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Abstract
In this paper, a fifth-order moment-based Hermite weighted essentially non-oscillatory
scheme with unified stencils (termed as HWENO-U) is proposed for hyperbolic conser-
vation laws. The main idea of the HWENO-U scheme is to modify the first-order moment
by a HWENO limiter only in the time discretizations using the same information of spa-
tial reconstructions, in which the limiter not only overcomes spurious oscillations well, but
also ensures the stability of the fully-discrete scheme proved by the von-Neumann analysis.
Benefited by this new framework, the HWENO-U scheme involves only a single HWENO
reconstruction throughout the entire spatial discretizations, while previousHWENO schemes
have to bring additional procedures.Meanwhile, the HWENO-U scheme can use the artificial
linear positive weights (the sum is one), but a normalization is made for the original defi-
nition of non-linear weights to achieve scale-invariance, which can reduce problem-specific
dependencies especially for simulating the problems with sharp scale variations. Compared
with previous HWENO schemes, the HWENO-U scheme is simpler and more efficient for
utilizing the same candidate stencils, reconstructed polynomials, and nonlinear weights both
in the limiter and the spatial reconstruction. Besides, the HWENO-U scheme has more com-
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pact stencils, higher resolutions near discontinuities, and smaller numerical errors in smooth
regions than a fifth-order WENO scheme with the same framework. Extensive numerical
tests are carried out to validate the efficiency, robustness, accuracy, and resolution of the
proposed scheme.

Keywords Hyperbolic conservation laws · Hermite WENO scheme · Unified stencils ·
Limiter · Finite volume method

Mathematics Subject Classification 65M60 · 35L65

1 Introduction

In this paper, we construct a fifth-order Hermite weighted essentially non-oscillatory scheme
with unified candidate stencils (termed as HWENO-U) for hyperbolic conservation laws,
where both the zeroth- and first-order moments are evolved in time and used in spatial
reconstructions. Compared with other moment-based HWENO schemes [8, 25, 38, 45–47],
the HWENO-U scheme adds a high order modification for the first-order moments in time
discretizations by using the same information of spatial reconstructions, which is simpler and
more efficient for using the same reconstructed polynomials, smoothness indicators, linear
and nonlinearweights in the entire procedures. HWENOschemes are constructed on the basis
of weighted essentially non-oscillatory (WENO) schemes, and WENO schemes have been
widely applied for hyperbolic conservation laws in the past three decades. The first WENO
schemewas proposed by Liu et al. [28] in 1994, where they combined all candidate stencils of
essentially non-oscillatory (ENO) schemes [15–17] to achieve a third-order accuracy in the
finite volume version. Next, Jiang and Shu developed a fifth-order finite difference WENO
scheme [20] in 1996, in which they gave a general definition for the smoothness indicators
and nonlinear weights, and the fifth-order finite volume WENO scheme was presented by
Shu [35] in 1998. After that, WENO schemes have been further developed in [1, 4, 7, 18, 23,
43, 50, 55], and a recent review can be found in [36].

The fundamental difference between WENO and HWENO schemes is spatial discretiza-
tions, where WENO schemes only use the information of solutions, but HWENO schemes
can use additional information in each cell, such as the derivatives or first-order moments of
solutions. Hence, HWENO schemes can use more compact stencils thanWENO schemes on
the same order accuracy, resulting in more minor numerical errors in smooth cases and fewer
transition points near discontinuities based on the comparisons in [44]. However, HWENO
schemes are less robust than WENO schemes as the derivatives or first-order moments may
become quite large near discontinuities. For example, using the same thought of the first
one-dimensional HWENO scheme [32], the first two-dimensional HWENO scheme [33]
gave poor resolutions for the double Mach and forward step problems, though this drawback
was solved later in [49] by using more complicated techniques to reconstruct the derivative
terms. The common point of the HWENO schemes [32, 33, 49] is to use different stencils or
techniques in the discretization of the governing and derived equations by avoiding discon-
tinuities, which also has been used in the subsequent HWENO schemes [3, 24, 29, 38, 41].
However, reducing the use of derivatives or first-order moments alone is not sufficient to con-
trol oscillations effectively. For instance, additional techniques such as positive-preserving
limiters and a smaller time step are required in the first finite difference HWENO scheme
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[29]. Furthermore, the selection of optimal stencils and approximated methods often heavily
relies on numerical experiences.

To enhance the robustness of HWENO schemes, Zhao et al. [45] proposed an alternative
approach to control the derivatives or first-order moments as limiters in the discontinuous
Galerkin (DG) method [6], which can effectively overcome oscillations even with a nor-
mal time step. This moment-based HWENO scheme also can be viewed as a robust P1PM
method, as defined by Dumbser et al. [8]. The key feature of the HWENO scheme [45] is the
separation of limiters and spatial reconstructions into two distinct parts, while the limiters in
DGmethods [31, 48, 54] and the spatial reconstructions inWENO schemes [1, 4, 7, 50] have
been extensively studied over the past three decades. Consequently, constructing HWENO
schemes with the proposed framework [45] benefits from the wealth of mature references
in these two fields, reducing reliance on numerical experiences. Later, by modifying the
first-order moments in advance as [45], the modified HWENO scheme with artificial linear
weights [46], the positivity-preserving HWENO scheme [10], the Hermite TENO scheme
[39], the multi-resolution HWENO scheme [25], and the finite difference HWENO com-
bined with limiter scheme [44] have been developed to solve hyperbolic conservation laws.
However, the proposed framework [45] still utilizes two sets of stencils as the first HWENO
scheme [32], and using two sets of stencils means repetitive algorithms, and double or triple
computational costs. Recently, Zhao and Qiu [47] designed a sixth-order HWENO scheme
by introducing damping terms in the first-order moment equations as the oscillation-free DG
methods [27, 30]. This approach allows for the use of unified stencils in spatial reconstruc-
tions, which is easier to implement and have higher efficiency. However, the presence of
damping terms in [47] has significant impacts on the stability, particularly when simulating
strong shocks and extreme problems with highly stiff damping terms, which leads to a small
time step restriction and requires the exponential Runge-Kutta (ERK) time discretization
[19].

Comparedwith the fifth-orderWENOschemes [50, 51], theHWENOschemes [44, 46, 47]
attain fifth- or sixth-order accuracy with more compact stencils, offering higher resolutions
and smaller numerical errors. However, they inevitably become more complex and require
additional computational time for adding another procedure to control spurious oscillations
near discontinuities. To simplify the algorithm and save the computational cost as much as
possible, we mainly focus on developing a HWENO scheme with unified candidate sten-
cils in this paper, and consider the practicability simultaneously, including the ability on the
simulations of extreme problems with sharp scale variations and the easy treatment of non-
linear weights. Based upon previous studies of the HWENO schemes [10, 25, 38, 45–47],
it has been observed that the first-order moments tend to become large near discontinuities,
which potentially impacts the robustness of HWENO schemes. To address this issue, various
approaches have been introduced in the aforementioned HWENO schemes, such as reduc-
ing the utilization of the first-order moments optimally, controlling the first-order moments
near discontinuities before spatial reconstructions, or introducing damping terms in the first-
order moment equations. These schemes share a common characteristic where all first-order
moments are utilized in the spatial reconstructions. The main reason is that omitting the
utilization of the first-order moment on the central cell will lead to instabilities for HWENO
schemes based on our mathematical analysis. More intuitively, we take the one-dimensional
case in the target cell Ii as an example. If we directly use the values of the zeroth-order
moments {ui−1, ui , ui+1} and the first-order moments {vi−1, vi+1} to discretize the space,
the fully-discrete scheme will be unstable by using the forward Euler or third-order SSP
Runge-Kutta (RK) time discretization [35], proved in Theorem 2.1. Taking into account the
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symmetry of the stencils and the formulation of the Lax-Friedrichs scheme [22]:

un+1
i −

(
uni−1+uni+1

2

)

�t
+ uni+1 − uni−1

2�x
= 0. (1.1)

It is well known that the scheme
un+1
i −uni

�t + uni+1−uni−1
2�x = 0 is unstable, but the Lax-Friedrichs

scheme (1.1) is stable as uni is modified by
uni−1+uni+1

2 in the time discretization. Inspired by
this point, we also introduce a modification for the first-order moment in time discretiza-
tions using the information provided by spatial discretizations, and the proposed scheme is
proved to be stable through analyses in Subsection 2.3 using the Fourier method. Besides,
it is worth noting that this modification step, which utilizes the same information as these
for spatial discretizations, plays a vital role in the adoption of unified stencils throughout
the entire procedures. To overcome spurious oscillations near discontinuities, we use the
HWENO method in the modified HWENO (HWENO-M) scheme [46] to modify the first-
order moments and perform spatial discretizations, where the linear weights can be any
positive numbers as long as their sum is one. Differently, the modification and spatial dis-
cretizations are combined into a single step for they use the same information, resulting in
unified candidate stencils in the HWENO-U scheme, which simplifies the implementation
process of [46] and enhances the computational efficiency. Furthermore, we also improve the
nonlinear weights in the HWENO-M scheme to make them scale-invariant. For the reason-
ability, the function u and its non-zeromultiple ζu should have the same nonlinear weights on
the same cells. Conversely, the nonlinear weights in the HWENO-M scheme lose this basic
property. Although this scale-dependent nonlinear weight has no obvious differences on the
simulations of benchmark tests shown in the various subsequent WENO schemes [50–53],
the results may generate oscillations in simulating quite large or small scale problems [2, 5,
9], and the similar phenomenon also occurs in simulating extreme problems based on our
numerical experiments. To inherit the advantages of the nonlinear weights in [46, 50–53]
and make them scale-invariant, we bring the integral average values of solutions into the
original definition as the finite difference scale-invariant WENO scheme [9], which also can
be viewed as a normalization procedure for the nonlinear weights. This minor modification
has no impacts on the accuracy firstly, and it also can enhance resolutions and is more robust
for simulating challenging problems with sharp scale variations. In short, the HWENO-U
scheme uses unified stencils in the entire procedures, which avoids repetitive algorithms and
enhances computational efficiencies. Furthermore, the HWENO-U scheme has the capabil-
ity to simulate extreme problems by directly incorporating a positive-preserving technique
from [10, 42], which is simpler and more practical compared to the other HWENO scheme
with unified stencils [47], since the proposed scheme avoids the introduction of additional
parameters and stiff terms. Besides, the designed scale-invariant nonlinear weight is more
reasonable and robust in numerical simulations. These advantages will be demonstrated in
the next algorithm descriptions and numerical tests.

The paper is organized as follows: Section 2 presents the detailed implementation of the
HWENO-U scheme in one- and two-dimensional cases, and provides a stability analysis for
the linear schemeusing the Fouriermethod. In Section 3, extensive benchmarks are conducted
to illustrate the numerical accuracy, high resolution, and robustness of the proposed scheme.
Finally, concluding remarks are given in Section 4.
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2 Description of HWENO-U Scheme

This section contains three subsection. In the first and second subsections, we present the
detailed procedures of themoment-based fifth-order HWENO-U scheme in the one- and two-
dimensional cases, respectively, in which the high order HWENO modification for the first-
order moments and the spatial reconstructions use the same information, such as candidate
stencils, reconstructed polynomials, smoothness indicators, linear and nonlinear weights.
Remarkably, incorporating the modification for the first-order moments in the time discrete
stage is essential to ensure the stability of the HWENO-U scheme, therefore, we give a
stability analysis in the last subsection to illustrate it.

