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Abstract
In this paper, a hybrid Hermite weighted essentially non-oscillatory scheme is proposed for
nonlinear degenerate parabolic equations which may contain discontinuity in the solution.
The present scheme is constructed by applying the hybrid HWENO method based on the
zero- and first-order moment with DDG flux to discrete the diffusion term in spatial direc-
tion and the third-order TVD Runge–Kutta method in temporal direction. A troubled-cell
indicator is first used to identify the cells in which the discontinuity may exist, then the
first-order moment in the troubled-cell is reconstructed by fifth-order HWENO scheme. To
avoid spurious oscillation, the HWENO reconstruction is performed when the reconstruction
stencils contain troubled-cell, otherwise linear reconstruction is performed straightforwardly.
Compared with WENO schemes, the present scheme has advantages: (1) compactness, only
immediate neighbor cells are used in the reconstruction procedure; (2) accuracy, the numeri-
cal errors by the present scheme are smaller than those byWENOschemes. Some benchmarks
for one- and two-dimensional parabolic equations to demonstrate the high order accuracy
and non-oscillatory performance of the present scheme.
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1 Introduction

Weighted essentially non-oscillatory (WENO) scheme is an effective method to solve the
hyperbolic conservation law which the solution may contain discontinuity. After the first
introduction of the third-order accurate finite volume WENO scheme [31] in one spatial
dimension, a general construction for arbitrary order accurate finite differenceWENOscheme
was provided by Jiang and Shu [23] in 1996. A large variety of highly effective conserva-
tive finite volume and finite difference WENO schemes were widely studied since then by
researchers [8, 11, 14, 20, 22, 28, 42, 52] for the hyperbolic conservation laws.

The idea of the Hermite WENO (HWENO) scheme is similar to the WENO scheme but
has the advantage of keeping the compactness of the scheme by only using the immediate
neighbor cell informations of the solution and its derivative for reconstruction. The WENO
scheme, on the other hand, requires a wide range of cell information to achieve the same high
order accuracy. Therefore, HWENO scheme achieves higher order computational accuracy
than WENO scheme with the same stencil. Qiu and Shu [36, 38] presented the Hermite
WENO (HWENO) methodology, which discretizes the original and derivative equation in
the spatial direction. After this, various types of HWENO schemes were presented in [13,
30, 44, 47, 49, 51] for conservation law and relative equations, respectively.

Since the last decade, researchers have pay their attention to solve the nonlinear degenerate
parabolic equations whichmay generate discontinuity in the solution byWENOmethod [32].
A new finite difference WENO procedure was given by using optimum polynomial in the
stencil in [2]. Both explicit and implicit finite volume WENO schemes were developed on
non-uniform computational meshes in [5]. An efficient sixth-order finite difference WENO
scheme was obtained with a new type of nonlinear weight by Rathan [40]. High order finite
difference multi-resolutionWENOmethod for the second derivative was constructed in [24].
Abedian [1] presented a finite difference WENO scheme that can take any artificial positive
linear weights(the sum equals one) by using the convex combination of two linear and one
fourth degree Legendre orthogonal monic polynomials. The authors [3] also introduced a
new sixth-order finite difference WENO based on exponential polynomials, the scheme can
achieve the maximal approximation order in smooth regions while maintaining its accuracy
in critical points.

In this paper, we design a hybrid HWENO scheme for nonlinear degenerate parabolic
equation which may cause possible discontinuity. Since the smooth solution accounts for
most of the probability, there is no need to use HWENO reconstruction for all cells but only
the cells where the discontinuity exists. Therefore, the hybrid HWENO method is a suitable
choice to achieve high-order accuracy and avoid unnecessary computation at the same time.
Themain purpose of the hybridHWENO scheme is to use the linear approximation directly in
the smooth regions and switch automatically to the HWENO procedure nearby discontinuity.

The switching principle is also a well-studied area in conservation laws. Various shock
detecting principles were studied and compared [37] by Qiu and Shu for Runge–Kutta dis-
continuous Galerkin method, such as TVB [16], BDF [25], BSB [12], MP [43], MMP [41],
KXRCF [27] troubled-cell indicators. Here, we use another new type of troubled-cell indi-
cator [50], which is more simpler and effective for the present problem.

For the numerical flux of the diffusion term, we apply the direct discontinuous Galerkin
(DDG) flux [29] based on the direct weak formulation for solutions of parabolic equations,
which is consistent and conservative and also can ensure the nonlinear stability. Similar to
the numerical flux for the convection term, DDG flux also can provide the possibility that
cells communicate through numerical fluxes at cell boundaries only.
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Our main focus in this paper is to capture the discontinuity caused by nonlinear degener-
ate parabolic equation without oscillation. Such type of equations have wide applications in
collisional transport models in plasmas [17], radiative transport [26, 35], the flow of gas in
a porous medium [7, 33, 46]. This type of equations, such as the porous medium equation
(PME) may not have classical solution, even for the smooth initial data. Consequently, weak
solutions, their existence and uniqueness are studied in [4, 34, 45]. On the other hand, var-
ious numerical schemes are attempted to solve these equations numerically such as kinetic
scheme [6], relaxation scheme [15], WENO schemes [2, 5, 19, 24, 32, 40], finite volume
method [10], adaptive multi-resolution scheme [9], mixed finite element method [39] and
local discontinuous Galerkin finite element method [48].

Since the nonlinear degenerate parabolic equationmay acts hyperbolically, it is essential to
construct a numerical scheme capable of simulating these features. Therefore, it is reasonable
to construct the numerical techniques, such as the HWENO technique, for solving nonlinear
degenerate parabolic equation. The organization of this paper is as follows: In Sect. 2, we
describe the HWENO scheme [49] with DDG flux for one- and two-dimensional parabolic
equation. In Sect. 3, the numerical method in the temporal direction and stability analysis for
linear equation are briefly given. The high order computational accuracy and non-oscillatory
property of the hybrid HWENO scheme are provided by numerical tests in Sect. 4. Brief
Conclusion is given in Sect. 5.

2 Finite Volume Hybrid HWENO Scheme

We consider the general form of advection-diffusion equation:

{
ut + ∇ · F(u) = �G(u), x ∈ R, t ∈ [t0, T ]
u(x, 0) = u0(x), x ∈ R.

