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Abstract
In this paper, we propose to combine the fifth-order Hermite weighted essentially non-
oscillatory (HWENO) scheme and the fast sweeping method (FSM) for the solution of the
steady-state SN transport equation in the finite volume framework. It is well-known that
the SN transport equation asymptotically converges to a macroscopic diffusion equation in
the limit of optically thick systems with small absorption and sources. Numerical methods
which can preserve the asymptotic diffusion limit are referred to as asymptotic preserving
methods. In the one-dimensional case, we provide the analysis to demonstrate the asymp-
totic preserving property of the high order finite volume HWENO method, by showing that
its cell-edge and cell-average fluxes possess the thick diffusion limit. A hybrid strategy to
compute the nonlinear weights in the HWENO reconstruction is introduced to save compu-
tational costs. Extensive one- and two-dimensional numerical experiments are performed to
verify the accuracy, asymptotic preserving property and positivity of the proposed HWENO
FSM. The proposed HWENO method can also be combined with the Diffusion Synthetic
Acceleration algorithm to improve computational efficiency.

Keywords Weighted essentially non-oscillatory (WENO) method · Hermite method · Fast
sweeping method · SN transport equation · Asymptotic preserving property · Diffusion limit

1 Introduction

In this paper, we present a high order asymptotic preserving weighted essentially non-
oscillatory (WENO) method for the steady-state transport equation, which can preserve the
diffusion limit of the equation in the discrete setting. The radiative transport equation is a
kinetic model which describes the scattering and absorbing of particles moving through a
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medium and plays an important role in awide range of scientific and engineering applications.
The steady-state monoenergetic linear transport equation takes the form

� · ∇ψ(x,�) + σt

ε
ψ(x,�) = 1

|Sd−1|
((σt

ε
− εσa

)
φ(x) + εQ(x)

)
, (x,�) ∈ D × S

d−1,

(1.1a)

ψ(x,�) = G(x,�), (x,�) ∈ �−,

(1.1b)

where D ⊆ R
d (with d = 1, 2, 3) is an open bounded domain. When d = 3, the set of

propagation directions is the unit sphere S2 in R3. When d = 1, 2, it becomes the projection
of S2 onto R

d , i.e., S1 is a unit disk if d = 2 and S
0 is unit segment [−1, 1] if d = 1. �− ={

(x, v) ∈ ∂D × S
d−1 | n(x) · v < 0

}
is the incoming boundary,withn(x) being the unit outer

normal vector at x ∈ ∂D.ψ(x,�) denotes the angular intensity, andφ(x) = ∫
Sd−1 ψd� is the

scalar flux representing the integral of ψ over Sd−1. ε is the scaling parameter, representing
the ratio of a particle mean free path to a characteristic scale length of the system. σt and
σa are the non-dimensionalized total and absorption macroscopic cross section, respectively.
The difference of them is the scattering macroscopic cross section, denoted by σs satisfying
σs = σt − σa , which will be used later. Q(x) is the external source function, and G(x,�) is
the given incoming flux on �−.

It is well-known that when ε is very small uniformly in the entire domain, the angular
flux ψ away from the boundary is nearly independent of the angular direction �, and the
transport model can be accurately approximated by a macroscopic diffusion equation that
depends on the variable x only [13, 19, 22, 26, 32]. Asymptotic preserving (AP) numerical
methods [16] refer to the methods that are accurate and robust in all regimes from transport
dominated to diffusion dominated. AP discretization of the transport equation (1.1) reduces
to a consistent and stable discretization of the macroscopic diffusion equation when ε goes
to zero.

There have been extensive studies on various AP numerical methods for solving the linear
transport equation. Larsen et al. first used asymptotic analysis to study the behavior of discrete
transport solutions, and produced many important results on the relationship between the
analytical and numerical solutions of the transport equations [1, 12, 20, 24, 25]. Larsen and
others used the asymptotic expansion methods to analyze the behavior of several numerical
schemes, such as the diamond difference method [9, 33], step difference method [9, 33], the
Lund-Wilson method [29, 30] and Castor [10] method in the thick and intermediate regimes.
Adams extended the asymptotic analysis to a complete family of discontinuous finite-element
methods (DFEMs) and showed that some DFEM schemes do not possess the diffusion limit
because the upwind numerical flux forces the scalar flux, and thus the angular flux, to be
continuous across the mesh cells [1]. Guermond and Kanschat proved by using functional
analytic tools that a necessary and sufficient condition for the standard upwind discontinuous
Galerkin approximation to converge to the correct limit solution in the diffusive regime is that
the approximation space contains a linear space of continuous functions, and the restrictions
of the functions of this space to each mesh cell contain the linear polynomials [12]. Most
recently, Wang has derived a theoretical result to determine the mesh size for a variety of
finite difference schemes to achieve accurate results in the diffusion limit [43].

The finite volume Hermite WENO (HWENO) method will be considered in this paper.
WENO methods are a class of high order numerical methods for solving the hyperbolic
conservation laws, which yield very robust and non-oscillatory solutions near the shocks,
and have been widely used in applications. Recently, high order HWENO methods, with a
more compact reconstruction stencil, have also gained much attention in solving hyperbolic
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conservation laws. The HWENO and WENO methods have similar building blocks, and
the major difference between them is that the HWENO method uses both the unknown
function and its first derivative (or first moment) in the reconstruction and update procedure.
The HWENO scheme was first proposed as a robust limiter for the discontinuous Galerkin
(DG) method in [35, 36], thanks to the compact stencil required in its reconstruction steps.
In [37, 54], the HWENO scheme was extended to solve the Hamilton-Jacobi equations,
and achieved very good numerical results. Compared with the standard WENO scheme, its
boundary treatment is much simpler and the numerical error is observed to be smaller with
the same meshes, as shown in [37]. The HWENO scheme was later extended to solve the
hyperbolic conservation laws in the finite difference [28] and finite volume [53] frameworks,
and the same advantages have been observed.

In the past few decades, many efficient numerical solvers for the static hyperbolic conser-
vation laws and Hamilton-Jacobi equations have been developed. Among them, one of the
most popular methods is the fast sweeping method (FSM) [17, 34, 41, 52], which was first
proposed by Boué and Dupuis [4] to solve a deterministic control problem with quadratic
running cost using Markov chain approximation. In [52], a systematic way for solving the
Eikonal equations using FSM was introduced by Zhao. Later, many high order FSMs have
been developed to solve static Hamilton-Jacobi equations, in the framework of finite dif-
ference WENO [14, 48, 51] and finite element DG [27, 31, 46, 49] methods. In [8], high
order WENO FSM was proposed for solving the steady-state hyperbolic conservation laws
with source terms. In [7] and [47], FSM was combined with the fixed point iteration idea,
first proposed in [50], to provide an efficient WENO solver for the steady-state hyperbolic
conservation laws. In this paper, we propose to combine the finite volume HWENO method
with the fast sweeping technique, and apply them to the steady-state linear transport equa-
tions. In the angular discretization, we adopt the discrete ordinate (SN ) method, in which the
angular variable is discretized into a finite number of directions, see [23] and the references
therein for more discussions on the SN method. The main novel contribution of this paper
is to present a class of high order AP methods, by demonstrating that the proposed finite
volume HWENO FSM preserves the asymptotic diffusion limit when ε → 0. Many high
order AP methods have been studied for the linear transport equations in the literature, and
most of their spatial discretizations are in the DG framework.While DGmethods enjoymany
advantages including their robustness, flexibility and AP property (under certain conditions
on the polynomial spaces, see [1, 12]), they are also known to be computationally expensive
inmulti dimensions when the polynomial degree becomes large. In [43], it was shown that the
original WENOmethod does not have the AP property. We also investigated finite difference
HWENO FSM and numerical results indicate that it is not AP. Here we present a high order
finite volume HWENO method (fifth-order HWENO is presented as an example, although
the same idea can be extended to higher order if needed), which can be proven to have the
AP property following the similar approach in [24] to show the AP property of the linear
discontinuous (LD) method. The proposed method can also be viewed as the higher-order
extension of the LD method in one dimension, and that of the bilinear discontinuous finite
element method [6] in multi dimensions. In addition, we present a hybrid strategy to reduce
the computational cost of evaluating the nonlinear weights in the HWENO reconstruction,
which was shown to save about 50%CPU time in the numerical tests. In the two-dimensional
case, we employ the dimension-by-dimensionHWENO reconstruction procedure in the finite
volume framework as in [54], which can achieve the same essentially non-oscillatory prop-
erty as the genuine two-dimensional strategy, and is easier to code than the latter one. Both
one- and two-dimensional algorithms have been studied, and extensive numerical examples
are provided to confirm the AP property and robustness of the proposed methods. Finally,
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we will combine the HWENO method and diffusion synthetic acceleration (DSA) method
[3, 5, 18, 21, 38] to improve the computational efficiency, and present a numerical example
on the fixed-source neutron transport equation with different scattering ratios to illustrate the
acceleration via DSA.

The rest of the paper is organized as follows. In Sect. 2, we describe in detail the HWENO
FSM for SN transport equation in one-dimensional (1D) case. The analysis of thick diffusion
limit is also provided. In the Sect. 3, we introduce theHWENOFSM for themultidimensional
SN transport equation, and provide the flowchart of HWENO FSM in the two-dimensional
(2D) setting. The numerical examples are performed to demonstrate the high accuracy, posi-
tive and thick diffusion limit of our proposed schemes in Sect. 4. In Sect. 5, the acceleration of
HWENOmethod via DSA is investigated. Some conclusion remarks are presented in Sect. 6.

2 One-Dimensional SN Transport Equation

In this section, we will present the HWENO FSM for the 1D transport equation in the finite
volume framework, and analyze the diffusion limit of the resulting method.