2.1 One-Dimensional Case

Consider one-dimensional scalar hyperbolic conservation laws
{
ut + f (u)x = 0,

u0(x) = u(x, 0).
(2.1)

For simplicity, we consider a uniform partition of a given domain [a, b], a = x 1
2

< x 3
2

<

· · · < xNx+ 1
2

= b. Let Ii = [xi− 1
2
, xi+ 1

2
] denote a computational cell with its length

�x = xi+ 1
2
− xi− 1

2
and its center xi = 1

2 (xi− 1
2
+ xi+ 1

2
). By multiplying equation (2.1) with

a test function φ(x) ∈ span
{

1
�x ,

x−xi
(�x)2

}
, integrating over interval Ii , and using integration

by parts, we have
⎧⎪⎪⎨
⎪⎪⎩

dūi (t)

dt
= − 1

�x

(
f (u(xi+ 1

2
, t)) − f (u(xi− 1

2
, t))

)
,

dv̄i (t)

dt
= − 1

2�x

(
f (u(xi− 1

2
, t)) + f (u(xi+ 1

2
, t))

)
+ 1

(�x)2

∫

Ii
f (u)dx,

(2.2)

where ūi (t) � 1
�x

∫
Ii
u(x, t)dx and v̄i (t) � 1

�x

∫
Ii
u(x, t) x−xi

�x dx are the zeroth-order
moment (cell-average) and first-order moment in the cell Ii , respectively.

Let {x̂Gi }4G=1 denote four Gauss-Lobatto points in a cell Ii with the corresponding weights
{ω̂G}4G=1 on the interval [− 1

2 ,
1
2 ]. The value of the flux function f (u(xi+ 1

2
, t)) is approxi-

mated by a high order Lax-Friedrichs numerical flux f̂i+ 1
2
and the integral term

∫
Ii
f (u)dx

is approximated by a 4-point Legendre Gauss-Lobatto quadrature formula. Consequently, a
conservative semi-discrete scheme is defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dūi
dt

= − 1

�x
( f̂i+ 1

2
− f̂i− 1

2
) � F1

i (ū, v̄),

dv̄i
dt

= − 1

2�x
( f̂i− 1

2
+ f̂i+ 1

2
) + 1

�x

4∑
G=1

ω̂G f (u(x̂Gi , t)) � F2
i (ū, v̄),

(2.3)

where ūi and v̄i are the numerical approximations of ūi (t) and v̄i (t), respectively, and
F1
i (ū, v̄) and F2

i (ū, v̄) are the right-hand terms. The numerical flux f̂i+ 1
2
is defined as

f̂i+ 1
2

= 1

2

[
f (u−

i+ 1
2
) + f (u+

i+ 1
2
) − α(u+

i+ 1
2

− u−
i+ 1

2
)

]
, (2.4)
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with α = max
u

| f ′(u)|. The superscribes “ − " and “ + " of u±
i+ 1

2
represent the left-hand

and right-hand limits of the numerical solution u(x) at the interface xi+ 1
2
, respectively. The

Gauss-Lobatto points {x̂Gi }4G=1 are

x̂1i = xi− 1
2
, x̂2i = x

i−
√
5

10
, x̂3i = x

i+
√
5

10
, x̂4i = xi+ 1

2
,

with xi+� = xi + ��x , the normalized weights ω̂1 = ω̂4 = 1
12 and ω̂2 = ω̂3 = 5

12 .
The equations (2.3) also are the semi-discrete form of the P1(Ii ) DG finite element

method, but formoment-basedHWENOschemes, aHermite reconstruction is used to approx-
imate the values u±

i∓ 1
2
and u

i±
√
5

10
based on the zeroth- and first-order moments in the cells

{Ii−1, Ii , Ii+1}. In the following, wewill outline the detailed steps of 1DHWENO-U scheme,
based on the set of values {ūi−1, ūi , ūi+1, v̄i−1, v̄i+1}.

Step 1. Reconstruct a quartic polynomial p0(x) and two linear polynomials {pm(x)}2m=1.
Firstly, we consider a large stencil S0 = {Ii−1, Ii , Ii+1} and two small stencils S1 =

{Ii−1, Ii }, S2 = {Ii , Ii+1}. A quartic polynomial p0(x) is reconstructed by a Hermite recon-
struction on S0, satisfying

1

�x

∫

Ik
p0(x)dx = ūk, k = i −1, i, i +1,

1

�x

∫

Ik
p0(x)

x − xk
�x

dx = v̄k, k = i −1, i +1.

(2.5)
Two linear polynomials {pm(x)}2m=1 are obtained by a linear reconstruction based on S1 and
S2, respectively, having

1

�x

∫

Ik
p1(x)dx = ūk, k = i − 1, i; 1

�x

∫

Ik
p2(x)dx = ūk, k = i, i + 1. (2.6)

Then we rewrite p0(x) as

p0(x) = γ0

(
1

γ0
p0(x) − γ1

γ0
p1(x) − γ2

γ0
p2(x)

)
+ γ1 p1(x) + γ2 p2(x), γ0 �= 0. (2.7)

To ensure the next WENO procedure stable, {γm}2m=0 are positive with
∑2

m=0 γm = 1.
Step 2. Compute smoothness indicators {βm}2m=0 to measure the level of smoothness for

the functions {pm(x)}2m=0 in the cell Ii , which is defined as in the classical WENO scheme
[20], satisfying

βm =
r∑

l=1

∫

Ii
�x2l−1

(
dl pm(x)

dxl

)2

dx, m = 0, 1, 2, (2.8)

where r is the degree of the polynomials pm(x). Let pm(x) =
r∑

l=0
cm,l(

x−xi
�x )l , the explicit

expressions of the smoothness indicators are
⎧⎨
⎩

β0 =(c0,1 + 1

4
c0,4)

2 + 13

3
(c0,2 + 63

130
c0,4)

2 + 781

20
c20,3 + 1421461

2275
c20,4,

βm =c2m,1, m = 1, 2,
(2.9)

where the coefficients of the polynomials {pm(x)}2m=0 are listed in Appendix A.
Step 3.Compute nonlinear weights based on linear weights and smoothness indicators. As

in the WENO scheme of Zhu and Qiu (WENO-ZQ) [51], we also introduce a new parameter
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τ to measure the absolute difference between β0, β1 and β2 as

τ =
( |β0 − β1| + |β0 − β2|

2

)2

. (2.10)

Differently, we add the integral average values of solutions into the original definition of
the nonlinear weights as the finite difference scale-invariant WENO scheme [9], that is uave,
having

ωm = ω̃m

ω̃0 + ω̃1 + ω̃2
, with ω̃m = γm(1 + τ

βmu2ave + εu4ave
), m = 0, 1, 2, (2.11)

where ε is set as 10−8 for avoiding zero denominator, and uave =
∑3

l=1 |ul |
3 + μ0, and μ0 is

set as 10−40 based on the suggestion of the scale-invariant WENO scheme [9]. The literature
[9] mainly focused on the influence of ε on the scale in the denominator, while we further
consider τ and βm to eliminate the influence of scale. It is worth mentioning that the new
proposed nonlinear weights (2.11) are scale-invariant when assuming μ0 = 0, since the
function u and its non-zero multiple ζu have the same ω̃m on the same cells.

Remark 2.1 The original ω̃m is defined as γm(1+ τ
βm+ε

) for theWENOandHWENOschemes
with artificial linear weights [46, 51], which is also a special case of the formula (2.11) when
uave = 1. However, the original nonlinear weight in [46, 51] depends on the scale of functions

as its ω̃m is γm(1 + ζ 4τ

βmζ 2+ε
) for the function ζu, and this scale-dependent nonlinear weight

has obvious impacts on the simulations of problems with different scales, as demonstrated
in Examples 3.5 and 3.12. Adding uave in (2.11) is actually a normalization procedure for
the nonlinear weights, and it will not destroy the properties of original one, such as the
accuracy and resolution, as uave is of orderO(1). Besides, the formula (2.11) is still suitable
when uave = μ0, that is ūi−1 = ūi = ūi+1 = 0, where the solution is smooth in the
target cell and the nonlinear weights will degenerate to linear weights simultaneously. We
use the Lax problem in Example 3.5 and the double Mach reflection problem in Example
3.10 with quite small and large scales to illustrate the ability of the scale-invariant nonlinear
weights, while more detailed analysis processes and numerical presentations can be seen in
the finite difference scale-invariant WENO scheme [9]. Besides, it is worth mentioning that
the proposedHWENO schemewith the original definition of ω̃m in [46, 51] canwell simulate
the numerical tests with normal scales in this paper, but the scale-invariant nonlinear weights
are more reasonable and robust in practice.

Finally, through replacing a part of linear weights in (2.7) by the nonlinear weights (2.11),
we obtain a nonlinear HWENO reconstructed polynomial ui (x) for u(x). Additionally, a
high order modification v̂i for the first-order moment v̄i is obtained using the same pm(x),
γm , and ωm simultaneously, which is only used in the next time discretization, having

⎧
⎨
⎩
ui (x) = ω0

(
1
γ0
p0(x) − γ1

γ0
p1(x) − γ2

γ0
p2(x)

)
+ ω1 p1(x) + ω2 p2(x),

v̂i = 1
�x

∫
Ii
ui (x)

x−xi
�x dx = ω0

(
1
γ0
q0 − γ1

γ0
q1 − γ2

γ0
q2

)
+ ω1q1 + ω2q2,

(2.12)

where qm = 1
�x

∫
Ii
pm(x) x−xi

�x dx , m = 0, 1, 2. Then, the required Gauss-Lobatto point
values are evaluated by

u+
i− 1

2
= ui (xi− 1

2
), u

i±
√
5

10
= ui (xi±

√
5

10
), u−

i+ 1
2

= ui (xi+ 1
2
).

Step 4. Time discretizations for the semi-discrete scheme (2.3).
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To construct a stable scheme, we modify the first-order moments in time discretizations
as the Lax-Friedrichs scheme [22] on the basis of the third-order SSP RK method [35], then,
the fully-discrete one-dimensional HWENO-U scheme for Eq. (2.3) is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ū(1)
i

v̄
(1)
i

]
=

[
ūni
v̂ni

]
+ �t

[F1
i (ūn, v̄n)

F2
i (ūn, v̄n)

]
,

[
ū(2)
i

v̄
(2)
i

]
= 3

4

[
ūni
v̂ni

]
+ 1

4
(

[
ū(1)
i

v̂
(1)
i

]
+ �t

[F1
i (ū(1), v̄(1))

F2
i (ū(1), v̄(1))

]
),

[
ūn+1
i

v̄n+1
i

]
= 1

3

[
ūni
v̂ni

]
+ 2

3
(

[
ū(2)
i

v̂
(2)
i

]
+ �t

[F1
i (ū(2), v̄(2))

F2
i (ū(2), v̄(2))

]
),

(2.13)

where v̂ni , v̂
(1)
i and v̂

(2)
i represent the high order modification of v̄ni , v̄

(1)
i and v̄

(2)
i , respectively,

obtained by the formula (2.12). This modified time discretization has also been used in the
finite difference HWENO schemes [11, 44] based on the solution and its derivatives, but
these two schemes are unable to utilize unified stencils in the spatial discretizations and the
modification of vi .

