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Abstract
A hybrid fifth-order finite volume Hermite weighted essentially non-oscillatory (HWENO)
scheme is applied for the solution of a multi-class traffic flow model (mcLWR model) with
heterogeneous factors on the highroad. Since the hybrid HWENO scheme could avoid oscil-
lations near discontinuities while maintaining efficiency and compactness, it can be a reliable
numerical method and tool for the simulation and prediction of rapidly changing the traffic
flow. The benchmark examples of Riemann problems and traffic signal control problems
are given, and results indicate that the hybrid HWENO numerical scheme can obtain the
fifth-order precision, and also has higher resolution and accuracy than the hybrid WENO
scheme.
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traffic flow model (mcLWR model) · Non-strictly hyperbolicity · Discontinuous flux ·
Heterogeneous factors on highway
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1 Introduction

A fundamental traffic flowmodel (LWRmodel) is proposed to describe traffic flow character-
istics, it is a simplified continuum model given by Lighthill and Whitham [13], and Richards
[20] independently. This model supplements the relationship between traffic variables such
as traffic density, car stream, and vehicle speed with the vehicle continuity equation. The
resultant PDE gives the density as a function of time and space. A specific format for the
Greenshields [8] model of vehicle flow can get the analytic solution [27]. Although originally
intended for simulating traffic phenomena, LWR models demonstrate the capability to qual-
itatively replicate various real-world traffic behaviors, including the formation of shocks.
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However, some perplexing expressway traffic phenomena cannot be explained by simple
LWR models, like the two-capacity, queue discreteness, and the lag of vehicle flow.

The above traffic phenomena are then explained by the development of amulti-classmodel
that incorporates the lane changing behavior of users and a variety of vehicle types [5, 6].
Based on the LWR model, Wong and Wong [26] considered different drivers and proposed
the mcLWR model. Despite its simplicity, the mcLWR model has demonstrated its ability
to generate the necessary properties for macroscopic traffic flow models. Along with the
heterogeneous traffic flow problem has been the focus of research, Zhang et al. [30] extended
the mcLWR model to deal with heterogeneous road factors. This extension holds significant
practical applications and theoretical implications. In real-world traffic scenarios, variations
in traffic capacity frequently occur in many places, like near corners, ramps, slopes, and areas
prone to car accidents. This expansion effectively incorporates these traffic phenomena into
the model.

After extending the mcLWR model, solving the system may become more complex due
to the spatial variation in fluxes, particularly because the flux is discontinuous. In [25], Wong
and Wong used the first-order Lax-Friedrichs finite difference scheme to get the solution of
the mcLWR model, but that method introduces excessive numerical viscosity, resulting in
smeared solutions near discontinuities. Subsequently, Lebacque [12] successfully used the
Godunov scheme [7] to deal with the LWR traffic flow model. While this approach demon-
strates a reduction in numerical viscosity, it relies on the Riemann solver as its fundamental
component which can be challenging for mcLWR models and may not be feasible. Refer-
ences [30] and [22] employed the WENO scheme and DG scheme to handle the mcLWR
model, respectively, and proved that both schemes are more effective than Lax-Friedrichs
schemes and Godunov numerical schemes.

In this article, we use a hybrid fifth-order HWENO scheme to solve the mcLWR model
with heterogeneous factors on the highway. The HWENO scheme is an evolution of the ENO
and WENO schemes, both of them have been extensively used for hyperbolic conservation
laws for the past few years. Qiu and Shu [17, 18] pioneered theWENOmethodology, initially
applying it as limiters for Runge-Kutta discontinuous Galerkin methods, leading to the devel-
opment of HWENO schemes. Subsequently, various HWENO schemes [3, 4, 15, 16, 23, 24,
33] have been created to address hyperbolic conservation laws. The hybrid HWENO scheme
in this text combines the discontinuous Galerkin method limiter to control oscillations, thus
it is superior to the previous HWENO scheme [17, 18], see [31] for details.

The rest is structured as follows. The conservation form for the mcLWR model equation
is briefly provided in Sect. 2. Section 3 presents a discussion on a hybrid HWENO scheme
applied to amodified equivalent system, utilizing theLax-Friedrichs numerical fluxwithin the
finite volumemethod. Section 4 showcases numerical tests to validate the proposed scheme’s
accuracy, efficiency, and robustness. Finally, Sect. 5 offers concluding remarks.

