
Journal of Computational Physics 445 (2021) 110597
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A high order conservative finite difference scheme for

compressible two-medium flows

Feng Zheng a, Chi-Wang Shu b,1, Jianxian Qiu c,∗,2

a College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian 350117, PR China
b Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
c School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling & High-Performance Scientific Computing,
Xiamen University, Xiamen, Fujian 361005, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 30 July 2021

Keywords:
Finite difference
Conservative method
Two-medium flows

In this paper, a high order finite difference conservative scheme is proposed to solve two-
medium flows. Our scheme has four advantages: First, our scheme is conservative, which
is important to ensure the numerical solution captures the main features properly. Second,
our scheme directly applies the WENO interpolation method to the primitive variables so
that it can maintain the equilibrium of velocity and pressure across the interface, which is
very helpful to obtain a non-oscillatory solution. Third, the usage of nodal values enables
us to manipulate algebraic functions easily. Fourth, the scheme can maintain high order
accuracy when the solution is smooth. Extensive numerical experiments are performed to
verify the high resolution and non-oscillatory performance of this new scheme.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The computation of two-medium flows is one of the most popular issues in computational fluid dynamics (CFD). It is
relevant to many applications including hydrodynamics, aeronautics, material science, and so on. The main difficulty for
the computation of two-medium flow is to maintain the equilibrium of velocity and pressure across the material interface,
which is the property of the physical interface discontinuities. If the interface is not properly treated numerically, non-
physical oscillations will occur, and such oscillations cannot be eliminated by using high resolution methods, such as the
total variation diminishing (TVD) method and the weighted essentially non-oscillatory (WENO) method [24]. They even
appear when we construct first order schemes.

Numerical methods for the two-medium flow can be divided into two categories: one is the shock-capturing method, and
the other is the interface tracking method. An advantage for the shock-capturing method is its simplicity and easiness in its
extension to multi-dimensions. The interface is allowed to diffuse numerically and is not explicitly tracked. Abgrall proposed
a quasi-conservative scheme based on the γ -law model [1]. Then, Shyue extended the method to more general equations of
state [27–29]. Allaire et al. introduced the usage of volume fraction and constructed a five-equation model for the simulation
[4]. Abgrall and Saurel further applied the method to different numerical fluxes for multi-phase flows [3,23]. Although the
shock-capturing method has achieved great success, it still has some drawbacks: First, the method diffuses the interface,

* Corresponding author.
E-mail addresses: fzbz200808-31@163.com (F. Zheng), chi-wang_shu@brown.edu (C.-W. Shu), jxqiu@xmu.edu.cn (J. Qiu).

1 Research is partially supported by AFOSR grant FA9550-20-1-0055 and NSF grant DMS-2010107.
2 Research is partially supported by NSFC grant 12071392 and Science Challenge Project (China), No. TZ 2016002.
https://doi.org/10.1016/j.jcp.2021.110597
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110597
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110597&domain=pdf
mailto:fzbz200808-31@163.com
mailto:chi-wang_shu@brown.edu
mailto:jxqiu@xmu.edu.cn
https://doi.org/10.1016/j.jcp.2021.110597

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
so it is not very clear where the interface is. Second, in order to avoid the jump near the interface, the intermediate
state of either the physical parameters or the volume fraction would be introduced, which is inconsistent with what is
really happening in physics. Comparing with the shock-capturing method, a sharp interface can be obtained by using the
interface tracking method, where the level set method is used to track the interface [18]. Among all methods of this type,
the ghost fluid method (GFM) with the isobaric fix is undoubtedly the most successful [8,9]. The method is essentially only
solving single medium fluids through a Riemann solver at the interface (which is determined by the level set function) and
defining the value of the ghost fluids across the interface. The interface is not explicitly tracked, its location is automatically
determined by a level set function, hence the extension of this method to multi-dimensions becomes fairly straightforward.
Liu et al. proposed a modified GFM (MGFM) which improves upon the original GFM [16]. The GFM and MGFM work well
for strong shock impedance matching problems. Later, Wang et al. proposed the real GFM method focusing on simultaneous
influence of different fluids [31]. There are also other similar methods, such as the interface treatment method [7], the
simple single fluid algorithm [2], the path-conservative schemes [33] and so on. The drawback of these methods is that the
scheme is not conservative, so theoretically we are not assured of the convergence to weak solutions from the numerical
solutions. We refer to [2] for a good review of these methods for multi-medium and multi-phase flows.

Our goal is to design a finite difference scheme that is conservative and has a sharp and non-oscillatory interface. Con-
servative schemes have many advantages in solving hyperbolic problems. The most important property is that the numerical
solution will converge to a weak solution as long as it converges (the Lax-Wendroff theorem). However, for the two-medium
problem, conservative schemes tend to give oscillatory results if no special care is taken [32]. In [20], the authors designed a
discontinuous Galerkin (DG) method [5] to solve the two-medium problem by using the classical DG scheme away from the
interface and developing a DG scheme specially for treating the moving interface in one space dimension. High resolution
and sharp interface results were achieved. Similar idea is used in [11]. In this paper we use a finite difference framework.
Traditional conservative finite difference schemes perform reconstructions on the fluxes [25,26,13]. As is well known, across
material interfaces, density will have a discontinuity, but velocity and pressure remain continuous. If the reconstruction is
performed on the fluxes or on the conserved variables, then all components will have discontinuities, hence the approxi-
mation to velocity and pressure, which are nonlinear functions of the conserved variables or fluxes, will be poor. Moreover,
traditional local characteristic decompositions to reduce oscillations has a reduced effect at the interface, whose character-
istic structure is not clear since two different fluids are at the two sides of this interface. One possible way to get better
results is to perform approximation directly on the primitive variables, namely density, velocity and pressure. However, for
finite volume methods of order of accuracy higher than two, this is not possible, since we only have the information of cell
averages of the conserved variables. For traditional finite difference schemes, this is not possible either, since the compu-
tation of numerical fluxes is through the reconstruction on the fluxes [25,26]. If we use the alternative formulation of high
order finite difference schemes in [14], which is based on the high order flux expansion in [25], we will be performing in-
terpolation, rather than reconstruction, on the conserved variables, not on the fluxes. In this paper, we modify the approach
in [14] to use point values of the primitive variables, which are readily available from the point values of the conserved
variables, to perform high order interpolation for obtaining the numerical fluxes. This would ensure non-oscillatory results
for velocity and pressure from high order WENO interpolation. Near the interface, we will also use the specific informa-
tion of the interface location as determined by the level set method to modify the approximation, based on the ideas in
[20,11,15]. Both the distance function and the computational variables are updated at each time step by the third order TVD
Runge-Kutta time discretization [25]. Conservative property and sharp and non-oscillatory interface can be obtained for our
scheme. Extensive numerical experiments are performed for benchmark problems to verify the capability of the algorithm
in obtaining non-oscillatory and high resolution solutions.

The organization of this paper is as follows. In section 2, we introduce our scheme in the one dimensional case. In
section 3, we extend our scheme to the two dimensional case. In section 4, numerical benchmarks are shown to demonstrate
the performance of our schemes. In section 5, we make some concluding remarks.

2. One-dimensional numerical schemes

The one-dimensional system for the compressible fluid can be written as follows:

Ut + F (U)x = 0

where U = (ρ, ρu, E)T , F (U) = (ρu, ρu2 + p, u(E + p))T . Here ρ is the density, u is the velocity, E is the total energy, p is
the pressure. To make the system closed, the equation of state (EOS) is required. In this paper, we mainly use the following
EOS:

• γ -law:

E = 1

2
ρu2 + p

γ − 1
,

where γ is adiabatic index. The γ -law is used for gases in this paper.
2

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
• Tait EOS:

E = 1

2
ρu2 + p + γ p

γ − 1
,

where γ = 7.15, p = 3.309 × 108 Pa. The Tait EOS is used for water in this paper.

2.1. Review of one-dimensional high order finite difference schemes for single medium

Considering the following one-dimensional scalar equation:

ut + f (u)x = 0

The computational domain is divided into N grid points: a = x0 < x1 < · · · < xN = b. For the nodal value ui , we have the
following semi-discrete scheme:

dui

dt
= − 1

�x
(f̂ i+ 1

2
− f̂ i− 1

2
)

where the numerical flux f̂ should satisfy the following condition:

f̂ i+ 1
2

− f̂ i− 1
2

�x
= f (u)x

∣∣∣
xi

+O(�x5)

for a fifth order scheme. It has been shown in [25] that the following formula can guarantee the fifth order of accuracy:

f̂ i+ 1
2

= f̂ (u−
i+ 1

2
, u+

i+ 1
2
) − 1

24
�x2 fxx

∣∣∣
i+ 1

2

+ 7

5760
�x4 fxxxx

∣∣∣
i+ 1

2

(1)

The first term in (1) is a monotone numerical flux in the scalar case or an appropriate Riemann-solver-based flux for
systems. For example, we can use the Lax-Friedrichs flux:

f̂ (u−, u+) = 1

2
(f (u−) + f (u+)) − 1

2
α(u+ − u−)

where α = max
u

| f ′(u)|. u±
i+ 1

2
are the right and left limits of u at xi+1/2, which can be obtained from a WENO interpolation.

The remaining terms can be approximated by simple central differences, as their effect on spurious oscillations is minimal
due to the small coefficients involving at least �x2. We use

fxx

∣∣∣
x

i+ 1
2

= −5 f (ui−2) + 39 f (ui−1) − 34 f (ui) − 34 f (ui+1) + 39 f (ui+2) − 5 f (ui+3)

48�x2
(2)

and

fxxxx

∣∣∣
x

i+ 1
2

= f (ui−2) − 3 f (ui−1) + 2 f (ui) + 2 f (ui+1) − 3 f (ui+2) + f (ui+3)

2�x4
(3)

2.2. Description of the finite difference scheme for two-medium flows in 1D

Now, we describe the high order finite difference scheme for two-medium flows in the one dimensional case. In our
scheme, we take the CFL number as 0.5.

The same as before, the computational domain is divided into N grid points: a = x0 < x1 < · · · < xN = b. We denote cell
Ii = [xi− 1

2
, xi+ 1

2
] as the corresponding cell of the node xi . Here, we set xi+ 1

2
= (xi + xi+1)/2. We denote the nodal value for

fluid I as Un,I
i and the nodal value for fluid II as Un,I I

i . We introduce the distance function φ which is defined at the half
nodes. By using this distance function φ, we can determine the location of the interface x(tn) at time level tn . We define
in as the sequence of the index of the cell containing the interface at time level tn , then we have x(tn) ∈ [xin− 1

2
, xin+ 1

2
]. We

can define the computational variable {Un
i }, which will be the variables updated in time in a conservative fashion, in the

following way:

Un
i = Un,I

i , if i < in

Un
i = Un,I I

i , if i > in

Un = α Un,I + (1 − α)Un,I I
, if i = i

(4)
i i i i i n

3

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 1. Sketch for the interface stencil. Red: fluid I. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where αi is the volume fraction of fluid I in the cell Ii . We set αi = x(tn)−xi−1/2
�x .

Then, we can update the computational variable {Un
i } to the next time level t∗

U∗
i = Un

i − �t

�x
(F̂ n

i+ 1
2

− F̂ n
i− 1

2
) (5)

In order to guarantee high resolution when discontinuities appear and high precision in the smooth region, we need to
design suitable numerical fluxes. For the fluxes far from the interface, they will be approximated by single fluid numerical
fluxes whose explicit expressions are similar to (1). We denote these numerical fluxes as F̂ H . For the fluxes near the
interface, in order to maintain the equilibrium of the velocity and pressure across the interface, we need to calculate the
special low order fluxes, denoted as F̂ L , and we will use a combination of F̂ H and F̂ L to obtain the numerical fluxes. This
combination will be performed carefully in order to ensure high order accuracy.