2.1 Mathematical Model and HWENOMethod

The steady-state, monoenergetic, discrete ordinates SN transport equation in 1D slab geom-
etry [0, L] with isotropic scattering takes the form [25]

μm
d

dx
ψ(x, μm) + σt

ε
ψ(x, μm) = 1

2

(σt

ε
− εσa

) M∑
m=1

ψ(x, μm)ωm + ε

2
Q(x), 1 ≤ m ≤ M,

(2.1a)

ψ(0, μm) = f (μm) = fm , 0 < μm ≤ 1, (2.1b)

ψ(L, μm) = g(μm) = gm , −1 ≤ μm < 0, (2.1c)

where
M∑

m=1
ψ(x, μm)ωm := φ(x) is the scalar flux, with ωm being the Gaussian quadra-

ture weights. M is assumed to be an even integer in this paper, which means a symmetric
quadrature set is used. The symmetric quadrature set {μm, ωm} satisfies

M∑
m=1

(μm)kωm =

⎧
⎪⎨
⎪⎩

2, k = 0,

0, for k odd,
2

k+1 , for k even,

(2.2)

where k is an integer with k ≤ 2M − 1.
We assume the computational domain [0, L] has been divided into cells I j =

[x j− 1
2
, x j+ 1

2
], j = 1, · · · , J for all m. The cell center and the mesh size are denoted as

x j = (x j− 1
2

+ x j+ 1
2
)/2 and 
x j = x j+ 1

2
− x j− 1

2
as in Fig. 1. Let ψm(x) = ψ(x, μm), we

define

ψm, j = 1


x j

∫

I j
ψm(x)dx, ψ̂m, j = 1


x j

∫

I j
ψm(x)

x − x j

x j

dx, (2.3)
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Fig. 1 The segment in one-dimensional case

as the numerical approximation to the average of angular flux and its first moment. Similarly,
we can define

Q j = 1


x j

∫

I j
Q(x)dx, Q̂ j = 1


x j

∫

I j
Q(x)

x − x j

x j

dx;

φ j = 1


x j

∫

I j
φ(x)dx = 1


x j

∫

I j

M∑
m=1

ψ(x, μm)ωmdx =
M∑

m=1

ψm, jωm; (2.4)

φ̂ j = 1


x j

∫

I j
φ(x)

x − x j

x j

dx = 1


x j

∫

I j

M∑
m=1

ψ(x, μm)ωm
x − x j

x j

dx =
M∑

m=1

ψ̂m, jωm .

(2.5)

We assume that material properties σt , σa are constants within each cell but can vary between
cells, which means that cell-wise constant cross sections will be considered. This assumption
has been adopted in many studies on neutron transport equations [1, 24, 25]. Multiplying
(2.1) by 1


x j
and

x−x j

x2j

respectively, integrating on cell I j and applying integration by parts

yield

1


x j

∫

I j
(μmψm(x))xdx + σt, j

ε
ψm, j = 1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψk, jωk + ε

2
Q j , (2.6a)

1


x j

(
1

2

(
μmψm, j+ 1

2
+ μmψm, j− 1

2

)
− μmψm, j

)
+ σt, j

ε
ψ̂m, j

= 1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψ̂k, jωk + ε

2
Q̂ j , (2.6b)

ψ(0, μm) = fm, 0 < μm ≤ 1, (2.6c)

ψ(L, μm) = gm, −1 ≤ μm < 0, (2.6d)

where the following equality with Fm(ψ) = μmψm(x)

∫

I j
(Fm(ψ))x

x − x j

x j

dx = 1

2

(
Fm(x−

j+ 1
2
) + Fm(x+

j− 1
2
)

)
− μmψm, j (2.7)

is used in the derivation of the second equation.
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The HWENO numerical discretizations of Eq. (2.1) are now given by

1


x j

(
F̂m, j+ 1

2
− F̂m, j− 1

2

)
+ σt, j

ε
ψm, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψk, jωk

+ ε

2
Q j ,

1


x j

(
1

2
(F̂m, j+ 1

2
+ F̂m, j− 1

2
) − μmψm, j

)
+ σt, j

ε
ψ̂m, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψ̂k, jωk

+ ε

2
Q̂ j ,

(2.8)

with F̂m, j± 1
2
being the numerical fluxes to be specified, and ψm, 12

= fm if μm > 0 and
ψm,J+ 1

2
= gm if μm < 0. In this paper, we use the Godunov numerical flux [11], taking the

form

F̂m, j+ 1
2

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min
ψ−
m, j+ 1

2
≤ψ≤ψ+

m, j+ 1
2

μmψm, if ψ−
m, j+ 1

2
≤ ψ+

m, j+ 1
2
;

max
ψ+
m, j+ 1

2
≤ψ≤ψ−

m, j+ 1
2

μmψm, if ψ−
m, j+ 1

2
> ψ+

m, j+ 1
2
.

(2.9)

The Godunov flux can be further simplified for our linear flux, which leads to the following
two cases:

• If μm > 0, the HWENO scheme (2.8) becomes

μm


x j

(
ψ−
m, j+ 1

2
− ψ−

m, j− 1
2

)
+ σt, j

ε
ψm, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψk, jωk

+ ε

2
Q j ,

μm


x j

(
1

2
(ψ−

m, j+ 1
2

+ ψ−
m, j− 1

2
) − ψm, j

)
+ σt, j

ε
ψ̂m, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψ̂k, jωk

+ ε

2
Q̂ j ,

(2.10)

with ψm, 12
= fm .

• If μm < 0, the HWENO scheme (2.8) becomes

μm


x j

(
ψ+
m, j+ 1

2
− ψ+

m, j− 1
2

)
+ σt, j

ε
ψm, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψk, jωk

+ ε

2
Q j ,

μm


x j

(
1

2
(ψ+

m, j+ 1
2

+ ψ+
m, j− 1

2
) − ψm, j

)
+ σt, j

ε
ψ̂m, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψ̂k, jωk

+ ε

2
Q̂ j ,

(2.11)

with ψm,J+ 1
2

= gm .
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Remark 2.1 For the problems with spatially varying cross sections, examples of simulations
that may not be adequately described by cell-wise constant cross sections include nuclear
reactor depletion calculations and radiative transfer calculations for high energy density
physics experiments. The accuracy of the finite volumeHWENOmethod studied heremay be
affected due to the approximate coefficientsσt, j andσa, j in the j th cell. TheHWENOmethod
can also be extended to solve such problems with high order accuracy, but the corresponding
iterative scheme is no longer the same as numerical quadrature rule and Newton iteration
will be introduced, and the asymptotic analysis will be different.

Next, we will present the HWENO reconstruction procedure to evaluate the high-order
interface value approximations ψ∓

m, j± 1
2
from the cell average values ψm, j and the first

moments ψ̂m, j . For ease of presentation, we assume the mesh is uniform, i.e. 
x j = 
x for
all j . The detailed procedure of the HWENO reconstruction is summarized as follows:

1. Based on three small stencils S0 = {I j−1, I j }, S1 = {I j , I j+1}, S2 = {I j−1, I j , I j+1},
and their union T = {S0,S1,S2}, we construct three Hermite cubic polynomials
p0(x), p1(x), p2(x), and a fifth-order polynomial q(x) such that

1


x

∫

I j+i

p0(x)dx = ψm, j+i ,
1


x

∫

I j+i

p0(x)
x − x j+i


x
dx = ψ̂m, j+i , i = −1, 0,

1


x

∫

I j+i

p1(x)dx = ψm, j+i ,
1


x

∫

I j+i

p1(x)
x − x j+i


x
dx = ψ̂m, j+i , i = 0, 1,

1


x

∫

I j+i

p2(x)dx = ψm, j+i ,
1


x

∫

I j
p2(x)

x − x j

x

dx = ψ̂m, j , i = −1, 0, 1,

1


x

∫

I j+i

q(x)dx = ψm, j+i ,
1


x

∫

I j+i

q(x)
x − x j+i


x
dx = ψ̂m, j+i , i = −1, 0, 1.

Only the values of these polynomials at the cell interfaces x = x j± 1
2
are needed, and they

take the form

p0(x
+
j− 1

2
) = 1

2
ψm, j−1 + 1

2
ψm, j + 2ψ̂m, j−1 − 2ψ̂m, j ; (2.12a)

p0(x
−
j+ 1

2
) = 3

4
ψm, j−1 + 1

4
ψm, j + 7

2
ψ̂m, j−1 + 23

2
ψ̂m, j ; (2.12b)

p1(x
+
j− 1

2
) = 1

4
ψm, j + 3

4
ψm, j+1 − 23

2
ψ̂m, j − 7

2
ψ̂m, j+1; (2.12c)

p1(x
−
j+ 1

2
) = 1

2
ψm, j + 1

2
ψm, j+1 + 2ψ̂m, j − 2ψ̂m, j+1; (2.12d)

p2(x
+
j− 1

2
) = 7

66
ψm, j−1 + 5

6
ψm, j + 2

33
ψm, j+1 − 60

11
ψ̂m, j ; (2.12e)

p2(x
−
j+ 1

2
) = 2

33
ψm, j−1 + 5

6
ψm, j + 7

66
ψm, j+1 + 60

11
ψ̂m, j ; (2.12f)

q(x+
j− 1

2
) = 8

27
ψm, j−1 + 7

12
ψm, j + 13

108
ψm, j+1 + 28

27
ψ̂m, j−1 − 241

54
ψ̂m, j − 25

54
ψ̂m, j+1;
(2.12g)

q(x−
j+ 1

2
) = 13

108
ψm, j−1 + 7

12
ψm, j + 8

27
ψm, j+1 + 25

54
ψ̂m, j−1 + 241

54
ψ̂m, j − 28

27
ψ̂m, j+1;
(2.12h)
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2. For each small stencil Sk, k = 0, 1, 2, we compute the smooth indicators respectively,
which measure the smoothness of the reconstructed polynomials pk(x), k = 0, 1, 2, in the
target cell I j . The smaller the indicator is, the smoother the polynomial is in the target cells.
Generally speaking, the smooth indicators are defined as [15]

βk =
3∑

l=1

∫

I j

x2l−1

(
∂ l

∂xl
pk(x)

)2

dx, k = 0, 1, 2, (2.13)

and their specific expressions are given by

β0 = 1

16
(ψm, j − ψm, j−1 − 54ψ̂m, j − 6ψ̂m, j−1)

2

+ 39

16
(−5ψm, j−1 + 5ψm, j − 38ψ̂m, j − 22ψ̂m, j−1)

2

+ 3905

16
(−ψm, j−1 + ψm, j − 6ψ̂m, j − 6ψ̂m, j−1)

2,

β1 = 1

16
(ψm, j − ψm, j+1 + 54ψ̂m, j + 6ψ̂m, j+1)

2

+ 39

16
(−5ψm, j+1 + 5ψm, j + 38ψ̂m, j + 22ψ̂m, j+1)

2

+ 3905

16
(−ψm, j+1 + ψm, j + 6ψ̂m, j + 6ψ̂m, j+1)

2,

β2 = 1

484
(−ψm, j−1 + ψm, j+1 + 240ψ̂m, j )

2 + 13

12
(−ψm, j−1 + 2ψm, j − ψm, j+1)

2

+ 355

44
(−ψm, j+1 + ψm, j−1 + 24ψ̂m, j )

2.

In this paper,we follow the approach in [45], and useβ ′
k = τkβk , k = 1, 2, 3 as the smoothness

indicator, where

τ0 =max
[|σt, j+1 − σt, j |, |σs, j+1 − σs, j |

]

x,

τ1 =max
[|σt, j − σt, j−1|, |σs, j − σs, j−1|

]

x

and τ2 = max[τ0, τ1]. These parameters are introduced in [45] to estimate the local material
heterogeneity, and for the steady-state linear problem studied in this paper, it is known that
the discontinuity will appear only at the location when the heterogeneity occurs.