2 Description of Conservation Form for themcLWRModel with
Inhomogeneous Factors

In traffic flow, the vehicles’ types arem and vehicles’ lanes are l(x). The density of each lane
of type i vehicles is ρi (x, t), and the density of each vehicles type is given by

ui (x, t) = l(x)ρi (x, t),
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and ρ = ∑m
i=1 ρi represents the total density of each lane. The vehicle speed depends on

the density, denoted by v(ρ), with v(0) = vf when the density is zero (free-flow speed)
and v(ρjam) = 0 at the jam density, decreasing with increasing the density v′(ρ) < 0. In
calculation, v(ρ) = (ρjam − ρ)vf/ρjam, that is, the velocity has a linear relationship with
the density [8, 27]. The difference between vehicle types, represented by the dimensionless
variable {di (x)}mi=1, where 0 � di (x) � 1 for all i . The speed of vehicle type i is then
vi (x, t) = di (x)v(ρ).

From themass conservationofm vehicle types on the road,we canget the systemequations

(l(x)ρi (x, t))t + (l(x)ρi (x, t)di (x)v(ρ(x, t)))x = 0, 1 � i � m. (1)

Let the vector function θ(x) = (l(x), d1(x), · · · , dm(x)) represent the improved or
reduced traffic capacity at the corresponding position. Because the degree of change is very
dramatic, θ can be considered as a discontinuous function of x during its changes, resulting
in the discontinuity of the flux function as well. Given that the spatial variation of the flux
can lead to the discontinuity of the flux, directly applying standard numerical methods to
the system may be inefficient. Therefore, utilizing the construction with an equivalent form
[2] of the conservation law for handling spatially varying fluxes [1, 10, 14, 28], the system
equations could be written as the (m + 1) × (m + 1) format [30]:

∂

∂t

⎛

⎜
⎜
⎜
⎜
⎜
⎝

lρ1
lρ2
...

lρm
θ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ ∂

∂x

⎛

⎜
⎜
⎜
⎜
⎜
⎝

lρ1d1v(ρ)

lρ2d2v(ρ)
...

lρmdmv(ρ)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0. (2)

For convenience, in applying numerical schemes in the next section, we denote U =
(lρ1, lρ2, · · · , lρm, θ)T, F = (lρ1d1v, lρ2d2v, · · · , lρmdmv, 0)T. Equation (2) can be
abbreviated as

U t + Fx = 0.

Remark 1 For the mcLWR model with inhomogeneous factors, Zhang et al. studied the
hyperbolicity and characteristic fields of the system, see [30] in detail. The Jacobian matrix
F′(U) that will be used for a characteristic decomposition in latter numerical experiments
can also be found in [30].

Remark 2 For the Riemann problem of (1), the propagation properties of shock waves and
rarefaction waves have been studied in [29], and we will not repeat it here.

3 Description of the Hybrid HWENO Scheme

The hybrid HWENO scheme was developed to solve hyperbolic conservation laws in [31].
We now present the scheme for the mcLWR equations with inhomogeneous conditions

∂U
∂t

+ ∂F(U)

∂x
= 0, (3)

where

U =
(
u
θ

)

, F =
(

f
o

)

,

123



Communications on Applied Mathematics and Computation

and the flux o = 0. The calculation interval is divided into N equal parts that are denoted
as {x1/2, x3/2, · · · , xN+1/2}. Interval Ik is [xk−1/2, xk+1/2], h denotes the grid size, the cell
center point is xk = 0.5(xk−1/2 + xk+1/2), and xk+ j = xk + jh.

The semi-discrete finite volume HWENO scheme of (3) is given by
⎧
⎪⎪⎨

⎪⎪⎩

dUk(t)

dt
= −

(
F̂k+1/2 − F̂k−1/2

)
/h,

dŨk(t)

dt
=

(
−

(
F̂k−1/2 + F̂k+1/2

)
+ 2T k

)
/ (2h) ,

(4)

where the cell average Uk(t) is 1
h

∫
Ik
U(x, t)dx and the first order moment Ũk(t) is defined

as 1
h

∫
Ik
U(x, t) x−xk

h dx . We apply the Lax-Friedrichs numerical flux as follows:

F̂k−1/2 = 1

2

(
F(U−

k−1/2) + F(U+
k−1/2) − α

(
U+

k−1/2 − U−
k−1/2

))
,

where α = maxU |F′(U)|. T k is the numerical integration of the flux F(U), which is approx-
imated by the four-point Gauss-Lobatto quadrature formula. The weights and the quadrature
points on Ik are {wG

l }4l=1 = { 1
12 ,

5
12 ,

5
12 ,

1
12 } and {xGl }4l=1 = {xk− 1

2
, x

k−
√
5

10
, x

k+
√
5

10
, xk+ 1

2
},

and

T k = 1

h

∫

Ik
F(U)dx ≈

4∑

l=1

ωG
l F(U(xGl , t)).