Remark 2.2 The proposed HWENO-U scheme shares a common feature with the OF-
HWENO scheme presented in [47], as both utilize only one set of stencils for the
reconstruction of specific points. Compared to the HWENO-U scheme, the OF-HWENO
scheme can achieve higher sixth-order accuracy and requires less storage since it relies solely
on cell averages and first-order moments. Nevertheless, a limitation of the OF-HWENO
method is the presence of an empirical, problem-specific parameter ωd within its damping
terms. The suggested values for ωd , as detailed in [47], are given for addressing conventional
problems using the Runge-Kutta (RK)method for temporal discretization.When facingmore
complex and severe cases, like the 1DSedov problem characterized by extremely low internal
energy and intense shock waves, the method can produce excessively rigid damping terms,
necessitating significantly reduced time steps. For such instances, alternative approaches
such as the exponential Runge-Kutta (ERK) method [19] for temporal discretization may
be more appropriate. However, the optimal range for ωd varies between the ERK and RK
methods. Identifying suitable parameters through numerical experimentation is essential, yet
establishing a universal set of empirical parameters for diverse extreme conditions remains
a formidable challenge.

Fig. 1 Comparison of implementation processes
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Remark 2.3 The major difference of the proposed HWENO-U scheme from previous
HWENOscheme [38, 45, 46] is to only use one set of stencils for the reconstruction of specific
points and the modification of the first-order moments in Eq. (2.12), while the HWENO-M
scheme [46] had to use two different sets of stencils in two sequential HWENO procedures,
observed in Fig. 1 visually. Due to the calculation of smoothness indicators in Eq. (2.9), the
computational cost is very high for more than one HWENO procedure in the HWENO-M
scheme. Hence, the HWENO-U scheme is simpler and more efficient than the HWENO-M
scheme. Moreover, the HWENO-U scheme also inherits the robustness of the HWENO-M
scheme for the modified first-order moments are still used and acted on the time discretiza-
tions (2.13).

2.2 Two-Dimensional Case

Consider two-dimensional scalar hyperbolic conservation laws
{
ut + f (u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).
(2.14)

For simplicity, we also consider a uniform partition of a given domain [a, b] × [c, d] with
computational cells Ii, j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] for i = 1, . . . , Nx , j = 1, . . . , Ny .

The mesh sizes are �x = xi+ 1
2

− xi− 1
2
and �y = y j+ 1

2
− y j− 1

2
, and (xi , y j ) is the

center of the cell Ii, j with xi = 1
2 (xi− 1

2
+ xi+ 1

2
) and y j = 1

2 (y j− 1
2

+ y j+ 1
2
). Define

Ii = [xi− 1
2
, xi+ 1

2
] and I j = [y j− 1

2
, y j+ 1

2
]. After multiplying the equation (2.14) by a test

function φ(x, y) ∈ span{ 1
�x�y ,

x−xi
(�x)2�y

,
y−y j

�x(�y)2
}, integrating over the cell Ii, j , and using

the integration by parts, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dūi, j (t)

dt
= − 1

�x�y

∫

I j

[
f
(
u(xi+ 1

2
, y, t)

)
− f

(
u(xi− 1

2
, y, t)

)]
dy

− 1

�x�y

∫

Ii

[
g
(
u(x, y j+ 1

2
, t)

)
− g

(
u(x, y j− 1

2
, t)

)]
dx,

dv̄i, j (t)

dt
= − 1

2�x�y

∫

I j

[
f
(
u(xi− 1

2
, y, t)

)
+ f

(
u(xi+ 1

2
, y, t)

)]
dy

+ 1

(�x)2�y

∫

Ii, j
f (u)dxdy

− 1

�x�y

∫

Ii

[
g
(
u(x, y j+ 1

2
, t)

)
− g

(
u(x, y j− 1

2
, t)

)] (x − xi )

�x
dx,

dw̄i, j (t)

dt
= − 1

�x�y

∫

I j

[
f
(
u(xi+ 1

2
, y, t)

)
− f

(
u(xi− 1

2
, y, t)

)] (y − y j )

�y
dy

− 1

2�x�y

∫

Ii

[
g
(
u(x, y j− 1

2
, t)

)
+ g

(
u(x, y j+ 1

2
, t)

)]
dx

+ 1

�x(�y)2

∫

Ii, j
g(u)dxdy,

(2.15)

where ūi, j (t) � 1
�x�y

∫
Ii, j

u(x, y, t)dxdy, v̄i, j (t) � 1
�x�y

∫
Ii, j

u(x, y, t) x−xi
�x dxdy and

w̄i, j (t) � 1
�x�y

∫
Ii, j

u(x, y, t)
y−y j
�y dxdy are the zeroth-order moment (cell-average), the
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first-order moment in the x-direction and the first-order moment in the y-direction, respec-
tively.

Let {x̂Gi }3G=1 and {ŷGj }3G=1 denote threeGauss points in the intervals Ii and I j , respectively,

and {ω̂G}3G=1 are the weights of Gauss quadrature formula on a interval [− 1
2 ,

1
2 ], i.e.,

x̂1i = x
i−

√
15
10

, x̂2i = xi , x̂3i = x
i+

√
15
10

, ŷ1j = y
j−

√
15
10

, ŷ2j = y j , ŷ3j = y
j+

√
15
10

,

with the normalized weights ω̂1,3 = 5
18 and ω̂2 = 4

9 . We use the Gauss quadrature formula to
approximate the integral termsover Ii , I j and Ii, j , and applyhighorderLax-Friedrichs numer-
ical fluxes to reconstruct the values of flux functions f (u(xi+ 1

2
, y, t)) and g(u(x, y j+ 1

2
, t))

at specified points, then a conservative semi-discrete scheme is defined as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dūi, j
dt

= − 1

�x

3∑
G=1

ω̂G( f̂i+ 1
2 ,G − f̂i− 1

2 ,G) − 1

�y

3∑
G=1

ω̂G(ĝG, j+ 1
2

− ĝG, j− 1
2
),

dv̄i, j
dt

= − 1

2�x

3∑
G=1

ω̂G( f̂i− 1
2 ,G + f̂i+ 1

2 ,G) + 1

�x

3∑
G=1

3∑
H=1

ω̂G ω̂H f (u(x̂Gi , ŷHj ))

− 1

�y

3∑
G=1

ω̂G
x̂Gi − xi

�x
(ĝG, j+ 1

2
− ĝG, j− 1

2
),

dw̄i, j

dt
= − 1

�x

3∑
G=1

ω̂G
ŷGj − y j

�y
( f̂i+ 1

2 ,G − f̂i− 1
2 ,G) − 1

2�y

3∑
G=1

ω̂G(ĝG, j− 1
2

+ ĝG, j+ 1
2
)

+ 1

�y

3∑
G=1

3∑
H=1

ω̂G ω̂Hg(u(x̂Gi , ŷHj )),

(2.16)
where ūi, j , v̄i, j and w̄i, j are the numerical approximations of ūi, j (t), v̄i, j (t) and w̄i, j (t),
respectively. The numerical fluxes f̂i+ 1

2 ,G and ĝG, j+ 1
2
are used to approximate the values

of f (u(xi+ 1
2
, y, t)) and g(u(x, y j+ 1

2
, t)) at the points {x̂Gi }3G=1 and {ŷGj }3G=1, respectively,

defined as

f̂i+ 1
2 ,G = 1

2

[
f (u−

i+ 1
2 ,G

) + f (u+
i+ 1

2 ,G
) − α1(u

+
i+ 1

2 ,G
− u−

i+ 1
2 ,G

)

]
,

ĝG, j+ 1
2

= 1

2

[
g(u−

G, j+ 1
2
) + g(u+

G, j+ 1
2
) − α2(u

+
G, j+ 1

2
− u−

G, j+ 1
2

]
,

with α1 = max
u

| f ′(u)| and α2 = max
u

|g′(u)|. {u±
i+ 1

2 ,G
}3G=1 and {u±

G, j+ 1
2
}3G=1 are

the approximations of the numerical solution u(x, y) at the points {(xi+ 1
2
, ŷGj )}3G=1 and

{(x̂Gi , y j+ 1
2
)}3G=1, respectively. Here, the superscribes “ − " and “ + " of {u±

i+ 1
2 ,G

}3G=1 rep-

resent the limits from the left and right sides of u(x, y) at the interface xi+ 1
2
, respectively.

Similarly, the superscribes “−" and “+" of {u±
G, j+ 1

2
}3G=1 indicate the limits from the bottom

and top sides of u(x, y) at the interface y j+ 1
2
, respectively.

The equations (2.16) also can be expressed as the semi-discrete form of the P1(Ii, j ) DG
finite element method. However, for moment-based HWENO schemes, a Hermite recon-
struction is used to approximate {u±

i∓ 1
2 ,G

}3G=1, {u±
G, j∓ 1

2
}3G=1 and {u(x̂Gi , ŷHj )}3G,H=1 based
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on the zeroth- and first-order moments in the cells {Ii−1, j−1, Ii, j−1, Ii+1, j−1, Ii−1, j , Ii, j ,
Ii+1, j , Ii−1, j+1, Ii, j+1, Ii+1, j+1}. To simplify the representation, we rebel the cell Ii, j and its
adjacent cells as I1, ..., I9, e.g., Ii, j � I5. Let {ūk, v̄k, w̄k} denote the zeroth- and first-order
moments of the cell Ik , e.g., {ūi, j � ū5, v̄i, j � v̄5, w̄i, j � w̄5}.

Similar to the one-dimensional case for utilizing unified stencils to construct a stable
scheme, the first-order moments v̄5 and w̄5 in the central mesh are no longer used in spatial
reconstructions. Instead, their high order modified terms v̂5 and ŵ5 are also obtained by
using the same information from the spatial reconstructions and incorporated only into time
discretizations. Next, wewill provide the detailed reconstructed procedures for u(x, y) at spe-
cific points and the modified terms v̂5, ŵ5, based on the values {ū1, . . . , ū9, v̄k, w̄k}k=2,4,6,8.

Step 1. Reconstruct a quartic polynomial p0(x, y) and four linear polynomials
{pm(x, y)}4m=1.

Firstly, we consider a big stencil S0 and four small stencils {Sm}4m=1 shown in Fig. 2.
Here, we use the values {ū1, . . . , ū9, v̄k, w̄k}k=2,4,6,8, {ūk}k=2,4,5, {ūk}k=2,5,6, {ūk}k=4,5,8,
and {ūk}k=5,6,8 in the stencils {Sm}4m=0, respectively, then, a quartic polynomial p0(x, y) ∈
P4(Ii, j ) is obtained by a Hermite reconstruction based on S0, satisfying

1

�x�y

∫

Ik
p0(x, y)dxdy = ūk, k = 1, ..., 9,

1

�x�y

∫

Ik
p0(x, y)

x − xk
�x

dxdy = v̄k, k = 2, 4, 6, 8,

1

�x�y

∫

Ik
p0(x, y)

y − yk
�y

dxdy = w̄k, k = 2, 4, 6, 8,

(2.17)

and four linear polynomials {pm(x, y)}4m=1 ∈ P1(Ii, j ) are obtained by a linear reconstruc-
tion, satisfying

1

�x�y

∫

Ik
pm(x, y)dxdy = ūk,

for

m = 1, k = 2, 4, 5; m = 2, k = 2, 5, 6;
m = 3, k = 4, 5, 8; m = 4, k = 5, 6, 8.

The quartic polynomial p0(x, y) can be uniquely determined by requiring it to exactly match
{ū1, . . . , ū9, v̄4, v̄6, w̄2, w̄8} with the least square methodology in [18, 46], while the four
polynomials {pm(x, y)}4m=1 can be directly obtained by solving 3 × 3 linear systems.