For the flux F̂ H , we have the following expression:

F̂ H
i+ 1

2
= F̂ (U−

i+ 1
2
, U+

i+ 1
2
) − ϕi+ 1

2

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2

)
(6)

where ϕi+ 1
2

is a discontinuity indicator at xi+1/2 which can improve the resolution when discontinuities appear and main-

tain high order accuracy in smooth areas. The detailed steps to compute the discontinuity indicator is given in subsection
2.2.4. F̂ (U−

i+ 1
2
, U+

i+ 1
2
) is the Lax-Friedrichs flux. Instead of computing the interpolated values U±

i+1/2 from the point values
of the conserved variables, we will interpolate the primitive variables using the WENO method. As we know, the variables
near the two-medium interface satisfy the contact discontinuity condition. Density and physical parameters will jump, while
velocity and pressure will keep continuous. As mentioned in the introduction, it is better to interpolate density, velocity and
pressure directly. Therefore, based on the framework in [14], we perform the interpolation on the primitive variables, which
are readily available from the nodal values of the conserved variables. This gives us better chance to obtain non-oscillatory
results for velocity and pressure from high order WENO interpolation near the interface. As to the higher order derivative
terms, we can apply the simple central difference method in a component by component fashion. It should be noted that
the nodal values used in the interpolation are chosen with respect to the position of the interface. When calculating the
fluxes at a location in fluid I, we will use nodal values of fluid I in the interpolation if they are defined, otherwise we will
use the nodal values of fluid II; when calculating the fluxes at a location in fluid II, we will use nodal values of fluid II in
the interpolation if they are defined, otherwise we use the nodal values of fluid I.

Next, we will describe the detailed steps to calculate the low order special flux F̂ L near the interface.
First, by using the level set method, we can evolve the distance function φn to time level t∗ and obtain φ∗ . Then we can

use φ∗ to determine the interface position x(t∗) at the new time level t∗ . We can use the WENO method in a component by
component fashion to determine the left and right states of the Riemann problem at the interface. The same as before, we
interpolate the primitive variables instead of the conserved variables. The detailed steps of the level set method and WENO
method are described in subsections 2.2.1 and 2.2.3.

We assume the interface x(tn) at time level tn satisfies x(tn) ∈ [xin−1/2, xin+1/2], and the interface x(t∗) at the next time
level t∗ satisfies x(t∗) ∈ [xi∗−1/2, xi∗+1/2]. We denote αi∗ as the volume fraction of fluid I in the cell Ii∗ . The mixed cell Iin
should not be calculated for a full time step. It is suggested that the cell should be merged with a neighboring cell, in order
to avoid the small “cut-cell” problem. We will merge the cells in the following way:

- If αi∗ < 0.5, then we choose the cells Ii∗−1 and Ii∗ as the interface stencil, and merge them to form two new interface
cells: the cell [xi∗− 3

2
, x(tn)] occupied by fluid I, and the cell [x(tn), xi∗+ 1

2
] occupied by fluid II;

- If αi∗ ≥ 0.5, then we choose the cells Ii∗ and Ii∗+1 as the interface stencil, and merge them to form two new interface
cells: the cell [xi∗− 1

2
, x(tn)] occupied by fluid I, and the cell [x(tn), xi∗+ 3

2
] occupied by fluid II.

Due to the CFL number and the way to generate the interface stencil, the interface stencil chosen above will contain the
mixed cell both at the time level tn and at the time level t∗ . For simplicity, we assume cells Iin and Iin+1 have been merged
together, see Fig. 1. Then, we need to calculate the fluxes F̂ L at the positions xin±1/2 and xin+3/2.
4

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Regarding the flux at xin−1/2, it is in the fluid I. Therefore, if Un,I
in+1 is not defined, we will set Un,I

in+1 = Un,I
in

. Then we will
use the nodal values {Un,I

in−3, U
n,I
in−2, U

n,I
in−1, U

n,I
in

, Un,I
in+1, U

n,I I
in+2} to compute the numerical flux F̂ L

in− 1
2

based on equation (6).

Regarding the flux at xin+3/2, it is in the fluid II. Similarly, if Un,I I
in

is not defined, we will set Un,I I
in

= Un,I I
in+1. Then we will

use the nodal values {Un,I
in−1, U

n,I I
in

, Un,I I
in+1, U

n,I I
in+2, U

n,I I
in+3, U

n,I I
in+4} to compute the numerical flux F̂ L

in+ 3
2

based on equation (6).

As to the flux F̂ L
in+ 1

2
, it can be obtained by the conservation law, as described below in details.

For fluid I, similar to the ALE method, we have the following integrated conservation law:

t∗ˆ

tn

dt

x(t)ˆ

x
in− 1

2

(
Ut + F (U)x

)
dx = 0 (7)

According to the Green’s formula, we haveˆ

∂	

−U dx + F (U)dt

= −
x(tn)ˆ

x
in− 1

2

U dx +
(x(t∗),t∗)ˆ

(x(tn),tn)

−U dx + F (U)dt +
x(t∗)ˆ

x
in− 1

2

U dx −
t∗ˆ

tn

F (U)

∣∣∣
x

in− 1
2

dt

=0

(8)

where 	 is the control volume for fluid I. We denote the velocity of the fluid at the interface as u. Then, we can rewrite
the flux F (U) as

F (U) = u · U + Fs

where Fs = (0, p, u · p)T . We also assume the location of the interface satisfies the following formula:

x(t) = x(tn) + u(t − tn)

Then, we can simplify the integration in (8):

(x(t∗),t∗)ˆ

(x(tn),tn)

−U dx + F (U)dt

=
t∗ˆ

tn

−u · U + F (U)dt

=�t Fs

(9)

We define the numerical flux F̂ s:

F̂ s = (0, p, u · p)T .

The values of p and u in F̂ s can be obtained through solving the Riemann problem R P (U L , U R) at the interface. The left and
right states U L and U R can be obtained by WENO interpolation using the primitive variables. Then, we have the average
value for fluid I:

U∗
I = 1

x(t∗) − xin− 1
2

(x(tn)ˆ

x
in− 1

2

Undx − �t(F̂ s − F̂ L
in− 1

2
)
)

(10)

We notice that the mass of each component of the fluid is actually conserved at this stage, since the first component of the
numerical flux F̂ s is zero. We also take

x(tn)ˆ

x
in− 1

Undx = �xαn
in

Un,I
in

.

2

5

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 2. Sketch for computing F̂ L .

Similarly, we can obtain the average values for fluid II:

U∗
I I = 1

xin+ 3
2

− x(t∗)

(x
in+ 3

2ˆ

x(tn)

Undx − �t(F̂ L
in+ 3

2
− F̂ s)

)
(11)

Now, we can define the temporary nodal values U∗,t
in

and U∗,t
in+1 according to the interface x(t∗):

1. If x(t∗) ∈ [xin− 1
2
, xin+ 1

2
],

then we define U∗,t
in

= α∗
in

U∗
I + (1 − α∗

in
)U∗

I I and U∗,t
in+1 = U∗

I I , where α∗
in

=
x(t∗)−x

in− 1
2

�x is the volume fraction of fluid I in
the cell Iin .

2. If x(t∗) ∈ [xin+ 1
2
, xin+ 3

2
],

then we define U∗,t
in

= U∗
I and U∗,t

in+1 = α∗
in+1U∗

I + (1 − α∗
in+1)U∗

I I , where α∗
in+1 =

x(t∗)−x
in+ 1

2
�x is the volume fraction of

fluid I in the cell Iin+1.

Now, we can compute the flux at the position xin+1/2, see Fig. 2:
From the left part, we have:

U∗,t
in

= Un
in

− �t

�x

(
F̂ L

in+1/2 − F̂ L
in−1/2

)
Then, we get:

F̂ L
in+1/2 = F̂ L

in−1/2 − U∗,t
in

− Un
in

�t
�x

(12)

From the right part, we have:

U∗,t
in+1 = Un

in+1 − �t

�x

(
F̂ L

in+3/2 − F̂ L
in+1/2

)
Then, we get:

F̂ L
in+1/2 = U∗,t

in+1 − Un
in+1

�t
�x

+ F̂ L
in+3/2 (13)

Finally, we take an average of formula (12) and formula (13) to compute the flux F̂ L :

F̂ L
in+1/2 = 1

2

(
F̂ L

in−1/2 − U∗,t
in

− Un
in

�t
�x

)
+ 1

2

(
U∗,t

in+1 − Un
in+1

�t
�x

+ F̂ L
in+3/2

)
(14)

Now, we can define the flux { F̂ n
i+ 1

2
} which will be used to evolve the computational variables:

F̂ n
i+1/2 = F̂ H

i+1/2 for i �= in − 1 & in & in + 1 (15)

and

F̂ n
i+1/2 = F̂ L

i+1/2 + ϕ
(

F̂ H
i+1/2 − F̂ L

i+1/2

)
for i = in − 1, in, in + 1 (16)

where ϕ = min(ϕin−1/2, ϕin+1/2, ϕin+3/2). Here ϕin±1/2, ϕin+3/2 are the discontinuity indicators at xin±1/2 and xin+3/2.
6

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Then, we can advance the computational variables based on the formula (5).
Now, we can define the nodal values {U∗,I

i } and {U∗,I I
i } for fluid I and fluid II at time level t∗ respectively. We assume

the interface at time level t∗ satisfies x(t∗) ∈ [xi∗−1/2, xi∗+1/2]. Then, we have

• When i < i∗ ,

U∗,I
i = U∗

i (17)

• When i > i∗ ,

U∗,I I
i = U∗

i (18)

• When i = i∗ ,
(1) If α∗

i∗ > 0.5, then the cell Ii∗ is a small cell for fluid II. Therefore, we take

U∗,I I
i∗ = ϕU∗

i∗ + (1 − ϕ)U∗
I I

U∗,I
i∗ = U∗

i∗ − (1 − α∗
i∗)U∗,I I

i∗
α∗

i∗

(19)

where U∗
i∗ comes from formula (5), and U∗

I I is the average value for fluid II which comes from formula (11).
(2) If α∗

i∗ ≤ 0.5, then the cell Ii∗ is a small cell for fluid I. Therefore, we take

U∗,I
i∗ = ϕU∗

i∗ + (1 − ϕ)U∗
I

U∗,I I
i∗ = U∗

i∗ − α∗
i∗ U∗,I

i∗
1 − α∗

i∗

(20)

where U∗
i∗ comes from formula (5), and U∗

I is the average value for fluid I which comes from formula (10).

In the formula (19) and (20), we also take

ϕ = min{ϕin−1/2,ϕin+1/2,ϕin+3/2}.

Remark 1. In formula (19), when the solution is smooth, the formula (5) which is used to compute the nodal value U∗
i∗ is

high order accurate [25,14]. Therefore, we can maintain high order accuracy if the nodal value U ∗,I
i∗ for fluid I and the nodal

value U∗,I I
i∗ for fluid II are close to the nodal value U∗

i∗ . When discontinuity appears at the interface, U∗
I I is the average value

obtained by the formula specifically designed for the interface, so it is more likely to obtain a non-oscillatory solution if the
nodal value U∗,I I

i∗ is close to U∗
I I . Therefore, we introduce the discontinuity indicator in formula (19) which approaches one

in the smooth region and tends to zero when discontinuity appears. Similarly, we apply the same idea to the formula (20).

To summarize, we have the following algorithm:

Algorithm 1
Input: U n,I

i , U n,I I
i , φn

i , �t , �x

Output: U∗,I
i , U∗,I I

i , ̂F n
i+1/2, φ∗

i

1: Apply U n,I
i and U n,I I

i to define the computational variables U n
i .

2: Compute the fluxes ̂F H .
3: Update the distance function, and obtain φ∗

i .
4: Merge cells and compute the fluxes ̂F L .
5: Define the flux ̂F n .
6: Update the computational variables U∗

i

7: Define the nodal values U∗,I
i for fluid I, and the nodal values U∗,I I

i for fluid II.