Now, we show the details of the spatial reconstruction. Orthogonal basis functions
{Gi (x), i = 0, · · · , r} are used in calculations, in Ik Legendre polynomials are adopted:

{

G0(x) = 1,G1(x) = ξk,G2(x) = ξ2k − 1

12
,G3(x) = ξ3k − 3

20
ξk, · · ·

}

,

where ξk = x−xk
h , and Uk is the cell average, and Ũk is the first order moment of solution in

cell Ik in actual calculation.
i) Inspect which Ik is discontinuous and limit Ũ in Ik .
First of all, we need to identify the troubled-cell in which the solution is broken. There are

many troubled-cell indicators in the literature which can be adopted, following the suggestion
by Qiu and Shu in [19], we use the KXRCF indicator [11] to find the discontinuities in this
paper. Because traffic flows from left to right, the cell Ik will be recognized as a troubled
cell, if

∣
∣
∣ Uh

Ik
(xk−1/2) −Uh

Ik−1
(xk−1/2)

∣
∣
∣

maxx∈Ik |Uh
Ik

(x)| c r+1
2

> 1,

where c = h/2. We use second-order polynomials Uh to approximate U (x), so r = 2 in
this problem. Uk−1, Uk , Uk+1, and Ũk are used to reconstruct a cubic polynomial P3

k (x) =
∑3

j=0 b jG j (x) which satisfies

1

h

∫

Ik+i

P3
k (x)dx = Uk+i , i = −1, 0, 1,

1

h

∫

Ik
P3
k (x)ξkdx = Ũk .

And then project P3
k (x) onto the quadratic space of the quadratic orthogonal function space,

Uh
Ik
is taken asUkG0(x)+12ŨkG1(x)+ 1

2 (Uk+1 −2Uk +Uk−1)G2(x). The polynomial is

123



Communications on Applied Mathematics and Computation

used only in the troubled-cell indicator to identify the troubled cell, not in the reconstruction
procedure for solution, so drop the cubic term will not affect accuracy.

After identifying troubled cells, the first moment of the troubled cells is modified by using
the HWENO limiter given in [31] and the counterpart of other cells remains unchanged.

ii) The calculation procedure of Gauss-Lobatto integration points.
Let LU(·), LV(·) represent the right-hand sides of (4), respectively. To calculate these

two terms, we need the solution values at xk±1/2 and xk±√
5/10 in all cells. The HWENO

reconstruction is applied to solve the boundary pointsU∓
k±1/2 in troubled cells, and the linear

approximation is adopted to solve the integral points Uk±√
5/10 in all cells and the boundary

points in the smooth cells.
(i) The procedure to reconstruct U−

k+1/2 by the HWENO.

TheHWENOreconstructionuses three cubic polynomials P3
j (x) = ∑3

l=0 a
j
l Gl(x), where

j = 1, 2, 3 to create a quintic polynomial P5
0 (x) = ∑5

l=0 alGl(x), the three cubic polyno-
mials are obtained by

1

h

∫

Ik+i

P3
1 (x)dx = Uk+i ,

1

h

∫

Ik+i

P3
1 (x)ξk+idx = Ũk+i , i = −1, 0,

1

h

∫

Ik+i

P3
2 (x)dx = Uk+i , i = −1, 0, 1,

1

h

∫

Ik
P3
2 (x)ξkdx = Ũk,

1

h

∫

Ik+i

P3
3 (x)dx = Uk+i ,

1

h

∫

Ik+i

P3
3 (x)ξk+idx = Ũk+i , i = 0, 1,

the explicit expressions of {a j
l } are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a10 = Uk,

a11 = 12Ũk,

a12 = (114Ũk+66Ũk−1−15Uk+15Uk−1)/4,

a13 = (30Ũk + 30Ũk−1 − 5Uk + 5Uk−1)/2,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a20 = Uk,

a21 = 12Ũk,

a22 = (Uk+1 − 2Uk +Uk−1)/2,

a23 = (−120Ũk+5Uk+1−5Uk−1)/11,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a30 = Uk,

