D problem. Right the zoom. �x = 1/200. HWENO5 and WENO5.
The solid line is the exact solution. Squares numerical solution of WENO5; Pluses numerical solution of
HWENO5
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Fig. 3 Double rarefaction. T=0.6. Cut at y = 0. �x = 1/200. HWENO scheme with the positive-preserving
limiter. The solid line is the exact solution. Symbols are numerical solutions

a δ-function at the center). γ = 1.4. The computational results with the positivity-preserving
limiter at T = 0.001 on a mesh size of �x = 0.01 are shown in Fig. 1. For each time
stage, the percentage of cells where positivity limiter was activated is less than 0.5%. By
comparing with WENO5, we can observe that a slightly sharper blast wave is obtained by
using the HWENO5 scheme.

Example 3 The extreme one-dimensional double rarefaction problem.

The initial condition is ρL = ρR = 7, uL = −1, u R = 1, pL = pR = 0.2, γ = 1.4. The
computational domain is taken to be [−1, 1]. The boundary condition is outflow.

The exact solution contains vacuum. The results of positivity-preserving fifth order
HWENO schemes and positivity-preserving fifth order WENO schemes at T = 0.6 on a
mesh size of �x = 1/200 under C F L = 0.5 are shown in Fig. 2. For each time stage, the
percentage of cells where positivity limiter applied is less than 0.5%. In the right panel of
Fig. 2, we can observe that both schemes preserves positive density and pressure and capture
shocks well.

Example 4 A two-dimensional double rarefaction with the initial condition ρL = ρR =
7, uL = −1, u R = 1, vL = vR = 0, pL = pR = 0.2.
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Fig. 4 Shock diffraction problem. T = 2.3. Density, 20 equally spaced contour lines from ρ = 0.066227 to
ρ = 7.0668

Fig. 5 Shock diffraction problem. T = 2.3. Pressure, 40 equally spaced contour lines from p = 0.091 to
p = 37

The computational domain is [−1, 1] × [−1, 1]. The boundary condition is outflow. The
results of cutting at y = 0 of the problem at T = 0.6 with �x = 1/200 are presented. The
results of HWENO4 are very well. The maximum percentage of limited cells is 1% (Fig. 3).

Example 5 Shock diffraction problem.

The setup is the following: the computational domain is the union of [0, 1] × [6, 11] and
[1, 13]×[0, 11]; the initial condition is a pure right-moving shock of Mach = 5.09, initially
located at x = 0.5 and 6 � y � 11, moving into undisturbed air ahead of the shock with a
density of 1.4 and pressure of 1. The boundary conditions are inflow at x = 0, 6 � y � 11,
outflow at x = 13, 0 � y � 11, 1 � x � 13, y = 0 and 0 � x � 13, y = 11, and reflective
at the walls 0 � x � 1, y = 6 and x = 1, 0 � y � 6.λ = 1.4. The density and pressure
at t = 2.3 are presented in Figs. 4 and 5. For each time stage, if the positivity-preserving
finite volume HWENO scheme with �x = �y = 1

32 applied to solve the problem, the
percentage of the cells that need the usage of the positivity-preserving limiter is less than

123

Author's personal copy



482 J Sci Comput (2016) 68:464–483

1.1%. Such ratio is 0.55% in case of the positivity-preserving finite volumeHWENOscheme
with �x = �y = 1

64 .
The results are comparable to those of positivity-preservingDGmethod [20], finite volume

WENO scheme [22] and finite difference WENO scheme [24].

5 Conclusions

In this paper, we have proposed the positivity-preserving finite volume HWENO schemes in
both one dimension and two dimension based on a general framework to construct arbitrarily
high order schemes which can preserve the positivity of density and pressure for conservation
laws in [20]. The present schemes keep the essentially non-oscillatory properties for low
density and low pressure problems. Compared to positivity-preserving finite volumeWENO
schemes in one-dimensional case, positivity-preserving finite volume HWENO schemes can
produce better resolutions in several examples due to its compactness properties. Extensions
of our HWENO scheme for Euler equations with a source term constitute our future work.

References

1. Capdeville, G.: A Hermite upwind WENO scheme for solving hyperbolic conservation laws. J. Comput.
Phys. 227, 2430–2454 (2008)

2. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

3. Ha, Y., Gardner, C.L.: Positive scheme numerical simulation of high mach number astrophysical jets. J.
Sci. Comput. 34, 247–259 (2008)

4. Ha, Y., Gardner, C., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets
with radiative cooling. J. Sci. Comput. 24, 597–612 (2005)

5. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes
solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

6. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–
228 (1996)

7. Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics, College Park (1991)
8. Lele, S.K.: Compact finite-difference schemes with spectra-like resolution. J. Comput. Phys. 103, 16–42

(1992)
9. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws. J. Sci. Comput. 63,

548–572 (2015)
10. Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer.

Math. 73, 119–130 (1996)
11. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discon-

tinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)
12. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discon-

tinuous Galerkin method II: Two dimensional case. Comput. Fluids 34, 642–663 (2005)
13. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)
14. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes.

J. Comput. Phys. 77, 439–471 (1988)
15. Van-Leer, B.: Towards the ultimate conservative difference scheme: III. A new approach to numerical

convection. J. Comput. Phys. 23, 276–299 (1977)
16. Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-

dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)
17. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin

methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)
18. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow

water equations on unstructured triangular meshes. J. Sci. Comput. 57, 19–41 (2013)

123

Author's personal copy



J Sci Comput (2016) 68:464–483 483

19. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation
laws. J. Comput. Phys. 229, 3091–3120 (2010)

20. Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for com-
pressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

21. Zhang, X., Shu, C.-W.: Positivity preserving high order discontinuous Galerkin schemes for compressible
Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

22. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order schemes for
conservation laws: survey and new developments. Proc. R. Soc. A 467, 2752–2776 (2011)

23. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order dis-
continuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50, 29–62
(2012)

24. Zhang,X., Shu, C.-W.: Positivity-preserving high order finite differenceWENOschemes for compressible
Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

25. Zhang, X., Liu, Y.-Y., Shu, C.-W.: Maximum-principle-satisfying high order finite volume WENO
schemes for convection–diffusion equations. SIAM J. Sci. Comput. 34, A627–A658 (2012)

26. Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin
schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)

27. Zhang, X., Shu, C.-W.: A minimum entropy principle of high order schemes for gas dynamics equations.
Numer. Math. 121, 545–563 (2012)

28. Zhu, J., Qiu, J.: A class of fourth order finite volume hermiteweighted essentially non-oscillatory schemes.
Sci. China Ser. A Math. 51, 1549–1560 (2008)

123

Author's personal copy


	Positivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations
	Abstract
	1 Introduction
	2 Description of Finite Volume Hermite WENO Schemes
	3 Positivity-Preserving Limiters for Finite Volume HWENO Schemes
	3.1 Positivity-Preserving High Order Finite Volume HWENO Schemes  for Solving One-Dimensional Euler Equations
	3.2 Positivity-Preserving Limiter for Finite Volume HWENO Schemes in Two Dimensions on Cartesian Meshes
	3.3 The Algorithm for SSP Runge--Kutta Time Discretization

	4 Numerical Tests for the Ideal Gas
	5 Conclusions
	References