Now, we elaborate on the above ideas and implementation details.
7

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
2.2.1. Level set method
We associate the computational domain with the distance function φ, which satisfies the following expressions:

φt + Vn|∇φ| = 0 (21)

where Vn is the normal velocity which can be obtained through solving the Riemann problem at the interface. We define
the distance function at the half nodes. Then, we have the following formula

dφ

dt
= −(v+

i+ 1
2

√
max ((a+)2, (b−)2) + v−

i+ 1
2

√
max ((a−)2, (b+)2)) (22)

where v+
i+ 1

2
= max(vi+ 1

2
, 0), v−

i+ 1
2

= min(vi+ 1
2
, 0), and vi+ 1

2
is the normal velocity at xi+ 1

2
. The definition of a± and b± is

similar. We take a = φ−
x and b = φ+

x , where φ±
x can be obtained by the WENO method.

2.2.2. Characteristic projection 1D
The WENO method is performed in the local characteristic fields. In systems of nonlinear equations, oscillations can

develop in component-wise interpolation [24,21]. In this paper, we will use the local characteristic field decomposition.
Because we perform the interpolation using primitive variables rather than conserved variables, we will use the left and
right eigenvectors corresponding to the primitive variables for the characteristic projections. Considering the following quasi-
linear form of the Euler equation:

Wt + A(W)W x = 0

where

W =
⎛⎝ ρ

u
p

⎞⎠ A(W) =
⎛⎝ u ρ 0

0 u 1/ρ

0 ρc2 u

⎞⎠
Here c refers to the sound speed. We then give the left and right eigenvector matrices of matrix A(W) as:

R(W) =
⎛⎝ 1 1 1

− c
ρ 0 c

ρ

c2 0 c2

⎞⎠ L(W) =
⎛⎜⎝ 0 − ρ

2c
1

2c2

1 0 − 1
c2

0 ρ
2c

1
2c2

⎞⎟⎠
Firstly, we use the left eigenvector matrices L(W) to project the variables into the respective characteristic fields. Secondly,
we interpolate the values in each characteristic fields. Finally, we use the right eigenvector matrices R(W) to project the
values back into the physical space [24]. Although it is more expensive computationally, more satisfactory results can be
obtained.

2.2.3. WENO method
The WENO method is one of the important parts in our schemes. We need two different types of WENO method: one

is for function values, and the other one is for derivative values. The detailed steps to obtain derivative values can be seen
in [12]. Here we describe the procedure to obtain the value w at x ∈ [xi− 1

2
, xi+ 1

2
] in fluid I using the WENO interpolation,

where w denotes the interpolation variable.
1. Based on the small stencils Sr = {xi−2+r, xi−1+r, xi+r}, r = 0, 1, 2 and a big stencil S = {xi−2, xi−1, xi, xi+1, xi+2}, we

construct polynomials pr(x), r = 0, 1, 2 and q(x). We have:

p0(x) = (x − xi−1)(x − xi)

2�x2
wi−2 − (x − xi−2)(x − xi)

�x2
wi−1 + (x − xi−2)(x − xi−1)

2�x2
wi

p1(x) = (x − xi)(x − xi+1)

2�x2
wi−1 − (x − xi−1)(x − xi+1)

�x2
wi + (x − xi−1)(x − xi)

2�x2
wi+1

p2(x) = (x − xi+1)(x − xi+2)

2�x2
wi − (x − xi)(x − xi+2)

�x2
wi+1 + (x − xi)(x − xi+1)

2�x2
wi+2

q(x) = (x − xi−1)(x − xi)(x − xi+1)(x − xi+2)

24�x4
wi−2

− (x − xi−2)(x − xi)(x − xi+1)(x − xi+2)

6�x4
wi−1

+ (x − xi−2)(x − xi−1)(x − xi+1)(x − xi+2)

4�x4
wi

− (x − xi−2)(x − xi−1)(x − xi)(x − xi+2)

4
wi+1
6�x

8

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
+ (x − xi−2)(x − xi−1)(x − xi)(x − xi+1)

24�x4
wi+2

The same as before, we use the position of the interface to decide the nodal values used in the interpolation. If we are
interpolating the value w in fluid I, then we will use the nodal values of fluid I in the interpolation if they are defined,
otherwise we use the nodal values of fluid II. Likewise, if we are calculating the value w in fluid II, then we will use nodal
values of fluid II in the interpolation if they are defined, otherwise we use the nodal values of fluid I.

2. We find the linear weights, denoted as γ0, γ1, γ2, such that

q(x) =
2∑

k=0

γk pk(x)

for all possible nodal values wi . Then, we can obtain:

γ0 = (x − xi+1)(x − xi+2)

12�x2
, γ2 = (x − xi−2)(x − xi−1)

12�x2
, γ1 = 1 − γ0 − γ2.

3. We compute the smoothness indicator, which measures the smoothness of the function. We use the same recipe as in
[13]:

βr =
2∑

k=1

xi+1/2ˆ

xi−1/2

�x2k−1
(∂k

∂xk
(pr(x))

)2
dx, r = 0,1,2

The expression can be written out explicitly:

β0 = 13

12
(wi−2 − 2wi−1 + wi)

2 + 1

4
(wi−2 − 4wi−1 + 3wi)

2

β1 = 13

12
(wi−1 − 2wi + wi+1)

2 + 1

4
(wi−1 − wi+1)

2

β2 = 13

12
(wi − 2wi+1 + wi+2)

2 + 1

4
(3wi − 4wi+1 + wi+2)

2

(23)

4. Based on the smoothness indicator, we can compute the nonlinear weights:

ωr = ωr∑
k ωk

, ωk = γk

(βk + ε)2
(24)

where ε is a small number to avoid the denominator to become zero. Here, we set ε = 10−6. The final WENO expression is
given by:

w =
2∑

k=0

ωk pk(x)

2.2.4. Discontinuity indicator
The idea of the discontinuity indicator ϕi+ 1

2
comes from [34]. It can maintain high order accuracy in the smooth region

and can achieve high resolution when discontinuities appear. In practice, we take density and pressure as the indicator
variables and choose the smaller one. Before discussing the detailed steps to construct the discontinuity indicator, we would
like to analyze the accuracy requirement of the indicator in the smooth case first.

We use the discontinuity indicator in three different places: (1) We use the indicator to compute the fluxes F̂ H , see
formula (6); (2) We use the indicator to make a convex combination of the fluxes F̂ H and the fluxes F̂ L , see formula (16);
(3) We use the indicator to update the nodal values for fluid I and fluid II, see formula (19). Then, we will analyze the
accuracy requirement respectively. We always assume the values at time level tn are accurate.

Proposition 2.1. The numerical flux (6) satisfies

F̂ i+ 1
2

− F̂ i− 1
2

�x
= F (U)x

∣∣∣
xi

+O(�x5) (25)

if the discontinuity indicator satisfies:

ϕi± 1
2

= 1 +O(�x3)

where the F (U) refers to the exact flux.
9

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Proof. As we know, if we define the flux ̂̂F as follows:̂̂F i+ 1
2

= F (U)

∣∣∣
x

i+ 1
2

− 1

24
�x2 F (U)xx

∣∣∣
x

i+ 1
2

+ 7

5760
�x4 F (U)xxxx

∣∣∣
x

i+ 1
2

where F (U) is the exact flux, then we havê̂F i+ 1
2

− ̂̂F i− 1
2

�x
= F (U)x

∣∣∣
xi

+O(�x5)

Therefore, in order to prove the equation (25), it is sufficient to prove the relation:

F̂ i+ 1
2

= ̂̂F i+ 1
2

+O(�x5) (26)

if the numerical flux is Lipschitz continuous with respect to its arguments.
According to (6), we have:

F̂ i+ 1
2

= F̂ (U−
i+ 1

2
, U+

i+ 1
2
) − ϕi+ 1

2

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2

)

The values U±
i+ 1

2
are obtained from the WENO interpolation and we have

U±
i+ 1

2
= U (xi+ 1

2
) +O(�x5).

Based on the consistency and Lipschitz continuity of the numerical flux, we have:

F̂ (U−
i+ 1

2
, U+

i+ 1
2
) = F (U)

∣∣∣
x

i+ 1
2

+O(�x5)

In addition, we use central difference methods in a component by component fashion to approximate the derivatives terms,
see equations (2) and (3). Therefore, we have:

Fxx

∣∣∣
x

i+ 1
2

= F (U)xx

∣∣∣
x

i+ 1
2

+O(�x4)

Fxxxx

∣∣∣
x

i+ 1
2

= F (U)xxxx

∣∣∣
x

i+ 1
2

+O(�x2)

If we have

ϕi+ 1
2

= 1 +O(�x3)

then we can obtain

F̂ i+ 1
2

= F̂ (U−, U+) − ϕi+ 1
2

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2

)

= F (U)

∣∣∣
x

i+ 1
2

− 1

24
�x2 F (U)xx

∣∣∣
x

i+ 1
2

+ 7

5760
�x4 F (U)xxxx

∣∣∣
x

i+ 1
2

+O(�x5)

� ̂̂F i+ 1
2

+O(�x5) �
Proposition 2.2. The convex combination of F̂ H and F̂ L (16) satisfies formula (26), if the parameter ϕ = 1 + O(�x5) and �t =
O(�xr), r ≤ 2.

The detailed proof is given in Appendix A.

Proposition 2.3. In formulas (19) and (20), if ϕ = 1 +O(�x4), then we have

U∗,I
i∗ = U∗

i∗ +O(�x5), U∗,I I
i∗ = U∗

i∗ +O(�x5)

where i∗ is the subscript of the cell where the interface is located at time level t∗.
10

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Proof. We take i∗ = in + 1 as example. The proof for i∗ = in or i∗ = in − 1 is similar.
Due to our CFL number, we have α∗

in+1 ≤ 0.5. So, we can obtain

U∗
in+1 = U (xin+1, tn) − �t

�x

(
F̂ in+3/2 − F̂ in+1/2

)
=U (xin+1, tn) +O(�t)

According to (43). We have

U∗
I = U (xin+1, tn) +O(�x) = U∗

in+1 +O(�x)

Then, we obtain

U∗,I
in+1 − U∗

in+1 = ϕU∗
in+1 + (1 − ϕ)U∗

I − U∗
in+1

=(1 − ϕ)O(�x) = O(�x5)

Therefore, we should have

ϕ = 1 +O(�x4) �
Based on the previous analysis, in order to maintain the accuracy, the discontinuity indicator should satisfy:

ϕi+ 1
2

= 1 +O(�x5) & �t = O(�xr), r ≤ 2

Now, we describe the detailed steps to calculate the discontinuity indicator satisfying ϕi+ 1
2

= 1 + O(�x5). Later, in the
numerical tests section, we will further require the time stepping to satisfy �t =O(�xr), r ≤ 2. For simplicity, we use w as
the indicator variable.

Step 1. We define a big stencil S0 = {xi−2, xi−1, xi, xi+1, xi+2, xi+3}, and four small stencils S1 = {xi−2, xi−1, xi}, S2 =
{xi−1, xi, xi+1}, S3 = {xi, xi+1, xi+2}, S4 = {xi+1, xi+2, xi+3}. Then we need to construct polynomials p0(x), p1(x), p2(x), p3(x),
p4(x), such that:

p0(xi+l) = wi+l l = −2, · · · ,3

p1(xi+l) = wi+l l = −2, · · · ,0

p2(xi+l) = wi+l l = −1, · · · ,1

p3(xi+l) = wi+l l = 0, · · · ,2

p4(xi+l) = wi+l l = 1, · · · ,3

Step 2. We use the same recipe as in [13] to compute the smoothness indicators for each polynomial on cell [xi , xi+1]:

βr =
5∑

k=1

xi+1ˆ

xi

�x2k−1
(∂k

∂xk
(pr(x))

)2
dx, r = 0,1,2,3,4

We have the following expressions:

β0 = (−wi + wi+1)
2 + 1421461

2275

(
1

48
wi−2 − 1

16
wi−1 + 1

24
wi + 1

24
wi+1 − 1

16
wi+2 + 1

48
wi+3

)2

+ 13

3

(
− 131

3120
wi−2 + 391

1040
wi−1 − 521

1560
wi − 521

1560
wi+1 + 391

1040
wi+2 − 131

3120
wi+3

)2

+ 781

20

(
617

43736
wi−2 − 31123

131208
wi−1 + 14019

21868
wi − 14019

21868
wi+1 + 31123

131208
wi+2 − 617

43736
wi+3

)2

+ 21520059541

1377684

(
− 1

120
wi−2 + 1

24
wi−1 − 1

12
wi + 1

12
wi+1 − 1

24
wi+2 + 1

120
wi+3

)2

β1 = (wi−2 − 3wi−1 + 2wi)
2 + 13

3

(
1

2
wi−2 − wi−1 + 1

2
wi

)2

β2 = (wi+1 − wi)
2 + 13

(
1

wi+1 − wi + 1
wi−1

)2
3 2 2

11

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
β3 = (wi+1 − wi)
2 + 13

3

(
1

2
wi+2 − wi+1 + 1

2
wi

)2

β4 = (−2wi+1 + 3wi+2 − wi+3)
2 + 13

3

(
1

2
wi+1 − wi+2 + 1

2
wi+3

)2

Step 3. Similar to [35], we define the parameter τ :

τ = (β0 − β1)
2 + (β0 − β2)

2 + (β0 − β3)
2 + (β0 − β4)

2

4

and the parameter β:

β =
τ

β1+ε + τ
β2+ε + τ

β3+ε + τ
β4+ε

4

Then, we can construct the discontinuity indicator ϕ:

ϕi+ 1
2

=
(1

β + 1

)2

It has the following properties:

• 0 ≤ ϕi+ 1
2

≤ 1;

• ϕi+ 1
2

= 1 +O(�x6) in smooth areas;

• ϕi+ 1
2

is close to 0 near discontinuities.