a31 = 12Ũk,

a32 = (−66Ũk+1 − 114Ũk + 15Uk+1 − 15Uk)/4,

a33 = (30Ũk+1 + 30Ũk − 5Uk+1 + 5Uk)/2,

the quintic polynomials P0(x) are obtained by

1

h

∫

Ik+i

P5
0 (x)dx = Ui+k, i = −1, 0, 1,

1

h

∫

Ik+i

P5
0 (x)ξk+idx = Ũk+i , i = −1, 0, 1,

and the explicit expressions of {al} are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = Uk,

a1 = 12Ũk,

a2 = (−270Ũk+1 + 270Ũk−1 + 73Uk+1 − 73Uk + 73Uk−1)/56,

a3 = (−1 970Ũk+1 − 10 340Ũk − 1 970Ũk−1 + 595Uk+1 − 595Uk−1)/324,

a4 = (30Ũk+1 − 30Ũk−1 − 5Uk+1 + 10Uk − 5Uk−1)/8,

a5 = (154Ũk+1 + 532Ũk + 154Ũk−1 − 35Uk+1 + 35Uk−1)/36.
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The linear weights R1 = 14
27 , R2 = 22

63 , and R3 = 25
189 are obtained from the following

formula:

P5
0 (xk−1/2) =

3∑

l=1

Rl P
5
l (xk−1/2),

then, the smoothness indicators βl [31] in Ik are computed to detect the smoothness of the
function Pl(x),

βl =
r∑

γ=1

∫

Ik
h2γ−1

(dγ Pl(x)

dxγ

)2
dx, l = 1, 2, 3,

where r is the degree of Pl(x), and βl (l = 1, 2, 3) are as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = 1

16
(54Ũk + 6Ũk−1 −Uk +Uk−1)

2 + 13

48
(114Ũk + 66Ũk−1 − 15Uk + 15Uk−1)

2

+ 3 905

16
(6Ũk + 6Ũk−1 −Uk +Uk−1)

2,

β2 = 1

484
(−240Ũk −Uk+1 +Uk−1)

2 + 13

12
(Uk+1 − 2Uk +Uk−1)

2

+ 355

44
(24Ũk −Uk+1 +Uk−1)

2,

β3 = 1

16
(6Ũk+1 + 54Ũk −Uk+1 +Uk)

2 + 13

48
(66Ũk+1 + 114Ũk − 15Uk+1 + 15Uk)

2

+ 3 905

16
(6Ũk+1 + 6Ũk −Uk+1 +Uk)

2.

Therefore, the value of U+
k−1/2 is

U+
k−1/2 =

3∑

l=1

Wl Pl(xk−1/2),

the nonlinear weights Wl = Wl/(W 1 + W 2 + W 3), with Wl = Rl/(βl + ε)2, l = 1, 2, 3,
and ε = 10−6 is adopted to avoid the denominator by zero. U−

k+1/2 can be obtained in the
above step with respect to the mirror symmetry of xk .

(ii) Reconstruction to get U∓
k±1/2 by the linear approximation.

If Ik is a smooth unit, we just use P5
0 (x) in Step (i) to approximate U∓

k±1/2, namely

U+
k−1/2 = P5

0 (xk−1/2) = −25

54
Ũk+1 − 241

54
Ũk + 28

27
Ũk−1 + 13

108
Uk+1 + 7

12
Uk + 8

27
Uk−1,

and

U−
k+1/2 = P5

0 (xk+1/2) = −28

27
Ũk+1 + 241

54
Ũk + 25

54
Ũk−1 + 8

27
Uk+1 + 7

12
Uk + 13

108
Uk−1.

(iii) The linear approximation to get Uk±√
5/10.

Same as above,

Uk−√
5/10 = P5

0 (xk−√
5/10) =

( 3

20
− 841

13 500

√
5
)
Ũk+1 − 10 289

6 750

√
5Ũk −

( 3

20
+ 841

13 500

√
5
)
Ũk−1

+
( 101

5 400

√
5 − 1

24

)
Uk+1 + 13

12
Uk −

( 101

5 400

√
5 + 1

24

)
Uk−1,
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and

Uk+√
5/10 = P5

0

(
xk+√

5/10

)
=

( 3

20
+ 841

13 500

√
5
)
Ũk+1 + 10 289

6 750

√
5Ũk +

( 841

13 500

√
5 − 3

20

)
Ũk−1

−
( 101

5 400

√
5 + 1

24

)
Uk+1 + 13

12
Uk +

( 101

5 400

√
5 − 1

24

)
Uk−1.

iii) After completing the previous steps, let Z = (U, V )T, L(·) = (LU(·), LV(·))T. The
third-order TVD Runge-Kutta method [21] is applied to do the time discretization of the
ordinary differential equation (4):

⎧
⎨

⎩

Z(1) = Zn + �t L(Zn),

Z(2) = 3
4 Z

n + 1
4 Z

(1) + 1
4�t L(Z(1)),

Z(n+1) = 1
3 Z

n + 2
3 Z

(2) + 2
3�t L(Z(2)).