Still, p0(x, y) can be written as

p0(x, y) = γ0

(
1

γ0
p0(x, y) −

4∑
m=1

γm

γ0
pm(x, y)

)
+

4∑
m=1

γm pm(x, y), γ0 �= 0, (2.18)

where {γm}4m=0 also are arbitrary positive linear weights with
∑4

m=0 γm=1.
Step 2. Compute the smoothness indicators of {pm(x, y)}4m=0 by the definition as in [18,

46], given by

βm =
r∑

|l|=1

|Ii, j ||l|−1
∫

Ii, j

(
∂ |l|

∂xl1∂ yl2
pm(x, y)

)2

dxdy, m = 0, ..., 4, (2.19)
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Fig. 2 The big stencil S0, small stencils {Sm }4m=1 and their respective labels

where l = (l1, l2), |l| = l1+l2 and r is the degree of pm(x, y). Similar to the one-dimensional

case, let pm(x, y) =
r∑

n=0
cm,nφn(x, y), where the basis functions φn(x, y) are defined as

φ0 = 1, φ1 = ξi , φ2 = η j , φ3 = ξ2i , φ4 = ξiη j , φ5 = η2j , φ6 = ξ3i , φ7 = ξ2i η j ,

φ8 = ξiη
2
j , φ9 = η3j , φ10 = ξ4i , φ11 = ξ3i η j , φ12 = ξ2i η2j , φ13 = ξiη

3
j , φ14 = η4j ,
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with ξi = x−xi
�x and η j = y−y j

�y . Then the explicit expression of the smoothness indicators
are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 =1

2
(c0,1 + 1

2
c0,6)

2 + 1

2
(c0,1 + 1

6
c0,8)

2 + 1

2
(c0,2 + 1

6
c0,7)

2 + 1

2
(c0,2 + 1

2
c0,9)

2

+ 13

6
(c0,3 + 63

65
c0,10)

2 + 13

6
(c0,3 + 1

6
c0,12)

2 + 7

12
(c0,4 + 17

35
c0,11)

2

+ 7

12
(c0,4 + 17

35
c0,13)

2 + 13

6
(c0,5 + 1

6
c0,12)

2 + 13

6
(c0,5 + 63

65
c0,14)

2

+ 3119

80
(c0,6 + 5

9357
c0,8)

2 + 3379

720
(c0,7 + 15

3379
c0,9)

2 + 2634769

561420
c20,8

+ 2634769

67580
c20,9 + 5676583

9100
(c0,10 + 3185

11353166
c0,12)

2 + 709573

16800
(c0,11

+ 1155

709573
c0,13)

2 + 230094013357

12261419280
(c0,12 + 2145748374

230094013357
c0,14)

2

+ 31468281769

745051650
c20,13 + 25118160529227568

40266452337475
c20,14,

βm = c2m,1 + c2m,2, m = 1, 2, 3, 4,
(2.20)

where the coefficients of the polynomials {pm(x)}4m=0 are listed in Appendix A.
Step 3. Compute nonlinear weights based on linear weights and smoothness indicators.

Similar to the one-dimensional case, we also use a parameter τ to measure the overall dif-
ference between {βm}4m=0,

τ =
( |β0 − β1| + |β0 − β2| + |β0 − β3| + |β0 − β4|

4

)2

, (2.21)

then we compute the nonlinear weights by

ωm = ω̃m

ω̃0 + . . . + ω̃4
, with ω̃m = γm(1 + τ

βmu2ave + εu4ave
), m = 0, . . . , 4, (2.22)

where uave =
∑9

l=1 |ul |
9 + μ0, where μ0 is set as 10−40 based on the suggestion of the scale-

invariant WENO scheme [9], and ε = 10−8 is to avoid zero denominator. The nonlinear
weights also preserve the scale-invariant property for adding uave, while the original formu-
lation employed in the WENO and HWENO schemes with artificial linear weights [46, 51]
(the special case of uave = 1 in Eq. (2.22)) lacks this fundamental property. Consequently,
the original definition for the nonlinear weights in [46, 51] leads to noticeable oscillations
when simulating the Sedov blast wave problem, as exhibited in Example 3.12.

Finally, by replacing a part of the linear weights in (2.18) by the nonlinear weights (2.22),
a nonlinear HWENO reconstructed polynomial ui, j (x, y) is obtained for u(x, y). Also, using
the same polynomials, linear and nonlinear weights, the high order modification v̂i, j for the
first-order moment v̄i, j and the high order modification ŵi, j for the first-order moment w̄i, j

are obtained simultaneously, but the modified values are only used in the following time
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discretizations, having
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui, j (x, y) = ω0

(
1
γ0
p0(x, y) −

4∑
m=1

γm
γ0

pm(x, y)

)
+

4∑
m=1

ωn pm(x, y),

v̂i, j = 1
�x�y

∫
Ii, j

ui, j (x, y)
x−xi
�x dxdy = ω0

(
1
γ0
qv
0 −

4∑
m=1

γm
γ0
qv
m

)
+

4∑
m=1

ωmqv
m,

ŵi, j = 1
�x�y

∫
Ii, j

ui, j (x, y)
y−y j
�y dxdy = ω0

(
1
γ0
qw
0 −

4∑
m=1

γm
γ0
qw
m

)
+

4∑
m=1

ωmqw
m ,

(2.23)
where qv

m = 1
�x�y

∫
Ii, j

pm(x, y) x−xi
�x dxdy and qw

m = 1
�x�y

∫
Ii, j

pm(x, y)
y−y j
�y dxdy. Then,

the values at specific points that we need are computed as below:

u∓
i± 1

2 ,G
= ui, j (xi± 1

2
, ŷGj ), u∓

G, j± 1
2

= ui, j (x̂
G
i , yi± 1

2
), u(x̂Gi , ŷHj ) = ui, j (x̂

G
i , ŷHj ),

G, H = 1, 2, 3.

Step 4. Time discretizations for the semi-discrete scheme (2.16).
As in the one-dimensional case, the modified third-order SSP RK method (2.13) is also

used to solve the two-dimensional semi-discrete scheme (2.16). Differently, the involved
variables are (ui, j , vi, j , wi, j ). Also, the modified terms v̂i, j and ŵi, j are treated solely as
time stage values, and they are obtained by the formula (2.23).

Remark 2.4 For one- and two-dimensional compressible Euler equations, the HWENO pro-
cedures are used in cooperation with the local characteristic decomposition to avoid spurious
oscillations, which is similar to the classical WENO scheme [20]. Besides, the computation
of uave in (2.11) and (2.22) is also implemented in the local characteristic direction for uave

relies on the reconstructed variable.

2.3 Stability Analysis

In this subsection, we present the stability analysis for the proposed HWENO-U scheme by
the Fourier analysis method. This potent technique for stability analysis depends heavily on
the assumption of uniform meshes and periodic boundary conditions. Additionally, it is only
effective for the linear scheme used to solve a scalar linear equation.

For simplicity of analysis, we consider the one-dimensional linear equation

ut + aux = 0, x ∈ [0, 2π ], t > 0, (2.24)

with constant coefficient a. Assume a = 1, then the semi-discrete finite volume HWENO
scheme (2.3) reads ⎧

⎪⎪⎨
⎪⎪⎩

dūi
dt

= − 1

�x
(u−

i+ 1
2

− u−
i− 1

2
),

dv̄i
dt

= − 1

2�x
(u−

i− 1
2

+ u−
i+ 1

2
) + 1

�x
ūi .

(2.25)

Here, we first use the moments {ūi−1, ūi , ūi+1, v̄i−1, v̄i+1} to reconstruct u−
i+ 1

2
linearly, e.g.,

u−
i+ 1

2
= 269

456 ūi−1 + 7
12 ūi − 79

456 ūi+1 + 177
76 v̄i−1 + 63

76 v̄i+1. Substituting u−
i+ 1

2
into equations

(2.25) gives
dui
dt

= 1

�x
(Aui−2 + Bui−1 + Cui + Dui+1), (2.26)
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where ui = (ūi , v̄i )T, A, B, C and D are 2 × 2 constant matrices given by

A =
[− 79

456 − 63
76

79
912

63
152

]
,B =

[ 115
152

63
76− 187

912
63
152

]
,C =

[ 1
152 − 177

76
377
912

177
152

]
,D =

[− 269
456

177
76− 269

912
177
152

]
.

For the stability of scheme (2.25), we have the following conclusions.

Theorem 2.1 Combining the semi-discrete HWENO scheme (2.25) with either the stand
forward Euler or third-order SSP RK time discretization [35], the resulting schemes are both
unconditionally linear unstable.

Proof The semi-discrete HWENO scheme (2.25) with the forward Euler time method is

un+1
i = uni + �t

�x
(Auni−2 + Buni−1 + Cuni + Duni+1), (2.27)

To apply the von-Neumann analysis, we have an assumption on the solution

uni = ûneσ ik�x , (2.28)

where σ is the imaginary unit satisfying σ 2 = −1, and k is the wave number. We expect that

un+1
i = ûn+1eσ ik�x , (2.29)

where ûn+1 = G1û
n and G1 is the amplification matrix. Substituting (2.28) and (2.29) into

(2.26) gives

G1 = I + �t

�x
G̃, (2.30)

where G̃ = Ae−2σK + Be−σK + C + DeσK , K = k�x ∈ [0, 2π] is a simplified wave
number. According to the von-Neumann stability analysis of Section 2.2 in [37], the nec-
essary condition of stability for the scheme (2.27) is the spectral radius ρ(G1) ≤ 1,∀K ∈
[0, 2π],�t > 0. However, we can see from the left of Fig. 3 that this condition is violated,

Fig. 3 The polar plot of the amplification matrix
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e.g., ρ(G1) ≈ 1 + 3.158E-12 > 1 for �t
�x = 1.0E-12. Therefore, the scheme (2.27) is

unstable. Similarly, when combining the third-order SSP RK method [35], the amplification
matrix of the resulting HWENO scheme is

G3 = 1

3
I + 1

2
(I + �t

�x
G̃)I + 1

6
(I + �t

�x
G̃)3. (2.31)

Obviously, the spectral radius ρ(G3) > 1 in this case for the third-order RK method that
is a convex combination of forward Euler methods, indicating that the resulting scheme is
unconditionally linear unstable. 
�

Notice that the first-order moment v̄i is not used to approximate u−
i+ 1

2
in the spatial

discretizations of the scheme (2.25), which makes the two fully-discrete schemes above
unstable. However, we find that by combining the high order modification of the first-order
moments in the time discretizations, the new fully-discrete HWENO scheme becomes stable
even though the same saptial discretizations are employed. The provable process is presented
below.

Theorem 2.2 When using the modified third-order SSP RK time time discretization (2.13) to
solve the scheme (2.25), the necessary condition of stability for the resulting HWENO scheme
is 0 < �t

�x � 0.824.

Proof Firstly, by employing the high order modification of the first-order moment, we utilize
the modified forward Euler time-marching method to resolve the scheme (2.25), namely,

un+1
i =

[
ūni
v̂ni

]
+ �t

�x
(Auni−2 + Buni−1 + Cuni + Duni+1), (2.32)

where v̂ni = 5
76 (ū

n
i+1−ūni−1)− 11

38 (v̄
n
i+1+v̄ni−1). Through applying the von-Neumann analysis,

we obtain the amplification matrix Ĝ1 = Â + �t
�x G̃ with

Â =
[

1 0
5
76 (e

σ i K − e−σ i K ) − 11
38 (e

σ i K + e−σ i K )

]
.