(2.1)

We first multiply the governing equation (2.1) by test function ϕ(x), then integrate by
parts over target cell �0, we can obtain the integral form as follows:

d

dt

[ ∫
�0

uϕ(x)dx
]

= −
∫

∂�0

(
F(u) · n)

ϕ(x)ds +
∫

�0

F(u) · ∇ϕ(x)dx

+
∫

∂�0

(∇G(u) · n)
ϕ(x)ds −

∫
�0

∇G(u) · ∇ϕ(x)dx,
(2.2)

where n is the outward unit normal vector to ∂�0. For the one dimensional case, the cell �0

is an interval Ii = [xi− 1
2
, xi+ 1

2
], ϕ(x) = { 1

�x ,
x−xi
�x2

}. ūi = ∫
Ii

u
�x dx, v̄i = ∫

Ii
u x−xi

�x2
dx are

the zero-order moment (cell average) and first-order moment in cell Ii , respectively. For the
two dimensional case, the cell�0 is a rectangle Ii, j = [xi− 1

2
, xi+ 1

2
]×[y j− 1

2
, y j+ 1

2
], ϕ(x) =

{ 1
�x�y ,

x−xi
�x2�y

,
y−y j

�x�y2
}. ūi, j = ∫

Ii, j
u

�x�y dxdy, v̄i, j = ∫
Ii, j

u x−xi
�x2�y

dxdy, w̄i, j =∫
Ii, j

u
y−y j

�x�y2
dxdy are the zero-order moment (cell average), first-order moment in x and

y direction in cell Ii, j , respectively. �x,�y are the spatial step size in x and y direction,
respectively.
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The line integrals in (2.2) are approximated by K-point Gaussian quadrature formula on
the each edge of the cell, such as:

∫
∂�0

(
F(u) · n)

ϕ(x)ds ≈
ll∑
l=1

|∂�0l |
K∑

k=1

ωk
(
F

(
u(Plk, t)

) · nl
)
ϕ(Plk),

∫
∂�0

(∇G(u) · n)
ϕ(x)ds ≈

ll∑
l=1

|∂�0l |
K∑

k=1

ωk
(∇G

(
u(Plk, t)

) · nl
)
ϕ(Plk).

(2.3)

where ∂�0 = ∪ll
l=1∂�0l . Plk is the Gauss quadrature point on the edge ∂�0l while ωlk is

the corresponding normalized weight, and volume integrals in (2.2) are approximated by
K × K−point Gaussian quadrature formula:

∫
�0

F(u) · ∇ϕ(x)dx ≈ |�0|
K∑
l=1

K∑
k=1

ωlωk F
(
u(Plk, t)

) · ∇ϕ(Plk),

∫
�0

∇G(u) · ∇ϕ(x)dx ≈ |�0|
K∑
l=1

K∑
k=1

ωlωk∇G
(
u(Plk, t)

) · ∇ϕ(Plk).

(2.4)

The flux F
(
u(Plk, t)

) · nl and ∇G
(
u(Plk, t)

) · nl should be reformulated by numerical
fluxes on the edge of the cell. In this paper, we choose to approximate F

(
u(Plk, t)

) · nl by
the local Lax-Friedrichs flux as follows:

F
(
u(Plk, t)

) · nl ≈ 1

2

(
F

(
u+(Plk, t)

) + F
(
u−(Plk, t)

)) · nl
− α

2

(
u+(Plk, t) − u−(Plk, t)

)
,

(2.5)

where α is defined as the upper bound for the eigenvalues of the Jacobian in the nl direction.
u−(Plk, t) and u+(Plk, t) are high order approximations to u(Plk, t) from inside and outside
of target cell �0, respectively.

The flux ∇G
(
u(Plk, t)

) · nl is specified by DDG flux [29]. The readers can find more
detailed information about DDG flux for different choice of coefficient in [29]. Here we use
this flux in the following notation:

∇G
(
u(Plk, t)

) · nl ≈ b0
[G(

u(Plk, t)
)]

|∂�0l |
· nl + ∇G

(
u(Plk, t)

) · nl , (2.6)

where [u] = u+ − u−, ū = u++u−
2 . As is tested in numerical experiment, the sum of

these two terms is sufficient enough to ensure the nonlinear stability with suitable coefficient
b0 and we could have locally admissible underlying flux in each cell. In order to get the
numerical fluxes in (2.5) and (2.6), we have to reconstruct u±(Plk, t) and ∇u±(Plk, t). Now,
we describe the spatial reconstruction description in following steps.

Step 1. Identify the troubled-cell and modify the first-order moment in the troubled-cell.
It is possible that ∇G(u) = 0 for some value of u, which leads to lose the parabolicity of

the system and exhibit hyperbolic behavior, then discontinuity may appear for the solution
of equation. If the solution in the target cell �0 is discontinuous, then cell �0 is marked as
troubled-cell.
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For one dimensional case, we use the troubled-cell indicator I(ūi−1, ūi , ūi+1, v̄i ) pre-
sented in [50] to identify the discontinuity:

I(ūi−1, ūi , ūi+1, v̄i ) =
{
1, τ > c1�xc2 max{β1, β2, β3},
0, Otherwise.

(2.7)

when I = 1, the cell Ii would be marked as troubled-cell. In (2.7), the β1, β2, β3 and τ are
defined as:

β1 = 144v̄2i , β2 = (ūi − ūi−1)
2, β3 = (ūi+1 − ūi )

2,

τ =
( |β1 − β2| + |β1 − β3|

2

)2

, (2.8)

and two parameters c1 and c2 determine the sensitivity of the indicator. We tested different
choices of c1 and c2 for the test cases in this paper under different meshes and found that
c1 = 2 and c2 = 2 is the most reliable and more suitable choice for our problem at hand.

When the cell Ii is marked as troubled-cell, the first-order moment v̄i is modified as:

v̄i = ω0
( 1
r0

∫
Ii
q0(x)

x − xi
�x2

dx − r1
r0

∫
Ii
q1(x)

x − xi
�x2

dx − r2
r0

∫
Ii
q2(x)

x − xi
�x2

dx
)

+ ω1

∫
Ii
q1(x)

x − xi
�x2

dx + ω2

∫
Ii
q2(x)

x − xi
�x2

dx,
(2.9)

where the linearweights r0, r1, r2 can be any positive numberswith condition r0+r1+r2 = 1.
Polynomials q0(x), q1(x), q2(x) are defined as:∫

Ii+ j

q0(x)

�x
dx = ūi+ j , j = −1, 0, 1,

∫
Ii+ j

q0(x)
(x − xi+ j )

�x2
dx = v̄i+ j , j = −1, 1.

∫
Ii+ j

q1(x)

�x
dx = ūi+ j , j = −1, 0,

∫
Ii+ j

q2(x)

�x
dx = ūi+ j , j = 0, 1.

