
Journal of Computational Physics 445 (2021) 110597
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A high order conservative finite difference scheme for 

compressible two-medium flows

Feng Zheng a, Chi-Wang Shu b,1, Jianxian Qiu c,∗,2

a College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian 350117, PR China
b Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
c School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling & High-Performance Scientific Computing, 
Xiamen University, Xiamen, Fujian 361005, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 30 July 2021

Keywords:
Finite difference
Conservative method
Two-medium flows

In this paper, a high order finite difference conservative scheme is proposed to solve two-
medium flows. Our scheme has four advantages: First, our scheme is conservative, which 
is important to ensure the numerical solution captures the main features properly. Second, 
our scheme directly applies the WENO interpolation method to the primitive variables so 
that it can maintain the equilibrium of velocity and pressure across the interface, which is 
very helpful to obtain a non-oscillatory solution. Third, the usage of nodal values enables 
us to manipulate algebraic functions easily. Fourth, the scheme can maintain high order 
accuracy when the solution is smooth. Extensive numerical experiments are performed to 
verify the high resolution and non-oscillatory performance of this new scheme.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The computation of two-medium flows is one of the most popular issues in computational fluid dynamics (CFD). It is 
relevant to many applications including hydrodynamics, aeronautics, material science, and so on. The main difficulty for 
the computation of two-medium flow is to maintain the equilibrium of velocity and pressure across the material interface, 
which is the property of the physical interface discontinuities. If the interface is not properly treated numerically, non-
physical oscillations will occur, and such oscillations cannot be eliminated by using high resolution methods, such as the 
total variation diminishing (TVD) method and the weighted essentially non-oscillatory (WENO) method [24]. They even 
appear when we construct first order schemes.

Numerical methods for the two-medium flow can be divided into two categories: one is the shock-capturing method, and 
the other is the interface tracking method. An advantage for the shock-capturing method is its simplicity and easiness in its 
extension to multi-dimensions. The interface is allowed to diffuse numerically and is not explicitly tracked. Abgrall proposed 
a quasi-conservative scheme based on the γ -law model [1]. Then, Shyue extended the method to more general equations of 
state [27–29]. Allaire et al. introduced the usage of volume fraction and constructed a five-equation model for the simulation 
[4]. Abgrall and Saurel further applied the method to different numerical fluxes for multi-phase flows [3,23]. Although the 
shock-capturing method has achieved great success, it still has some drawbacks: First, the method diffuses the interface, 
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so it is not very clear where the interface is. Second, in order to avoid the jump near the interface, the intermediate 
state of either the physical parameters or the volume fraction would be introduced, which is inconsistent with what is 
really happening in physics. Comparing with the shock-capturing method, a sharp interface can be obtained by using the 
interface tracking method, where the level set method is used to track the interface [18]. Among all methods of this type, 
the ghost fluid method (GFM) with the isobaric fix is undoubtedly the most successful [8,9]. The method is essentially only 
solving single medium fluids through a Riemann solver at the interface (which is determined by the level set function) and 
defining the value of the ghost fluids across the interface. The interface is not explicitly tracked, its location is automatically 
determined by a level set function, hence the extension of this method to multi-dimensions becomes fairly straightforward. 
Liu et al. proposed a modified GFM (MGFM) which improves upon the original GFM [16]. The GFM and MGFM work well 
for strong shock impedance matching problems. Later, Wang et al. proposed the real GFM method focusing on simultaneous 
influence of different fluids [31]. There are also other similar methods, such as the interface treatment method [7], the 
simple single fluid algorithm [2], the path-conservative schemes [33] and so on. The drawback of these methods is that the 
scheme is not conservative, so theoretically we are not assured of the convergence to weak solutions from the numerical 
solutions. We refer to [2] for a good review of these methods for multi-medium and multi-phase flows.