Remark 3 As stated in Sect. 2, the traffic flow equations will have non-strictly hyperbolic
cases, so the HWENO approximation is used with a local characteristic field decomposition
when the systems are strictly hyperbolic and it is used component by component when
the systems are non-strictly hyperbolic. As for the linear approximation, it is always used
component by component.

4 Numerical Tests

In the following, the numerical accuracy of the hybrid HWENO and hybrid WENO schemes
[32] is checked first. Subsequently, we present the numerical results for the Riemann problem
and the traffic signal control problem solved using both methods. For all numerical experi-
ments in this section, the CFL number = 0.6, except for the traffic signal control examples,
where it is set to 0.3. All of the methods used the fifth order.

In all numerical results, ρl and ρ are normalized by blocking the density ρjam, and the
computational area (0, L) is scaled to (0, 1). These dimensionless variables are usedwherever
units are not specified. Additionally, the constants L = 8 000 m and vf = 20m·s−1 are
consistently applied.

Example 1 (Test of accuracy) To examine the accuracy of these two methods, the smooth
initial data we set are as follows:

u1(x, 0) = 0.1 sin(2π x) + 0.3, u2(x, 0) = 0.2,

u3(x, 0) = −0.1 sin(2π x) + 0.4, l(x) = 0.1 sin(2π x) + 1,

di (x) = bi (1 + 0.5 sin(2π x)), i = 1, 2, 3 with b1 = 0.2, b2 = 0.3, b3 = 0.4.

We apply the periodic boundary conditions in the smooth test, setting the simulation time
to t = 0.1, which is sufficiently short to maintain a smooth solution and prevent any dis-
continuities for t � 0.1. Using the third-order TVD Runge-Kutta time discretization, we set
�t (n) = 0.6�x5/3/α(n) to achieve the fifth-order accuracy in both schemes (Table 1).

Example 2 (Riemann problem) Consider the Riemannian problem designed to reproduce the
analysis of shock and rarefaction waves patterns:

u(x, 0) =
{
uleft, if x < x0,

uright, if x > x0,
θ(x) =

{
θleft, if x < x0,

θright, if x > x0.
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Table 1 Test of accuracy: the hybrid HWENO scheme and the hybrid WENO scheme. L1, L∞ errors and
orders of

∑3
k=1Uk

Hybrid HWENO scheme Hybrid WENO scheme

N cells L1 error Order L∞error Order L1 error Order L∞ error Order

20 2.46E−08 4.55E−08 1.40E−06 4.17E−06

40 7.06E−10 5.12 1.49E−09 4.93 5.08E−08 4.79 1.72E−07 4.60

80 2.17E−11 5.03 4.67E−11 4.99 1.65E−09 4.94 5.74E−09 4.91

160 6.73E−13 5.01 1.46E−12 5.00 5.20E−11 4.99 1.82E−10 4.98

320 2.10E−14 5.00 4.64E−14 4.97 1.63E−12 5.00 5.71E−12 4.99

The number of vehicle types is set to m = 3, which is the sufficiently small number
where the breaking wave can be observed. For each i , to facilitate solving, di (x) are set to
constant, namely, d1(x) = 0.5, d2(x) = 0.75, and d3(x) = 1. The simulation time is taken
as 400 s. Here, we use two methods to calculate four numerical examples, Figs. 1–4 show
the numerical results. The four kinds of initial data that have been scaled are as follows:

(a) (u1, u2, u3, l) =
{

(0.60, 0.3, 0.9, 3), x � 0.5,
(0.10, 0, 0.5, 1), x > 0.5.

(b) (u1, u2, u3, l) =
{

(0.6, 0.15, 0.3, 3), x � 0.4,
(0.3, 0.25, 0.15, 1), x > 0.4.

(c) (u1, u2, u3, l) =
{

(0.6, 0.45, 0.15, 3), x � 0.3,
(0.05, 0.15, 0.2, 1), x > 0.3.

(d) (u1, u2, u3, l) =
{

(0.9, 0.6, 0.3, 3), x � 0.4,
(0.15, 0.25, 0.05, 1), x > 0.4.