(2.10)

Then, the smoothness of the functions q0(x), q1(x), q2(x) in the cell Ii is measured with
the smoothness indicators β0, β1, β2:

βm =
r∑

κ=1

�x2κ−1
∫
Ii

( dκ

dxκ
qm(x)

)2
dx, m = 0, 1, 2. (2.11)

where r is the degree of polynomials qm(x).
Wemeasure the absolute difference betweenβ0, β1 andβ2 by introducing a new parameter

τ , then define nonlinear weights as following:

ωm = ω̃m∑2
m=0 ω̃m

, ω̃m = rm
(
1 + τ

ε + βm

)
,

τ =
( |β1 − β2| + |β1 − β3|

2

)2

, m = 0, 1, 2. (2.12)

where we take ε = 10−6 to avoid zero in the denominator in this paper.
For twodimensional case,we use the same troubled-cell indicator as above. This procedure

is employed dimensional by dimensional manner. In x-direction, ūi+1, j , ūi, j , ūi−1, j , v̄i, j are
used while ūi, j+1, ūi, j , ūi, j−1, w̄i, j are used in y-direction. The cell Ii, j is identified as a
trouble-cell whether it is marked in x or y direction.
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If the cell�0 is marked as troubled-cell, then wemodify the first order moment in this cell.
We apply with the same modification procedure in one-dimensional case, also dimensional
by dimensional manner. That is, we modify v̄i, j with ūi+1, j , ūi, j , ūi−1, j , v̄i+1, j , v̄i−1, j , and
employ ūi, j+1, ūi, j , ūi, j−1, w̄i, j+1, w̄i, j−1 to modify w̄i, j .

Step 2. The hybrid HWENO reconstruction procedure for u±(Plk, t) and ∇u±(Plk, t).
If the cell�0 is marked as a troubled-cell, then we use above modified first-order moment

information in the HWENO reconstruction for u and it’s gradients ∇u. The fifth-order finite
volume HWENO mythology [49] is applied for this reconstruction process.

In one-dimensional case, the big stencil is taken as S0 = {Ii−1, Ii , Ii+1} while the two
small stencils are set to S1 = {Ii−1, Ii }, S2 = {Ii , Ii+1}. On these stencils, we obtain poly-
nomials q0(x), q1(x), q2(x), satisfying:∫

Ii+ j

q0(x)

�x
dx = ūi+ j ,

∫
Ii+ j

q0(x)
x − xi+ j

�x2
dx = v̄i+ j , j = −1, 0, 1,

∫
Ii+ j

q1(x)

�x
dx = ūi+ j ,

∫
Ii
q1(x)

x − xi
�x2

dx = v̄i , j = −1, 0,

∫
Ii+ j

q2
�x

dx = ūi+ j ,

∫
Ii
q2(x)

x − xi
�x2

dx = v̄i , j = 0, 1.

(2.13)

where the linear weights r0, r1, r2 are any set of positive numbers with condition
∑2

m=0 rm =
1. So we have the final HWENO reconstruction polynomial:

Q(x) = ω0
( 1
r0
q0(x) − r1

r0
q1(x) − r2

r0
q2(x)

) + ω1q1(x) + ω2q2(x), (2.14)

where nonlinear weights ω0, ω1, ω2 and the parameter τ are also defined as in (2.12). We
calculate the smoothness indicators β0, β1, β2 with (2.11) to measure the smoothness of
the functions q0(x), q1(x), q2(x) in the cell Ii , intending to maintain the same high order
computational accuracy in the smooth region and non-oscillatory property near discontinuity.

After this, we finally obtain the HWENO approximation for function and derivatives at
the cell interface of Ii by:

u−
i+ 1

2
= Q(xi+ 1

2
), u+

i− 1
2

= Q(xi+ 1
2
), (u−

x )i+ 1
2

= Q′(xi+ 1
2
), (u+

x )i− 1
2

= Q′(xi− 1
2
).

(2.15)

The volume integral terms of equation (2.2) are approximated by 3-point Gaussian inte-
gration, such as: ω1 = 5

18 , ω2 = 4
9 , ω3 = 5

18 are the quadrature weights, and the Gaussian
point coordinates are P1 = x

i−
√
15
10

, P2 = xi , P3 = x
i+

√
15
10

. The function and derivative

values at these Gauss-point values can be obtained directly by q0(Pk),
dq0
dx (Pk), k = 1, 2, 3.

If the cell Ii is not marked as troubled-cell, then the reconstruction processes is imple-
mented by only using the linear approximation. So it is reasonable to use the highest degree
polynomial q0(x), so that u−

i+ 1
2

= q0(xi+ 1
2
), (u−

x )i+ 1
2

= q ′
0(xi+ 1

2
), respectively.

In two-dimensional case, we need to reconstruct the point values u±(Plk, t) and
u±
x (Plk, t), u±

y (Plk, t) on the cell Ii, j based on the formula (2.5) and (2.6).
For the HWENO scheme, we take big stencil S0 as in Fig. 1 and construct quartic polyno-

mial q0(x, y). For four small stencils, we take Sm,m = 1, 2, 3, 4 as in Fig. 2, and construct
respective quadratic polynomial qm(x, y),m = 1, 2, 3, 4.
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Fig. 1 The big stencil S0 and it’s
new labels

Fig. 2 The four small stencils and their corresponding labels

With the assist of these polynomials, we can obtain the final HWENO reconstruction
polynomial Q(x, y) as:

Q(x, y) = ω0
( 1
r0
q0(x, y) −

4∑
m=1

rm
r0

qm(x, y)
) +

4∑
m=1

ωmqm(x, y). (2.16)

with any set of artificial positive linear weights with condition
∑4

m=0 rm = 1. These poly-
nomials satisfy the conditions in following:∫

In

qm(x, y)

�x�y
dxdy = ūn,∫

Inx

qm(x, y)
x − xnx
�x2�y

dxdy = v̄nx ,

∫
Iny

qm(x, y)
y − yny
�x�y2

dxdy = w̄ny .