The detailed proof of these properties is given in Appendix B.

2.2.5. Time discretization
In practice, we will use the third order TVD Runge-Kutta method to advance the nodal values:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U(1) = Un + �tL(Un)

U(2) = Un + 1

4
�t

(
L

(
Un) +L

(
U(1)

))
Un+1 = Un + 1

6
�t

(
L

(
Un) + 4L

(
U(2)

)
+L

(
U(1)

)) (27)

In fact, we have only described the first step of the third order Runge-Kutta method (27). As to the second and third
steps, we will use the same idea used in the first step. Therefore, for each step, we need to construct the fluxes F̂ H and
the fluxes F̂ L . Take the second step as an example. For the fluxes F̂ H , they can be constructed by combining fluxes from
time levels tn and t(1) together according to equation (27). For the fluxes F̂ L , we need to calculate the fluxes F̂ L at those
positions where they have been calculated in the time levels tn and t(1) . At this time, we can also obtain the corresponding
interface stencil. For those F̂ L located inside the interface stencil, we can use the conservation law to obtain the fluxes; for
those F̂ L located outside the interface stencil, we can follow the equation (6) to compute them. Then, we can construct the
fluxes, advance the computational variables and finally define the new nodal values for fluid I and fluid II. Similar method
can be applied to calculate the third step.

To summarize, we have the following general algorithm:

Algorithm 2
Input: U n,I

i , U n,I I
i , φn

i , φ∗
i , ̂F H

i+1/2, �t , �x

Output: U∗,I
i , U∗,I I

i

1: Apply U n,I
i and U n,I I

i to define the computational variables U n
i .

2: Based on the equations (6)-(14), compute the fluxes ̂F L .
3: Define the flux ̂F n .
4: Update the computational variables U∗

i .

5: Define the nodal values U∗,I
i for fluid I and nodal values U∗,I I

i for fluid II based on the equations (19)-(20)-(17)-(18).

2.2.6. Flowchart 1D
Step 1. According to Algorithm 1, input Un,I

i , Un,I I
i , φn

i , �t , �x, output U (1),I
i , U (1),I I

i , F̂ n
i+1/2, φ(1)

i . Up to now, we have
finished the first step of the third order TVD Runge-Kutta method (27).

Step 2. According to Algorithm 1, input U (1),I , U (1),I I , φ(1) , �t , �x, output Ũ (2),I , Ũ (2),I I , F̂ (1) , φ̃(2) .
i i i i i i+1/2 i

12

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
We construct F̂ H for the second step of the third order TVD Runge-Kutta method (27):

F̂ H
i+ 1

2
= 1

4

(
F̂ n

i+ 1
2

+ F̂ (1)

i+ 1
2

)
,

and the distance function φ(2) at the time level t(2) = tn + �t/2:

φ
(2)
i = 3

4
φn

i + 1

4
φ̃

(2)
i .

Then, according to Algorithm 2, input Un,I
i , Un,I I

i , φn
i , φ(2)

i , F̂ H
i+1/2, �t/2, �x, output U (2),I

i , U (2),I I
i . Up to now, we have

finished the second step of the third order TVD Runge-Kutta method (27).
Step 3. According to Algorithm 1, input U (2),I

i , U (2),I I
i , φ(2)

i , �t , �x, output Ũ (3),I
i , Ũ (3),I I

i , F̂ (2)
i+1/2, φ̃(3)

i .

We construct F̂ H for the third step of the third order TVD Runge-Kutta method (27):

F̂ H
i+ 1

2
= 1

6

(
F̂ n

i+ 1
2

+ 4 F̂ (2)

i+ 1
2

+ F̂ (1)

i+ 1
2

)
,

and the distance function φn+1 at the time level tn+1 = tn + �t:

φn+1
i = 1

3
φn

i + 2

3
φ̃

(3)
i .

Then, according to Algorithm 2, input Un,I
i , Un,I I

i , φn
i , φn+1

i , F̂ H
i+1/2, �t , �x, output Un+1,I

i , Un+1,I I
i . Up to now, we have

finished the third step of the third order TVD Runge-Kutta method (27).

2.3. Conservation

In summary, our method can be divided into three steps:
1. We use the nodal values for fluid I and fluid II at time level tn to construct the nodal values for the computational

variables.
2. Then, we update the nodal values for the computational variables:

Un+1
i = Un

i − �t

�x

(
F̂ i+1/2 − F̂ i−1/2

)
where

F̂ i+1/2 = F̂ H
i+1/2 for i �= in − 1 & in & in + 1

and

F̂ i+1/2 = F̂ L
i+1/2 + ϕ

(
F̂ H

i+1/2 − F̂ L
i+1/2

)
for i = in − 1, in, in + 1

Here, we take F̂ H
i+1/2 = 1

6

(
F̂ n

i+ 1
2

+ 4 F̂ (2)

i+ 1
2

+ F̂ (1)

i+ 1
2

)
and ϕ = min(ϕin−1/2, ϕin+1/2, ϕin+3/2).

3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II at time level tn+1 .
We can see that the construction and redistribution in the first step and the third step do not violate the conservation

law. As to the second step, we use the conservative scheme to update the values of the computational variables. Therefore,
our method is conservative.

3. Two-dimensional numerical schemes

The two-dimensional system for the compressible fluid can be written as follows:

Ut + F (U)x + G(U)y = 0, (28)

where U = (ρ, ρu, ρv, E)T , F (U) = (ρu, ρu2 + p, ρuv, u(E + p))T and G(U) = (ρv, ρuv, ρv2 + p, v(E + p))T . Here (u, v)

is the velocity vector, and the definition of ρ , E and p is the same as before. The equation of state for 2D is as follows:

γ -law : E = 1
ρ(u2 + v2) + p

, Tait EOS : E = 1
ρ(u2 + v2) + p + γ p
2 γ − 1 2 γ − 1

13

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
3.1. Description of the finite difference scheme in 2D

Now, we describe the high order finite difference scheme in the two dimensional case. In our scheme, we again take the
CFL number as 0.5.

For simplicity, the computational domain is equally divided: a = x0 < x1 < · · · < xNx = b, and c = y0 < y1 < · · · < yN y = d.
We denote the cell Ii, j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] as the corresponding cell of the node (xi, y j).

We denote the nodal values for fluid I as {Un,I
i, j }, and nodal values for fluid II as {Un,I I

i, j }. Now, we can define the compu-
tational variable {Un

i, j}:

• When cell Ii, j is fully covered by fluid I at time level tn , we take Un
i, j = Un,I

i, j

• When cell Ii, j is fully covered by fluid II at time level tn , we take Un
i, j = Un,I I

i, j

• When cell Ii, j is a mixed cell at time level tn: Un
i, j = αi, j U

n,I
i, j + (1 − αi, j)Un,I I

i, j

where αi, j is the volume fraction of the fluid I in the cell Ii, j .
Then, we can update the computational variable {Un

i, j} to next time level t∗

U∗
i, j = Un

i, j − �t

�x
(F̂ n

i+ 1
2 , j

− F̂ n
i− 1

2 , j
) − �t

�y
(Ĝn

i, j+ 1
2

− Ĝn
i, j− 1

2
) (29)

We also need to build the flux F̂ H and the flux F̂ L in order to construct our numerical flux. For the flux F̂ H , similar to the
one dimensional case, we have

F̂ H
i+ 1

2 , j
= F̂ (U−

i+ 1
2 , j

, U+
i+ 1

2 , j
) − ϕi+ 1

2 , j

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2
,y j

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2
,y j

)
(30)

Similarly, we can obtain the fluxes Ĝ H
i, j+ 1

2
.

Next, we will describe the way to construct the low order flux F̂ L .
Similar to the one dimensional case, we evolve the distance function based on the velocity obtained by solving the

Riemann problem at the interface, and determine the interface position at the new time level. We will also use the WENO
interpolation at the interface. The value will be obtained by calculating the WENO interpolation in the x and y directions
and taking the average of them. For simplicity, we regard the interface in the mixed cell as a straight line, and choose the
center of the line as the interpolation position in the x and y directions.

When the cell Iin, jn contains the interface, it is not suitable to be computed for a full time step. Therefore it is suggested
that the cell Iin, jn should be merged with its neighboring cells to generate an interface stencil. The detailed steps will be
introduced in subsection 3.1.2. Now, we denote the r-th interface stencil at time level tn as A(r)(tn). The interface �(tn)

divide the interface stencil into two parts: A(r)
I (t) for fluid I and A(r)

I I (t) for fluid II. Now, we begin to deduce the formula
for A(r)

I (t).
Similar to the ALE method, we integrate the equation (28) in space and time, then we have

t∗ˆ

tn

dt
¨

A(r)
I (t)

(
Ut + F (U)x + G(U)y

)
dxdy = 0 (31)

According to the Gauss theorem, we obtain

t∗ˆ

tn

dt
¨

A(r)
I (t)

Utdxdy +
t∗ˆ

tn

dt
˛

∂ A(r)
I (t)

(
F (U) · nx + G(U) · ny

)
ds = 0 (32)

Then, we use the Reynold’s transport theorem:

d

dt

¨

A(r)
I (t)

U dxdy =
¨

A(r)
I (t)

Utdxdy +
˛

∂ A(r)
I (t)

U (
−→
V · −→n)ds (33)

where
−→
V is the normal velocity along the interface. Combining (32) and (33), we get the following equation:
14

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 3. Example for the interface stencil. Line: the interface stencil; Dotted line: cells within the interface stencil. Red: fluid I.

t∗ˆ

tn

d

dt

¨

A(r)
I (t)

U dxdydt +
t∗ˆ

tn

dt
˛

∂ A(r)
I (t)

(F (U) · nx + G(U) · ny) − U (
−→
V · −→n)ds = 0 (34)

It can be represented by two parts: one consists of the four segments of the interface zone being cut by the interface;
the other one consists of the segment of the interface inside the interface zone. Hence, we can rewrite the equation (34):

U∗
I,A(r)(tn)

= 1∑
Ii, j∈A(r)

I (tn)

α∗
i, j

(∑
Ii, j∈A(r)

I (tn)

αn
i, j U

n
I −

∑
Ii, j∈A(r)(tn)

�n
i, j�t

�x�y
F̂si, j

− �t

�x

j2∑
j= j1

[Si2(j)+ 1
2 , j F̂ L

i2(j)+ 1
2 , j

− Si1(j)− 1
2 , j F̂ L

i1(j)− 1
2 , j

]