Similarly, when using the modified third-order SSP RK time discretization (2.13), the
amplification matrix becomes

Ĝ3 = 1

3
Â + 1

2
(Â + �t

�x
G̃)Â + 1

6
(Â + �t

�x
G̃)3. (2.33)

The polar plot of spectral radius ρ(Ĝ3) is presented in the right of Fig. 3 for the HWENO-U
scheme with different CFL numbers. Therefore, the necessary condition of stability for the
resulting HWENO scheme is ρ(Ĝ3) ≤ 1, which is equivalent to 0 < �t

�x � 0.824. This value
can be numerically determined by sampling 10000 points for K ∈ [0, 2π]. 
�
Remark 2.5 Based on above discussions, we employ the modified first-order moments for
all cells, which are used exclusively in time discretizations to maintain the stability of the
HWENO-U scheme. Differently, themodification of first-ordermoments was used only at the
troubled-cell for the hybridHWENO-Mscheme [46],where theKXRCF troubled-cell indica-
tor was used to identify the discontinuities firstly. Then, the hybrid HWENO-M scheme used
linear reconstructions at the interface points of smooth regions and applied the more compu-
tationally intensiveHWENOmethod at the interface points of discontinuities. To ensure a fair
comparison, we do not use the troubled-cell indicator to identify discontinuities but modify
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the first-order moment at all cells on the basis of the hybrid HWENO-M scheme [46], termed
as the HWENO-M scheme in this paper. Certainly, the idea of the hybrid technique can also
be applied to the HWENO-U scheme, but this is not the focus of our study. The primary
concern in this paper is to maintain consistency in the nonlinear HWENO reconstructions
using unified stencils.

3 Numerical Tests

In this section, we present the numerical results of the benchmark and extreme exam-
ples to verify the fifth-order accuracy, efficiency, high resolution, and robustness of the
proposed HWENO-U scheme. For comparisons, wemainly consider the proposed HWENO-
U, HWENO-M [46], and WENO-ZQ [51, 53] schemes since the three schemes have the
fifth-order accuracy and use arbitrary positive linear weights in spatial reconstructions. Par-
ticularly, the results of theWENO-ZQ scheme are computed by the methods of the structured
finite volume version [51] and the unstructured finite volume version [53] in the one- and
two-dimensional cases, respectively. For the HWENO-U scheme, the linear weights of the
low-degree polynomials are set as 1/400 both in one- and two-dimensional cases, and the
remaining linear weight is assigned to the high-degree polynomial, ensuring that their sum
equals one. For fair comparisons, the linear weights of the HWENO-M and WENO-ZQ
schemes are chosen as they suggested from [46, 51, 53]. Note that the optimal selection
of linear weights varies for achieving high-resolution and essential non-oscillation simulta-
neously in the three schemes. Besides, a positivity-preserving (PP) limiter will be used to
improve the robustness of theHWENO-UandHWENO-Mschemes in some two-dimensional
extreme problems. If not, the two schemes cannot work since negative densities or pressures
will arise, and we refer to [3, 10] for the PP researches of finite volume HWENO schemes.
The CFL number is set as 0.6. To compare the computational cost, we utilize the program-
ming language Fortran 95 to execute our simulations on the environment of Inter(R) Xeon
(R) Gold 6130 CPU @ 2.10 GHz.

3.1 Accuracy Tests

In this subsection, we first verifies the fifth-order accuracy of the HWENO-U scheme. Then,
the comparisons of computational costs and errors for the HWENO-U, HWENO-M and
WENO-ZQ schemes are presented to demonstrate that the HWENO-U scheme behaves
better performances than the other two schemes. To avoid the machine error of too little
computational time, we take the average time of multi-calculations as the final CPU time
in Examples 3.1–3.3. To have a fair comparison, the WENO-ZQ scheme uses a true two-
dimensional reconstruction as in [53] instead of the dimensional-by-dimensional approach
[51] in the two-dimensional case, since the HWENO-U scheme uses a true two-dimensional
reconstruction too. Differently, the WENO-ZQ scheme uses a wider stencil to reconstruct a
bivariate quartic polynomial.

Example 3.1 We solve the one-dimensional nonlinear Burgers’ equation

ut +
(
u2

2

)

x
= 0, 0 < x < 2,

with periodic boundary conditions up to the time T = 0.5/π when the solution is still smooth.
The initial condition is u(x, 0) = 0.5 + sin(πx). The numerical errors and CPU time of the
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Table 1 Example 3.1.
One-dimensional Burgers’
equation: L∞ and L1 errors,
orders and CPU time of the
HWENO-U, HWENO-M, and
WENO-ZQ schemes

Meshes L∞ error Order L1 error Order CPU

HWENO-U

40 2.70E−04 – 2.25E−05 – 7.77E−04

80 2.16E−06 6.97 1.99E−07 6.82 5.49E−03

120 2.99E−07 4.87 2.33E−08 5.29 1.91E−02

160 7.13E−08 4.99 5.32E−09 5.13 4.87E−02

200 2.32E−08 5.03 1.74E−09 4.99 1.02E−01

240 9.28E−09 5.04 6.97E−10 5.03 1.90E−01

HWENO-M

40 8.25E−05 – 1.81E−05 – 1.18E−03

80 2.31E−06 5.16 2.13E−07 6.41 8.40E−03

120 3.23E−07 4.86 2.53E−08 5.25 2.89E−02

160 7.70E−08 4.98 5.77E−09 5.13 7.35E−02

200 2.51E−08 5.02 1.89E−09 5.00 1.56E−01

240 1.01E−08 5.02 7.58E−10 5.02 2.90E−01

WENO-ZQ

40 4.78E−04 – 5.55E−05 – 5.35E−04

80 2.45E−05 4.29 1.98E−06 4.81 3.68E−03

120 3.56E−06 4.75 2.76E−07 4.86 1.27E−02

160 8.71E−07 4.90 6.66E−08 4.95 3.21E−02

200 2.88E−07 4.96 2.22E−08 4.93 6.73E−02

240 1.17E−07 4.93 8.95E−09 4.98 1.25E−01

Fig. 4 Comparison of L∞, L1 errors and CPU time for Example 3.1

HWENO-U, HWENO-M, and WENO-ZQ schemes are presented in Table 1, which shows
the schemes all achieve the fifth-order accuracy. More explicitly, with denser meshes (e.g.,
≥ 200), the CPU time ratio of HWENO-U/WENO-ZQ is about 1.516, whereas the L1 error
ratio is around 1/12.800, and the CPU time ratio of HWENO-M/WENO-ZQ is around 2.319,
but the L1 error ratio is almost 1/11.777. Since the product of the CPU time ratio and error
ratio is less than 1, it shows that the HWENO schemes are more precise than the WENO-ZQ
scheme at the same CPU cost. More intuitively, we can see it from Fig. 4 that the HWENO-U
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Table 2 Example 3.1. L∞ and
L1 errors, and orders of the
HWENO-U scheme for the
first-order moment

Meshes L∞ error Order L1 error Order

40 4.32E−05 – 5.68E−06 –

80 9.33E−07 5.53 6.44E−08 6.46

120 1.18E−07 5.11 7.49E−09 5.31

160 2.72E−08 5.10 1.69E−09 5.17

200 8.22E−09 5.36 5.28E−10 5.22

240 3.37E−09 4.89 2.13E−10 4.97

scheme is more efficient than the HWENO-M and WENO-ZQ schemes. Besides, we also
present the numerical errors and orders of the first-order moments for the HWENO-U scheme
in Table 2, which demonstrates that modifying the first-order moments in the time level does
not destroy their final accuracy.

Example 3.2 We solve one-dimensional compressible Euler equations

∂

∂t

⎡
⎣

ρ

ρμ

E

⎤
⎦ + ∂

∂x

⎡
⎣

ρμ

ρμ2 + p
μ(E + p)

⎤
⎦ = 0,

where ρ is the density,μ is the velocity, E is the total energy and p is the pressure. The initial
condition is (ρ, μ, p, γ ) = (1 + 0.2 sin(πx), 1, 1, 1.4) on the domain [0, 2] with periodic
boundary conditions. The final time is T = 2, and the exact solutions are (ρ, μ, p) = (1 +
0.2 sin(π(x − T )), 1, 1). The numerical errors and CPU time of the HWENO-U, HWENO-
M, andWENO-ZQ schemes are presented in Table 3, illustrating the schemes all achieve the
fifth-order accuracy. More explicitly, on the denser meshes (e.g., ≥ 200), the CPU time ratio
of HWENO-U/WENO-ZQ is about 1.711, whereas the L1 error ratio is around 1/11.871,
and the CPU time ratio of HWENO-M/WENO-ZQ is around 2.488, but the L1 error ratio
is almost 1/11.904. These data demonstrates that at the same CPU cost, the HWENO-U
scheme is more accurate than the HWENO-M and WENO-ZQ schemes, which also can be
more intuitively observed from Fig. 5.

Example 3.3 We consider two-dimensional nonlinear Burgers’ equation

ut +
(
u2

2

)

x
+

(
u2

2

)

y
= 0, 0 < x < 4, 0 < y < 4,

with the initial conditionu(x, y, 0) = 0.5+sin(π(x+y)/2) andperiodic boundary conditions
in x and y directions. Up to the final time T = 0.5/π , the solution is still smooth. The
L∞ and L1 norms of numerical errors and CPU time of the HWENO-U, HWENO-M and
WENO-ZQ schemes are shown in Table 4, illustrating that the three schemes achieve the
fifth-order accuracy. More explicitly, with denser meshes (e.g., ≥ 200), the CPU time ratio
of HWENO-U/WENO-ZQ is about 1.312, whereas the L1 error ratio is around 1/59.905,
and the CPU time ratio of HWENO-M/WENO-ZQ is around 1.601, but the L1 error ratio
is almost 1/75.842. This data shows that the HWENO-U scheme is more precise than the
HWENO-M and WENO-ZQ schemes at the same CPU cost, which can be intuitively seen
from Fig. 6. With the mesh gets denser, we can intuitively observe that the HWENO-U and
HWENO-M schemes have similar numerical errors, but the HWENO-U scheme has slightly
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Table 3 Example 3.2.
One-dimensional Euler
equations: L∞ and L1 errors,
orders and CPU time of the
HWENO-U, HWENO-M, and
WENO-ZQ schemes

Meshes L∞ error Order L1 error Order CPU

HWENO-U

40 9.51E−06 – 1.17E−06 – 7.59E−02

80 7.05E−08 7.08 9.41E−09 6.96 4.75E−01

120 4.58E−09 6.74 1.04E−09 5.42 1.63E+00

160 7.41E−10 6.33 2.46E−10 5.02 4.12E+00

200 1.95E−10 5.98 8.07E−11 5.01 8.59E+00

240 6.88E−11 5.72 3.24E−11 5.00 1.59E+01

HWENO-M

40 8.94E−07 – 2.54E−07 – 9.33E−02

80 1.53E−08 5.87 7.89E−09 5.01 6.64E−01

120 1.77E−09 5.31 1.04E−09 5.01 2.34E+00

160 4.04E−10 5.14 2.46E−10 5.00 5.95E+00

200 1.30E−10 5.08 8.05E−11 5.00 1.25E+01

240 5.17E−11 5.06 3.23E−11 5.00 2.31E+01

WENO-ZQ

40 5.15E−06 – 2.97E−06 – 3.85E−02

80 1.50E−07 5.10 9.34E−08 4.99 2.70E−01

120 1.95E−08 5.03 1.23E−08 5.00 9.45E−01

160 4.61E−09 5.01 2.92E−09 5.00 2.40E+00

200 1.51E−09 5.01 9.57E−10 5.00 5.02E+00

240 6.06E−10 5.00 3.85E−10 5.00 9.29E+00

Fig. 5 Comparison of L∞, L1 errors and CPU time for Example 3.2

less computational time. Besides, the numerical errors and orders of the first-order moments
in the x and y directions for the HWENO-U scheme are presented in Table 5, in which
the first-order moments also have the fifth-order accuracy as that in the one-dimensional
case. Note that the errors and orders of the first-order moments in the x and y directions are
identical because of the symmetry solution.
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Table 4 Example 3.3. Two-dimensional Burgers’ equation: L∞ and L1 errors, orders and CPU time of the
HWENO-U, HWENO-M and WENO-ZQ schemes