(2.17)

for

m = 0, n = 1, 2, 3, 4, 5, 6, 7, 8, 9, nx = ny = 2, 4, 5, 6, 8;
m = 1, n = 1, 2, 4, 5, nx = ny = 5; m = 2, n = 2, 3, 5, 6, nx = ny = 5;
m = 3, n = 4, 5, 7, 8, nx = ny = 5; m = 4, n = 5, 6, 8, 9, nx = ny = 5;

We can obtain the quartic polynomial q0(x, y)with the matching requirement of the zero-
order moments on the stencil S0, the first-order moments on the cell Ii, j while the others can
be obtained in the least square sense [21]. The expressions of four quadratic polynomials
qm(x, y),m = 1, 2, 3, 4 can directly obtain by requirements in (2.17), respectively.
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We compute the smoothness indicators βm(m = 0, 1, 2, 3, 4) to measure the smoothness
of the function qm(x, y) in the target cell Ii, j as:

βm =
r∑

|κ|=1

|Ii, j ||κ|−1
∫
Ii, j

(
∂ |κ|

∂xκ1∂ yκ2
qm(x, y)

)2

dxdy, m = 0, 1, 2, 3, 4.

(2.18)

where r is the degree of qm(x, y) and κ = (κ1, κ2), |κ| = κ1 + κ2. We introduce a new
parameter τ to define the absolute difference between βm(m = 0, 1, 2, 3, 4) and define
nonlinear weights as following:

τ =
(∑4

m=1 |β0 − βm |
4

)2

, ω̃m = rm

(
1 + τ

ε + βm

)
, ωm = ω̃m∑4

l=0 ω̃m
, (2.19)

in which ε = 10−6. The HWENO reconstruction of the solution u at the interface points is:

u∗(Plk, t) = Q(Plk) = ω0

(
1

r0
q0(Plk) −

4∑
m=1

rm
r0

qm(Plk)

)
+

4∑
m=1

ωmqm(Plk), (2.20)

where “ ∗ " represents “ + " when Plk is placed on the bottom or left interface of Ii, j , and
“ ∗ " represents “ − " on the top or right interface of Ii, j . The final HWENO reconstruction
of the derivative values at point (Plk, t) are:

u∗
x (Plk, t) = ∂Q(Plk)

∂x
= ω0

(
1

r0

∂q0(Plk)

∂x
−

4∑
m=1

rm
r0

∂qm(Plk)

∂x

)
+

4∑
m=1

ωm
∂qm(Plk)

∂x
,

u∗
y(Plk, t) = ∂Q(Plk)

∂ y
= ω0

(
1

r0

∂q0(Plk)

∂ y
−

4∑
m=1

rm
r0

∂qm(Plk)

∂ y

)
+

4∑
m=1

ωm
∂qm(Plk)

∂ y
.

(2.21)

The 3 × 3 Gauss points are located as in Fig. 1, such as the quadrature weights are
ω1 = 5

18 , ω2 = 4
9 , ω3 = 5

18 , and the Gaussian point coordinates in x and y direction are
Px1 = x

i−
√
15
10

, Px2 = xi , Px3 = x
i+

√
15
10

and Py1 = y
j−

√
15
10

, Py2 = y j , Py3 = y
j+

√
15
10

. As is

the same in one-dimensional case, the volume integrals in (2.2) are approximated byGaussian
integration, and the Gauss point values are obtained directly by q0(Pxk1 , Pyk2 ), k1, k2 =
1, 2, 3.

The above HWENO procedure is used on the cell Ii, j if it is marked as troubled-cell.
Otherwise, the values of solution u and derivative at point Plk are approximated directly by
q0(Plk),

∂q0(Plk )
∂x and ∂q0(Plk )

∂ y , respectively.

3 Time Discretization

So far, only spatial discretization has been considered. The Eq. (2.1) is equal to the first order
ordinary differential equation(ODE) after spatial discretization discussed above as:

du

dt
= L(u). (3.1)

Any suitable ODE solvers can be applied on this ODE system. Here we apply the third
order total variation diminishing Runge–Kutta (TVD-RK3)method [18] to solve (3.1), which
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is given as

u(1) =un + �t L(un),

u(2) =3

4
un + 1

4

(
u(1) + �t L(u(1))

)
,

un+1 =1

3
un + 2

3

(
u(2) + �t L(u(2))

)
.

(3.2)

The TVD-RK3 method has the ability of maintaining nonlinear stability. For advection-
diffusion equations, it is not the only solver workswell, but could still be a appropriate choice.
The time step�t must satisfies theCourant-Friedrich-Lewy (CFL) stability condition in order
to ensure numerical stability of the scheme.

To determine the CFL condition, we consider the linear advection-diffusion equation

ut + aux = buxx . (3.3)

with the fifth order linear approximation in spatial direction and the TVD-RK3 method in
time direction. For the HWENO scheme with TVD-RK3 method to solve (3.3), it is required
that the time step restriction �t ≤ 1

max |F ′(u)|
CFLa�x +max |G′(u)|

CFLb�x2

, where F(u) = au,G(u) = bu and

CFLa is the CFL condition for ut +aux = 0 while CFLb is the CFL condition for ut = buxx .
Evaluating the numerical fluxes F̂i+ 1

2
, Ĝi+ 1

2
at xi+ 1

2
, and obtaining F̂i− 1

2
, Ĝi− 1

2
by shift-

ing the index with −1, insert these in (2.2) after Fourier transform, we have:

d

dt

(
ũ
ṽ

)
= A

(
ũ
ṽ

)
, (3.4)

By applying the TVD-RK3 method for (3.4), we can obtain the amplification matrix and
it’s two eigenvalues. From the stability analysis and direct calculation, we obtain CFLa =
0.844 in the case of a = 1, b = 0 for (3.3) while CFLb = 0.1282 in the case of a =
0, b = 1. Considering the stability of nonlinear advection-diffusion equation, we take CFL =
min(CFLa,CFLb) = CFLb in general. So we get the CFL restriction as:

0 < CFL = �t

(
max |F ′(u)|

�x
+ max |G ′(u)|

�x2

)
≤ 0.1282. (3.5)

4 Numerical Tests

We conclude this paper with numerical verification for some one- and two-dimensional
diffusion and advection-diffusion equations.

For one-dimensional advection-diffusion equations

ut + F(u)x = G(u)xx , (4.1)

the time step is set as �t = CFL
max |F ′(u)|

�x +max |G′(u)|
�x2

. While for two-dimensional problems

ut + F1(u)x + F2(u)y = G1(u)xx + G2(u)yy, (4.2)

the time step is taken as �t = CFL
max |F ′

1(u)|
�x +max |F ′

2(u)|
�y +max |G′

1(u)|
�x2

+max |G′
2(u)|

�y2

.