Our goal is to design a finite difference scheme that is conservative and has a sharp and non-oscillatory interface. Con-
servative schemes have many advantages in solving hyperbolic problems. The most important property is that the numerical 
solution will converge to a weak solution as long as it converges (the Lax-Wendroff theorem). However, for the two-medium 
problem, conservative schemes tend to give oscillatory results if no special care is taken [32]. In [20], the authors designed a 
discontinuous Galerkin (DG) method [5] to solve the two-medium problem by using the classical DG scheme away from the 
interface and developing a DG scheme specially for treating the moving interface in one space dimension. High resolution 
and sharp interface results were achieved. Similar idea is used in [11]. In this paper we use a finite difference framework. 
Traditional conservative finite difference schemes perform reconstructions on the fluxes [25,26,13]. As is well known, across 
material interfaces, density will have a discontinuity, but velocity and pressure remain continuous. If the reconstruction is 
performed on the fluxes or on the conserved variables, then all components will have discontinuities, hence the approxi-
mation to velocity and pressure, which are nonlinear functions of the conserved variables or fluxes, will be poor. Moreover, 
traditional local characteristic decompositions to reduce oscillations has a reduced effect at the interface, whose character-
istic structure is not clear since two different fluids are at the two sides of this interface. One possible way to get better 
results is to perform approximation directly on the primitive variables, namely density, velocity and pressure. However, for 
finite volume methods of order of accuracy higher than two, this is not possible, since we only have the information of cell 
averages of the conserved variables. For traditional finite difference schemes, this is not possible either, since the compu-
tation of numerical fluxes is through the reconstruction on the fluxes [25,26]. If we use the alternative formulation of high 
order finite difference schemes in [14], which is based on the high order flux expansion in [25], we will be performing in-
terpolation, rather than reconstruction, on the conserved variables, not on the fluxes. In this paper, we modify the approach 
in [14] to use point values of the primitive variables, which are readily available from the point values of the conserved 
variables, to perform high order interpolation for obtaining the numerical fluxes. This would ensure non-oscillatory results 
for velocity and pressure from high order WENO interpolation. Near the interface, we will also use the specific informa-
tion of the interface location as determined by the level set method to modify the approximation, based on the ideas in 
[20,11,15]. Both the distance function and the computational variables are updated at each time step by the third order TVD 
Runge-Kutta time discretization [25]. Conservative property and sharp and non-oscillatory interface can be obtained for our 
scheme. Extensive numerical experiments are performed for benchmark problems to verify the capability of the algorithm 
in obtaining non-oscillatory and high resolution solutions.

The organization of this paper is as follows. In section 2, we introduce our scheme in the one dimensional case. In 
section 3, we extend our scheme to the two dimensional case. In section 4, numerical benchmarks are shown to demonstrate 
the performance of our schemes. In section 5, we make some concluding remarks.

2. One-dimensional numerical schemes

The one-dimensional system for the compressible fluid can be written as follows:

Ut + F (U )x = 0

where U = (ρ, ρu, E)T , F (U ) = (ρu, ρu2 + p, u(E + p))T . Here ρ is the density, u is the velocity, E is the total energy, p is 
the pressure. To make the system closed, the equation of state (EOS) is required. In this paper, we mainly use the following 
EOS:

• γ -law:

E = 1

2
ρu2 + p

γ − 1
,

where γ is adiabatic index. The γ -law is used for gases in this paper.
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• Tait EOS:

E = 1

2
ρu2 + p + γ p

γ − 1
,

where γ = 7.15, p = 3.309 × 108 Pa. The Tait EOS is used for water in this paper.

2.1. Review of one-dimensional high order finite difference schemes for single medium

Considering the following one-dimensional scalar equation:

ut + f (u)x = 0

The computational domain is divided into N grid points: a = x0 < x1 < · · · < xN = b. For the nodal value ui , we have the 
following semi-discrete scheme:

dui

dt
= − 1

�x
( f̂ i+ 1

2
− f̂ i− 1

2
)

where the numerical flux f̂ should satisfy the following condition:

f̂ i+ 1
2

− f̂ i− 1
2

�x
= f (u)x

∣∣∣
xi

+O(�x5)

for a fifth order scheme. It has been shown in [25] that the following formula can guarantee the fifth order of accuracy:

f̂ i+ 1
2

= f̂ (u−
i+ 1

2
, u+

i+ 1
2
) − 1

24
�x2 fxx

∣∣∣
i+ 1

2

+ 7

5760
�x4 fxxxx

∣∣∣
i+ 1

2

(1)

The first term in (1) is a monotone numerical flux in the scalar case or an appropriate Riemann-solver-based flux for 
systems. For example, we can use the Lax-Friedrichs flux:

f̂ (u−, u+) = 1

2
( f (u−) + f (u+)) − 1

2
α(u+ − u−)

where α = max
u

| f ′(u)|. u±
i+ 1

2
are the right and left limits of u at xi+1/2, which can be obtained from a WENO interpolation. 