− �t

�y

i2∑
i=i1

[Si, j2(i)+ 1
2

Ĝ L
i, j2(i)+ 1

2
− Si, j1(i)− 1

2
Ĝ L

i, j1(i)− 1
2
]
)

(35)

Here, we choose i1, i2, j1, j2 such that the set {Ii, j : i1 ≤ i ≤ i2, j1 ≤ j ≤ j2} is the smallest stencil to cover A(r)(tn). i2(j) and
i1(j) represent the maximum and minimum indices in the x direction when j is given. Likewise, j2(i) and j1(i) represent
the maximum and minimum indices in the y direction when i is given. See Fig. 3 for an example. Now, {Ii, j : in ≤ i ≤
in + 1, jn ≤ j ≤ jn + 1} covers the interface stencil. When j = jn + 1, there is only one cell Iin, jn+1 inside the interface
stencil. Hence we know that the maximum index in the x direction is i2(j) = in , and the minimum index is also i1(j) = in .
When j = jn , both the cell Iin, jn and the cell Iin+1, jn are inside the interface stencil. Hence the maximum index in the
x direction is i2(j) = in + 1, and the minimum index is i1(j) = in , and so on. Similar approach can be used to determine
the maximum and minimum indices in the stencil in the y direction when i is given. αn

i, j , α
∗
i, j , Si± 1

2 , j and Si, j± 1
2

are
the fraction volumes of fluid I, see section 3.1.1 for detailed steps to determine them. Un

I,A(r)(tn)
is the cell average in the

interface stencil for fluid I at time level tn:

Un
I,A(r)(tn)

= 1

|A(r)
I (tn)|

¨

A(r)
I (tn)

U dxdy

Here, we assign Un
I,A(r)(tn)

to the nodes in fluid II in the interface stencil A(r)(tn), and then compute the numerical fluxes F̂ L

and Ĝ L . �n
i, j is the length of the interface inside the cell Ii, j . F̂ s i, j is the interface flux:

F̂ s = (0, p · nx, p · ny, p(u · nx + v · ny))
T (36)

where (nx, ny) is the unit normal at the interface, and p and (u, v) are the pressure and velocity which can be obtained by
solving the Riemann problem at the interface.

Similarly, we can also obtain the cell average U∗
I I,A(r)(tn)

for fluid II in the stencil A(r)(tn). Then, we can define the
temporary nodal value using U∗

I,A(r)(tn)
and U∗

I I,A(r)(tn)
:

U∗,t = α∗ U∗
(r) n + (1 − α∗)U∗

(r) n (i, j) ∈ A(r)(tn)
i, j i, j I,A (t) i, j I I,A (t)

15

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
where α∗
i, j is the fraction volume of fluid I in the cell Ii, j at time level t∗ . Then, similar to the one dimensional case, we

can figure out the fluxes inside the interface stencil, for example, F̂ L
in+1/2, jn

and Ĝ L
in, jn+1/2 in Fig. 3.

Now, we can determine the flux. Regarding the flux F̂ n , if (xi+1/2, y j) is not in any interface stencil, we take

F̂ n
i+1/2, j = F̂ H

i+1/2, j

Otherwise, we have

F̂ n
i+1/2, j = F̂ L

i+1/2, j + ϕ
(

F̂ H
i+1/2, j − F̂ L

i+1/2, j

)
where ϕ = min

{
ϕi±1/2, j, ϕi, j±1/2

∣∣∣Ii, j ∈ A(r)(tn), r = 1, 2, 3, · · ·
}

. Similar approach can be used to calculate Ĝn .

Next, we can evolve the computational variables based on equation (29). Now, we can determine the updated nodal
values {U∗,I

i, j } and {U∗,I I
i, j }:

• When cell Ii, j is fully covered by fluid I at time level t∗ , we take

U∗,I
i, j = U∗

i, j (37)

• When cell Ii, j is fully covered by fluid II at time level t∗ , we take

U∗,I I
i, j = U∗

i, j (38)

• When cell Ii, j is a mixed cell at time level t∗:
(1) If α∗

i, j > 0.5, then it is a small cell for fluid II. We choose:

U∗,I I
i, j = ϕU∗

i, j + (1 − ϕ)U∗
I I,A(r)(tn)

U∗,I
i, j = U∗

i, j − (1 − α∗
i, j)U∗,I I

i, j

α∗
i, j

(39)

where U∗
i, j is obtained by equation (29). U∗

I I,A(r)(tn)
is the cell average value for fluid II in the interface stencil

A(r)(tn) at time level t∗ .
(2) If α∗

i, j ≤ 0.5, then it is a small cell for fluid I. We choose:

U∗,I
i, j = ϕU∗

i, j + (1 − ϕ)U∗
I,A(r)(tn)

U∗,I I
i, j = U∗

i, j − α∗
i, j U

∗,I
i, j

1 − α∗
i, j

(40)

where U∗
i, j is obtained by equation (29), U∗

I,A(r)(tn)
is the cell average value for fluid I in the interface stencil A(r)(tn)

at time level t∗ .

Similarly, we take ϕ = min
{
ϕi±1/2, j, ϕi, j±1/2

∣∣∣Ii, j ∈ A(r)(tn), r = 1, 2, 3, · · ·
}

.

Then, we can perform our two-dimensional scheme following the flowchart similar to the one dimensional one. To save
space, we omit the detailed steps here. It should be noted that in two dimensional case we will perform the reinitialization
routine every 100 steps to avoid the distance function φ from becoming too flat or too steep.

In the remainder of this section, we elaborate on describing the implementations in detail, including the way to generate
the interface stencils, the way to calculate the volume fraction, the way to implement the level set method, and so on.

3.1.1. Volume fraction
The volume fraction is computed based on the distance function φ. It measures the ratio of φ < 0 to the whole cell. We

treat the interface as a straight line in the cell for simplicity. In general, we have many cases which need to be considered.
By rotation, they can be divided into five generic cases:

1. φi− 1
2 , j+ 1

2
> 0, φi− 1

2 , j− 1
2

> 0, φi+ 1
2 , j− 1

2
> 0, φi+ 1

2 , j+ 1
2

> 0

In this case, we take αi, j = 0.
2. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
> 0, φi+ 1

2 , j− 1
2

> 0, φi+ 1
2 , j+ 1

2
> 0

See Fig. 4(a). According to the proportion, we have

a =
∣∣∣ φi− 1

2 , j+ 1
2

φ 1 1 − φ 1 1

∣∣∣, b =
∣∣∣ φi− 1

2 , j+ 1
2

φ 1 1 − φ 1 1

∣∣∣

i− 2 , j− 2 i− 2 , j+ 2 i+ 2 , j+ 2 i− 2 , j+ 2

16

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 4. Red: The part for φ < 0; Line: interface.

Then, based on the triangle area formula, we have:

αi, j = 1

2
ab = 1

2

∣∣∣ φi− 1
2 , j+ 1

2

φi− 1
2 , j− 1

2
− φi− 1

2 , j+ 1
2

∣∣∣∣∣∣ φi− 1
2 , j+ 1

2

φi+ 1
2 , j+ 1

2
− φi− 1

2 , j+ 1
2

∣∣∣
3. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
< 0, φi+ 1

2 , j− 1
2

> 0, φi+ 1
2 , j+ 1

2
> 0

See Fig. 4(b). Based on the trapezoidal area formula, we have

αi, j = 1

2

(∣∣∣ φi− 1
2 , j− 1

2

φi− 1
2 , j− 1

2
− φi+ 1

2 , j− 1
2

∣∣∣ +
∣∣∣ φi− 1

2 , j+ 1
2

φi+ 1
2 , j+ 1

2
− φi− 1

2 , j+ 1
2

∣∣∣)
4. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
< 0, φi+ 1

2 , j− 1
2

> 0, φi+ 1
2 , j+ 1

2
< 0

See Fig. 4(c). Based on the triangle area formula, we have:

αi, j = 1 − 1

2

∣∣∣ φi+ 1
2 , j− 1

2

φi− 1
2 , j− 1

2
− φi+ 1

2 , j− 1
2

∣∣∣∣∣∣ φi+ 1
2 , j− 1

2

φi+ 1
2 , j+ 1

2
− φi+ 1

2 , j− 1
2

∣∣∣
5. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
< 0, φi+ 1

2 , j− 1
2

< 0, φi+ 1
2 , j+ 1

2
< 0

In this case, we take αi, j = 1.

3.1.2. Mixing procedure
In this subsection, we will introduce a way to generate interface stencil. It is based on the normal vector of the interface

which can change dynamically with the interface evolution. Now, we will introduce the procedure in detail.
1. Obtain the normal vector
We need to obtain the normal vector at the corners of the cell. We can use the following equation to compute the

normal vector at the node (xi+ 1
2
, y j+ 1

2
):

−→n i+ 1
2 , j+ 1

2
=

∇φ∗
i+ 1

2 , j+ 1
2

|∇φ∗
i+ 1

2 , j+ 1
2
|

where ∇φ∗
i+ 1

2 , j+ 1
2

can be obtained using the distance function at time level t∗ by the WENO method.

Then, for any cell Ii, j which is mixed at time level tn or t∗ , we can compute the sum of the x and y components of the
normal vector at the corners of the cell:

Snx
i, j =

∑
|φ∗

x i± 1
2 , j± 1

2
|, Sny

i, j =
∑

|φ∗
y i± 1

2 , j± 1
2
|

We also need to compute the fraction volume of the fluid I in the cell, denoted as α∗
i, j .

2. Generate the interface stencils [15]

• If α∗
i, j > 0.5

♥ If
∣∣∣|Snx

i, j| − |Sny
i, j|

∣∣∣ < 10−6,

♦ If α∗
i−1, j < α∗

i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j .
♥ Otherwise,

♦ If |Snx
i, j| > |Sny

i, j|,
* If α∗

i−1, j < α∗
i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j .

See cell C in Fig. 5.
17

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 5. Formation of the interface stencils. Pink: the interface stencil. Curve: the interface. Fluid I: φ < 0. Fluid II: φ > 0.

♦ Otherwise,
* If α∗

i, j+1 < α∗
i, j−1, cell Ii, j will merge with the cell Ii, j+1. Otherwise, cell Ii, j will merge with the cell Ii, j−1.

See cell B in Fig. 5.
• Otherwise,

♥ If
∣∣∣|Snx

i, j| − |Sny
i, j|

∣∣∣ < 10−6,

♦ If α∗
i−1, j > α∗

i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j .
♥ Otherwise,

♦ If |Snx
i, j| > |Sny

i, j|,
* If α∗

i−1, j > α∗
i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j .

See cell D in Fig. 5.
♦ Otherwise,

* If α∗
i, j+1 > α∗

i, j−1, cell Ii, j will merge with the cell Ii, j+1. Otherwise, cell Ii, j will merge with the cell Ii, j−1.
See cell A in Fig. 5.

Then, we can obtain the interface stencils.

3.1.3. Characteristic projection in 2D
Considering the following quasi-linear form of the Euler equation:

Wt + A(W)W x + B(W)W y = 0

where

W =

⎛⎜⎜⎝
ρ
u
v
p

⎞⎟⎟⎠ A(W) =

⎛⎜⎜⎝
u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 ρc2 0 u

⎞⎟⎟⎠ B(W) =

⎛⎜⎜⎝
v 0 ρ 0
0 v 0 0
0 0 v 1/ρ

0 0 ρc2 v

⎞⎟⎟⎠
We then give the left and right eigenvector matrices of matrix A(W) as:

Rx(W) =

⎛⎜⎜⎝
1 1 0 1

− c
ρ 0 0 c

ρ

0 0 1 0
c2 0 0 c2

⎞⎟⎟⎠ Lx(W) =

⎛⎜⎜⎝
0 − ρ

2c 0 1
2c2

1 0 0 − 1
c2

0 0 1 0
0 ρ

2c 0 1
2c2

⎞⎟⎟⎠
and we also give the left and right eigenvector matrices of matrix B(W) as:
18

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
R y(W) =

⎛⎜⎜⎝
1 1 0 1
0 0 1 0

− c
ρ 0 0 c

ρ

c2 0 0 c2

⎞⎟⎟⎠ L y(W) =

⎛⎜⎜⎝
0 0 − ρ

2c
1

2c2

1 0 0 − 1
c2

0 1 0 0
0 0 ρ

2c
1

2c2

⎞⎟⎟⎠
Here, c refers to sound speed. It is advised that, when the fluxes are computed along a cell boundary, a one dimensional
local characteristic decomposition normal to the boundary is performed. The detailed steps can be seen in section 2.2.2.