We take CFL=0.12 for all numerical simulation for hybrid HWENO scheme in this paper.
For all following one and two dimensional tests which contain the convection term, we
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apply the same fifth-order HWENO reconstruction [49] to discretize the advection term with
Lax-Friedrichs flux. For the propose of fair comparison with DWENO [32] and MRWENO
[24] schemes, we modify DWENO and MRWENO schemes to hybrid DWENO and hybrid
MRWENO schemes with new the troubled-cell indicator (4.3) based on nodal point informa-
tion. The CFL number is set to be 0.4 for hybrid DWENO and hybrid MRWENO schemes.
The troubled-cell indicator for DWENO and MRWENO is defined as:

I(ui−1, ui , ui+1) =
{
1, τ > c1�xc2 max{β1, β2},
0, Otherwise.

(4.3)

where β1, β2 and τ are defined as:

β1 = (ui − ui−1)
2, β2 = (ui+1 − ui )

2, τ = (
β1 − β2

)2
. (4.4)

and the two parameters c1 and c2 are determined as in Sect. 2. When I = 1, the cell Ii would
be marked as troubled-cell.

To clarify, the combination of fifth order finite differenceWENOscheme [23]with theLax-
Friedrichs flux splitting and DWENO [32] scheme is considered in [32] to solve advection-
diffusion problems, while the combination of fifth order multi-resolution WENO method
[53] and MRWENO [24] scheme is used to solve advection-diffusion equation in [24]. This
is still the case during comparison in this paper for these two schemes.

When the diffusion term is written as (a(u)ux )x , an equivalent form can be rewritten
as g(u)xx . We employ DDG coefficient b0 = 1 for all one and two-dimensional tests. The
numerical solutions in the figures of the present scheme below are based on the cell-averages.

Example 1 We consider the convection-diffusion equation:

ut + ux = uxx , 0 ≤ x ≤ 2π. (4.5)

with the initial condition u(x, 0) = sin(x) and periodic boundary condition. The exact
solution is u(x, t) = e−t sin(x − t).

The L1, L2, L∞ errors and convergency results at T = 1 in domain x ∈ [0, 2π] are
shown in Table 1 and compared with hybrid DWENO and hybrid MRWENO scheme. We
can see that the numerical errors by hybrid HWENO scheme are smaller than those by hybrid
DWENO and hybrid MRWENO schemes with the same meshes.

Moreover,we compare theCPUcost against numerical errors in Fig. 3 for hybridDWENO,
hybrid MRWENO and hybrid HWENO scheme. It can be observed that the hybrid HWENO
scheme is more efficient than hybrid DWENO and hybrid MRWENO scheme.

Example 2 We compute the diffusion equation to measure the computational accuracy of
present scheme for one-dimensional smooth diffusion problem:

ut = uxx , − π ≤ x ≤ π. (4.6)

with the initial condition u(x, 0) = sin(x) and periodic boundary condition. The exact
solution is u(x, t) = e−t sin(x).

Table 2 gives the errors and sixth order of convergency results in terms of L1, L2 and
L∞ norms at T = 2 in x ∈ [−π, π] and compare the results with hybrid DWENO and
hybrid MRWENO schemes. The proposed scheme has comparable accuracy with that of
hybrid DWENO and MRWENO schemes. If the discontinues problem is considered, then
the modification of first order moment is required, and we can obtain fifth-order accuracy in
general.
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Table 1 The comparison of errors and rates of convergence of different numerical schemes at T = 1 for
Example 1

Hybrid HWENO Hybrid DWENO Hybrid MRWENO
N L∞ Order L∞ Order L∞ order

20 2.1861e–08 1.6111e–05 1.6111e–05

40 1.0804e–10 7.6606 5.3596e–07 4.9097 5.3596e–07 4.9097

80 3.0833e–12 5.1310 1.7415e–08 4.9437 1.7415e–08 4.9437

160 3.6693e–14 6.3928 5.5728e–10 4.9658 5.5728e–10 4.9658

N L1 Order L1 Order L1 Order

20 1.4135e–08 1.0548e–05 1.0548e–05

40 6.8994e–11 7.6786 3.4436e–07 4.9369 3.4436e–07 4.9369

80 1.9637e–12 5.1348 1.1135e–08 4.9507 1.1135e–08 4.9507

160 2.2563e–14 6.4435 3.5550e–10 4.9692 3.5550e–10 4.9692

N L2 Order L2 Order L2 Order

20 1.5636e–08 1.1632e–05 1.1632e–05

40 7.6561e–11 7.6741 3.8162e–07 4.9299 3.8162e–07 4.9299

80 2.1806e–12 5.1338 1.2352e–08 4.9493 1.2352e–08 4.9493

160 2.5084e–14 6.4418 3.9461e–10 4.9682 3.9461e–10 4.9682

Fig. 3 CPU time against L∞ error(left) and CPU time against L1 error(right) between hybridDWENO, hybrid
MRWENO and hybrid HWENO scheme for Example 1

We show numerical errors against CPU cost by these three schemes in Fig. 4, which shows
the hybrid DWENO and hybrid MRWENO schemes have slightly better efficiency than
hybrid HWENO scheme. This is actually reasonable since hybrid HWENO scheme solves
two equations instead of one, as a result achieve better accuracy in the simulation.

In above two numerical tests, there is no troubled-cell is marked, therefore, all compu-
tation is based on linear approximation for all three schemes. Overall, the efficiency results
for advection-diffusion and diffusion equations indicates that the hybrid HWENO scheme
achieves smaller numerical errors and requires a little much computational time than hybrid
DWENO and MRWENO schemes.
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Table 2 The comparison of errors and rates of convergence of different numerical schemes at T = 2 for
Example 2

Hybrid HWENO Hybrid DWENO Hybrid MRWENO
N L∞ Order L∞ Order L∞ Order

10 3.9461e–06 1.9512e–05 1.9512e–05

20 6.8756e–08 5.8428 2.5192e–07 6.2753 2.5192e–07 6.2753

40 1.0930e–09 5.9751 3.6702e–09 6.1010 3.6702e–09 6.1010

80 1.7178e–11 5.9916 5.6321e–11 6.0260 5.6321e–11 6.0260

N L1 Order L1 Order L1 Order

10 2.5540e–06 1.1480e–05 1.1480e–05

20 4.3450e–08 5.8772 1.5148e–07 6.2439 1.5148e–07 6.2439

40 6.9453e–10 5.9672 2.2748e–09 6.0572 2.2748e–09 6.0572

80 1.0930e–11 5.9896 3.5394e–11 6.0061 3.5394e–11 6.0061

N L2 Order L2 Order L2 Order

10 2.9120e–06 1.3832e–05 1.3832e–05

20 4.8619e–08 5.9043 1.7384e–07 6.3141 1.7384e–07 6.3141

40 7.7290e–10 5.9751 2.5634e–09 6.0836 2.5634e–09 6.0836

80 1.2146e–11 5.9917 3.9579e–11 6.0172 3.9579e–11 6.0172

Fig. 4 CPU time versus L∞ error(left) and CPU time versus L1 error(right) between hybrid DWENO, hybrid
MRWENO and hybrid HWENO scheme for Example 2

Example 3 We compute the Barenblatt solution of porous medium found by Zel’dovich and
Kompaneetz (see [7, 33, 46]) as:⎧⎨

⎩
ut = (um)xx , x ∈[-6,6],
Bm(x, t) = 1

tk

[(
1 − k(m−1)

2m
|x |2
t2k

)
+
] 1
m−1

, u+ = max(u, 0), m > 1, k = 1
m+1 .