3. We compute the linear weights, denoted by γk(x
∓
j± 1

2
), k = 0, 1, 2, satisfying

q(x∓
j± 1

2
) =

2∑
k=0

γk(x
∓
j± 1

2
)pk(x

∓
j± 1

2
) (2.14)

in the smooth regions, which leads to the values

γ0(x
+
j− 1

2
) = 14

27
, γ1(x

+
j− 1

2
) = 25

189
, γ2(x

+
j− 1

2
) = 22

63
,

γ0(x
−
j+ 1

2
) = 25

189
, γ1(x

−
j+ 1

2
) = 14

27
, γ2(x

−
j+ 1

2
) = 22

63
.
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4. To eliminate the possible oscillation during the reconstruction procedure, we combine
the linear weights and smoothness indicators to evaluate the nonlinear weights [15]

ωk(x
∓
j± 1

2
) =

ω̃k(x
∓
j± 1

2
)

∑
�

ω̃�(x
∓
j± 1

2
)
, ω̃k(x

∓
j± 1

2
) =

γk(x
∓
j± 1

2
)

(β ′
k + ε̃)2

, k = 0, 1, 2, (2.15)

where ε̃ is a small positive number to avoid the denominator becoming zero, and is taken as
ε̃ = 10−6. The actual HWENO approximations of the cell interface values take the form

ψ∓
m, j± 1

2

=
2∑

k=0

ωk(x
∓
j± 1

2
)pk(x

∓
j± 1

2
), (2.16)

with pk(x
∓
j± 1

2
) defined in (2.12a)–(2.12f).

Remark 2.2 It is not difficult to observe from (2.13) that, if both σt and σs are constants in the
big stencil T, the corresponding β ′

m equals to zero. Therefore, we can replace the nonlinear
HWENO reconstruction (2.16) by the following linear approximation in (2.12g)–(2.12h)

ψ+
m, j− 1

2
= 8

27
ψm, j−1 + 7

12
ψm, j + 13

108
ψm, j+1 + 28

27
ψ̂m, j−1 − 241

54
ψ̂m, j − 25

54
ψ̂m, j+1;
(2.17a)

ψ−
m, j+ 1

2
= 13

108
ψm, j−1 + 7

12
ψm, j + 8

27
ψm, j+1 + 25

54
ψ̂m, j−1 + 241

54
ψ̂m, j − 28

27
ψ̂m, j+1.

(2.17b)

This hybrid strategy is valid since the shockwill not appear for this steady-state linear equation
in the region when σt and σs are both constants. From the numerical results in Sect. 4, it can
be observed that this strategy can save about 50% CPU time.

2.2 Fast Sweeping Idea to Solve the Global Linear System

The proposed HWENO scheme for the linear transport equation takes the form of (2.10)
or (2.11), combined with the HWENO reconstruction of ψ∓

m, j± 1
2
. This is a large system

involving the flux term (coupling in x direction) on the left side and the summation term
(coupling in � direction) on the right side. The fast sweeping idea is adopted to solve this
system efficiently. Let us first denote the right-hand side term of the two equations in (2.10)
as S j and Ŝ j , respectively. We summarize the flowchart of HWENO FSM for SN equation
in 1D as follows and refer to [51, 52] for more details of the FSM.
Step 1. Initialization: We take 0 as the initial guess of the unknowns ψm, j and ψ̂m, j for all
m and j , and evaluate S j and Ŝ j .
Step 2. Gauss-Seidel iteration with alternating sweeps. We sweep the whole domain with
the following two alternating orderings repeatedly for each m:

(I) j = 1 → J : if μm > 0, solve the system (2.10) for each j from left to right.
After updating the approximation ψm, j and ψ̂m, j in the cell I j , we can apply HWENO
reconstruction to obtain the cell-edge flux ψ−

m, j+ 1
2
based on the most updated values of

ψm, j+i and ψ̂m, j+i (i = −1, 0, 1).
(II) j = J → 1: if μm < 0, solve the system (2.11) for each j from right to left.

After updating the approximation ψm, j and ψ̂m, j in the cell I j , we can apply HWENO
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reconstruction to obtain the cell-edge flux ψ+
m, j− 1

2
based on the most updated values of

ψm, j+i and ψ̂m, j+i (i = −1, 0, 1).
At the boundary of the computational domain, high-order extrapolations are used to com-

pute the values at the ghost cells, which are needed for the HWENO reconstruction near the
boundary. After repeating this process for all m directions, we can compute scalar flux φ j ,
φ̂ j fromψm, j , ψ̂m, j via Gauss quadrature (2.4)–(2.5), and update S j , Ŝ j . This completes one
Gauss-Seidel iteration.
Step 3. Convergence: Repeat the Gauss-Seidel iteration until the convergence criteria is
satisfied. In this paper, if the scalar flux satisfies

δ = ||φnew − φold ||L1 < 10−14,

for two consecutive iteration steps, we stop the iteration.
The pseudo code of Step 2 is presented in Algorithm 1, where the superscript n indicates

the results in “n-th" iteration.

Algorithm 1 The Gauss-Seidel iteration of evaluating the scalar flux ψn+1 from ψn

Require: The values of ψm, j , S j and Ŝ j after n-th iteration.
for m = 1 to M do

if μm > 0 then
ψ
m, 12

← fm

for j = 1 to J do
Solve (2.10) to obtain ψm, j and ψ̂m, j

Compute cell-edge ψ
m, j+ 1

2
= ψ−

m, j+ 1
2
by HWENO reconstruction

end for
High order extrapolation are used to compute the values at the ghost cells

else
ψ
m,J+ 1

2
← gm

for j = J to 1 do
Solve (2.11) to obtain ψm, j and ψ̂m, j

Compute cell-edge ψ
m, j− 1

2
= ψ+

m, j− 1
2
by HWENO reconstruction

end for
High order extrapolation are used to compute the values at the ghost cells

end if
end for
for j = 1 to J do

φ j =
M∑

m=1
ψm, jωm , φ̂ j =

M∑
m=1

ψ̂m, jωm

S j = 1
2

(
σt, j
ε − εσa, j

)
φ j + ε

2 Q j , Ŝ j = 1
2

(
σt, j
ε − εσa, j

)
φ̂ j + ε

2 Q̂ j

end for
if δ = ||φn+1 − φn ||L1 < 10−14 then

Stop iterate
else

Return to the top and continue the iteration
end if

Remark 2.3 The high-order extrapolations are used to evaluate the values at the ghost cells.
Because the stencil ofHWENOmethod ismore compact than that ofWENOmethod,we need
only one ghost cell in the left and right boundaries of the computational domain, respectively.
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Remark 2.4 Note that the alternating sweeping direction described here is different from that
in [51, 52]. If the characteristic direction is unknown, the sweeping direction was from left
to right and then from right to left for one-dimensional problems. Here, since the neutron
characteristics direction is available, namely from left to right when μm > 0 and from right
to left when μm < 0, we set the sweeping direction in the same way, which has also been
utilized in [45].

2.3 Thick Diffusion Limit

One focus of the proposed HWENO method is its AP property when ε is small. In this
subsection, we will provide the mathematical analysis to study the thick diffusion limit of
the HWENO method. It will be shown that the cell-edge and cell-average fluxes possess a
thick diffusion limit, and the HWENOmethod is very accurate for problems with anisotropic
boundary fluxes. The detailed analysis is inspired by that of the LD method in [24].

It is known that when ε → 0, the solution of the 1D linear transport equation (2.1) satisfies
[24, 25]

ψ(x, μ) = φ(x)

2
+ O(ε), (2.18)

where φ(x) is the solution of the diffusion equation

− d

dx

1

3σt

d

dx
φ + σaφ = Q, (2.19)

with appropriate boundary conditions, and we refer to [24] for more discussions on this.
Below, we will analyze the asymptotic diffusion limit of the HWENO FSM with linear

reconstruction, and verify that it is a consistent approximation of the diffusion equation (2.19).
We start by presenting the HWENO method in the asymptotic form, plugging in the suitable
ansatz, and collecting the equations with different orders of ε. Since the proof is lengthy, the
detailed proof of the AP property is separated into four steps summarized as follows.

Let us rewrite the HWENO FSM (2.10)–(2.11) in the following asymptotic form

μm


x j

(
ψm, j+ 1

2
− ψm, j− 1

2

)
+ σt, j

ε
ψm, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψkωk

+ εQ j

2
,

μm


x j

(
1

2
(ψm, j+ 1

2
+ ψm, j− 1

2
) − ψm, j

)
+ σt, j

ε
ψ̂m, j =1

2

(σt, j

ε
− εσa, j

) M∑
k=1

ψ̂kωk

+ εQ̂ j

2
,

(2.20)

where we ignore the “±" sign in the numerical fluxes for simplicity, and ψm, 12
= fm if

μm > 0, ψm,J+ 1
2

= gm if μm < 0. To perform the asymptotic analysis, we start by
introducing the following ansatz

ψm =
∞∑
k=0

εkψ(k)
m
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for both the cell-edge fluxes ψm, j+ 1
2
and cell-average fluxes ψm, j in (2.8). After plugging

this ansatz into the HWENO method (2.20), we collect the equations with different orders
of ε.

Step 1, O(ε−1) equations: The two O(ε−1) equations are

σt, j

(
ψ

(0)
m, j − 1

2

M∑
k=1

ψ
(0)
k, jωk

)
= 0,

σt, j

(
ψ̂

(0)
m, j − 1

2

M∑
k=1

ψ̂
(0)
k, jωk

)
= 0.

(2.21)

These equations have isotropic solutions

ψ
(0)
m, j = 1

2

M∑
k=1

ψ
(0)
k, jωk = 1

2
φ

(0)
j ,

ψ̂
(0)
m, j = 1

2

M∑
k=1

ψ̂
(0)
k, jωk = 1

2
φ̂

(0)
j ,

(2.22)

where φ
(0)
j and φ̂

(0)
j are the average values and first moments of φ at cell I j , respectively.