The remaining terms can be approximated by simple central differences, as their effect on spurious oscillations is minimal 
due to the small coefficients involving at least �x2. We use

fxx

∣∣∣
x

i+ 1
2

= −5 f (ui−2) + 39 f (ui−1) − 34 f (ui) − 34 f (ui+1) + 39 f (ui+2) − 5 f (ui+3)

48�x2
(2)

and

fxxxx

∣∣∣
x

i+ 1
2

= f (ui−2) − 3 f (ui−1) + 2 f (ui) + 2 f (ui+1) − 3 f (ui+2) + f (ui+3)

2�x4
(3)

2.2. Description of the finite difference scheme for two-medium flows in 1D

Now, we describe the high order finite difference scheme for two-medium flows in the one dimensional case. In our 
scheme, we take the CFL number as 0.5.

The same as before, the computational domain is divided into N grid points: a = x0 < x1 < · · · < xN = b. We denote cell 
Ii = [xi− 1

2
, xi+ 1

2
] as the corresponding cell of the node xi . Here, we set xi+ 1

2
= (xi + xi+1)/2. We denote the nodal value for 

fluid I as Un,I
i and the nodal value for fluid II as Un,I I

i . We introduce the distance function φ which is defined at the half 
nodes. By using this distance function φ, we can determine the location of the interface x(tn) at time level tn . We define 
in as the sequence of the index of the cell containing the interface at time level tn , then we have x(tn) ∈ [xin− 1

2
, xin+ 1

2
]. We 

can define the computational variable {Un
i }, which will be the variables updated in time in a conservative fashion, in the 

following way:

Un
i = Un,I

i , if i < in

Un
i = Un,I I

i , if i > in

Un = α Un,I + (1 − α )Un,I I
, if i = i

(4)
i i i i i n

3



F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Fig. 1. Sketch for the interface stencil. Red: fluid I. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where αi is the volume fraction of fluid I in the cell Ii . We set αi = x(tn)−xi−1/2
�x .

Then, we can update the computational variable {Un
i } to the next time level t∗

U∗
i = Un

i − �t

�x
( F̂ n

i+ 1
2

− F̂ n
i− 1

2
) (5)

In order to guarantee high resolution when discontinuities appear and high precision in the smooth region, we need to 
design suitable numerical fluxes. For the fluxes far from the interface, they will be approximated by single fluid numerical 
fluxes whose explicit expressions are similar to (1). We denote these numerical fluxes as F̂ H . For the fluxes near the 
interface, in order to maintain the equilibrium of the velocity and pressure across the interface, we need to calculate the 
special low order fluxes, denoted as F̂ L , and we will use a combination of F̂ H and F̂ L to obtain the numerical fluxes. This 
combination will be performed carefully in order to ensure high order accuracy.

For the flux F̂ H , we have the following expression:

F̂ H
i+ 1

2
= F̂ (U−

i+ 1
2
, U+

i+ 1
2
) − ϕi+ 1

2

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2

)
(6)

where ϕi+ 1
2

is a discontinuity indicator at xi+1/2 which can improve the resolution when discontinuities appear and main-

tain high order accuracy in smooth areas. The detailed steps to compute the discontinuity indicator is given in subsection 
2.2.4. F̂ (U−

i+ 1
2
, U+

i+ 1
2
) is the Lax-Friedrichs flux. Instead of computing the interpolated values U±

i+1/2 from the point values 
of the conserved variables, we will interpolate the primitive variables using the WENO method. As we know, the variables 
near the two-medium interface satisfy the contact discontinuity condition. Density and physical parameters will jump, while 
velocity and pressure will keep continuous. As mentioned in the introduction, it is better to interpolate density, velocity and 
pressure directly. Therefore, based on the framework in [14], we perform the interpolation on the primitive variables, which 
are readily available from the nodal values of the conserved variables. This gives us better chance to obtain non-oscillatory 
results for velocity and pressure from high order WENO interpolation near the interface. As to the higher order derivative 
terms, we can apply the simple central difference method in a component by component fashion. It should be noted that 
the nodal values used in the interpolation are chosen with respect to the position of the interface. When calculating the 
fluxes at a location in fluid I, we will use nodal values of fluid I in the interpolation if they are defined, otherwise we will 
use the nodal values of fluid II; when calculating the fluxes at a location in fluid II, we will use nodal values of fluid II in 
the interpolation if they are defined, otherwise we use the nodal values of fluid I.