3.1.4. Level set method
In the two dimensional case, the distance function satisfies the following expression:

φt + Vn|∇φ| = 0 (41)

where φ is the distance function defined at the half nodes. Vn is the normal velocity which can be obtained by solving
the Riemann problem in the mixed cells, assigning the values to the corners of the cells, and extrapolating the values by
extending functions [19]:

qτ + sign(φ)
∇φ

|∇φ|∇q = 0

Here, q is the extended variable. Then, we can obtain the semi-discrete scheme of equation (41):

dφ

dt
= −(v+

i+ 1
2 , j+ 1

2

√
max ((a+)2, (b−)2) + max ((c+)2, (d−)2)

+v−
i+ 1

2 , j+ 1
2

√
max ((a−)2, (b+)2) + max ((c−)2, (d+)2))

(42)

where vi+ 1
2 , j+ 1

2
is the normal velocity at the half node (xi+ 1

2
, y j+ 1

2
), x+ = max(x, 0), x− = min(x, 0). Here a, b, c, d refer

to φ−
x , φ+

x , φ−
y , φ+

y respectively. The values of φ±
x and φ±

y can be obtained by the WENO method. The third order TVD
Runge-Kutta method will be used to improve the temporal accuracy for the scheme (42).

3.1.5. Reinitialization
In order to ensure the φ does not become too flat or too steep along the interface, we need to use the reinitialization

procedure [30]:

φτ + sign(φ0)(|∇φ| − 1) = 0

where φ0 is obtained from the level set method. Then, we have:

dφ

dτ
= −

(
s+

i+ 1
2 , j+ 1

2
(
√

max ((a+)2, (b−)2) + max ((c+)2, (d−)2) − 1)

+s−
i+ 1

2 , j+ 1
2
(
√

max ((a−)2, (b+)2) + max ((c−)2, (d+)2) − 1)
)

Here, si+ 1
2 , j+ 1

2
is a sign function valued at (xi+ 1

2
, y j+ 1

2
). x+ = max(x, 0), x− = min(x, 0). The definition of a± , b± , c± ,

d± is the same as before. In practice, third order TVD Runge-Kutta method will be used to discretize the pseudo-time
derivative. The stopping criterion for this iteration is e1 < �τ�x�y or k ≤ 20, where the e1 is the L1 difference between
two consecutive iteration steps and k is the total iteration number. We take �τ = 0.1 min(�x, �y) in the experiment. The
re-initialization procedure is performed every 100 time steps.

3.2. Conservation

In summary, our method in the two dimensional case can also be divided into three steps:
1. We use the nodal values for fluid I and fluid II at time level tn to construct the nodal values for the computational

variables.
2. Then, we update the computational variables

Un+1
i, j = Un

i, j − �t

�x

(
F̂ i+1/2, j − F̂ i−1/2, j

) − �t

�y

(
Ĝ i, j+1/2 − Ĝ i, j−1/2

)
3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II.
The first and third steps are performed in a conservative manner. As to the second step, we update the nodal values

based on a conservative scheme. Therefore, our method is conservative.
19

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Table 1
CPU time.

Example 1 2 3 4 5 6 7

Time(s) 64.30 2.71 1.40 2.37 2.27 0.55 0.43

Table 2
Accuracy test for density in 1D.

L∞ error order L2 error order L1 error order

80 1.48E-04 3.32E-05 1.05E-05
120 2.81E-05 4.09 5.21E-06 4.57 1.55E-06 4.72
160 6.97E-06 4.84 1.28E-06 4.87 3.67E-07 5.01
200 2.48E-06 4.63 4.22E-07 4.98 1.19E-07 5.07
240 9.81E-07 5.09 1.69E-07 5.03 4.68E-08 5.10
280 4.63E-07 4.87 7.72E-08 5.07 2.12E-08 5.15
320 2.33E-07 5.15 3.91E-08 5.09 1.07E-08 5.14

4. Numerical tests

In this section, we present the results of our numerical experiments. The CFL numbers are taken as 0.5 for both the
one-dimensional and the two-dimensional cases, except that we will choose �t = O(�x5/3) to guarantee that the spatial
error dominates for the accuracy tests. In order to plot the final result, we will restore the computational value using nodal
values for fluid I and fluid II, and impose the following conditions to compute density velocity and pressure in the mixed
cell:

1

γ − 1
= α

γ I − 1
+ 1 − α

γ I I − 1

γ p

γ − 1
= αγ I pI

γ I − 1
+ (1 − α)γ I I pI I

γ I I − 1

where γ and p are the physical parameters defined in the mixed cell, α is the volume fraction of fluid I. γ I and pI are the
physical parameters defined in the fluid I, γ I I and pI I are the physical parameters defined in the fluid II. We emphasize
that these definitions of mixed equation of state in the mixed cells are introduced only for the purpose of plotting the final
results, they do not participate in the computation of time evolution of the numerical solution at all.

We also list the CPU cost for Example 1 to Example 7, see Table 1.

Example 1. Artificial accuracy test in 1D.

We consider the artificial accuracy test [10]. We take γ = 3. The initial conditions are:

ρ(x,0) = 1 + 0.2 sin(x)

2
√

γ
, u(x,0) = √

γ ρ(x,0), p(x,0) = ρ(x,0)γ

The computational domain is [0, 2π]. Periodic boundary conditions are used in this test. By the special choice of the pa-
rameter γ , initial conditions and boundary conditions, we can verify that 2

√
γ ρ(x, t) is the exact solution of the following

Burgers equation:

μt + 1

2
(μ2)x = 0, μ(x,0) = 1 + 0.2 sin(x)

The velocity and pressure satisfy the following relation:

u(x, t) = √
γ ρ(x, t), p(x, t) = ρ(x, t)γ .

It is easy to verify that the solution of the Burgers equation above is smooth up to time T = 5. We set the final time T = 3.
At this time, the solution is still smooth. We also put an artificial interface for which the fluids I and II are the same to
both sides of the interface, however the full interface treating algorithm is applied. The initial artificial interface is located
at x = π . We list the error and numerical accuracy order in Table 2. We can see that our method can achieve the designed
fifth order of accuracy. We also test the accuracy of the discontinuity indicator by using the density from the final time, see
Table 3. We can see that the discontinuity indicator can achieve the designed precision.

Example 2. A pure interface problem in 1D.

We solve a Riemann problem consisting of a single contact discontinuity in gas dynamics:
20

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Table 3
Accuracy test for discontinuity indicator in 1D.

L∞ error order L2 error order L1 error order

80 2.38E-06 4.33E-07 1.30E-07
120 3.07E-07 5.05 4.81E-08 5.42 1.24E-08 5.80
160 6.30E-08 5.51 9.36E-09 5.69 2.28E-09 5.89
200 1.76E-08 5.71 2.56E-09 5.81 6.07E-10 5.94
240 6.09E-09 5.82 8.76E-10 5.88 2.05E-10 5.96
280 2.46E-09 5.88 3.52E-10 5.91 8.15E-11 5.97
320 1.12E-09 5.92 1.59E-10 5.93 3.67E-11 5.98

Fig. 6. Pure interface problem. From left to right: density, velocity, pressure. Line: exact solution; Square: numerical solution obtained by using the current
WENO method (in velocity and pressure, the base has been subtracted); Plus: numerical solution obtained by using WENO-JS method (in velocity and
pressure, the base has been subtracted).

Fig. 7. Shock interacting with sine waves. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO method,
N = 300; Plus: numerical solution obtained by using WENO-JS method, N = 300; Line: Reference, N = 2000.

(ρ, u, p, γ , p) =
{
(1,1,1,1.4,0), x < 0.2
(0.125,1,1, 4,1), x ≥ 0.2

The computational domain is [0, 1]. We set the final time T = 0.32 and N = 200. Fig. 6 shows the result. The base velocity
and pressure have been subtracted. From the figures, we can see that the interface propagates at the correct speed, and the
oscillations solved by using the current WENO method in velocity and pressure are much smaller than the one solved by
using the classical WENO method in [13], denoted as the WENO-JS method in the figure.

Example 3. Shock interacting with sine waves.

This example is tested in [32]. We solve the Euler equation with the following initial conditions

(ρ, u, p, γ , p) =
{
(3.857143,2.629369,10.333333, 1.4,0), x < −4.0
(1 + 0.2 sin(5x), 0, 1,1.666666,0), x ≥ −4.0

The computational domain is [−5, 5]. We compute the solution of this problem to T = 1.8 with N = 300, and show the
final result in Fig. 7. The reference solution is obtained with N = 2000. We compare the computed result using the current
WENO method with the one using the WENO-JS method, we can see that they are nearly the same. We also compare our
result with the one in [6], we can see that the results are comparable although our scheme uses fewer degrees of freedom.
21

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 8. Strong shock impacting on a gas-gas interface. N = 200. From left to right: density, velocity, pressure. Square: numerical solution obtained by present
WENO method; Star: numerical solution obtained by finite difference WENO based GFM; Line: exact solution.

Fig. 9. Gas-water Riemann problem I. N = 300. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO method;
Plus: numerical solution obtained by WENO-JS method; Line: exact solution.

Example 4. Strong shock impacting on a gas-gas interface

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
(0.3856,27.0784,100.0,5/3,0), x < 0
(1, 0, 1, 1.4,0), x ≥ 0

The example is taken from [16]. The domain is [−500, 500] and the grid number N = 200. We list the results using the
current WENO method, WENO-JS method, and the finite difference WENO based original GFM at time t = 20 in Fig. 8. It is
clear that there are discrepancies in locations of the shock front and interface for the result obtained by GFM in comparison
to the analytical solution. These incorrect features do not occur for our scheme.

Example 5. Gas-water Riemann problem I

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
(1.241,0, 2.753,1.4, 0), x < 0
(0.991,0,3.059 × 10−4,5.5,1.505), x ≥ 0

The example is taken from [6]. The domain is [−5, 5] and the grid number N = 300. We list the computed results using
both the current WENO method and the WENO-JS method at time t = 1 in Fig. 9. From the figures, we can see that both
methods obtain correct interface location and high resolution. Comparing with the one in [6], we can see that our scheme
produces a small trough along the interface in the density plot, but is otherwise a good approximation to the exact solution.

Example 6. Gas-water Riemann problem II

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
(0.01,−100.0,100.0, 1.4, 0), x < 0
(1.002, 0, 50,7.15,3309), x ≥ 0
22

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 10. Gas-water Riemann problem II. N = 200. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO
method; Plus: numerical solution obtained by WENO-JS method; Line: exact solution.

Fig. 11. Gas-water Riemann problem III. N = 200. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO
method; Plus: numerical solution obtained by WENO-JS method; Line: exact solution.

The example is taken from [17]. The domain is [−5, 5] and the grid number N = 200. In this case, double rarefaction waves
are generated in gas and water media respectively. We show the computed results using both the current WENO method
and the WENO-JS method at time t = 0.01 in Fig. 10. From the figures, we can see that both methods obtain correct interface
location and high resolution.

Example 7. Gas-water Riemann problem III.

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
(1000, 0,25000,7.15,3309), x < 2
(1,−10, 1, 1.4, 0), x ≥ 2

The domain is [−5, 5] and the grid number N = 200. In this case, a very strong rarefaction wave is reflected back into the
water. We plot the numerical result at time t = 0.25. From Fig. 11, we can see that the result obtained by using WENO-
JS method produces a jump at the interface, while the correct interface location and high resolution are obtained by our
method.

Example 8. Artificial accuracy test in 2D.