With the high profile resolution, the wave structure structures in Figs. 1–4 are consistent
with the results analyzed in [30]. Actually, we observe four waves in Figs. 1 and 2 and five
waves in Figs. 3 and 4. In the former case, the hyperbolic property of this system is strict,
with a single wave propagating either in x > x0 (Fig. 1) or x < x0 (Fig. 2). In the latter case,
two characteristics propagate in x < x0 and x > x0, respectively, indicating the system’s
non-strict hyperbolicity.

In summary, we can see that the computed densities ρ1, ρ2, ρ3 by both the hybridHWENO
scheme and hybrid WENO scheme show the good consistency with reference solutions and
are in accordance with the conclusions of the previous analysis. Furthermore, it can be seen
that the solution by the hybrid HWENO scheme has a better performance. Additionally, the
hybrid HWENO scheme demonstrates the superior performance, providing better approxi-
mation results and effectively reducing oscillations due to its more compact stencil.

Example 3 (Traffic signal control problem) We apply numerical schemes to applications
where θ is also a function of the time, a common scenario in road traffic, with the traffic
light control being a classic example. At the beginning, the traffic light signals the vehicle
to stop and wait. After waiting for 30 s, the traffic light signals that the vehicle can pass.
After another 30 s, the traffic light turns red again. To model this periodic signal change, we
consider a road segment of 1 200 m in length with a constant number of lanes (l(x) = l). The
traffic signal is located at approximately 420m. The initial conditions for vehicle densities are
(ρ1, ρ2, ρ3)

T = (0.05, 0.25, 0.1)T. We assume that when the signal is green, all {di (x)}3i=1
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Fig. 1 Example 2. Under the initial condition (a), the hybrid HWENO scheme (red circle) and the hybrid
WENO scheme (blue star) with N = 400 cells are used to calculate the densities at t = 1, and the solution
solved by the WENO (solid black line) with N = 16 000 cells is used as a reference. ρ1, ρ2, ρ3, and the total
density ρ are plotted in subgraphics

are the same as in the previous example. However, at the signal location and during the red
light, all {di (x)}3i=1 are set to zero, as described below:

(d1, d2, d3) =
{

(0, 0, 0), if 0.34 < x < 0.36 and 0 < t − 60[t/60] � 30 s,
(0.5, 0.75, 1), otherwise.

Figure5 presents the numerical results of densities over a 30-second interval. From Fig.5
a line of the stationary traffic is obviously visible before the traffic light crossing, propagating
backward when the green light is on. In the queue of the traffic flow, ρ is at its peak. To the
right of the traffic light crossing, three shock waves can be observed, leaving behind a long
vacuum representing the overtaking among three different vehicle types. Figure6 illustrates
the total density evolution over a 60-second period, describing overtaking behavior in real
traffic flow, a prominent feature of the model discussed. The propagation of three waves in
Fig. 6 matches the vehicle types, and shows dissipation and queuing close to the traffic light
crossing.

The simulation of the traffic signal control can be conducted for any duration because the
signal changes periodically, and the number of vehicles can be arbitrarily large. In theory,
the hybrid HWENO scheme should address conservation laws with discontinuous fluxes in
various research fields.
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Fig. 2 Same as Fig. 1, except for the initial condition (b)
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Fig. 3 Same as Fig. 1, except for the initial condition (c)
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Fig. 4 Same as Fig. 1, except for the initial condition (d)
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Fig. 5 ρ1, ρ2, ρ3, and ρ, at t = 30 s. Top: solved by the hybrid WENO scheme; bottom: solved by the hybrid
HWENO scheme
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Fig. 6 Total density variation over 60 seconds. Top left: solved by the hybridWENO scheme; top right: solved
by the hybrid HWENO scheme. The bottom two images are the opposite views of the corresponding images
above

5 Conclusion

In this paper, we combine the hybrid HWENO method with the TVD Runge-Kutta time
discretization and apply it to the mcLWR model under inhomogeneous road conditions.
Numerical examples verify the resolution and accuracy of the hybrid HWENO method.
In the modified system (though non-strictly hyperbolic), the Lax-Friedrichs numerical flux
provides appropriate numerical viscosity, ensuring convergence of the numerical solution to
the physically relevant one. The HWENO reconstruction using the KXRCF cell indicator
reduces excess numerical viscosity, achieving high-resolution solutions. The hybridHWENO
scheme’s application can be used to solve other hyperbolic conservation laws that fluxes vary
with space.
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