Step 2, O(ε0) equations: The O(ε0) equations can be summarized as

σt, j

(
ψ

(1)
m, j − 1

2

M∑
k=1

ψ
(1)
k, jωk

)
= −μm


x

(
ψ

(0)
m, j+ 1

2
− ψ

(0)
m, j− 1

2

)
,

σt, j

(
ψ̂

(1)
m, j − 1

2

M∑
k=1

ψ̂
(1)
k, jωk

)
= − μm

2
x

(
ψ

(0)
m, j+ 1

2
+ ψ

(0)
m, j− 1

2
− φ

(0)
j

)
,

(2.23)

where ψ
(0)
m, 12

= fm if μm > 0, ψ
(0)
m,J+ 1

2
= gm if μm < 0. Following the linear HWENO

reconstruction (2.17a), (2.17b) and (2.22), we have

ψ
(0)
m, j+ 1

2
= 1

2

(
13

108
φ

(0)
j−1 + 7

12
φ

(0)
j + 8

27
φ

(0)
j+1 + 25

54
φ̂

(0)
j−1 + 241

54
φ̂ j

(0) − 28

27
φ̂

(0)
j+1

)
,

(2.24)

for 1 ≤ j ≤ J if μm > 0, or

ψ
(0)
m, j+ 1

2
= 1

2

(
8

27
φ

(0)
j + 7

12
φ

(0)
j+1 + 13

108
φ

(0)
j+2 + 28

27
φ̂

(0)
j − 241

54
φ̂

(0)
j+1 − 25

54
φ̂

(0)
j+2

)
,

(2.25)

for 0 ≤ j ≤ J − 1 if μm < 0. Multiplying (2.23) by Gauss quadrature weights ωm , and
summing over m, we find that the left sides vanish, and the right sides yield the solvability
conditions (after using (2.2), more specifically,

∑
m μmωm = 0)

f or0 =
M∑

m=1

μmψ
(0)
m, j+ 1

2
ωm, 0 ≤ j ≤ J , (2.26)

which must be satisfied for a solution of (2.23) to exist.

123



Journal of Scientific Computing             (2022) 93:3 Page 13 of 40     3 

We start by considering the case of j = 0. The combination of (2.25) and (2.26) leads to

0 = 1

2

(
8

27
φ

(0)
0 + 7

12
φ

(0)
1 + 13

108
φ

(0)
2 + 28

27
φ̂

(0)
0 − 241

54
φ̂

(0)
1 − 25

54
φ̂

(0)
2

) ∑
μm<0

μmωm

+
∑

μm>0

μm fmωm . (2.27)

Let us define γ as in [24]

γ = 2
∑

μm>0

μmωm ≈ 1.

Combined with (2.2), we obtain
∑

μm>0

μmωm = γ

2
and

∑
μm<0

μmωm = −γ

2
, (2.28)

therefore the Eq. (2.27) yields

8

27
φ

(0)
0 + 7

12
φ

(0)
1 + 13

108
φ

(0)
2 + 28

27
φ̂

(0)
0 − 241

54
φ̂

(0)
1 − 25

54
φ̂

(0)
2 = 4

γ

∑
μm>0

μm fmωm .

(2.29)

Next, for any j satisfying 1 ≤ j ≤ J − 1 or j = J , we follow the similar approach to
combine (2.26), (2.24), (2.25) and (2.28) and derive

13

108
φ

(0)
j−1 + 7

12
φ

(0)
j + 8

27
φ

(0)
j+1 + 25

54
φ̂

(0)
j−1 + 241

54
φ̂

(0)
j − 28

27
φ̂

(0)
j+1

= 8

27
φ

(0)
j + 7

12
φ

(0)
j+1 + 13

108
φ

(0)
j+2 + 28

27
φ̂

(0)
j − 241

54
φ̂

(0)
j+1

−25

54
φ̂

(0)
j+2, 1 ≤ j ≤ J − 1; (2.30)

13

108
φ

(0)
J−1 + 7

12
φ

(0)
J + 8

27
φ

(0)
J+1 + 25

54
φ̂

(0)
J−1 + 241

54
φ̂

(0)
J − 28

27
φ̂

(0)
J+1

= 4

γ

∑
μm<0

|μm |gmωm . (2.31)

Let us define the following cell interface notations:

φ
(0)
1
2

= 8

27
φ

(0)
0 + 7

12
φ

(0)
1 + 13

108
φ

(0)
2 + 28

27
φ̂

(0)
0 − 241

54
φ̂

(0)
1 − 25

54
φ̂

(0)
2 ;

φ
(0)
j+ 1

2
= 13

108
φ

(0)
j−1 + 7

12
φ

(0)
j + 8

27
φ

(0)
j+1 + 25

54
φ̂

(0)
j−1 + 241

54
φ̂

(0)
j − 28

27
φ̂

(0)
j+1

= 8

27
φ

(0)
j + 7

12
φ

(0)
j+1 + 13

108
φ

(0)
j+2 + 28

27
φ̂

(0)
j − 241

54
φ̂

(0)
j+1 − 25

54
φ̂

(0)
j+2, 1 ≤ j ≤ J − 1;

φ
(0)
J+ 1

2
= 13

108
φ

(0)
J−1 + 7

12
φ

(0)
J + 8

27
φ

(0)
J+1 + 25

54
φ̂

(0)
J−1 + 241

54
φ̂

(0)
J − 28

27
φ̂

(0)
J+1,

which can be denoted as

φ
(0)
j+ 1

2
=L1

(
φ

(0)
j , φ

(0)
j+1, φ

(0)
j+2, φ̂

(0)
j , φ̂

(0)
j+1, φ̂

(0)
j+2

)
; 0 ≤ j ≤ J − 1;

φ
(0)
j+ 1

2
=L2

(
φ

(0)
j−1, φ

(0)
j , φ

(0)
j+1, φ̂

(0)
j−1, φ̂

(0)
j , φ̂

(0)
j+1

)
; 1 ≤ j ≤ J ;

(2.32)
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with L1 and L2 being two linear operators. In the ghost cells I0 and IJ+1,we use the fifth-order
extrapolation to evaluate their cell averages and first moments in this paper, and have

φ
(0)
0 =

5∑
j=1

c jφ
(0)
j , φ

(0)
J+1 =

J∑
j=J−4

c′
jφ

(0)
j ,

φ̂0 =
5∑
j=1

ĉ j φ̂
(0)
j , φ̂J+1 =

J∑
j=J−4

ĉ′
jφ

(0)
j , (2.33)

where c j , c′
j , ĉ j and ĉ′

j are constants computed by Lagrange interpolating. Therefore, by
combining the linear relations (2.32) and (2.33), and then inverting them, we can obtain two
linear operators L and L̂ , such that

φ
(0)
j = L

(
φ

(0)
1
2

, · · · , φ
(0)
J+ 1

2

)
, φ̂

(0)
j = L̂

(
φ

(0)
1
2

, · · · , φ
(0)
J+ 1

2

)
, 1 ≤ j ≤ J .

At the end of this step, let us summarize the results that are derived fromEqs. (2.29)–(2.31)
and will be used later:

φ
(0)
1
2

= 4

γ

∑
μm>0

μm fmωm; (2.34a)

φ
(0)
j = L

(
φ

(0)
1
2

, · · · , φ
(0)
J+ 1

2

)
, 1 ≤ j ≤ J , (2.34b)

φ̂
(0)
j = L̂

(
φ

(0)
1
2

, · · · , φ
(0)
J+ 1

2

)
, 1 ≤ j ≤ J , (2.34c)

φ
(0)
J+ 1

2
= 4

γ

∑
μm<0

|μm |gmωm, (2.34d)

and

ψ
(0)
m, j+ 1

2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fm, j = 0, μm > 0;
1
2φ

(0)
j+ 1

2
,

{
1 ≤ j ≤ J , μm > 0;
0 ≤ j ≤ J − 1, μm < 0;

gm, j = J , μm < 0.

(2.35)

Also, note that the general solutions of (2.23) take the form

ψ
(1)
m, j = 1

2
φ

(1)
j − μm

σt, j
x
(ψ

(0)
m, j+ 1

2
− ψ

(0)
m, j− 1

2
), 1 ≤ j ≤ J . (2.36)

Step 3, O(ε1)equations: Next, we consider the O(ε1) equations, which take the form

σt, j

(
ψ

(2)
m, j − 1

2

M∑
k=1

ψ
(2)
k, jωk

)
= − μm


x

(
ψ

(1)
m, j+ 1

2
− ψ

(1)
m, j− 1

2

)
+ 1

2

(
−σa, jφ

(0)
j + Q j

)
,

σt, j

(
ψ̂

(2)
m, j − 1

2

M∑
k=1

ψ̂
(2)
k, jωk

)
= − μm

2
x

(
ψ

(1)
m, j+ 1

2
+ ψ

(1)
m, j− 1

2
− 2ψ(1)

m, j

)

+ 1

2

(
−σa, j φ̂

(0)
j + Q̂ j

)
.

(2.37)
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The solvability conditions of these equations are

M∑
m=1

μmψ
(1)
m, j+ 1

2
ωm −

M∑
m=1

μmψ
(1)
m, j− 1

2
ωm = 
x

(
−σa, jφ

(0)
j + Q j

)
, (2.38)

M∑
m=1

μmψ
(1)
m, j+ 1

2
ωm +

M∑
m=1

μmψ
(1)
m, j− 1

2
ωm = 2

M∑
m=1

μmψ
(1)
m, jωm + 2
x

(
−σa, j φ̂

(0)
j + Q̂ j

)
.

(2.39)

Adding Eq. (2.38) over the j th and ( j + 1)th cells, and taking the difference of Eq. (2.39) at
cells j and j + 1, yield two equalities with the same left side, which leads to the equivalence
of their right sides. Therefore, we have

M∑
m=1

μm

(
ψ

(1)
m, j+1 − ψ

(1)
m, j

)
ωm + 
x

2

[
σa, j+1

(
φ

(0)
j+1 − 2φ̂(0)

j+1

)
+ σa, j

(
φ

(0)
j + 2φ̂(0)

j

)]

= 
x

2

[
(Q j+1 − 2Q̂ j+1) + (Q j + 2Q̂ j )

]
, 1 ≤ j ≤ J − 1. (2.40)

Step 4, diffusion equation: In this last step, we combine the results in the previous steps,

and show that the solution φ
(0)
j satisfies an equation which is a consistent numerical dis-

cretization of the diffusion equation (2.19).
We first plug in Eqs. (2.34)–(2.36) into Eq. (2.40) and obtain

− 1

3σt, j+1
x
(φ

(0)
j+ 3

2
− φ

(0)
j+ 1

2
) + 1

3σt, j
x
(φ

(0)
j+ 1

2
− φ

(0)
j− 1

2
)

+ 
x

2

[
σa, j+1(φ

(0)
j+1 − 2φ̂(0)

j+1) + σa, j (φ
(0)
j + 2φ̂(0)

j )
]

= 
x

2

[
(Q j+1 − 2Q̂ j+1) + (Q j + 2Q̂ j )

]
, 1 ≤ j ≤ J − 1. (2.41)

We consider the Taylor expansion of φ(x) and φ(x)
x−x j

x at any point x∗ ∈ [x j− 1

2
, x j+ 1

2
],

which leads to

φ(x) = φ∗ + φ′∗(x − x∗) + φ′′∗
2

(x − x∗)2 + O(
x3),

φ(x)
x − x j

x

= φ∗
x∗ − x j


x
+

(
φ′∗

x∗ − x j

x

+ φ∗

x

)
(x − x∗)

+
(

φ′′∗
x∗ − x j
2
x

+ φ′∗

x

)
(x − x∗)2 + O(
x3).