Next, we will describe the detailed steps to calculate the low order special flux F̂ L near the interface.
First, by using the level set method, we can evolve the distance function φn to time level t∗ and obtain φ∗ . Then we can 

use φ∗ to determine the interface position x(t∗) at the new time level t∗ . We can use the WENO method in a component by 
component fashion to determine the left and right states of the Riemann problem at the interface. The same as before, we 
interpolate the primitive variables instead of the conserved variables. The detailed steps of the level set method and WENO 
method are described in subsections 2.2.1 and 2.2.3.

We assume the interface x(tn) at time level tn satisfies x(tn) ∈ [xin−1/2, xin+1/2], and the interface x(t∗) at the next time 
level t∗ satisfies x(t∗) ∈ [xi∗−1/2, xi∗+1/2]. We denote αi∗ as the volume fraction of fluid I in the cell Ii∗ . The mixed cell Iin
should not be calculated for a full time step. It is suggested that the cell should be merged with a neighboring cell, in order 
to avoid the small “cut-cell” problem. We will merge the cells in the following way:

- If αi∗ < 0.5, then we choose the cells Ii∗−1 and Ii∗ as the interface stencil, and merge them to form two new interface 
cells: the cell [xi∗− 3

2
, x(tn)] occupied by fluid I, and the cell [x(tn), xi∗+ 1

2
] occupied by fluid II;

- If αi∗ ≥ 0.5, then we choose the cells Ii∗ and Ii∗+1 as the interface stencil, and merge them to form two new interface 
cells: the cell [xi∗− 1

2
, x(tn)] occupied by fluid I, and the cell [x(tn), xi∗+ 3

2
] occupied by fluid II.

Due to the CFL number and the way to generate the interface stencil, the interface stencil chosen above will contain the 
mixed cell both at the time level tn and at the time level t∗ . For simplicity, we assume cells Iin and Iin+1 have been merged 
together, see Fig. 1. Then, we need to calculate the fluxes F̂ L at the positions xin±1/2 and xin+3/2.
4
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Regarding the flux at xin−1/2, it is in the fluid I. Therefore, if Un,I
in+1 is not defined, we will set Un,I

in+1 = Un,I
in

. Then we will 
use the nodal values {Un,I

in−3, U
n,I
in−2, U

n,I
in−1, U

n,I
in

, Un,I
in+1, U

n,I I
in+2} to compute the numerical flux F̂ L

in− 1
2

based on equation (6). 

Regarding the flux at xin+3/2, it is in the fluid II. Similarly, if Un,I I
in

is not defined, we will set Un,I I
in

= Un,I I
in+1. Then we will 

use the nodal values {Un,I
in−1, U

n,I I
in

, Un,I I
in+1, U

n,I I
in+2, U

n,I I
in+3, U

n,I I
in+4} to compute the numerical flux F̂ L

in+ 3
2

based on equation (6). 

As to the flux F̂ L
in+ 1

2
, it can be obtained by the conservation law, as described below in details.

For fluid I, similar to the ALE method, we have the following integrated conservation law:

t∗ˆ

tn

dt

x(t)ˆ

x
in− 1

2

(
Ut + F (U )x

)
dx = 0 (7)

According to the Green’s formula, we haveˆ

∂	

−U dx + F (U )dt

= −
x(tn)ˆ

x
in− 1

2

U dx +
(x(t∗),t∗)ˆ

(x(tn),tn)

−U dx + F (U )dt +
x(t∗)ˆ

x
in− 1

2

U dx −
t∗ˆ

tn

F (U )

∣∣∣
x

in− 1
2

dt

=0

(8)

where 	 is the control volume for fluid I. We denote the velocity of the fluid at the interface as u. Then, we can rewrite 
the flux F (U ) as

F (U ) = u · U + Fs

where Fs = (0, p, u · p)T . We also assume the location of the interface satisfies the following formula:

x(t) = x(tn) + u(t − tn)

Then, we can simplify the integration in (8):

(x(t∗),t∗)ˆ

(x(tn),tn)

−U dx + F (U )dt

=
t∗ˆ

tn

−u · U + F (U )dt

=�t Fs

(9)

We define the numerical flux F̂ s:

F̂ s = (0, p, u · p)T .

The values of p and u in F̂ s can be obtained through solving the Riemann problem R P (U L , U R) at the interface. The left and 
right states U L and U R can be obtained by WENO interpolation using the primitive variables. Then, we have the average 
value for fluid I:

U∗
I = 1

x(t∗) − xin− 1
2

( x(tn)ˆ

x
in− 1

2

Undx − �t( F̂ s − F̂ L
in− 1

2
)
)

(10)

We notice that the mass of each component of the fluid is actually conserved at this stage, since the first component of the 
numerical flux F̂ s is zero. We also take

x(tn)ˆ

x
in− 1

Undx = �xαn
in

Un,I
in

.