(4.7)

We choose t = 1 as the initial time and the computation domain [−6, 6] with zero
boundary condition u(±6, t) = 0.
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Fig. 5 Numerical solution of PME equation for m = 2, 4, 6, 8 and solution comparison with hybrid DWENO
and MRWENO scheme at T = 2 for Example 3(left), corresponding troubled-cell(right three)

The Barenblatt solution for different value of m can be simulated sharply and accurately
without noticeable oscillations near the interfacewith present scheme. The numerical solution
is compared with the results of hybrid DWENO, hybrid MRWENO schemes in Fig. 5(left),
and all three types of schemes give very similar results without oscillation. Yet the superiority
of the present scheme can be observed in the enlarged image. In Fig. 5(right three), we also
plotted the trajectory of the troubled-cell of these three schemes.

In order to observe the two-box colliding case with the same heights, we choose the initial
condition as:

u(x, 0) =
{
1, x ∈ (0.7, 3.7) ∪ (−3.7,−0.7),
0, otherwise.

(4.8)

This example simulates the temperature change of medium when two hot spots are placed
in the computational domain. The numerical solution of the PME equation with m = 5 is

123



   83 Page 14 of 26 Journal of Scientific Computing            (2023) 96:83 

Fig. 6 Same hight two-box collision case of PME equation when m = 5 for Example 3

Fig. 7 Comparison of hybrid DWENO, hybrid MRWENO and hybrid HWENO schemes for two-box with
same hight collision case of PME equation when m = 5 for Example 3(left) at T = 0.9 and troubled-cell
tract(right three)

plotted in Fig. 6 on varies time level. From Fig. 7(left), we can observe that the temperature
balance is more clear with present scheme than hybrid DWENO and hybrid MRWENO
scheme,which highlights the compact property of the hybridHWENOscheme. The trajectory
of troubled-cell of these three different hybrid schemes are also given in Fig. 7(right three).

In order to observe the collision of two boxes with the different heights, we take the initial
condition as:

u(x, 0) =
⎧⎨
⎩
2, x ∈ (0, 3),
1, x ∈ (−4,−1),
0, otherwise.

(4.9)

We plot the numerical evolution of the PME equation with m = 6 in Fig. 8 on various
time levels. The compact property of hybrid HWENO scheme also can be seen in Fig. 9
while almost the same amount of troubled-cells are marked for each scheme. From Figs. 6
and 8, it can be observed that the two-boxes move outward independently at first, and collide.
Regardless of the heights of the two boxes are the same in the initial condition, they eventually
connect to each other, allowing the temperature to level off.

Example 4 Considering the scalar advection-diffusion Buckley–Leverett equation:

ut + F(u)x = ε
(
ν(u)ux

)
x , x ∈ [0, 1], εν(u) ≥ 0. (4.10)

In current test case, we take ε = 0.01. The advection flux F(u) has an S-shaped form

F(u) = u2

2u2 − 2u + 1
, (4.11)
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Fig. 8 Same hight two-box collision case of PME equation when m = 5 for Example 3

Fig. 9 Comparison of hybrid DWENO, hybrid MRWENO and hybrid HWENO schemes for two-box with
different hight collision case of PME equation when m = 6 for Example 3(left) at T = 0.08 and troubled-cell
tract (right three)

and

ν(u) =
{
4u(1 − u), 0 ≤ u ≤ 1,
0, otherwise.

(4.12)

so we can derive the explicit formulation of G(u) by direct integration as:

G(u) =
⎧⎨
⎩
0, u < 0,
ε(2u2 − 4

3u
3), 0 ≤ u ≤ 1,

2ε
3 , u > 1.

(4.13)

We consider the initial data as:

u(x, 0) =
{
0, 1

3 < x ≤ 1,
1 − 3x, 0 ≤ x ≤ 1

3 .
(4.14)

and the inflow and outflow boundary conditions for this example.

The numerical solution for different numbers of grid points at T = 0.2 are computed in
Fig. 10(up left). Similar numerical waves with N = 200 spatial grid points are plotted in
Fig. 10(up right) with hybrid DWENO and hybrid MRWENO scheme. Our scheme develops
better results in sensitive points, which converge more accurately to the correct entropy
solution. On the bottom of Fig. 10, we also plot the track of troubled-cell of three different
hybrid schemes.
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Fig. 10 Numerical solution of Buckley–Leverett equation (4.10) at T = 0.2 in x ∈ [0, 1] with (4.11),(4.13)
and initial condition (4.14) for Example 4(up left), solution comparison with hybrid DWENO and MRWENO
scheme(up right) and corresponding troubled-cell of hybrid DWENO(bottom left), hybrid MRWENO(bottom
middle), hybrid HWENO(bottom right)

To observe the gravitational effects onBuckley–Leverett equation, we consider convection
flux (4.11), diffusion flux (4.13), and with the initial data representing a Riemann problem:

u(x, 0) =
{
1, 1 − 1√

2
≤ x ≤ 1,

0, 0 ≤ x < 1 − 1√
2
.

(4.15)

Figure 11(up left) shows that the present schemeproduces numerical solutions for different
numbers of grid points at T = 0.2 without noticeable oscillation for the Riemann problem
with gravitational effect accurately. It can be observed from Fig. 11(up right) that hybrid
HWENO scheme is more closer to zero around point x = 0.245 while other two schemes
develop negative results around this point. The linear approximation accounts for the main
part of the calculation according to the Fig. 11(bottom three) for all three hybrid schemes.