(2.42)

Taking x∗ = x j− 1
2
, multiplying (2.42) with 1


x , and integrating on the cell I j yield

φ j = φ j− 1
2

+ 
x

2
φ′

j− 1
2

+ 
x2

6
φ′′

j− 1
2

+ O(
x3),

φ̂ j = 
x

12
φ′

j− 1
2

− 
x2

12
φ′′

j− 1
2

+ O(
x3),

following (2.4) and (2.5), hence

φ j − 2φ̂ j = φ j− 1
2

+ 
x

3
φ′

j− 1
2

+ 
x2

3
φ′′

j− 1
2

+ O(
x3). (2.43)
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Similarly, we can take x∗ = x j+ 1
2
and obtain

φ j + 2φ̂ j = φ j+ 1
2

− 
x

3
φ′

j+ 1
2

+ 
x2

3
φ′′

j+ 1
2

+ O(
x3).

Hence, the Eq. (2.41) becomes

− 1

3σt, j+1
x
(φ

(0)
j+ 3

2
− φ

(0)
j+ 1

2
) + 1

3σt, j
x
(φ

(0)
j+ 1

2
− φ

(0)
j− 1

2
)

+ 
x

2
(σa, j+1φ

(0)
j+ 1

2
+ σa, jφ

(0)
j+ 1

2
) + O(
x2)

= 
xQ j+ 1
2

+ O(
x3), 1 ≤ j ≤ J − 1, (2.44)

where the right side of equation utilized the equality

(Q j+1 − 2Q̂ j+1) + (Q j + 2Q̂ j ) = 2Q j+ 1
2

+ O(
x2),

derived in the similar way. Equation (2.44), combined with the boundary conditions

φ
(0)
1
2

= 4

γ

∑
μm>0

μm fmωm, and φ
(0)
J+ 1

2
= 4

γ

∑
μm<0

|μm |gmωm, (2.45)

provides a consistent numerical discretization of the diffusion equation (2.19).
In summary, we obtain the following expression for the cell-edge angular fluxes

ψm, j+ 1
2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fm, j = 0, μm > 0

2

γ

∑
μm>0

μm fmωm, j = 0, μm < 0

1

2
φ

(0)
j+ 1

2
, 1 ≤ j ≤ J − 1

2

γ

∑
μm<0

|μm |gmωm, j = J , μm > 0

gm, j = J , μm < 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ O(ε), (2.46)

with φ
(0)
1
2

and φ
(0)
J+ 1

2
defined in (2.45), and φ

(0)
j+ 1

2
being the solution of (2.44). For the cell-

average angular fluxes, we have

ψm, j = 1

2
L

(
φ

(0)
1
2

, · · · , φ
(0)
J+ 1

2

)
+ O(ε),

with L being the inverse operator to convert the cell interface values into the cell average
values. Therefore, when taking the limit as ε approaches zero, the numerical solutionψm, j+ 1

2
reduces to the solution of the diffusion equation (2.19), which satisfies the stable and con-
sistent method (2.44). In addition, Eq. (2.18) is also achieved. This is the AP property that is
desired for the finite volume HWENO method.

3 Multidimensional SN Transport Equation

In this section, we will discuss the finite volume HWENO FSM for multi-dimensional SN
transport equation (1.1) with isotropic scattering neutron source. Two dimensions will be
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used as an example to describe the HWENO FSM method, and the proposed method can be
directly extended to any dimension. We consider the following two-dimensional equation

μm
∂

∂x
ψ(x, y, μm, ηn) + ηn

∂

∂ y
ψ(x, y, μm, ηn) + σt

ε
ψ(x, y, μm, ηn)

= 1

4

(σt

ε
− εσa

)
φ(x, y) + ε

4
Q(x, y), (x, y) ∈ �, (μm, ηn) ∈ [−1, 1] × [−1, 1],

(3.1)

ψ(x, y, μm, ηn) = f (x, y, μm, ηn), (x, y) ∈ �−, (μm, ηn) ∈ [−1, 1] × [−1, 1],
(3.2)

where μm and ηn represent cosine values of the angles between the neutron direction and
x-axis and y-axis, respectively. Here φ and ψ are the scalar flux and angular flux with

φ(x, y) =
∫∫

[−1,1]×[−1,1]
ψ(x, y, μ, η)dμdη =

M∑
m,n=1

ωmωnψ(x, y, μm, ηn),

where ωm and ωn are the level symmetric quadrature weights.
Assume the computational domain has been divided into cells Ii, j = Ji × K j =

[xi− 1
2
, xi+ 1

2
]×[y j− 1

2
, y j+ 1

2
], with i = 1, · · · , Nx , j = 1, · · · , Ny . We denote the cell center

as (xi , y j ) = ((xi− 1
2
+xi+ 1

2
)/2, (y j− 1

2
+ y j+ 1

2
)/2) and themesh size as
xi = xi+ 1

2
−xi− 1

2
,


y j = y j+ 1
2

− y j− 1
2
. The cell average and first moments of the unknown are denoted as

ψ
m,n
i, j = 1


xi
y j

∫∫

Ii, j
ψ(x, y, μm, ηn)dxdy,

ψ̂
m,n
i, j = 1


xi
y j

∫∫

Ii, j
ψ(x, y, μm, ηn)

x − xi

xi

dxdy,

ψ̃
m,n
i, j = 1


xi
y j

∫∫

Ii, j
ψ(x, y, μm, ηn)

y − y j

y j

dxdy,

̂̃ψm,n
i, j = 1


xi
y j

∫∫

Ii, j
ψ(x, y, μm, ηn)

x − xi

xi

y − y j

y j

dxdy.

(3.3)

For simplicity, we ignore the superscript m, n without causing any confusion. Similarly, we
can define the cell average and moments of φ as φi, j , φ̂i, j , φ̃i, j ,

̂̃φi, j , and those of Q as

Qi, j , Q̂i, j , Q̃i, j ,
̂̃Qi, j . We multiply (3.1) by 1


xi
y j
, x−xi


x2i 
y j
,

y−y j

xi
y2j

and x−xi

x2i

y−y j

y2j

, respec-

tively, and then integrate them on the cell Ii, j . Applying integration by parts and replacing the
cell interface values by the Godunov numerical flux as discussed in one-dimensional setting
in Sect. 2.1, we have the following HWENO discretization

μm


xi
y j

∫

K j

[ψ±(xi+ 1
2
, y, μm, ηn) − ψ±(xi− 1

2
, y, μm, ηn)]dy

+ ηn


xi
y j

∫

Ji
[ψ±(x, y j+ 1

2
, μm, ηn) − ψ±(x, y j− 1

2
, μm, ηn)]dx

+ σt,i j

ε
ψ

m,n
i, j = 1

4

(σt,i j

ε
− εσa,i j

) M∑
k,l=1

ψ
k,l
i, jωkωl + ε

4
Qi, j , (3.4)

μm

2
xi
y j

∫

K j

[ψ±(xi+ 1
2
, y, μm, ηn) + ψ±(xi− 1

2
, y, μm, ηn)]dy − μm


xi
ψ

m,n
i, j
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+ ηn


xi
y j

∫

Ji

x − xi

xi

[ψ±(x, y j+ 1
2
, μm, ηn) − ψ±(x, y j− 1

2
, μm, ηn)]dx

+ σt,i j

ε
ψ̂

m,n
i, j = 1

4

(σt,i j

ε
− εσa,i j

) M∑
k,l=1

ψ̂
k,l
i, jωkωl + ε

4
Q̂i, j , (3.5)

μm


xi
y j

∫

K j

y − y j

y j

[ψ±(xi+ 1
2
, y, μm, ηn) − ψ±(xi− 1

2
, y, μm, ηn)]dy

+ ηn

2
xi
y j

∫

Ji
[ψ±(x, y j+ 1

2
, μm, ηn) + ψ±(x, y j− 1

2
, μm, ηn)]dx − ηn


y j
ψ

m,n
i, j

+ σt,i j

ε
ψ̃

m,n
i, j = 1

4

(σt,i j

ε
− εσa,i j

) M∑
k,l=1

ψ̃
k,l
i, jωkωl + ε

4
Q̃i, j , (3.6)

μm

2
xi
y j

∫

K j

y − y j

y j

[ψ±(xi+ 1
2
, y, μm, ηn) + ψ±(xi− 1

2
, y, μm, ηn)]dy − μm


xi
ψ̃

m,n
i, j

+ ηn

2
xi
y j

∫

Ji

x − xi

xi

[ψ±(x, y j+ 1
2
, μm, ηn) + ψ±(x, y j− 1

2
, μm, ηn)]dx − ηn


y j
ψ̂

m,n
i, j

+ σt,i j

ε
̂̃ψm,n

i, j = 1

4

(σt,i j

ε
− εσa,i j

) M∑
k,l=1

̂̃ψk,l
i, jωkωl + ε

4
̂̃Qi, j , (3.7)

where the numerical flux ψ±(xi+ 1
2
, y, μm, ηn) is chosen to ψ+ when μm > 0 and ψ−

otherwise. Similarly, the numerical flux ψ±(x, y j+ 1
2
, μm, ηn) is chosen to ψ+ when ηn > 0

and ψ− otherwise. The integrals of the flux over K j or Ji are evaluated via the HWENO
reconstruction to be discussed in the following subsection.

3.1 HWENO Reconstruction in 2D

Wecanuse the dimension-by-dimension strategy to reconstruct these integrals in theHWENO
method (3.4)–(3.7), and refer the detailed discussion to [54]. The procedure of these recon-
structions is sketched as follows.Again, for ease of presentation,we assume the uniformmesh
with 
xi = 
x , 
y j = 
y in the description. We denote ψm,n(x, y) = ψ(x, y, μm, ηn)

and ignore the superscript (m, n) below without causing any confusion.

• In the x-direction, we perform the one-dimensional HWENO reconstruction which was
described in Sect. 2.1. Therefore, from {ψl, j , ψ̂l, j }i+1

l=i−1, we can obtain 1

y

∫
K j

ψ±
(xi± 1

2
, y)dy, which is the point value in the x-direction and the cell-average in

the y-direction. Similarly, we can use the values {ψ̃l, j ,
̂̃ψ l, j }i+1

l=i−1 to reconstruct
1


y

∫
K j

ψ±(xi± 1
2
, y)

y−y j

y dy. Note that either “+” or “-” sign is taken, depending on

whether μm is negative or positive.
• In the y-direction, we perform the one-dimensional HWENO reconstruction which

was described in Sect. 2.1. Therefore, from {ψi,l , ψ̃i,l} j+1
l= j−1, we can obtain 1


x

∫
Ji

ψ

(x, y j± 1
2
)dx , which is the point value in the y-direction and the cell-average in

the x-direction. Similarly, we can use the values {ψ̂i,l ,
̂̃ψ i,l} j+1

l= j−1 to reconstruct
1


x

∫
Ji

ψ(x, y j± 1
2
)
x−xi

x dx . Note that either “+” or “-” sign is taken, depending onwhether

ηn is negative or positive.
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3.2 Fast Sweeping Idea to Solve a Global Linear System in 2D

The proposed two-dimensional HWENO scheme for the linear transport equation (3.1), takes
the form of (3.4)–(3.7), combined with the HWENO reconstruction to evaluate the fluxes.
This is a large system involving the flux term (coupling in x and y directions) on the left
side and the summation term (coupling in μ and η directions) on the right side. As in one-
dimensional case, the fast sweeping idea is adopted to solve this system efficiently. Let us
first denote the right-hand side term of the four equations in (3.4)–(3.7) as Si, j , Ŝi, j , S̃i, j and
̂̃Si, j , respectively. We summarize the flowchart of HWENO FSM for the SN equation in 2D
as follows.
Step 1. Initialization: We take 0 as the initial values of the unknowns: ψm,n

i, j , ψ̂m,n
i, j ψ̃

m,n
i, j and

̂̃ψm,n
i, j for all m, n, i and j . Then we can evaluate Si, j , Ŝi, j , S̃i, j and ̂̃Si, j .