2

5
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Fig. 2. Sketch for computing F̂ L .

Similarly, we can obtain the average values for fluid II:

U∗
I I = 1

xin+ 3
2

− x(t∗)

( x
in+ 3

2ˆ

x(tn)

Undx − �t( F̂ L
in+ 3

2
− F̂ s)

)
(11)

Now, we can define the temporary nodal values U∗,t
in

and U∗,t
in+1 according to the interface x(t∗):

1. If x(t∗) ∈ [xin− 1
2
, xin+ 1

2
],

then we define U∗,t
in

= α∗
in

U∗
I + (1 − α∗

in
)U∗

I I and U∗,t
in+1 = U∗

I I , where α∗
in

=
x(t∗)−x

in− 1
2

�x is the volume fraction of fluid I in 
the cell Iin .

2. If x(t∗) ∈ [xin+ 1
2
, xin+ 3

2
],

then we define U∗,t
in

= U∗
I and U∗,t

in+1 = α∗
in+1U∗

I + (1 − α∗
in+1)U∗

I I , where α∗
in+1 =

x(t∗)−x
in+ 1

2
�x is the volume fraction of 

fluid I in the cell Iin+1.

Now, we can compute the flux at the position xin+1/2, see Fig. 2:
From the left part, we have:

U∗,t
in

= Un
in

− �t

�x

(
F̂ L

in+1/2 − F̂ L
in−1/2

)
Then, we get:

F̂ L
in+1/2 = F̂ L

in−1/2 − U∗,t
in

− Un
in

�t
�x

(12)

From the right part, we have:

U∗,t
in+1 = Un

in+1 − �t

�x

(
F̂ L

in+3/2 − F̂ L
in+1/2

)
Then, we get:

F̂ L
in+1/2 = U∗,t

in+1 − Un
in+1

�t
�x

+ F̂ L
in+3/2 (13)

Finally, we take an average of formula (12) and formula (13) to compute the flux F̂ L :

F̂ L
in+1/2 = 1

2

(
F̂ L

in−1/2 − U∗,t
in

− Un
in

�t
�x

)
+ 1

2

(
U∗,t

in+1 − Un
in+1

�t
�x

+ F̂ L
in+3/2

)
(14)

Now, we can define the flux { F̂ n
i+ 1

2
} which will be used to evolve the computational variables:

F̂ n
i+1/2 = F̂ H

i+1/2 for i �= in − 1 & in & in + 1 (15)

and

F̂ n
i+1/2 = F̂ L

i+1/2 + ϕ
(

F̂ H
i+1/2 − F̂ L

i+1/2

)
for i = in − 1, in, in + 1 (16)

where ϕ = min(ϕin−1/2, ϕin+1/2, ϕin+3/2). Here ϕin±1/2, ϕin+3/2 are the discontinuity indicators at xin±1/2 and xin+3/2.
6
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Then, we can advance the computational variables based on the formula (5).
Now, we can define the nodal values {U∗,I

i } and {U∗,I I
i } for fluid I and fluid II at time level t∗ respectively. We assume 

the interface at time level t∗ satisfies x(t∗) ∈ [xi∗−1/2, xi∗+1/2]. Then, we have

• When i < i∗ ,

U∗,I
i = U∗

i (17)

• When i > i∗ ,

U∗,I I
i = U∗

i (18)

• When i = i∗ ,
(1) If α∗

i∗ > 0.5, then the cell Ii∗ is a small cell for fluid II. Therefore, we take

U∗,I I
i∗ = ϕU∗

i∗ + (1 − ϕ)U∗
I I

U∗,I
i∗ = U∗

i∗ − (1 − α∗
i∗)U∗,I I

i∗
α∗

i∗

(19)

where U∗
i∗ comes from formula (5), and U∗

I I is the average value for fluid II which comes from formula (11).
(2) If α∗

i∗ ≤ 0.5, then the cell Ii∗ is a small cell for fluid I. Therefore, we take

U∗,I
i∗ = ϕU∗

i∗ + (1 − ϕ)U∗
I

U∗,I I
i∗ = U∗

i∗ − α∗
i∗ U∗,I

i∗
1 − α∗

i∗

(20)

where U∗
i∗ comes from formula (5), and U∗

I is the average value for fluid I which comes from formula (10).