To observe the non-gravitational effects on Buckley–Leverett equation, we consider dif-
fusion flux (4.13), the initial data (4.15), and the convection flux:

F(u) = u2

2u2 − 2u + 1

( − 5u2 + 10u − 4
)
. (4.16)

In Fig. 12(up left), we plot numerical solution without gravitational effect. It can be
observed that present scheme also provide good result in this case under various grid meshes.
In Fig. 12(up right), we also can find the compatible advantages of the HWENO scheme.
The troubled-cells of three hybrid schemes in the entire computational process are also can
be seen in Fig. 12(bottom three).

Example 5 Considering the strongly degenerate parabolic advection-diffusion equation

ut + F(u)x = ε
(
ν(u)ux

)
x , x ∈ [−2, 2], εν(u) ≥ 0. (4.17)
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Fig. 11 Riemann problem of Buckley–Leverett equation (4.10) with gravitational effect at T = 0.2 in x ∈
[0, 1] with (4.11),(4.13) and initial condition (4.15) for Example 4(up left), solution comparison with hybrid
DWENO and MRWENO scheme(up right) and corresponding troubled-cell of hybrid DWENO(bottom left),
hybrid MRWENO(bottom middle), hybrid HWENO(bottom right)

Fig. 12 Riemann problem of Buckley–Leverett equation (4.10) without gravitational effect at T = 0.2 in
x ∈ [0, 1] with (4.16),(4.13) and initial condition (4.15) for Example 4(up left), solution comparison with
hybrid DWENO andMRWENO scheme(up right) and corresponding troubled-cell of hybrid DWENO(bottom
left), hybrid MRWENO(bottom middle), hybrid HWENO(bottom right)
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Fig. 13 Numerical solution of strongly degenerate parabolic convection-diffusion equation at T = 0.7
for Example 5(up left), solution comparison with hybrid DWENO and MRWENO scheme(up right) and
corresponding troubled-cell of hybrid DWENO(bottom left), hybrid MRWENO(bottom middle), hybrid
HWENO(bottom right)

We take F(u) = u2, ε = 0.1, and

ν(u) =
{
1, |u| > 1

4 ,

0, |u| ≤ 1
4 .

(4.18)

The explicit formulation of G(u) can be written as:

G(u) =
⎧⎨
⎩

ε
(
u − 1

4

)
, u > 1

4 ,

ε
(
u + 1

4

)
, u < − 1

4 ,

0, |u| ≤ 1
4 .

(4.19)

The initial data is taken as

u(x, 0) =

⎧⎪⎨
⎪⎩

−1, 1√
2

− 2
5 < x < 1√

2
+ 2

5 ,

1, − 1√
2

− 2
5 < x < − 1√

2
+ 2

5 ,

0, otherwise.

(4.20)

and a zero boundary condition u(±2, t) = 0 is considered.

The well-performed numerical simulations for capturing the discontinuity in the sharp
interface and the accurate transition between the parabolic and hyperbolic regions with dif-
ferent numbers of grid points at T = 0.7 are presented in Fig. 13(up left). At the edge
of transition regions, a small oscillation can be observed for hybrid DWENO and hybrid
MRWENO while hybrid HWENO scheme gives more proper result in Fig. 13(up right). The
troubled-cell trace of three hybrid schemes are also plotted in Fig. 13(bottom three).
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Table 3 The comparison of errors and rates of convergence of different numerical schemes at T = 2 in interval
x ∈ [−π, π ] for Example 6

Hybrid HWENO Hybrid DWENO Hybrid MRWENO
N L∞ Order L∞ Order L∞ Order

10*10 2.2438e–05 2.5362e–06 5.6064e–06

20*20 1.0469e–06 4.4217 6.3004e–08 5.3311 6.9399e–08 6.3360

40*40 3.7137e–08 4.8171 9.9345e–10 5.9869 9.9828e–10 6.1193

80*40 1.2018e–09 4.9496 1.5265e–11 6.0241 1.5267e–11 6.0310

N L1 Order L1 Order L1 Order

10*10 1.2002e–05 1.6772e–06 3.5985e–06

20*20 6.0417e–07 4.3121 3.9858e–08 5.3950 4.3718e–08 6.3631

40*40 2.2528e–08 4.7451 6.3078e–10 5.9816 6.3384e–10 6.1080

80*80 7.4661e–10 4.9152 9.7117e–12 6.0213 9.7127e–12 6.0281

N L2 Order L2 Order L2 Order

10*10 1.4461e–05 1.9201e–06 4.1511e–06

20*20 7.0586e–07 4.3566 4.4648e–08 5.4265 4.9017e–08 6.4041

40*40 2.5641e–08 4.7829 7.0227e–10 5.9904 7.0568e–10 6.1181

80*80 8.3954e–10 4.9327 1.0793e–11 6.0238 1.0794e–11 6.0306

Example 6 Considering the two-dimensional diffusion equation to observe the accuracy:

ut = uxx + uyy, − π ≤ x ≤ π,−π ≤ y ≤ π. (4.21)

The initial condition is taken as u(x, y, 0) = sin(x + y) with periodic boundary condition.
The exact solution is u(x, y, t) = e−2t sin(x + y).

Tables 3 and 4 show the errors and rate of convergency in terms of L1, L2 and L∞ norms
at T = 2 in x ∈ [−π, π] and CPU time of hybrid DWENO, hybrid MRWENO schemes
and present scheme, respectively. Since the problem is smooth, there is no troubled-cells
to be marked, and also the modification of the first-order moment for our scheme. On the
other hand, our reconstruction is based on fifth-order finite volume HWENOmythology [49]
in the least square sense while the other two schemes is based on dimension-by-dimension
manner. Therefore, fifth-order convergency can be achieved for this two-dimensional smooth
problem. However, if the solution is discontinuous, then present scheme gives fourth-order
accurate computational result for two-dimensional tests in general. It is well known, for
two or higher dimension cases, the finite difference schemes will cost less CPU time than
finite volume schemes with same rectangular meshes. From Table 4 we can see that hybrid
HWENO costs more CPU time than Hybrid DWENO, Hybrid MRWENO in test case.

Example 7 Considering the two-dimensional PME equation:

ut = (u2)xx + (u2)yy, − 10 ≤ x ≤ 10,−10 ≤ y ≤ 10. (4.22)
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Table 4 CPU time of different numerical schemes for Example 6

N ∗ N Hybrid HWENO Hybrid DWENO Hybrid MRWENO

10*10 2.0041e+01 1.2969e+00 1.4694e+00

20*20 3.0302e+02 6.8648e+00 9.5529e+00

40*40 4.4157e+03 6.6889e+01 6.8893e+01

80*80 7.0611e+04 6.3636e+02 7.0025e+02

Fig. 14 Numerical solution of hybrid HWENO scheme for two-dimensional PME equation with N = 100 of
Example 7 at time T = 0, 0.05, 0.1, 0.5, 1, 4

with initial data

u(x, y, 0) =

⎧⎪⎪⎨
⎪⎪⎩
e

1
x2+y2+4x−4y+2 , x2 + y2 + 4x − 4y + 2 < 0,

e
1

x2+y2−4x+4y+2 , x2 + y2 − 4x + 4y + 2 < 0,
0, otherwise.