Meshes L∞ error Order L1 error Order CPU

HWENO-U

40 × 40 1.82E−03 – 1.44E−04 – 3.36E−01

80 × 80 9.91E−06 7.52 5.41E−07 8.05 4.53E+00

120 × 120 5.73E−07 7.03 3.54E−08 6.72 2.29E+01

160 × 160 7.18E−08 7.22 6.59E−09 5.84 7.68E+01

200 × 200 2.38E−08 4.95 1.92E−09 5.53 2.05E+02

240 × 240 9.52E−09 5.02 7.52E−10 5.14 4.71E+02

HWENO-M

40 × 40 1.23E−04 – 2.28E−05 – 4.12E−01

80 × 80 2.27E−06 5.76 2.16E−07 6.72 5.47E+00

120 × 120 3.04E−07 4.96 2.40E−08 5.42 2.77E+01

160 × 160 7.18E−08 5.02 5.56E−09 5.08 9.34E+01

200 × 200 2.38E−08 4.95 1.79E−09 5.09 2.51E+02

240 × 240 9.52E−09 5.02 7.14E−10 5.03 5.73E+02

WENO-ZQ

40 × 40 1.83E−03 – 2.79E−04 – 2.78E−01

80 × 80 1.24E−04 3.88 1.08E−05 4.69 3.71E+00

120 × 120 1.96E−05 4.56 1.58E−06 4.74 1.87E+01

160 × 160 5.09E−06 4.68 3.98E−07 4.80 6.14E+01

200 × 200 1.74E−06 4.80 1.33E−07 4.90 1.59E+02

240 × 240 7.17E−07 4.87 5.49E−08 4.86 3.53E+02

Fig. 6 Comparison of L∞, L1 errors and CPU time for Example 3.3
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Table 5 Example 3.3. Two-dimensional Burgers’ equation: L∞ and L1 errors, orders of the HWENO-U
scheme for the first-order moments in the x and y directions

Meshes x-direction y-direction
L∞ error Order L1 error Order L∞ error Order L1 error Order

40 × 40 2.85E−04 – 2.38E−05 – 2.85E−04 – 2.38E−05 –

80 × 80 9.46E−07 8.23 8.70E−08 8.10 9.46E−07 8.23 8.70E−08 8.10

120 × 120 1.18E−07 5.14 7.73E−09 5.97 1.18E−07 5.14 7.73E−09 5.97

160 × 160 2.64E−08 5.20 1.71E−09 5.25 2.64E−08 5.20 1.71E−09 5.25

200 × 200 8.38E−09 5.14 5.28E−10 5.26 8.38E−09 5.14 5.28E−10 5.26

240 × 240 3.31E−09 5.09 2.13E−10 4.98 3.31E−09 5.09 2.13E−10 4.98

Example 3.4 We solve two-dimensional compressible Euler equations

∂

∂t

⎡
⎢⎢⎣

ρ

ρμ

ρν

E

⎤
⎥⎥⎦ + ∂

∂x

⎡
⎢⎢⎣

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎤
⎥⎥⎦ + ∂

∂ y

⎡
⎢⎢⎣

ρν

ρμν

ρν2 + p
ν(E + p)

⎤
⎥⎥⎦ = 0,

where ρ is the density, μ and ν the velocity in x and y directions respectively, E is the total
energy and p is the pressure. The initial condition is (ρ, μ, ν, p, γ ) = (1 + 0.2 sin(π(x +
y)), 1, 1, 1, 1.4) and the computational domain is [0, 4] × [0, 4] with periodic boundary
conditions in all directions. We compute the solution up to time T = 2, and the exact
solutions are (ρ, μ, ν, p) = (1+0.2 sin(π(x + y−2T )), 1, 1, 1). The L∞ and L1 errors are
presented in Table 6, showing that the three schemes achieve the fifth-order accuracy. More
explicitly, with denser meshes (e.g., ≥ 200), the CPU time ratio of HWENO-U/WENO-ZQ
is about 1.463, whereas the L1 error ratio is around 1/59.034, and the CPU time ratio of
HWENO-M/WENO-ZQ is around 1.547, but the L1 error ratio is almost 1/76.366. This data
shows that the HWENO-U scheme is more precise than the HWENO-M and WENO-ZQ
schemes at the same CPU cost, which can be intuitively seen from Fig. 7. Compared to
the WENO-ZQ scheme, the HWENO-U and HWENO-M schemes require the computation
of two extra first-order moment equations, yet their CPU costs only increase by no more
than 55% due to the repeated utilization of numerical fluxes on the boundary in the zeroth-
and first-order moment equations. Overall, both the HWENO-U and HWENO-M schemes
demonstrate superior computational efficiency than theWENO-ZQ scheme. It isworth noting
that despite using unified stencils throughout the entire procedures, the HWENO-U and
HWENO-M schemes still have similar numerical errors and comparable CPU time. This can
be attributed to the fact that the HWENO-M scheme modifies the first-order moments in a
dimension-by-dimensional manner, resulting in computational cost savings, particularly for
high-dimensional systems. However, extending this dimension-by-dimensional approach to
unstructured meshes is not straightforward. In contrast, the framework of the HWENO-U
scheme is specifically designed to be well-suited for unstructured cases, and the relevant
researches are ongoing.
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Table 6 Example 3.4. Two-dimensional Euler equations: L∞ and L1 errors, orders and CPU time of the
HWENO-U, HWENO-M and WENO-ZQ schemes

Meshes L∞ error Order L1 error Order CPU

HWENO-U

40 × 40 2.58E−04 – 3.42E−05 – 1.56E+02

80 × 80 1.59E−06 7.35 1.18E−07 8.18 2.59E+03

120 × 120 7.98E−08 7.37 5.05E−09 7.78 1.43E+04

160 × 160 9.66E−09 7.34 7.03E−10 6.85 4.58E+04

200 × 200 1.91E−09 7.26 1.84E−10 6.00 1.19E+05

240 × 240 5.20E−10 7.14 6.78E−11 5.49 2.61E+05

HWENO-M

40 × 40 1.82E−06 – 5.01E−07 – 1.58E+02

80 × 80 3.07E−08 5.89 1.57E−08 5.00 2.29E+03

120 × 120 3.55E−09 5.32 2.06E−09 5.00 1.30E+03

160 × 160 8.08E−10 5.15 4.89E−10 5.00 4.63E+04

200 × 200 2.60E−10 5.09 1.60E−10 5.00 1.25E+05

240 × 240 1.03E−10 5.06 6.43E−11 5.00 2.78E+05

WENO-ZQ

40 × 40 7.14E−05 – 3.76E−05 – 1.18E+02

80 × 80 1.94E−06 5.20 1.19E−06 4.98 1.61E+03

120 × 120 2.50E−07 5.05 1.57E−07 5.00 8.83E+03

160 × 160 5.90E−08 5.02 3.74E−08 5.00 3.06E+04

200 × 200 1.93E−08 5.01 1.22E−08 5.00 8.11E+04

240 × 240 7.74E−09 5.01 4.92E−09 5.00 1.79E+05

Fig. 7 Comparison of L∞, L1 errors and CPU time for Example 3.4

3.2 Non-Smooth Tests

In this subsection,we compare the performance of theHWENO-U,HWENO-M, andWENO-
ZQ schemes in capturing shocks by simulating some benchmark and extreme problems. The
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Table 7 The total computing time in seconds for the HWENO-U, HENO-M and WENO-ZQ schemes from
Examples 3.5 to 3.13

Numerical example Total CPU time(s)
HWENO-U HWENO-M WENO-ZQ

3.5 1D Lax problem 8.027E−03 1.275E−02 5.878E−03

3.6 1D Blast wave problem 1.091E+00 1.798E+00 7.204E−01

3.7 1D Shu-Osher problem 1.447E−01 2.267E−01 8.571E−02

3.8 1D Double Rarefaction problem 6.109E−02 1.067E−01 5.252E−02

3.9 1D Sedov problem 1.300E+00 2.051E+00 1.030E+00

3.10 Double Mach reflection problem 6.339E+04 7.582E+04 5.181E+04

3.11 Step forward problem 6.599E+04 7.436E+04 5.458E+04

3.12 2D Sedov problem 2.883E+04 3.389E+04 2.429E+04

3.13 High Mach 2000 problem 6.031E+03 6.318E+03 5.599E+03

Fig. 8 Example 3.5. The results of solution computed by the HWENO-U, HWENO-M and WENO-ZQ
schemes

total CPU time in seconds are provided in Table 7 for the HWENO-U, HWENO-M, and
WENO-ZQ schemes.

Example 3.5 We solve the Lax problem for one-dimensional Euler equations with the initial
conditions:

(ρ, μ, p, γ )T =
{

(0.445, 0.698, 3.528, 1.4)T, −0.5 ≤ x < 0,

(0.5, 0, 0.571, 1.4)T, 0 ≤ x ≤ 0.5.

The final time is T = 0.16 and outflow boundary conditions are imposed on all bound-
aries. The computational results of density for the HWENO-U, HWENO-M andWENO-ZQ
schemes are displayed in Fig. 8, which indicates that the results of the HWENO-U and
HWENO-M schemes are more close to the exact solution than the WENO-ZQ scheme. The
numerical solution of the WENO-ZQ scheme has obvious overshoots or undershoots in Fig.
8,which is attributed to the nonlinearweights in [51] for violating the scale-invariant property.
If the HWENO-U scheme also uses the original nonlinear weights [51], the slight overshoots
or undershoots also generate.
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Fig. 9 Example 3.5. The results of solution computed by the HWENO-U scheme with the scaled initial
conditions using the proposed scale-invariant nonlinear weights (2.11) and the original nonlinear weights [51]

To prove that the proposed nonlinear weights (2.11) satisfy the scale-invariant property,
similar to [5, 9], we scale the initial conditions to be (ζρ, μ, ζ p, γ ) with a constant ζ > 0.
For this Riemann problem, the exact solution at time T is ζρ(x, T ). This is due to the
homogeneous property of the solution to the Euler system Ut + F(U)x=0, that is F(ζU) =
ζF(U).More specifically, letSt denote the exact evolution time solution operator of the Euler
system Ut + F(U)x = 0, i.e., the exact solution U(x, t) = St (U(x, 0)). Due to F(ζU) =
ζF(U), ζU(x, t) is the exact solution to the Euler system with initial data ζU(x, 0), namely,
U(x, t) = 1

ζ
St (ζU(x, 0)). We compute this scaled case by the HWENO-U scheme with the

scale-invariant nonlinear weights (2.11) and original nonlinear weights [51], respectively.
The computed results are shown in Fig. 9, and we can see that the solution of the HWENO-
U scheme with original nonlinear weights [51] has obvious oscillations and dissipation on
quite small and large scales, respectively, which validates the effectiveness of scale-invariant
nonlinear weights for the proposed HWENO-U scheme. For more numerical investigations
of the scale-invariant nonlinear weights can be seen in the finite difference scale-invariant
WENO scheme [9].

Example 3.6 We solve the interaction of the blast wave problem for one-dimensional Euler
equations with the initial conditions:

(ρ, μ, p, γ )T =

⎧⎪⎨
⎪⎩

(1, 0, 1000, 1.4)T, 0 < x < 0.1,

(1, 0, 0.01, 1.4)T, 0.1 < x < 0.9,

(1, 0, 100, 1.4)T, 0.9 < x < 1.