In the formula (19) and (20), we also take

ϕ = min{ϕin−1/2,ϕin+1/2,ϕin+3/2}.

Remark 1. In formula (19), when the solution is smooth, the formula (5) which is used to compute the nodal value U∗
i∗ is 

high order accurate [25,14]. Therefore, we can maintain high order accuracy if the nodal value U ∗,I
i∗ for fluid I and the nodal 

value U∗,I I
i∗ for fluid II are close to the nodal value U∗

i∗ . When discontinuity appears at the interface, U∗
I I is the average value 

obtained by the formula specifically designed for the interface, so it is more likely to obtain a non-oscillatory solution if the 
nodal value U∗,I I

i∗ is close to U∗
I I . Therefore, we introduce the discontinuity indicator in formula (19) which approaches one 

in the smooth region and tends to zero when discontinuity appears. Similarly, we apply the same idea to the formula (20).

To summarize, we have the following algorithm:

Algorithm 1
Input: U n,I

i , U n,I I
i , φn

i , �t , �x

Output: U∗,I
i , U∗,I I

i , ̂F n
i+1/2, φ∗

i

1: Apply U n,I
i and U n,I I

i to define the computational variables U n
i .

2: Compute the fluxes ̂F H .
3: Update the distance function, and obtain φ∗

i .
4: Merge cells and compute the fluxes ̂F L .
5: Define the flux ̂F n .
6: Update the computational variables U∗

i

7: Define the nodal values U∗,I
i for fluid I, and the nodal values U∗,I I

i for fluid II.

Now, we elaborate on the above ideas and implementation details.
7
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2.2.1. Level set method
We associate the computational domain with the distance function φ, which satisfies the following expressions:

φt + Vn|∇φ| = 0 (21)

where Vn is the normal velocity which can be obtained through solving the Riemann problem at the interface. We define 
the distance function at the half nodes. Then, we have the following formula

dφ

dt
= −(v+

i+ 1
2

√
max ((a+)2, (b−)2) + v−

i+ 1
2

√
max ((a−)2, (b+)2)) (22)

where v+
i+ 1

2
= max(vi+ 1

2
, 0), v−

i+ 1
2

= min(vi+ 1
2
, 0), and vi+ 1

2
is the normal velocity at xi+ 1

2
. The definition of a± and b± is 

similar. We take a = φ−
x and b = φ+

x , where φ±
x can be obtained by the WENO method.

2.2.2. Characteristic projection 1D
The WENO method is performed in the local characteristic fields. In systems of nonlinear equations, oscillations can 

develop in component-wise interpolation [24,21]. In this paper, we will use the local characteristic field decomposition. 
Because we perform the interpolation using primitive variables rather than conserved variables, we will use the left and 
right eigenvectors corresponding to the primitive variables for the characteristic projections. Considering the following quasi-
linear form of the Euler equation:

Wt + A(W )W x = 0

where

W =
⎛⎝ ρ

u
p

⎞⎠ A(W ) =
⎛⎝ u ρ 0

0 u 1/ρ

0 ρc2 u

⎞⎠
Here c refers to the sound speed. We then give the left and right eigenvector matrices of matrix A(W ) as:

R(W ) =
⎛⎝ 1 1 1

− c
ρ 0 c

ρ

c2 0 c2

⎞⎠ L(W ) =
⎛⎜⎝ 0 − ρ

2c
1

2c2

1 0 − 1
c2

0 ρ
2c

1
2c2

⎞⎟⎠
Firstly, we use the left eigenvector matrices L(W ) to project the variables into the respective characteristic fields. Secondly, 
we interpolate the values in each characteristic fields. Finally, we use the right eigenvector matrices R(W ) to project the 
values back into the physical space [24]. Although it is more expensive computationally, more satisfactory results can be 
obtained.

2.2.3. WENO method
The WENO method is one of the important parts in our schemes. We need two different types of WENO method: one 

is for function values, and the other one is for derivative values. The detailed steps to obtain derivative values can be seen 
in [12]. Here we describe the procedure to obtain the value w at x ∈ [xi− 1

2
, xi+ 1

2
] in fluid I using the WENO interpolation, 

where w denotes the interpolation variable.
1. Based on the small stencils Sr = {xi−2+r, xi−1+r, xi+r}, r = 0, 1, 2 and a big stencil S = {xi−2, xi−1, xi, xi+1, xi+2}, we 

construct polynomials pr(x), r = 0, 1, 2 and q(x). We have:

p0(x) = (x − xi−1)(x − xi)