(4.23)

The periodic boundary condition is considered for this example. The computation is
performed at time T = 0, 0.05, 0.1, 0.5, 1, 4. As we can see from Fig. 14, the results indicate
that the scheme capable of capturing the sharp interface without spurious oscillation while
not marking any troubled-cell, and agree with other related references [24, 32]. In Fig. 15,
we also plotted the numerical comparison of hybrid DWENO, hybrid MRWENO and hybrid
HWENO scheme in x- and y-direction at time level T = 0.05. The numerical superiority of
the hybrid HWENO scheme can be observed in both directions.

Example 8 Considering the two-dimensional Buckley–Leverett equation:

ut + (
F1(u)

)
x + (

F2(u)
)
y = ε

(
uxx + uyy

)
, − 1.5 ≤ x ≤ 1.5,−1.5 ≤ y ≤ 1.5.

(4.24)
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Fig. 15 Numerical solution comparison on x-direction(left) and y-direction(right) of hybrid DWENO, hybrid
MRWENO and hybrid HWENO scheme for two-dimensional PME equation with N = 100 for Example 7 at
time T = 0.05

with the flux functions

F1(u) = u2

2u2 − 2u + 1
, F2(u) = u2

2u2 − 2u + 1

( − 5u2 + 10u − 4
)
. (4.25)

We consider periodic boundary conditions in each direction with initial data

u(x, y, 0) =
{
1, 2x2 + 2y2 < 1,
0, otherwise.

(4.26)

where ε = 0.01.

To demonstrate the efficiency of the numerical scheme for solving this challenging
two-dimensional test, we plot the numerical solution(up) and corresponding troubled-cell
trajectory(bottom) in Fig. 16 at the time T = 0, 0.25, 0.5. The numerical comparison of
Hybrid DWENO, Hybrid MRWENO and Hybrid HWENO in x- and y-direction at T = 0.25
are also given in Fig. 17(left two), while the troubled-cell traces are provided for hybrid
DWENO and MRWENO scheme In Fig. 17(right two).

Example 9 Considering the two-dimensional strongly degenerate parabolic advection-
diffusion equation as for the last example:

ut + (
F1(u)

)
x + (

F(u)2
)
y = ε

((
ν(u)ux

)
x + (

ν(u)uy
)
y

)
, − 1.5

≤ x ≤ 1.5,−1.5 ≤ y ≤ 1.5. (4.27)

with the initial data

u(x, y, 0) =
⎧⎨
⎩

−1, (2x − 1)2 + (2y − 1)2 < 0.64,
1, (2x + 1)2 + (2y + 1)2 < 0.64,
0, otherwise.

(4.28)

and zero boundary condition for each direction, where ε = 0.1, F1(u) = F2(u) = u2 and
ν(u) is the same one in example 5.
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Fig. 16 Numerical solution of two-dimensional Buckley–Leverett equation at T = 0, 0.25, 0.5 with N = 100
for Example 8(up) and troubled-cell trace(bottom)

Fig. 17 Numerical comparison of Hybrid DWENO, Hybrid MRWENO and Hybrid HWENO scheme in x-
and y-direction(left two)for two-dimensional Buckley–Leverett equation at T = 0.25 with N = 100 for
Example 8 and corresponding troubled-cell trace of DWENO and MRWENO scheme(right two)

Numerical performance without having oscillation at the transition zone of the hyperbolic
and parabolic region at time level T = 0, 0.25, 0.5 can be seen in Fig. 18(up) along with
the troubled-cell trajectory plot in Fig. 18(bottom). In Fig. 19(left two), we also compared
the numerical results of Hybrid DWENO, Hybrid MRWENO and Hybrid HWENO in x- and
y-direction at T = 0.25. The Hybrid HWENO scheme gives better results than other two
schemes. Our scheme performed well in eliminating spurious numerical oscillation in the
sharp interface. The troubled-cell marks are also given for hybrid DWENO and MRWENO
scheme In Fig. 19(right two).

5 Concluding Remark

We derive the fifth-order hybrid HWENO scheme for nonlinear degenerate parabolic equa-
tions by approximating the diffusion term with hybrid HWENO scheme assist with DDG
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Fig. 18 Numerical solution of Hybrid HWENO scheme for two-dimensional strongly degenerate parabolic
convection-diffusion equation at T = 0, 0.25, 0.5 with N = 100 for Example 9(up) and corresponding
troubled-cell trace(bottom)

Fig. 19 Numerical comparison of Hybrid DWENO, Hybrid MRWENO and Hybrid HWENO scheme in x-
and y-direction(left two)for two-dimensional strongly degenerate parabolic convection-diffusion equation at
T = 0.25 with N = 100 for Example 9n and corresponding troubled-cell trace of DWENO and MRWENO
scheme(right two)

flux in this paper. The spatial reconstruction is performed by using the zero- and first-order
moments, and the TVD-RK3 method is used in temporal discretization. A trouble-cell indi-
cator is applied to identify the discontinuity and the HWENO reconstruction is applied in
these troubled-cells to avoid the oscillation while using straightforward linear approximation
in the smooth regions. The present scheme approximates the diffusion term by only using the
information in immediate neighbor stencils. Extensive numerical experiments are provided
for diffusion-domain equations, such as diffusion equation, PME equation, Buckley–Leverett
equation, strongly degenerate parabolic convection-diffusion equation. The hybrid HWENO
scheme is effective and has the advantages of high-order computational accuracy and essen-
tially non-oscillatory property for all test cases. It is well known, for two or higher dimension
cases, the finite difference schemes will cost less CPU time than finite volume schemes with
same rectangular meshes. As a result, hybrid HWENO costs more CPU time than Hybrid
DWENO, Hybrid MRWENO in two dimensional test cases. It is well known fact that high
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order finite difference WENO scheme can be only constructed on rectangular meshes or the
meshes can be mapped into rectangular meshes with high order mapping. On the other hand,
finite volumeWENO/HWENO schemes have more potential to extend to unstructured grids,
such as triangular mesh, which is our next work.

Data Availablity Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.
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