The computing time is T = 0.038 and reflective boundary conditions are imposed on all
boundaries. The reference solution is generated by the classical WENO scheme [20] using
2001 points. The density computed by HWENO-U, HWENO-M and WENO-ZQ schemes
are plotted in Fig. 10, which shows the HWENO-U scheme has higher resolutions than the
HWENO-M and WENO-ZQ schemes.
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Fig. 10 Example 3.6. The results of solution computed by the HWENO-U, HWENO-M and WENO-ZQ
schemes

Fig. 11 Example 3.7. The results of solution computed by the HWENO-U, HWENO-M and WENO-ZQ
schemes

Example 3.7 We solve the Shu-Osher problem for one-dimensional Euler equations, which
describes the interaction between shock and entropy waves. The initial condition is

(ρ, μ, p, γ )T =
{

(3.857143, 2.629369, 10.333333, 1.4)T, − 5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 1, 1.4)T, − 4 ≤ x ≤ 5.

Thefinal time is T = 1.8 and outflowboundary conditions are imposed on all boundaries. The
density calculated by the HWENO-U, HWENO-M, and WENO-ZQ schemes are displayed
in Fig. 11, indicating that the HWENO-U and WENO-ZQ schemes exhibit similar results
but both have better resolutions than the HWENO-M scheme.
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Fig. 12 Example 3.8. Double rarefaction wave problem with 400 cells

Fig. 13 Example 3.9. One-dimensional Sedov problem with 800 cells

Example 3.8 We solve the double rarefaction wave problem [26] for one-dimensional Euler
equations with the initial condition

(ρ, μ, p, γ ) =
{

(7,−1, 0.2, 1.4), − 1 < x < 0,

(7, 1, 0.2, 1.4), 0 < x < 1.

The final time is T = 0.6 and outflow boundary conditions are imposed on all boundaries.
The results computed by the HWENO-U, HWENO-M and WENO-ZQ schemes are shown
in Fig. 12. Numerically we find that such three schemes work well for this extreme problem
without PP limiters, but the twoHWENO schemes havemore compact reconstructed stencils.

Example 3.9 We solve the Sedov blast wave problem for one-dimensional Euler equations
with the initial condition

(ρ, μ, E, γ ) =
{

(1, 0, 10−12, 1.4), x ∈ [−2, 2] \ the center cell,
(1, 0, 3200000

�x , 1.4), x ∈ the center cell.

The final time is T = 0.001 and outflow boundary conditions are imposed on all boundaries.
The exact solution is provided in [21, 34]. We present the computational density in Fig.
13 for the HWENO-U, HWENO-M and WENO-ZQ schemes, where the HWENO-U and
HWENO-M schemes need to add PP limiters [10, 42] for this extreme problem, and the
results are non-oscillatory with high resolutions.

Example 3.10 We solve the double Mach reflection problem [40] for two-dimensional Euler
equations. The computational domain is [0, 4] × [0, 1] and the initial condition is

(ρ, μ, ν, p, γ ) =
{

(8, 33
4 sin

(
π
3

)
,− 33

4 cos
(

π
3

)
, 116.5, 1.4), x < 1

6 + y√
3
,

(1.4, 0, 0, 1, 1.4), otherwise.
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Fig. 14 Example 3.10. Double Mach reflection problem. Contour plots of density with 30 equally spaced lines
from 1.5 to 22.7. Uniform meshes: 1920 × 480

The boundary conditions are set as inflow on the left, outflow on the right and bottom. The
reflection boundary condition are applied for the bottom boundary starting from x = 1

6 to
x = 4, while the rest part from x = 0 to x = 1

6 imposes the exact post-shock condition.
Besides, the upper boundary is the exact motion of a Mach 10 shock. The final time is
T = 0.2. The computational results of density for the HWENO-U, HWENO-M andWENO-
ZQ schemes are showed in Fig. 14.We can see that the results ofHWENO-U andHWENO-M
schemes are similar and havemore intricate flow characteristics than theWENO-ZQ scheme,
including the double Mach region, but the HWENO-U scheme has simpler procedures with
unified stencils than the HWENO-M scheme. To prove that the proposed nonlinear weights
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Fig. 15 Example 3.10. Double Mach reflection problem. The results of solution computed by the HWENO-U
scheme with the scaled initial conditions using the proposed scale-invariant nonlinear weights (2.22). Uniform
meshes: 1920 × 480

(2.22) satisfy the scale-invariant property, similar to the Lax problem, we scale the initial
conditions with the three scales ζ = {10−7, 1, 107} and obtain the consistent results in Fig
15, which validates the effectiveness of scale-invariant nonlinear weights for the proposed
HWENO-U scheme.

Example 3.11 We solve the forward step problem [40] for two-dimensional Euler equa-
tions, which contains a Mach 3 wind tunnel with a step. The computational domain is
[0, 0.6] × [0, 1] ∪ [0.6, 1] × [0.2, 1] and the initial condition is a right-going Mach 3 flow.
Reflective boundary conditions are applied along the walls of the tunnel, and inflow and
outflow boundary conditions are implemented at the entrance and exit respectively. The final
time is T = 4. The density results computed by the HWENO-U, HWENO-M and WENO-
ZQ schemes are shown in Fig. 16. We can observe that three results are comparable for the
HWENO-U and HWENO-M schemes.

Example 3.12 We solve a Sedov blast wave problem [21, 34] for two-dimensional Euler
equations. The computational domain is [0, 1.1] × [0, 1.1] and the initial condition is

(ρ, μ, ν, E, γ ) =
{

(1, 0, 0, 0.244816
�x�y , 1.4), (x, y) ∈ [0,�x] × [0,�y],

(1, 0, 0, 10−12, 1.4), otherwise.

Reflective boundary conditions are employed on the left and bottom,while outflow conditions
are applied on the right and upper boundaries. The computational results at the final time
T = 1 are presented in Fig. 17 for the HWENO-U, HWENO-M and WENO-ZQ schemes
with PP limiters. Notably, it is essential to utilize PP limiters in this case, as these schemes
would fail to work effectively without them due to negative densities or pressures. This
extreme problem involves very strong shock and the variation of density is pretty large.
From Fig. 17, we can observe obviously that there are numerical oscillations even using
PP limiters for the HWENO-M and WENO-ZQ schemes with original nonlinear weights
[51], since the PP limiters can keep the positivity of density and pressure but cannot control
numerical oscillations. On the contrary, the HWENO-M scheme with the scaling-invariant
weights in Eq. (2.22) and the proposed HWENO-U scheme behave similar and comparable
results as in the reference [42]. Also, the HWENO-U scheme has higher resolutions and
better performances than the HWENO-M scheme with the nonlinear weights in [51] or Eq.
(2.22). The obvious oscillations can be observed in Fig. 17 for the WENO-ZQ scheme with
original nonlinear weights [51], which is caused by the lack of scale-invariant properties.
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Fig. 16 Example 3.11. Step forward problem. Contour plots of density with 30 equally spaced lines from 0.32
to 6.15. Uniform meshes: 960 × 320

Example 3.13 Finally, we solve the Mach 2000 astrophysical jet problem without a radiative
cooling studied in [12–14]. The computational domain is [0, 1] × [−0.25, 0.25]. Initially,
it is full of an ambient gas with (ρ, μ, ν, p, γ ) = (0.5, 0, 0, 0.4127, 5

3 ). Outflow boundary
conditions are imposed on the right, top, and bottom. The left boundary conditions are
established with the values (ρ, μ, ν, p, γ ) = (5, 800, 0, 0.4127, 5

3 ) when |y| < 0.05. For
values outside of this range, the values are (0.5, 0, 0, 0.4127, 5

3 ). In Figure 18, we present the
results obtained by the HWENO-U, HWENO-M and WENO-ZQ schemes with PP limiters
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Fig. 17 Example 3.12. Two-dimensional Sedov problem. Contour plots of density with 40 equally spaced
lines from 0.95 to 6. Uniform meshes: 320 × 320

for a final time T = 0.001. The results show that the three schemes have comparable results,
which are also similar to that in the reference [42].

4 Concluding Remarks

In this paper, we introduced a moment-based finite volume HWENO-U scheme with unified
stencils on structuredmeshes.Thenovel point is to incorporate the spatial reconstructionswith
the modification of the first-order moments into a single step, resulting in a simpler approach
than the HWENO-M scheme [46], which involves two separate steps. The HWENO mod-
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Fig. 18 Example 3.13. High Mach 2000 problem. Contour plots of density with 40 equally spaced lines from
-2 to 3 and scales are logarithmic. Uniform meshes: 640 × 320

ification for the first-order moments in time discretizations serves two significant purposes
in the proposed scheme. Firstly, it ensures the stability of the fully-discrete scheme as that
in the Lax-Friedrichs scheme [22], which is demonstrated through analyses in Subsection
2.3. Secondly, it helps to overcome spurious oscillations for using nonlinear HWENO proce-
dures. Besides, the proposed scale-invariant nonlinear weight of this paper not only retains
all properties of original one but also is more robust when simulating challenging problems
with sharp scale variations, shown in Examples 3.5 and 3.12. Furthermore, the HWENO-
U scheme has higher efficiency and resolution with more compact stencils than the same
order WENO-ZQ schemes [51, 53]. Certainly, the HWENO-U scheme inevitably uses more
computational time as it brings one and two first-order moment equations shown in (2.3)
and (2.16), respectively. However, benefited by the new framework with unified stencils, the
CPU costs of the HWENO-U scheme only increase almost 50% than that of the WENO-ZQ
schemes.

Overall, the HWENO-U scheme is a simpler and more practical numerical method, which
not only inherits the advantages of previous HWENO schemes, including compact sten-
cils, high order accuracy, high resolution, and the use of artificial linear weights, but also
employs unified stencils throughout the entire process without any modifications for the gov-
erning equations, resulting in easier and faster implementations as evidenced in the algorithm
descriptions and numerical results. Furthermore, in the two-dimensional case, the framework
of the HWENO-U scheme is based on truly two-dimensional reconstructions, making it more
straightforward to extend to unstructured meshes, and the relevant works are ongoing.
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A Appendix

In the one-dimensional case, the coefficients of the reconstructed polynomials {pm(x)}2m=0
in (2.9) are given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0,0 = − 43 ūi−1
384 + 235 ūi

192 − 43 ūi+1
384 − 27 v̄i−1

64 + 27 v̄i+1
64 ,

c0,1 = − 63 ūi−1
76 + 63 ūi+1

76 − 75 v̄i−1
19 − 75 v̄i+1

19 ,

c0,2 = 23 ūi−1
16 − 23 ūi

8 + 23 ūi+1
16 + 45 v̄i−1

8 − 45 v̄i+1
8 ,

c0,3 = 5 ūi−1
19 − 5 ūi+1

19 + 60 v̄i−1
19 + 60 v̄i+1

19 ,

c0,4 = − 5 ūi−1
8 + 5 ūi

4 − 5 ūi+1
8 − 15 v̄i−1

4 + 15 v̄i+1
4 ;

c1,0 = ūi , c1,1 = ūi − ūi−1;
c2,0 = ūi , c2,1 = ūi+1 − ūi .