2�x2
wi−2 − (x − xi−2)(x − xi)

�x2
wi−1 + (x − xi−2)(x − xi−1)

2�x2
wi

p1(x) = (x − xi)(x − xi+1)

2�x2
wi−1 − (x − xi−1)(x − xi+1)

�x2
wi + (x − xi−1)(x − xi)

2�x2
wi+1

p2(x) = (x − xi+1)(x − xi+2)

2�x2
wi − (x − xi)(x − xi+2)

�x2
wi+1 + (x − xi)(x − xi+1)

2�x2
wi+2

q(x) = (x − xi−1)(x − xi)(x − xi+1)(x − xi+2)

24�x4
wi−2

− (x − xi−2)(x − xi)(x − xi+1)(x − xi+2)

6�x4
wi−1

+ (x − xi−2)(x − xi−1)(x − xi+1)(x − xi+2)

4�x4
wi

− (x − xi−2)(x − xi−1)(x − xi)(x − xi+2)

4
wi+1
6�x

8
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+ (x − xi−2)(x − xi−1)(x − xi)(x − xi+1)

24�x4
wi+2

The same as before, we use the position of the interface to decide the nodal values used in the interpolation. If we are 
interpolating the value w in fluid I, then we will use the nodal values of fluid I in the interpolation if they are defined, 
otherwise we use the nodal values of fluid II. Likewise, if we are calculating the value w in fluid II, then we will use nodal 
values of fluid II in the interpolation if they are defined, otherwise we use the nodal values of fluid I.

2. We find the linear weights, denoted as γ0, γ1, γ2, such that

q(x) =
2∑

k=0

γk pk(x)

for all possible nodal values wi . Then, we can obtain:

γ0 = (x − xi+1)(x − xi+2)

12�x2
, γ2 = (x − xi−2)(x − xi−1)

12�x2
, γ1 = 1 − γ0 − γ2.

3. We compute the smoothness indicator, which measures the smoothness of the function. We use the same recipe as in 
[13]:

βr =
2∑

k=1

xi+1/2ˆ

xi−1/2

�x2k−1
( ∂k

∂xk
(pr(x))

)2
dx, r = 0,1,2

The expression can be written out explicitly:

β0 = 13

12
(wi−2 − 2wi−1 + wi)

2 + 1

4
(wi−2 − 4wi−1 + 3wi)

2

β1 = 13

12
(wi−1 − 2wi + wi+1)

2 + 1

4
(wi−1 − wi+1)

2

β2 = 13

12
(wi − 2wi+1 + wi+2)

2 + 1

4
(3wi − 4wi+1 + wi+2)

2

(23)

4. Based on the smoothness indicator, we can compute the nonlinear weights:

ωr = ωr∑
k ωk

, ωk = γk

(βk + ε)2
(24)

where ε is a small number to avoid the denominator to become zero. Here, we set ε = 10−6. The final WENO expression is 
given by:

w =
2∑

k=0

ωk pk(x)

2.2.4. Discontinuity indicator
The idea of the discontinuity indicator ϕi+ 1

2
comes from [34]. It can maintain high order accuracy in the smooth region 

and can achieve high resolution when discontinuities appear. In practice, we take density and pressure as the indicator 
variables and choose the smaller one. Before discussing the detailed steps to construct the discontinuity indicator, we would 
like to analyze the accuracy requirement of the indicator in the smooth case first.

We use the discontinuity indicator in three different places: (1) We use the indicator to compute the fluxes F̂ H , see 
formula (6); (2) We use the indicator to make a convex combination of the fluxes F̂ H and the fluxes F̂ L , see formula (16); 
(3) We use the indicator to update the nodal values for fluid I and fluid II, see formula (19). Then, we will analyze the 
accuracy requirement respectively. We always assume the values at time level tn are accurate.

Proposition 2.1. The numerical flux (6) satisfies

F̂ i+ 1
2

− F̂ i− 1
2

�x
= F (U )x

∣∣∣
xi

+O(�x5) (25)

if the discontinuity indicator satisfies:

ϕi± 1
2

= 1 +O(�x3)

where the F (U ) refers to the exact flux.
9
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Proof. As we know, if we define the flux ̂̂F as follows:̂̂F i+ 1
2

= F (U )

∣∣∣
x

i+ 1
2

− 1

24
�x2 F (U )xx

∣∣∣
x

i+ 1
2

+ 7

5760
�x4 F (U )xxxx

∣∣∣
x

i+ 1
2

where F (U ) is the exact flux, then we havê̂F i+ 1
2

− ̂̂F i− 1
2

�x
= F (U )x

∣∣∣
xi

+O(�x5)