Step 2. Gauss-Seidel iteration with alternating sweeps. We sweep the whole domain with
the following four alternating orderings repeatedly for all m and n:

(I) i = 1 → Nx , j = 1 → Ny : if μm > 0 and ηn > 0, solve the system
(3.4)–(3.7) with the appropriate boundary conditions with this order of i, j . After

updating the approximations ψ
m,n
i, j , ψ̂m,n

i, j , ψ̃m,n
i, j and ̂̃ψm,n

i, j in the cell Ii, j , we can apply

HWENO reconstruction to obtain the cell-edge flux fluxes 1

y

∫
K j

ψ−(xi+ 1
2
, y)dy and

1

x

∫
Ji

ψ−(x, y j+ 1
2
)dx based on the most updated values of the unknowns.

(II) i = Nx → 1, j = 1 → Ny : if μm < 0 and ηn > 0, solve the system
(3.4)–(3.7) with the appropriate boundary conditions with this order of i, j . After

updating the approximations ψ
m,n
i, j , ψ̂m,n

i, j , ψ̃m,n
i, j and ̂̃ψm,n

i, j in the cell Ii, j , we can apply

HWENO reconstruction to obtain the cell-edge flux fluxes 1

y

∫
K j

ψ+(xi− 1
2
, y)dy and

1

x

∫
Ji

ψ−(x, y j+ 1
2
)dx based on the most updated values of the unknowns.

(III) i = 1 → Nx , j = Ny → 1: if μm > 0 and ηn < 0, solve the system
(3.4)–(3.7) with the appropriate boundary conditions with this order of i, j . After

updating the approximations ψ
m,n
i, j , ψ̂m,n

i, j , ψ̃m,n
i, j and ̂̃ψm,n

i, j in the cell Ii, j , we can apply

HWENO reconstruction to obtain the cell-edge flux fluxes 1

y

∫
K j

ψ−(xi+ 1
2
, y)dy and

1

x

∫
Ji

ψ+(x, y j− 1
2
)dx based on the most updated values of the unknowns.

(IV) i = Nx → 1, j = Ny → 1: if μm < 0 and ηn < 0, solve the system
(3.4)–(3.7) with the appropriate boundary conditions with this order of i, j . After

updating the approximations ψ
m,n
i, j , ψ̂m,n

i, j , ψ̃m,n
i, j and ̂̃ψm,n

i, j in the cell Ii, j , we can apply

HWENO reconstruction to obtain the cell-edge flux fluxes 1

y

∫
K j

ψ+(xi− 1
2
, y)dy and

1

x

∫
Ji

ψ+(x, y j− 1
2
)dx based on the most updated values of the unknowns.

At the boundary of the computational domain, high-order extrapolations are used to com-
pute the values at the ghost cells, which are needed for the HWENO reconstruction near the
boundary. After repeating this process for all m, n directions, we can compute scalar flux
φ from ψm,n via Gauss quadrature, and update Si, j etc. This completes one Gauss-Seidel
iteration.
Step 3. Convergence: Repeat the Gauss-Seidel iteration until the convergence criteria is
satisfied. In this paper, if the scalar flux satisfies

δ = ||φnew − φold ||L1 < 10−14,

for two consecutive iteration steps, we stop the iteration.
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Remark 3.1 In some two-dimensional numerical experiments, we observed that the proposed
HWENO FSM may not converge to machine epsilon, i.e., δ = ||φnew − φold ||L1 will not
decrease to 10−14. The same phenomenon has also been observed in the application of
HWENO FSM method to other systems as reported in [39, 40]. This may be related to
high-order extrapolation for the ghost cells near the boundary. For example, if the low order
extrapolation is used for ghost cells only, the proposed method works well in these numerical
examples. However, this will degenerate the high-order accuracy of the proposed method.
To fix this, we propose to keep the high-order extrapolation while update the solution by

ψnew
i, j = ωψnew

i, j + (1 − ω)ψold
i, j , 0 < ω ≤ 1,

which is shown numerically to yield good convergence, although it may slightly increase the
iteration numbers. Numerically, one observes that ω = 0.85 is the optimal choice and will
be used in our 2D numerical examples.

If the standard Gauss-Seidel iteration method (without alternative sweeping) is used
instead, we observe numerically that the parameter ω = 0.5 is required for convergence,
even for 1D problems. On the other hand, the FSM does not need the parameter ω for 1D
problems. See Sect. 4 for the numerical results.

4 Numerical Results

We present extensive one-dimensional and two-dimensional numerical results on different
model problems, to demonstrate the diffusion limit and order of accuracy of the proposed
HWENOfast sweepingmethod in thefinite volume framework. In all the numerical examples,
ε̃ in (2.15) is taken as 10−6 unless otherwise specified. The number of grid points is assumed
to be Nx = Ny = N for 2D examples. We use “iter” to denote the iteration numbers in the
tables.

4.1 One-Dimensional Problemwith Vacuum Boundary

Example 1 (Accuracy test with manufactured solution). In the first example, we consider a
slab with the vacuum boundary on both sides to test the accuracy of the proposed HWENO
method. The specifications of the problem are given as

L = 1, σt = 1, σa = 0.8, Q = 2

ε
[(3x2 − 12x3 + 15x4 − 6x5)μm] + 2σax

3(1 − x)3,

where L is the slab thickness. Themanufactured exact solution of the linear transport equation
is given by [42]

ψ(x, μm) = x3(1 − x)3.

The Gauss-Legendre S12 quadrature set is used in the angular discretization. We have run
the simulations for various choices of ε. In Table 1, we show the numerical errors, the
corresponding order of accuracy and CPU times of the HWENO method with the hybrid
strategy discussed in Remark 2.2. Here we only report the cell-average errors to save space,
and similar behavior has been observed for the first order moment. Note that the expected
high-order accuracy has been observed for all choices of ε. The numerical solutions and
iteration history (||φn − φn−1||L1 ) with spatial size 
x = 0.1, ε = 0.01, 0.001 and 0.0001,
compared with the corresponding reference solutions, are plotted in Fig. 2, from which we
can observe a good match of the numerical solution even for small ε.
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Table 1 Example 1. N L1 error order L∞ error order iter time

ε = 1

10 1.26e–05 – 5.53e–05 – 60 0.006

20 1.84e–07 6.09 1.52e–06 5.18 56 0.002

40 1.96e–09 6.55 3.13e–08 5.60 52 0.003

80 1.80e–11 6.76 5.61e–10 5.800 49 0.009

160 1.69e–13 6.73 9.41e–12 5.89 47 0.013

ε = 0.1

10 5.59e–05 – 2.59e–04 – 886 0.02

20 9.91e–07 5.81 8.23e–06 4.97 884 0.04

40 1.40e–08 6.14 1.98e–07 5.37 883 0.04

80 1.80e–10 6.28 4.17e–09 5.57 882 0.05

160 2.06e–12 6.44 7.91e–11 5.72 882 0.13

ε = 0.01

10 7.94e–05 – 3.40e–04 – 60976 1.41

20 1.68e–06 5.55 1.57e–05 4.43 60976 1.76

40 2.98e–08 5.82 5.36e–07 4.87 60969 2.81

80 5.88e–10 5.66 1.48e–08 5.17 60973 4.31

160 1.25e–11 5.54 3.55e–10 5.38 60970 7.15

The errors, order of accuracy and CPU time of HWENO method with
the hybrid strategy

We have also tested the HWENO method without the hybrid strategy, and summarized
the comparison of their CPU times and iteration numbers in Table 2. Note that the recorded
time listed in Table 2 is the total CPU times of all the simulations with N = 10, 20, · · · ,
160 and ε = 0.01. For this example, it can be observed that the hybrid strategy saves 70%
of CPU time.

As mentioned in the introduction, we have also tested the fifth-order finite difference
HWENO method and did not observe AP property numerically. For comparison, we have
plotted the numerical results of finite difference HWENO method for this example in Fig. 3.
Obvious numerical errors canbe seenon coarsemesheswhen ε becomes smaller (for example,
ε = 0.001 or 0.0001), while the numerical errors of finite volume HWENO method remain
small for all ranges of ε.

To compare FSMand the standardGauss-Seidel (GS) iteration (without alternative sweep-
ing), we compare the performance of two methods, including numerical errors, convergence
order, iteration numbers and CPU times, in Table 3. The numerical results for FSM are
reported on the left side, and those of GS iteration are reported on the right side. Note that the
GS iteration requires a smaller value of ω (=0.5) for convergence, where ω is the parameter
reported in Remark 3.1. For comparison, we also set ω = 0.5 in the simulation of FSM. We
can observe the iteration numbers of FSM are smaller than GS iteration on the same meshes,
and the FSM costs less CPU time than GS iteration, even with ω = 0.5. Note that the FSM
can take a larger ω (=1) with the numerical results reported in Table 1, which further reduces
the computational time.

Example 2 A slab with the vacuum boundary on both sides with

L = 1, σt = 1, σa = 0.8, Q = 1,
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Fig. 2 Example 1 with 
x = 0.1. Numerical solutions (top); Iteration history (bottom); ε = 0.01 (left);
ε = 0.001 (middle); ε = 0.0001 (right)

Table 2 The CPU times of the HWENO method with or without the hybrid strategy for all the Examples.