We consider the 2D artificial accuracy test. We take γ = 3. The initial conditions are:

ρ(x, y,0) = 1 + 0.2 sin(
x+y

2)√
2γ

u(x, y,0) = v(x, y,0) =
√

γ

2
ρ(x, y,0) p(x, y,0) = ρ(x, y,0)γ

The computational domain is [0, 4π] × [0, 4π]. Periodic boundary conditions are used in this test. By the special choice
of parameter γ , initial conditions and boundary conditions, we can verify that

√
2γ ρ(x, y, t) is the exact solution of the

following Burgers equation:

μt + 1
(μ2)x + 1

(μ2)y = 0 μ(x, y,0) = 1 + 0.2 sin(
x + y

)

2 2 2

23

Table 4
Accuracy test for density in 2D.

L∞ error order L2 error order L1 error order

80 × 80 1.52E-04 3.19E-05 9.57E-06
120 × 120 3.13E-05 3.90 5.51E-06 4.33 1.57E-06 4.46
160 × 160 8.02E-06 4.73 1.43E-06 4.70 3.96E-07 4.79
200 × 200 2.89E-06 4.57 4.82E-07 4.87 1.32E-07 4.91
240 × 240 1.15E-06 5.04 1.96E-07 4.95 5.32E-08 5.00
280 × 280 5.49E-07 4.81 9.06E-08 4.99 2.44E-08 5.04
320 × 320 2.78E-07 5.10 4.63E-08 5.03 1.24E-08 5.06

and the velocity and pressure satisfy the relation: u(x, y, t) = v(x, y, t) =
√

γ
2 ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ . It is easy to

verify that the solution of the Burgers equation above is smooth up to time T = 5. We set the final time T = 3. At this time,
the solution is still smooth. The initial artificial interface is located at

√
(x − 2π)2 + (y − 2π)2 = π . We list the error and

numerical accuracy order in Table 4. We can see that our method can achieve the designed fifth order accuracy.

Example 9. Pure interface problem in 2D.

We solve a pure interface problem in 2D where the interface is a straight line:

(ρ, u, v, p, γ , p) =
{
(1,1,1,1,1.4,0), x + 5y − 1.5 > 0
(0.125,1,1,1, 4,1), x + 5y − 1.5 ≤ 0

The computational domain is [0, 1] × [0, 1]. We set the final time T = 0.32. Fig. 12 shows the result. The solutions along
the cut line y = x are also shown in the figures. The base velocity and pressure have been subtracted. From the figures, we
can see that the interface propagates at the correct speed, and no oscillations other than those at the round-off error are
observed in velocity and pressure.

Example 10. Shock impacting on a gas-gas interface in 2D

We next consider an air shock impacting on a helium bubble. The schematic for this problem is given in Fig. 13 where
the upper and lower boundary conditions are non-reflective open boundaries. The left and right boundary conditions are
the inflow and outflow, respectively. The initial conditions are:

(ρ, u, v, p, γ , p) =
⎧⎨⎩(1, 0,0, 1,1.4,0), Pre-shocked air

(1.3764,0.394,0,1.5698,1.4,0), Post-shocked air
(0.138, 0,0, 1,5/3,0), Helium

and the level set function φ = √
x2 + y2 − 1, where φ < 0 represents helium and φ > 0 represents the air. The post-shock

air state is given for x < −1.2.
In order to eliminate the “start-up” error mentioned in [22], we will use the numerical shock, namely we run our code

for the pure shock condition until it settles down, then we add the bubble and start the computation. We plot density
contours at time t = 0.5, t = 1.0, t = 2.0 and t = 4.0. From Fig. 14, we can see that the main features of the solution are
correctly captured.

Example 11. Shock impacting on a water-gas interface in 2D

In the final problem, we consider an underwater shock interacting with a gas bubble in an open domain. We examine
an underwater shock wave making impact on a gas bubble. The schematic for this problem is given in Fig. 13. The non-
dimensionalized initial conditions are:

(ρ, u, v, p, γ , p) =
⎧⎨⎩(1000, 0,0, 1,7.15,3309), Pre-shocked water

(1176.3576,1.1692,0,9120,7.15,3309), Post-shocked water
(1, 0,0, 1, 1.4, 0), Gas

and the level set function φ = √
x2 + y2 −1, where φ < 0 represents the gas and φ > 0 represents the water. The post-shock

water state is given for x < −1.2.
In this problem, very complex physics will occur at later time, and we stop our computation before the bubble collapse.

We plot the contours of density for the numerical shock in Fig. 15 at t = 0.06, t = 0.19, t = 0.357 and t = 0.471 respectively.
From the figures, we can see that high resolution is obtained by our method.
F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
24

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597

Fig. 12. Pure interface problem. 100 × 100 cells. From top to bottom: density, velocity in the x direction, velocity in the y direction, pressure. From left to
right: solution in the whole domain, solution along the cut line y = x. Square: numerical solution (in velocity and pressure, the base has been subtracted);
Line: exact solution (in velocity and pressure, the base has been subtracted).
25

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 13. Schematic for Example 10 and Example 11. Left: Example 10; Right: Example 11.

Fig. 14. Shock impacting on a gas-gas interface in 2D, with 280 × 240 cells, 30 equally spaced density contours from 0.1 to 1.6. Top left: t = 0.5; Top right:
t = 1.0; Bottom left: t = 2.0; Bottom right: t = 4.0.

5. Concluding remarks

In this paper, we propose a conservative finite difference method to solve the two-medium flows. An alternative high
order finite difference formulation is adopted to allow WENO interpolation on the physical variables of velocity and pressure,
instead of WENO reconstruction or interpolation on the conserved variables. Numerical benchmarks show that the proposed
scheme has high order accuracy and high resolution, ability to locate the correct interface position and non-oscillatory
velocity and pressure transition across interfaces. Further research to improve efficiency and robustness of the conservative
finite difference scheme for two-medium flows is ongoing. Extension to three-medium flows will also be considered in the
future. The methodology extends naturally, however careful algebraic manipulations are needed in the mixed cells where
all three media co-exist.
26

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 15. Shock impacting on a water-gas interface in 2D, with 280 × 240 cells, 30 equally spaced density contours from 0 to 1200. Top left: t = 0.06; Top
right: t = 0.19; Bottom left: t = 0.357; Bottom right: t = 0.471.

CRediT authorship contribution statement

Feng Zheng: Design numerical methods, Code, Writing – original draft preparation.
Chi-Wang Shu: Conceptualization, Design numerical methods, Writing – review & editing, Supervision.
Jianxian Qiu: Conceptualization, Design numerical methods, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The first author would like to thank the China Scholarship Council, Division of Applied Mathematics of Brown University,
members in the research group of Prof. Shu during his visit to Brown University, and Prof. J. Zhu and Ph.D. candidate Z. Zhao
for the valuable help to him. He also thanks his alma mater Xiamen University and wishes her a happy 100th birthday.

Appendix A. The proof of Proposition 2.2

Proof. The same as before, we assume the interface x(tn) at time level tn satisfies x(tn) ∈ [xin−1/2, xin+1/2]. Due to the
C F L condition, the interface x(t∗) at time level t∗ could only be in the cell Iin−1, Iin or Iin+1. For simplicity, we assume
x(t∗) ∈ [xin+1/2, xin+3/2], see Fig. 1. The proof for the other cases is similar.

According to Fig. 1, we need to calculate the convex combination of F̂ H and F̂ L at xin−1/2, xin+1/2, xin+3/2. We analyze
F̂ n

in−1/2 and F̂ n
in+3/2 first. Because the flux F̂ L

i+1/2, i = in ± 1 is only first order accurate, we have

F̂ L
i+1/2 = F (U)i+1/2 +O(�x), i = in ± 1

where the F (U)i+1/2 refers to the exact flux at xi+1/2. Therefore, if we require ϕ = 1 +O(�x4), then we have
27

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
F̂ n
i+1/2 − F (U)i+1/2 = F̂ L

i+1/2 + ϕ(F̂ H
i+1/2 − F̂ L

i+1/2) − F (U)i+1/2

= O(�x5), i = in ± 1

Next, we will analyze the flux F̂ n
in+1/2.

We assume U (xi, tn) is the exact solution at xi at time level tn . We denote α∗
I = x(t∗) − xin−1/2, αn

I = x(tn) − xin−1/2,
Un

I = Un,I
in

, U (xin , tn) = αn
I Un,I

in
+ (1 − αn

I)Un,I I
in

.
In the smooth region, {φ∗

i+1/2} and {φn
i+1/2} satisfy:

φ∗
i+1/2 = φn

i+1/2 − �t(u+
i+ 1

2

√
max (((φ−

x)+)2, ((φ+
x)−)2) + u−

i+ 1
2

√
max (((φ−

x)−)2, ((φ+
x)+)2))

where φ±
x can be obtained by the WENO method. Due to the property of the distance function, we have |φ±

x | = 1 +O(�x5).
Therefore, we obtain the following equation:

φ∗
in+1/2 = φn

in+1/2 − �tu +O(�x5)

As to x(tn), x(t∗) and φn , φ∗ , we have

α∗
I

2�x
= x(t∗) − xin−1/2

2�x
= x(t∗) − xin−1/2

xin+3/2 − xin−1/2
= 0 − φ∗

in−1/2

φ∗
in+3/2 − φ∗

in−1/2

=0 − φn
in−1/2 + u�t

φn
in+3/2 − φn

in−1/2
+O(�x4) = x(tn) − xin−1/2

2�x
+ u�t

2�x
+O(�x4)

=αn
I + u�t

2�x
+O(�x4)

So, we have

α∗
I = αn

I + u�t +O(�x5)

As to the flux, we have

F̂ in− 1
2

= F̂ (U−, U+) − ϕin− 1
2

(
1

24
�x2 Fxx

∣∣∣
x

in− 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

in− 1
2

)

= F (U)

∣∣∣
x

in− 1
2

+O(�x2) =
⎛⎝ ρu

ρu2 + p
u(E + p)

⎞⎠∣∣∣
x

in− 1
2

+O(�x2)

= uin− 1
2

⎛⎝ ρ
ρu
E

⎞⎠∣∣∣
x

in− 1
2

+
⎛⎝ 0

p
up

⎞⎠∣∣∣
x

in− 1
2

+O(�x2)

� uin−1/2Un,I
in−1/2 + Fsin−1/2 +O(�x2)

= uUn
I + Fsin−1/2 +O(�x)

and

Un
I = Un,I

in
= αn

I Un,I
in

+ (1 − αn
I)Un,I I

in
+O(�x) = U (xin , tn) +O(�x)

Therefore, according to Fig. 1, we have

U∗,t
in

= U∗
I = 1

α∗
I

(
αn

I Un
I − �t(F̂ s − F̂ L

in− 1
2
)
)

=
(
αn

I Un
I + �tuUn

I − �t(F̂ s − Fsin− 1
2
)
)

+O(�x�t)

α∗
I

=
(
αn

I Un
I + �tuUn

I

) +O(�x�t)

α∗
I

=Un
I +O(�t) = U (xin , tn) +O(�x)

(43)

Similarly, we can also obtain
28

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
U∗,t
in+1 = U (xin+1, tn) +O(�x)

If �t =O(�xr), r ≤ 2, according to formula (14) we obtain

F̂ L
in+1/2 = 1

2

(
F̂ L

in−1/2 − U∗,t
in

− Un
in

�t
�x

)
+ 1

2

(
U∗,t

in+1 − Un
in+1

�t
�x

+ F̂ L
in+3/2

)

= 1

2

(
F̂ L

in−1/2 − U∗,t
in

− U (xin , tn)

�t
�x

)
+ 1

2

(
U∗,t

in+1 − U (xin+1, tn)

�t
�x

+ F̂ L
in+3/2

)

= 1

2

(
F̂ L

in−1/2 + F̂ L
in+3/2

)
+O(�x2−r)

=
(

F (U) − 1

24
�x2 F (U)xx + 7

5760
�x4 F (U)xxxx

)∣∣∣
xin+1/2

+O(�x2−r)