In the two-dimensional case, the coefficients of the reconstructedpolynomials {pm(x, y)}4m=0
in (2.20) are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0,0 = ū1
576 − 133 ū2

1152 + ū3
576 − 133 ū4

1152 + 419 ū5
288 − 133 ū6

1152 + ū7
576 − 133 ū8

1152 + ū9
576 − 27 v̄4

64

+ 27 v̄6
64 − 27 w̄2

64 + 27 w̄8
64 ,

c0,1 = ū1
48 − ū3

48 − 397 ū4
456 + 397 ū6

456 + ū7
48 − ū9

48 − 75 v̄4
19 − 75 v̄6

19 ,

c0,2 = ū1
48 − 397 ū2

456 + ū3
48 − ū7

48 + 397 ū8
456 − ū9

48 − 75 w̄2
19 − 75 w̄8

19 ,

c0,3 = − ū1
48 + ū2

24 − ū3
48 + 71 ū4

48 − 71 ū5
24 + 71 ū6

48 − ū7
48 + ū8

24 − ū9
48 + 45 v̄4

8 − 45 v̄6
8 ,

c0,4 = − 7 ū1
22 + 7 ū3

22 + 7 ū7
22 − 7 ū9

22 − 75 v̄2
11 + 75 v̄8

11 − 75 w̄4
11 + 75 w̄6

11 ,

c0,5 = − ū1
48 + 71 ū2

48 − ū3
48 + ū4

24 − 71 ū5
24 + ū6

24 − ū7
48 + 71 ū8

48 − ū9
48 + 45 w̄2

8 − 45 w̄8
8 ,

c0,6 = 5 ū4
19 − 5 ū6

19 + 60 v̄4
19 + 60 v̄6

19 ,

c0,7 = − ū1
4 + ū2

2 − ū3
4 + ū7

4 − ū8
2 + ū9

4 ,

c0,8 = − ū1
4 + ū3

4 + ū4
2 − ū6

2 − ū7
4 + ū9

4 ,

c0,9 = 5 ū2
19 − 5 ū8

19 + 60 w̄2
19 + 60 w̄8

19 ,

c0,10 = − 5 ū4
8 + 5 ū5

4 − 5 ū6
8 − 15 v̄4

4 + 15 v̄6
4 ,

c0,11 = 5 ū1
22 − 5 ū3

22 − 5 ū7
22 + 5 ū9

22 + 60 v̄2
11 − 60 v̄8

11 ,

c0,12 = ū1
4 − ū2

2 + ū3
4 − ū4

2 + ū5 − ū6
2 + ū7

4 − ū8
2 + ū9

4 ,

c0,13 = 5 ū1
22 − 5 ū3

22 − 5 ū7
22 + 5 ū9

22 + 60 w̄4
11 − 60 w̄6

11 ,

c0,14 = − 5 ū2
8 + 5 ū5

4 − 5 ū8
8 − 15 w̄2

4 + 15 w̄8
4 ;

c1,0 = ū5, c1,1 = ū5 − ū4, c1,2 = ū5 − ū2;
c2,0 = ū5, c2,1 = ū6 − ū5, c2,2 = ū5 − ū2;
c3,0 = ū5, c3,1 = ū5 − ū4, c3,2 = ū8 − ū5;
c4,0 = ū5, c4,1 = ū6 − ū5, c4,2 = ū8 − ū5.

Funding This work was partially supported by National Key R&D Program of China [Grant Number
2022YFA1004500], National Natural Science Foundation of China [Grant Number 12401541, 12471390],
Postdoctoral Science Foundation of China [Grant Number 2024M751284], and Fundamental Research Funds
for the Central Universities [Grant Number 20720240132].

Data availability All datasets generated during the current study are available from the corresponding author
upon reasonable request.

123



9 Page 34 of 36 Journal of Scientific Computing (2025) 102 :9

Declarations

Competing interests The authors declare that they have no conflict of interest.

References

1. Balsara, D.S., Garain, S., Shu, C.-W.:An efficient class ofWENOschemeswith adaptive order. J. Comput.
Phys. 326, 780–804 (2016)

2. Cai, C., Qiu, J.,Wu, K.: Provably convergent Newton-Raphsonmethods for recovering primitive variables
with applications to physical-constraint-preservingHermiteWENO schemes for relativistic hydrodynam-
ics. J. Comput. Phys. 498, 112669 (2024)

3. Cai, X., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume HWENO schemes for com-
pressible Euler equations. J. Sci. Comput. 68, 464–483 (2016)

4. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for
hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

5. Chen, Y., Wu, K.: A physical-constraint-preserving finite volume WENO method for special relativistic
hydrodynamics on unstructured meshes. J. Comput. Phys. 466, 111398 (2022)

6. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

7. Costa, B., Don, W.S.: Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws.
J. Comput. Phys. 224, 970–991 (2007)

8. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-
step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227,
8209–8253 (2008)

9. Don,W.S., Li, R.,Wang,B.-S.,Wang,Y.:Anovel and robust scale-invariantWENOscheme for hyperbolic
conservation laws. J. Comput. Phys. 448, 110724 (2022)

10. Fan, C., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume hybrid HermiteWENO scheme
for compressible Navier-Stokes equations. J. Comput. Phys. 445, 110596 (2021)

11. Fan, C., Zhao, Z., Xiong, T., Qiu, J.: A robust fifth order finite difference Hermite WENO scheme for
compressible Euler equations. Comput. Methods Appl. Mech. Engrg. 412, 116077 (2023)

12. Gardner, C.L., Dwyer, S.J.: Numerical simulation of the xz tauri supersonic astrophysical jet. Acta Math.
Sci. 29, 1677–1683 (2009)

13. Ha, Y., Gardner, C.L.: Positive scheme numerical simulation of high Mach number astrophysical jets. J.
Sci. Comput. 34, 247–259 (2008)

14. Ha, Y., Gardner, C.L., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical
jets with radiative cooling. J. Sci. Comput. 24, 29–44 (2005)

15. Harten, A.: Preliminary results on the extension of ENO schemes to two-dimensional problems, in Pro-
ceedings, International Conference on Nonlinear Hyperbolic Problems, Saint-Etienne, 1986, Lecture
Notes in Mathematics, edited by C. Carasso et al. (Springer-Verlag, Berlin, 1987)

16. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-
oscillatory schemes III. J. Comput. Phys. 71, 231–323 (1987)

17. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes, IMRCTechnical Summary
Rept. 2823, Univ. of Wisconsin, Madison, WI, May (1985)

18. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys.
150, 97–127 (1999)

19. Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin
methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

20. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126,
202–228 (1996)

21. Korobeinikov, V. P.: Problems of point blast theory, American Institute of Physics, College Park, (1991)
22. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun.

Pure Appl. Math. 7, 159–193 (1954)
23. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws.

Math. Model. Numer. Anal. 33, 547–571 (1999)
24. Li, J., Shu,C.-W.,Qiu, J.:Multi-resolutionHWENOschemes for hyperbolic conservation laws. J.Comput.

Phys. 446, 110653 (2021)
25. Li, J., Shu, C.-W., Qiu, J.: Moment-based multi-resolution HWENO scheme for hyperbolic conservation

laws, Commun. Comput. Phys. 32, 364–400 (2022)

123



Journal of Scientific Computing (2025) 102 :9 Page 35 of 36 9

26. Linde, T., Roe, P.: Robust Euler codes, AIAA paper-97-2098, In: 13th Computational Fluid Dynamics
Conference, Snowmass Village, CO, (1997)

27. Liu, Y., Lu, J., Shu, C.-W.: An essentially oscillation-free discontinuous Galerkin method for hyperbolic
systems. SIAM J. Sci. Comput. 44, A230–A259 (2022)

28. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115,
200–212 (1994)

29. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws. J. Sci. Comput. 63,
548–572 (2015)

30. Lu, J., Liu, Y., Shu, C.-W.: An oscillation-free discontinuous Galerkin method for scalar hyperbolic
conservation laws. SIAM J. Numer. Anal. 59, 1299–1324 (2021)

31. Luo, H., Baum, J.D., Lohner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on
unstructured grids. J. Computat. Phys. 225, 686–713 (2007)

32. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discon-
tinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)

33. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discon-
tinuous Galerkin method II: Two dimensional case. Comput. Fluid. 34, 642–663 (2005)

34. Sedov, L.I.: Similarity and dimensional methods in mechanics. Academic Press, New York (1959)
35. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic

conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic
Equations. Lecture Notes in Mathematics, CIME subseries, Springer, Berlin (1998)

36. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer.
29, 701–762 (2020)

37. Strikwerda, J. C.: Finite difference schemes and partial differential equations, Society for Industrial and
Applied Mathematics, (2004)

38. Tao, Z., Li, F., Qiu, J.: High-order central Hermite WENO schemes: dimension-by-dimension moment-
based reconstructions. J. Comput. Phys. 318, 222–251 (2016)

39. Wibisono, I., Engkos, A.K.: Fifth-order Hermite targeted essentially non-oscillatory schemes for hyper-
bolic conservation laws. J. Sci. Comput. 87, 1–23 (2021)

40. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks.
J. Comput. Phys. 54, 115–173 (1984)

41. Zahran, Y.H., Abdalla, A.H.: Seventh order Hermite WENO scheme for hyperbolic conservation laws.
Comput. Fluid. 131, 66–80 (2016)

42. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for com-
pressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

43. Zhang, Y.-T., Shu, C.-W.: Third orderWENO scheme on three dimensional tetrahedral meshes, Commun.
Comput. Phys. 5, 836–848 (2009)

44. Zhang,M., Zhao, Z.: A fifth-order finite differenceHWENO scheme combinedwith limiter for hyperbolic
conservation laws. J. Comput. Phys. 472, 11676 (2023)

45. Zhao, Z., Chen, Y., Qiu, J.: A hybridHermiteWENOmethod for hyperbolic conservation laws. J. Comput.
Phys. 405, 109175 (2020)

46. Zhao, Z., Qiu, J.: A Hermite WENO scheme with artificial linear weights for hyperbolic conservation
laws. J. Comput. Phys. 417, 109583 (2020)

47. Zhao, Z., Qiu, J.: An oscillation-free HermiteWENO scheme for hyperbolic conservation laws. Sci. China
Math. 67, 431–454 (2024)

48. Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontin-
uous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013)

49. Zhu, J.,Qiu, J.:A class of fourth order finite volumeHermiteweighted essentially non-oscillatory schemes.
Sci. China, Ser. A Math. 51, 1549–1560 (2008)

50. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation
laws. J. Comput. Phys. 318, 110–121 (2016)

51. Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci.
Comput. 73, 1–22 (2017)

52. Zhu, J., Qiu, J.: A new third order finite volumeweighted essentially non-oscillatory scheme on tetrahedral
meshes. J. Comput. Phys. 349, 220–232 (2017)

53. Zhu, J., Qiu, J.: New finite volume weighted essentially non-oscillatory schemes on triangular meshes.
SIAM J. Sci. Comput. 40, A903–A928 (2018)

54. Zhu, J., Qiu, J., Shu, C.-W.: High-order Runge-Kutta discontinuous Galerkin methods with a new type
of multi-resolution WENO limiters. J. Comput. Phys. 404, 109105 (2020)

55. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of
accuracy. J. Comput. Phys. 375, 659–683 (2018)

123



9 Page 36 of 36 Journal of Scientific Computing (2025) 102 :9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	A Moment-Based Hermite WENO Scheme with Unified Stencils for Hyperbolic Conservation Laws
	Abstract
	1 Introduction
	2 Description of HWENO-U Scheme
	2.1 One-Dimensional Case
	2.2 Two-Dimensional Case
	2.3 Stability Analysis

	3 Numerical Tests
	3.1 Accuracy Tests
	3.2 Non-Smooth Tests

	4 Concluding Remarks
	A Appendix
	References