Test With hybrid strategy Without hybrid strategy Ratio

iter time iter time

1 – 17.47 – 62.73 27.85%

2 – 83.95 – 452.35 18.55%

3 4726476 123.74 4727810 246.88 50.12%

4 4456737 153.51 4457270 229.46 66.90%

5 5311441 209.95 5311566 456.40 46.00%

6 5680997 221.31 5681346 480.77 46.03%

“iter” and “time” denote the iteration numbers and CPU time, respectively. The “ratio” represents the ratio of
the CPU time of method with hybrid strategy over that without hybrid strategy

Fig. 3 Numerical solutions of Example 1 with h = 
x = 0.1 if finite difference HWENO method is used.
ε = 0.01 (left), ε = 0.001 (middle), ε = 0.0001 (right)

is considered. Again, the Gauss-Legendre S12 quadrature set is used in the angular discretiza-
tion. The analytical solution can be obtained following the approach discussed in [44]. We
have run the simulations for various choices of ε. In Table 4, we show the numerical errors,
order of accuracy, and CPU times of the HWENO method with the hybrid strategy. Here we
only report the errors of cell-average to save space, and similar behavior has been observed
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Table 4 Example 2. N L1 error order L∞ error order iter time

ε = 1

10 1.80e–05 – 4.60e–05 – 53 0.0020

20 4.07e–07 5.47 2.19e–06 4.38 50 0.0020

40 5.50e–09 6.20 6.03e–08 5.18 46 0.0022

80 5.69e–11 6.59 1.25e–09 5.58 43 0.0029

160 5.13e–13 6.79 2.27e–11 5.78 41 0.0071

ε = 0.1

10 2.18e–04 – 8.09e–04 – 882 0.023

20 6.13e–05 1.82 3.46e–04 1.22 882 0.02

40 8.90e–06 2.78 8.64e–05 2.00 883 0.03

80 5.24e–07 4.08 9.11e–06 3.24 883 0.04

160 1.39e–08 5.22 4.41e–07 4.36 883 0.08

320 2.16e–10 6.01 1.27e–08 5.11 883 0.16

ε = 0.01

10 4.62e–05 – 1.71e–04 – 61034 1.62

20 3.17e–05 0.54 1.78e–04 –0.05 61051 1.58

40 1.89e–05 0.74 1.48e–04 0.26 61057 2.23

80 9.46e–06 1.00 9.08e–05 0.70 61059 4.27

160 3.57e–06 1.40 4.29e–05 1.08 61062 7.01

320 7.85e–07 2.18 1.33e–05 1.68 61063 12.6

640 7.26e–08 3.43 1.87e–06 2.83 61066 22.0

1280 2.76e–09 4.71 1.13e–07 4.04 61068 45.4

2560 6.36e–11 5.43 3.74e–09 4.94 61058 91.5

The errors, order of accuracy and CPU time of HWENO method with
the hybrid strategy

for the first order moment. We can observe that the expected high-order accuracy has been
observed for all choices of ε. The numerical solutions and iteration history with spatial size

x = 0.1, ε = 0.01 and 0.001, compared with the corresponding reference solutions, are
plotted in Fig. 4, from which we can observe a good match of numerical solutions even
for small ε. From the total CPU times (combination of N = 10 ∼ 1280) comparison of
HWENO method with/without the hybrid strategy in Table 2, we observe an 80% saving of
CPU time when the hybrid strategy is used. In Table 5, we list the numerical results of FSM
and the standard GS iteration, including the numerical errors, convergence order, iteration
numbers and CPU times. As in Example 1, we can observe that FSM is more efficient than
GS iteration.

As ε decreases the problembecomes thick and diffusive, and its asymptotic solution should
be the same as the solution of the corresponding diffusion equation. In Table 6, we list the
errors between numerical solution of SN equation with different ε and the exact solution of
the diffusion equation, from which we can observe the errors decay at the expected rate of
O(ε).
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Fig. 4 Example 2 with 
x = 0.1. Numerical solutions (top); Iteration history (bottom); ε = 0.01 (left);
ε = 0.001 (right)

4.2 One-Dimensional Problemwith Anisotropic Incoming Flux

Example 3 This is also a 1D slab case, and the Gauss-Legendre S12 quadrature set is used
for the angular discretization. The setup of the problem takes the form

L = 1, σt = 1, σa = 0.8, Q = 1.

The incoming angular flux at x = 0 changes linearly from 0 to 5 for the six discrete incoming
directions. On the right boundary at x = 1, the vacuum boundary is considered. Again, the
analytical solution can be obtained following the approach discussed in [44]. Figure 5 shows
the numerical solutions with spatial size 
x = 0.1 for different ε, which demonstrates that
the HWENO FSM can capture the thick diffusion limit well in both the cell-average and
cell-edge fluxes, for various values of ε. Furthermore, Table 2 lists the comparison of CPU
times for the HWENOmethod with/without the hybrid strategy when ε = 0.001, and we can
observe a 50% saving in CPU times by the hybrid strategy.

4.3 One-Dimensional Problemwith the Interior Thin Layer

Example 4 In this test, we consider a 1D slab consisting of two material regions. The left half
of the slab is an optically thin region, and the right half is an optically thick diffusive region.
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Table 6 Example 2.
ε L1 error order L∞ error order

N = 10

1 4.89e–01 – 5.05e–01 –

0.1 7.16e–02 0.83 7.98e–02 0.80

0.01 7.32e–03 0.99 8.19e–03 0.98

0.001 7.31e–04 1.00 8.11e–04 1.00

0.0001 7.31e–05 1.00 8.09e–05 1.00

N = 20

1 4.89e–01 – 5.05e–01 –

0.1 7.20e–02 0.83 8.05e–02 0.79

0.01 7.38e–03 0.98 8.60e–03 0.97

0.001 7.37e–04 1.00 8.49e–04 1.00

0.0001 7.37e–05 1.00 8.46e–05 1.00

The errors and order of accuracy between numerical solution of SN
equation with different ε and the exact solution of the limit diffusion
equation

Fig. 5 Numerical solution of Example 3 with 
x = 0.1. ε = 0.01 (left) and ε = 0.001 (right)

The specifications of the problem are defined by L = 2,

σt =
{

ε, 0 ≤ x < 1,

1, 1 ≤ x < 2,
σa =

{
1
ε
, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,
and Q =

{
0, 0 ≤ x < 1,

1, 1 ≤ x < 2.

Again, the Gauss-Legendre S12 quadrature set is used for the angular discretization. The
incoming angular flux at x = 0 changes linearly from 0 to 5 for the six discrete incoming
directions.On the right boundary at x = 2, the vacuumboundary is considered. The analytical
solution of this problem in the form of cell-edge can be computed following the idea in [44].
Figure 6 shows the numerical solutions with spatial size 
x = 0.2 for different ε, which
demonstrates that the HWENO FSM can capture the thick diffusion limit well in both the
cell-average and cell-edge fluxes, for various values of ε.

For Examples 3 and 4, we also plotted the numerical results by the finite difference
HWENOmethod in Fig. 7 for comparison. Again, it suggests that the finite differencemethod
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Fig. 6 Numerical solution of Example 4 with 
x = 0.2. ε = 0.01 (left) and ε = 0.001 (right)

Fig. 7 Numerical solution of Example 3 and Example 4 through finite difference HWENOmethod. Example 3
with h = 
x = 0.1 (left) and Example 4 with h = 
x = 0.1 (right)

does not have the AP property, since the numerical solution does not overlap with the exact
solution on the coarse mesh for small ε.

Remark 4.1 For the finite difference HWENOmethod, we performed some numerical exam-
ples, and observe numerically (Figs. 3 and 7) that it does not have the AP property. One
possible reason is that, similar to other upwind finite difference schemes (for instance, step
difference method), finite difference HWENO method is not an ε-uniform scheme, while
finite volume HWENO method (which has some similarity with LD method or DG method
which is automaticallyAPwith at least linear elements) is. In general, upwind finite difference
does not have the AP property [43].

Example 5 This is a classical example taking from [24].We consider a slab in [0, 11], Q = 0,
ε = 1, and other settings are given by

σt =
{
2, 0 ≤ x < 1,

100, 1 ≤ x < 11,
σa =

{
2, 0 ≤ x < 1,

0, 1 ≤ x < 11,
and

{
ψ(0, μ) = 1, μ > 0,

ψ(11, μ) = 0, μ < 0.

The problem consists of a two mean-free-path purely absorbing part and a 1000 mean-free-
path purely scattering part. We solve this problem using the S12 quadrature set in the angular
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Fig. 8 Numerical solution of Example 5 on N = 20 (left). The zoomed-in version of Example 5 (right)

direction and the mesh size


x =
{
0.1, 0 ≤ x < 1,

1, 1 ≤ x < 11.
(4.1)

The “exact" cell-edge solution is obtained by LD method with a refined mesh of N = 1000.
In the left plot of Fig. 8, we present the numerical results of HWENOmethod with the hybrid
strategy, and the zoomed-in version is provided in the right plot of Fig. 8, which provides
a better view of the numerical simulation near the interior layer. We can observe that the
numerical solution is in good agreement with the exact solution, which indicates that the
proposed HWENO method produces very accurate results for this challenging test.

Example 6 Another problem considered in [24] has the setup L = 20, ε = 1, σt = 100, and
the other settings are given by

σa =
{
10, 0 ≤ x < 10,

0, 10 ≤ x < 20,
Q =

{
10, 0 ≤ x < 10,

0, 10 ≤ x < 20,
(4.2)

with vacuum boundary. The system in this problem consists of a 1000 mean free path slab,
with absorption and a flat interior source, adjoining a 1000 mean free path purely scattering
slab with no interior source. The “exact" cell-edge solution is obtained by the LD method
with a refined mesh of N = 100. The Gauss-Legendre S12 quadrature set is used in the
angular discretization. We take spatial size 
x = 1 and the numerical result of the HWENO
method is provided in the Fig. 9, from which we can observe that the numerical solution is
in good agreement with the exact solution.

For Examples 5 and 6, we also provided the CPU times comparison of the HWENO
method with or without the hybrid strategy in Table 2, we can observe a 50% saving of CPU
time when the hybrid strategy is used.

4.4 Two-Dimensional Problems

Only the cell-average fluxes will be plotted in the figures for the two-dimensional problems
in this subsection.
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Fig. 9 Example 6, Numerical
solution of scalar fluxes with

x = 1

Table 7 Example 7. N L1 error order L∞ error order iter time

ε = 1

10 2.07e–03 – 1.05e–02 – 42 0.99

20 3.71e–05 5.80 3.70e–04 4.82 49 4.95

40 4.62e–07 6.32 8.73e–06 5.40 65 24.08

80 4.38e–09 6.72 1.56e–07 5.79 99 151.70

ε = 0.1

10 7.93e–03 – 3.66e–02 – 1559 37.02

20 1.41e–04 5.80 1.40e–03 4.70 1621 146.84

40 2.04e–06 6.11 3.74e–05 5.22 1744 629.92

80 2.73e–08 6.22 8.43e–07 5.47 1990 1811.3

The errors, order of accuracy and CPU time of 2D HWENO method
with hybrid strategy

Example 7 (Accuracy test withmanufactured solution in 2D).To test the order of convergence
of the 2D HWENO FSM, we follow the setup in [43] and consider the manufactured exact
solution of the form

ψ(x, y, μm, ηm) = x3y3(2 − x)3(2 − y)3,

in the computational domain � = [0, 2] × [0, 2]. The other parameters are set as

σt = 1, σa = 0.8,

and

Q(x, y) = 4

ε
[(24x2 − 48x3 + 30x4 − 6x5)y3(2 − y)3μm + x3(2 − x)3(24y2

−48y3 + 30y4 − 6y5)ηm] + 4σaψ.