That means the flux F̂ L
in+1/2 would be at least zero order accuracy to approximate the flux ̂̂F in+1/2. Due to ϕ = 1 +O(�x5),

as to the formula (16), we have

F̂ n
in+1/2 − ̂̂F in+1/2

=(1 − ϕ) F̂ L
in+1/2 + ϕ F̂ H

in+1/2 −
(

F (U) − 1

24
�x2 F (U)xx + 7

5760
�x4 F (U)xxxx

)∣∣∣
xin+1/2

=(1 − ϕ)O(�x2−r) +O(�x5)

=O(�x5)

To conclude, if ϕ = 1 +O(�x5) and �t =O(�xr), r ≤ 2, then the convex combination of ̂F H and ̂F L (16) satisfies formula
(26). �
Appendix B. The proof for properties of discontinuity indicator

Firstly, due to β ≥ 0, we have

0 ≤ ϕi+ 1
2

≤ 1

Secondly, we verify the accuracy order in the smooth region. Based on Taylor expansion at xi+ 1
2

, we have:

β0 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 + 1

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

7

80
w(2)(xi+1/2)w(4)(xi+1/2) + 1

960
w(1)(xi+1/2)w(5)(xi+1/2) + 1043

960
w(3)(xi+1/2)

2
)

�x6 +O(�x8)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β1 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 − 23

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

−13

4
w(2)(xi+1/2)w(3)(xi+1/2) + 2w(1)(xi+1/2)w(4)(xi+1/2)

)
�x5 +O(�x6)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β2 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 + 1

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

−13

12
w(2)(xi+1/2)w(3)(xi+1/2)

)
�x5 +O(�x6)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β3 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 + 1

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

13
w(2)(xi+1/2)w(3)(xi+1/2)

)
�x5 +O(�x6)
12

29

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β4 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 − 23

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

13

4
w(2)(xi+1/2)w(3)(xi+1/2) − 2w(1)(xi+1/2)w(4)(xi+1/2)

)
�x5 +O(�x6)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

Therefore, we obtain the following relation:

β1 − β0 = −2w(1)(xi+1/2)w(3)(xi+1/2)�x4 +O(�x5)

β2 − β0 = −13

12
w(2)(xi+1/2)w(3)(xi+1/2)�x5 +O(�x6)

β3 − β0 = 13

12
w(2)(xi+1/2)w(3)(xi+1/2)�x5 +O(�x6)

β4 − β0 = −2w(1)(xi+1/2)w(3)(xi+1/2)�x4 +O(�x5)

It is easy to verify

τ = (β0 − β1)
2 + (β0 − β2)

2 + (β0 − β3)
2 + (β0 − β4)

2

4
= O(�x8)

and

β = 1

4

(
τ

β1 + ε
+ τ

β2 + ε
+ τ

β3 + ε
+ τ

β4 + ε

)
= O(�x6)

Therefore, in the smooth region, the discontinuity indicator ϕi+ 1
2

satisfies:

ϕi+ 1
2

=
(1

β + 1

)2 = 1 +O(�x6)

Thirdly, when the big stencil contains a discontinuity, we have

β0 = O(1)

As to the small stencils S1, S2, S3, S4, one of them can avoid the discontinuity. For example, we assume S1 can avoid
discontinuity, then we have:

β1 = O(�x2)

As to τ and β , we obtain

τ = (β0 − β1)
2 + (β0 − β2)

2 + (β0 − β3)
2 + (β0 − β4)

2

4
= O(1)

and

β = 1

4

(
τ

β1 + ε
+ τ

β2 + ε
+ τ

β3 + ε
+ τ

β4 + ε

)
= O(�x−2)

Therefore, the discontinuity indicator satisfies:

ϕi+ 1
2

=
(1

β + 1

)2 = O(�x4) −→ 0

References

[1] R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys. 125 (1996)
150–160.

[2] R. Abgrall, S. Karni, Computations of compressible multifluids, J. Comput. Phys. 169 (2001) 594–623.
[3] R. Abgrall, R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures, J. Comput. Phys. 186 (2003) 361–396.
[4] G. Allaire, S. Clerc, S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys. 181 (2002) 577–616.
[5] S. Bertoluzza, S. Falletta, G. Russo, C.-W. Shu, Numerical Solutions of Partial Differential Equations, Birkhäuser Verlag, 2009.
[6] J. Cheng, F. Zhang, T. Liu, A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows, J. Comput.

Phys. 403 (2020) 109059.
30

http://refhub.elsevier.com/S0021-9991(21)00492-7/bib5A04FA06C201A121E8828527D7DD8636s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib5A04FA06C201A121E8828527D7DD8636s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib2A3197E20BEB6AAAEA7EB4E390CC3DC3s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib95B1F79FE8A148B29EE3D89C216E704Cs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibEB6465577DD711D43B9EFA5E05E27EF4s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibBF57F3CD647FCD852D92A3017F9BF1F3s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib7E5FAE5BA1FE794B65FA3586C80F7576s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib7E5FAE5BA1FE794B65FA3586C80F7576s1

F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
[7] A. Chertock, S. Karni, A. Kurganov, Interface tracking method for compressible multifluids, ESAIM: Math. Model. Numer. Anal. 42 (2008) 991–1019.
[8] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J.

Comput. Phys. 152 (1999) 457–492.
[9] R.P. Fedkiw, A. Marquina, B. Merriman, An isobaric fix for the overheating problem in multimaterial compressible flows, J. Comput. Phys. 148 (1999)

545–578.
[10] G. Fu, C.-W. Shu, A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws, J. Comput. Phys. 347 (2017)

305–327.
[11] X.Y. Hu, B.C. Khoo, N.A. Adams, F.L. Huang, A conservative interface method for compressible flows, J. Comput. Phys. 219 (2006) 553–578.
[12] G.-S. Jiang, D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2126–2143.
[13] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.
[14] Y. Jiang, C.-W. Shu, M. Zhang, An alternative formulation of finite difference WENO schemes with Lax-Wendroff time discretization for conservation

laws, SIAM J. Sci. Comput. 35 (2013) A1137–A1160.
[15] J.-Y. Lin, Y. Shen, H. Ding, N.-S. Liu, X.-Y. Lu, Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust

cut-cell method, J. Comput. Phys. 328 (2017) 140–159.
[16] T.G. Liu, B.C. Khoo, C.W. Wang, Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys. 190 (2003) 651–681.
[17] T.G. Liu, B.C. Khoo, K.S. Yeo, The ghost fluid method for compressible gas-water simulation, J. Comput. Phys. 204 (2005) 193–221.
[18] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.
[19] D.P. Peng, B. Merriman, S. Osher, H.K. Zhao, M. Kang, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys.

155 (1999) 410–438.
[20] J.X. Qiu, T.G. Liu, B.C. Khoo, Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: one-dimensional case, J.

Comput. Phys. 222 (2007) 353–373.
[21] J. Qiu, C.-W. Shu, On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes, J. Comput. Phys. 183

(2002) 187–209.
[22] J.J. Quirk, S. Karni, On the dynamics of a shock-bubble interaction, J. Fluid Mech. 318 (1996) 129–163.
[23] R. Saurel, R. Abgrall, A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21 (1999) 1115–1145.
[24] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: B. Cockburn, C. Johnson,

C.-W. Shu, E. Tadmor, A. Quarteroni (Eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, in: Lecture Notes in Mathematics,
vol. 1697, Springer, Berlin, 1998, pp. 325–432.

[25] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471.
[26] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes II, J. Comput. Phys. 83 (1989) 32–78.
[27] K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys. 142 (1998) 208–242.
[28] K.-M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys. 156 (1999)

43–88.
[29] K.-M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state, J. Comput. Phys. 171 (2001)

678–707.
[30] M. Sussman, P. Smereka, S. Osher, A PDE-based fast local level set method, J. Comput. Phys. 134 (1994) 146–159.
[31] C. Wang, T.G. Liu, B.C. Khoo, A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput. 28 (2006) 278–302.
[32] C. Wang, C.-W. Shu, An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method, J. Comput.

Phys. 229 (2010) 8823–8843.
[33] T. Xiong, C.-W. Shu, M. Zhang, WENO scheme with subcell resolution for computing nonconservative Euler equations with applications to one-

dimensional compressible two-medium flows, J. Sci. Comput. 53 (2012) 222–247.
[34] Z. Xu, C.-W. Shu, Anti-diffusive flux corrections for high order finite difference WENO schemes, J. Comput. Phys. 205 (2005) 458–485.
[35] J. Zhu, J.X. Qiu, A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys. 318 (2016) 110–121.
31

http://refhub.elsevier.com/S0021-9991(21)00492-7/bibF1753A0F9E1554C8DB8FFD82D251F27Fs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib05354FFF951CC1E7B0E526CBD8B2D4F0s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib05354FFF951CC1E7B0E526CBD8B2D4F0s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibCCCCADCAB4EA117FD8513F93C3CC128Bs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib75031D7D67F774DC123CCAA4CD0A82A6s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib08B3FCE00BCA727BAE4821842F0FB39Es1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib3E73C1E3E8E07F74E13310ECD3C9AECCs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib3E73C1E3E8E07F74E13310ECD3C9AECCs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib6E869FBF48ADA74DEDB27B22AEBF19A0s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib6E869FBF48ADA74DEDB27B22AEBF19A0s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibE7904A7D243FD104B03C60FB86DFBF21s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibF2D2A5B6434C0695BD6F7AD9EBFAAA26s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibDE09D206BEBB31227D47BA6F6272C1A9s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibADDAA8A67B5DDB7CDB8DF1D40EE4D6FBs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibADDAA8A67B5DDB7CDB8DF1D40EE4D6FBs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib791BC6814BD0AF08A953FE97F7DF5D42s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib791BC6814BD0AF08A953FE97F7DF5D42s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib4DD9B760EEE2F565253CE17D6ACBBDCDs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib4DD9B760EEE2F565253CE17D6ACBBDCDs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibF49866023DB84635ADBD188CE90B20EFs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibB437B1DEC2F584A69F4E7679A46EC005s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibFB6F71360DED2B590BDED0F369E5F514s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibFB6F71360DED2B590BDED0F369E5F514s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibFB6F71360DED2B590BDED0F369E5F514s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib96A2F448058320257B5274359C09E244s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib9BDFC44C0257A529681D2FE73811FB73s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib5187B3307DA47487BAFBB442325D459Bs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibD93AD954CC555D6E6ACE328CE5AEB4F7s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibD93AD954CC555D6E6ACE328CE5AEB4F7s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib8A2404C6DD0449E95A4782C10B1443EAs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib8A2404C6DD0449E95A4782C10B1443EAs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib8BE8514D75B2EBB511617D2FC6765A2Bs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib2273A3D915DB36DCE7DB9CA757787C8Fs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibC2FD9ADABB8203C75BF381397D7F1875s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bibC2FD9ADABB8203C75BF381397D7F1875s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib5171EEC4EEB2B4216E06ACF54D27FAD6s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib5171EEC4EEB2B4216E06ACF54D27FAD6s1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib86F21E799112D4ED9D8668DFA3A0860Fs1
http://refhub.elsevier.com/S0021-9991(21)00492-7/bib90964A28D6562A49C77E6D0F414D689Es1

	A high order conservative finite difference scheme for compressible two-medium flows
	1 Introduction
	2 One-dimensional numerical schemes
	2.1 Review of one-dimensional high order finite difference schemes for single medium
	2.2 Description of the finite difference scheme for two-medium flows in 1D
	2.2.1 Level set method
	2.2.2 Characteristic projection 1D
	2.2.3 WENO method
	2.2.4 Discontinuity indicator
	2.2.5 Time discretization
	2.2.6 Flowchart 1D

	2.3 Conservation

	3 Two-dimensional numerical schemes
	3.1 Description of the finite difference scheme in 2D
	3.1.1 Volume fraction
	3.1.2 Mixing procedure
	3.1.3 Characteristic projection in 2D
	3.1.4 Level set method
	3.1.5 Reinitialization

	3.2 Conservation

	4 Numerical tests
	5 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A The proof of Proposition 2.2
	Appendix B The proof for properties of discontinuity indicator
	References