The numerical solutions are obtained using the level symmetric S12 quadrature set for angular
discretization. We have run the simulations for ε = 1 and ε = 0.1. In Table 7, we show the
numerical errors, iteration numbers, and the corresponding order of accuracy of the 2D
HWENO method with the hybrid strategy, from which we can observe the expected high-
order accuracy for both choices of ε. In Fig. 10, we plot the numerical solutions and iteration
history with 
x = 
y = 0.2 and ε = 1 or ε = 0.1. In Fig. 11, we plot the numerical
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Fig. 10 Numerical solution of Example 7 with 
x = 
y = 0.2, and ε = 1 (left) and ε = 0.1 (right)

Fig. 11 Numerical solution of Example 7 with ε = 0.01, and 
x = 
y = 0.2 (left) and 
x = 
y = 0.1
(right)
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Table 8 Example 7.

ε = 1, FSM ε = 1, GS iteration
N L1 error order L∞ error order iter time L1 error order L∞ error order iter time

10 2.19e–03 – 1.11e–02 – 102 1 2.19e–03 – 1.11e–02 – 114 1

20 3.84e–05 5.83 3.87e–04 4.84 136 5 3.84e–05 5.83 3.87e–04 4.84 169 9

40 4.74e–07 6.34 8.97e–06 5.43 208 45 4.74e–07 6.34 8.97e–06 5.43 302 65

80 4.47e–09 6.72 1.59e–07 5.81 335 301 4.47e–09 6.72 1.59e–07 5.81 583 540

ε = 0.1, FSM ε = 0.1, GS iteration
N L1 error order L∞ error order iter time L1 error order L∞ error order iter time

10 7.97e–03 – 3.68e–02 – 2853 38 7.97e–03 – 3.68e–02 – 3116 51

20 1.42e–04 5.80 1.41e–03 4.70 3192 178 1.42e–04 5.80 1.41e–03 4.70 3710 223

40 2.08e–06 6.09 3.75e–05 5.23 3871 919 2.08e–06 6.09 3.75e–05 5.23 4896 1165

80 2.79e–08 6.21 8.44e–07 5.47 5221 5014 2.79e–08 6.21 8.44e–07 5.47 7243 6825

Comparison of the two iteration methods with ω = 0.5: The errors of numerical solution, convergence rate
and iteration numbers

solutions and iteration history with a smaller ε = 0.01 on two sets of computational meshes.
From these figures, one could observe that the HWENO FSM can capture the thick diffusion
limit well on coarse meshes.

In Table 8, we report the numerical results of FSM and the standard GS iteration, including
numerical errors, convergence order, iteration numbers and CPU times. As in the 1D cases,
we can observe the iteration numbers of FSM are smaller than those of GS iteration on the
same meshes, and the FSM costs less CPU time with ω = 0.5. In addition, the FSM can take
a larger ω (= 0.85), which further reduces the computational time.

Example 8 In this example which was originally considered in [6], we study the problem on
bounded domain with vacuum boundary conditions with the setup

� = [0, 1]2, σt = 1, σa = 1, and Q = 1.

We take the spatial size 
x = 
y = 0.05 for this problem. Again, the level symmetric S12
quadrature set for angular discretization. The limit diffusion equation, when ε → 0, is given
by

{
− 1

3
ψ(x) + ψ(x) = 1, x ∈ (0, 1)2;
ψ(x) = 0, x ∈ ∂(0, 1)2,

(4.3)

and we plot its exact solution on the same spatial size in Fig. 12 as a reference solution.

In [6], it was shown that the two-dimensional LD method does not have the AP property
and cannot capture the diffusion limit well. In Fig. 13, we plot the iteration history and
numerical solutions of the 2D finite volume HWENO method for ε = 0.1 and ε = 0.01.
The Fig. 14, we present the numerical solutions of the 2D finite volume HWENO method
for different values of ε: 0.001 and 0.0001, we can observe that the diffusion limit is well
captured by our method, which suggests that HWENOmethod has the designed AP property.

Example 9 The setup of the problem can be found in Fig. 15 with ε = 1, which consists of
three subregions: the left part is a non-scattering region with no interior source, the middle
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Fig. 12 Example 8: the reference
exact solution of the limit
diffusion equation

Fig. 13 Example 8, Numerical solution (top); iteration history (bottom); ε = 0.1 (left); ε = 0.01 (right)

part is an absorption region with an interior fixed source, and the right part is a high scattering
region without interior source, and a natural vacuum boundary condition can be used for each
side. The level symmetric S12 quadrature set is used for angular discretization. The numerical
results of the proposed 2D HWENOmethod on different meshes are shown in Fig. 16, which
again suggests that the finite volume HWENO FSM can capture the thick diffusion limit on
coarse meshes.

Example 10 As discussed in [45], a potential issue with the diamond difference method and
other high-order SN numerical methods is that they could produce non-physical negative
solutions when the domain contains large material inhomogeneity. In the last example, we
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Fig. 14 Numerical solution of Example 8 with ε = 0.001 (left) and ε = 0.0001 (right)

Fig. 15 Setup of Example 9, and σt = �t , σs = �s

Fig. 16 Numerical solution of Example 9 with 
x = 
y = 0.2 (left) and 
x = 
y = 0.1 (right)
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Fig. 17 Numerical solution of
Example 10 with

x = 
y = 0.1. Note that the
numerical solutions stay positive
and there is no negative or
oscillatory solution

consider the following problem

� = [0, 5]2, σt =

⎧⎪⎨
⎪⎩

1, 0 ≤ x < 1,

100, 1 ≤ x < 3,

1, 3 ≤ x ≤ 5,

σa =

⎧⎪⎨
⎪⎩

0.05, 0 ≤ x < 1,

95, 1 ≤ x < 3,

0.05, 3 ≤ x ≤ 5,

Q = 1,(4.4)

and ε = 1. The vacuum boundary condition is considered. This problem is a 2D square
problem and has a high absorbing region in the domain. The symmetric S12 quadrature is
chosen for angular discretization. In Fig. 17, we plot the scalar flux distribution calculated by
the proposed HWENO FSM under mesh size 
x = 
y = 0.1, from which we can observe
the nice positivity-preserving property of the HWENO method for this example. We refer
to [45, Fig 4] for the numerical result of diamond difference method, with negative values
generated near the boundary of the absorbing region.

5 HWENO Fast SweepingMethod with DSA

In this section, we combine the proposed HWENO method proposed with the DSA method
to verify that our method can be accelerated by DSA. The DSA method was first proposed
by Kopp in [18] for the general transport equation, and Reed later showed that the numerical
method was unstable for some problems with optical widths larger than one mean free path
[38]. In [3], Alcouffe generalized it to the ordinate discrete transport equation, and designed
DSA for the diamond difference method, and demonstrated for the first time that DSA could
be used to significantly reduce the total CPU cost on practical problems. In [21] Larsen
derived a DSA method for some difference schemes, and the spectral radius of the iterative
method can be reduced by more than half. Adams et al. designed DSA for the DG method
in [2]. Although the discretization of the transport equation and the diffusion equation is not
strictly consistent, the accelerated scheme is unconditionally stable and the convergence is
rapid.

The basic idea of the DSA method is to solve a diffusion equation of the form

− ∂

∂x

(
1

3σt

∂

∂x
δφ

)
+ σaδφ = σs [φ] , (5.1)

with a given [φ], and then use the computed δφ to update the solution in order to yield a
rapid convergence. In this paper, we take the SN equation with a fixed-source as an example
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Fig. 18 Spectral radius (left) and iteration numbers (right), with a fifth-order extrapolation for ghost points.
The y-axis of the right figure is on the log scale

to illustrate how HWENO method can be accelerated by the DSA algorithm. The general
procedure is summarized as follows. Suppose φ̃n+1 to be the updated solution in each iteration

of Algorithm 1. We set φn+ 1
2 = φ̃n+1, and solve the diffusion equation (5.1) for δφ with

[φ] = φn+ 1
2 − φn . Then φn+1 is updated by setting φn+1 = φn+ 1

2 + δφ. More details about
DSA can be found in [5].

One numerical example is provided to test the performance of HWENO method with
DSA. We consider a fixed-source neutron transport equation as in [5], and a homogeneous
50-cm slab with the reflective right boundary and vacuum left boundary. The source term
is Q = 1, and the spatial size is taken 
x = 1. The spectral radius of the convergence is
calculated by

ρ = ||φn+1 − φn ||
||φn − φn−1|| .

For comparison, the spectral radius results of HWENO with DSA and without DSA are
both studied, when two different scattering ratios c = 0.8 and c = 0.99 have been considered.
In Fig. 18, the fifth-order extrapolation is used for ghost points, and we can observe that
HWENO-DSA enjoys a smaller spectral radius when σt < 10. The spectral radius of the two
methods is close to the theoretical value 0.8 and 0.99 if σt > 10, but it can be seen from the
right plots of Fig. 18 that the iteration numbers of HWENO-DSA are still smaller than those
of HWENO. In both cases, when σt > 100, the iteration numbers of HWENO-DSA will
gradually decrease, but the iteration numbers of the HWENO method remain unchanged.
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Fig. 19 Spectral radius (left) and iteration numbers (right), with a second order extrapolation for ghost points.
The y-axis of the right figure is on the log scale

If second-order extrapolations are used for the ghost points, as shown in Fig. 19, the
spectral radius is close to 0.2 for the case of σt < 0.1, which is close to the theoretical value.
Even if 0.1 < σt < 1, it is still less than 0.5, which is acceptable for a high-order method.

6 Conclusion

In this paper, we combined theHWENO scheme and the fast sweepingmethod to numerically
solve the steady-state SN transport equations in the finite volume framework. The HWENO
method is known to bemore compact and produce smaller errors than theWENOmethod, and
enjoys a simpler boundary treatment. The main contribution of this paper is to prove that the
finite volume HWENO method preserves the asymptotic diffusion limit when ε goes to zero
and has the asymptotic preserving property. One- and two-dimensional numerical examples
show thatHWENOFSM is of high-order accurate and can capture the thick diffusion limits on
coarsemeshes.We also combined the DSA algorithmwith the HWENOmethod to accelerate
the convergence. Numerical results show that the high-order HWENO method proposed in
this paper can be accelerated with DSA, which makes the HWENO method more valuable
in applications. The proposed method can be easily extended to any dimension on cartesian
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meshes. The extension to unstructured meshes, as well as comparison with other high-order
methods, will be discussed in future work.
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