Therefore, in order to prove the equation (25), it is sufficient to prove the relation:

F̂ i+ 1
2

= ̂̂F i+ 1
2

+O(�x5) (26)

if the numerical flux is Lipschitz continuous with respect to its arguments.
According to (6), we have:

F̂ i+ 1
2

= F̂ (U−
i+ 1

2
, U+

i+ 1
2
) − ϕi+ 1

2

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2

)

The values U±
i+ 1

2
are obtained from the WENO interpolation and we have

U±
i+ 1

2
= U (xi+ 1

2
) +O(�x5).

Based on the consistency and Lipschitz continuity of the numerical flux, we have:

F̂ (U−
i+ 1

2
, U+

i+ 1
2
) = F (U )

∣∣∣
x

i+ 1
2

+O(�x5)

In addition, we use central difference methods in a component by component fashion to approximate the derivatives terms, 
see equations (2) and (3). Therefore, we have:

Fxx

∣∣∣
x

i+ 1
2

= F (U )xx

∣∣∣
x

i+ 1
2

+O(�x4)

Fxxxx

∣∣∣
x

i+ 1
2

= F (U )xxxx

∣∣∣
x

i+ 1
2

+O(�x2)

If we have

ϕi+ 1
2

= 1 +O(�x3)

then we can obtain

F̂ i+ 1
2

= F̂ (U−, U+) − ϕi+ 1
2

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2

)

= F (U )

∣∣∣
x

i+ 1
2

− 1

24
�x2 F (U )xx

∣∣∣
x

i+ 1
2

+ 7

5760
�x4 F (U )xxxx

∣∣∣
x

i+ 1
2

+O(�x5)

� ̂̂F i+ 1
2

+O(�x5) �
Proposition 2.2. The convex combination of F̂ H and F̂ L (16) satisfies formula (26), if the parameter ϕ = 1 + O(�x5) and �t =
O(�xr), r ≤ 2.

The detailed proof is given in Appendix A.

Proposition 2.3. In formulas (19) and (20), if ϕ = 1 +O(�x4), then we have

U∗,I
i∗ = U∗

i∗ +O(�x5), U∗,I I
i∗ = U∗

i∗ +O(�x5)

where i∗ is the subscript of the cell where the interface is located at time level t∗.
10
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Proof. We take i∗ = in + 1 as example. The proof for i∗ = in or i∗ = in − 1 is similar.
Due to our CFL number, we have α∗

in+1 ≤ 0.5. So, we can obtain

U∗
in+1 = U (xin+1, tn) − �t

�x

(
F̂ in+3/2 − F̂ in+1/2

)
=U (xin+1, tn) +O(�t)

According to (43). We have

U∗
I = U (xin+1, tn) +O(�x) = U∗

in+1 +O(�x)

Then, we obtain

U∗,I
in+1 − U∗

in+1 = ϕU∗
in+1 + (1 − ϕ)U∗

I − U∗
in+1

=(1 − ϕ)O(�x) = O(�x5)

Therefore, we should have

ϕ = 1 +O(�x4) �
Based on the previous analysis, in order to maintain the accuracy, the discontinuity indicator should satisfy:

ϕi+ 1
2

= 1 +O(�x5) & �t = O(�xr), r ≤ 2

Now, we describe the detailed steps to calculate the discontinuity indicator satisfying ϕi+ 1
2

= 1 + O(�x5). Later, in the 
numerical tests section, we will further require the time stepping to satisfy �t =O(�xr), r ≤ 2. For simplicity, we use w as 
the indicator variable.

Step 1. We define a big stencil S0 = {xi−2, xi−1, xi, xi+1, xi+2, xi+3}, and four small stencils S1 = {xi−2, xi−1, xi}, S2 =
{xi−1, xi, xi+1}, S3 = {xi, xi+1, xi+2}, S4 = {xi+1, xi+2, xi+3}. Then we need to construct polynomials p0(x), p1(x), p2(x), p3(x), 
p4(x), such that:

p0(xi+l) = wi+l l = −2, · · · ,3

p1(xi+l) = wi+l l = −2, · · · ,0

p2(xi+l) = wi+l l = −1, · · · ,1

p3(xi+l) = wi+l l = 0, · · · ,2

p4(xi+l) = wi+l l = 1, · · · ,3

Step 2. We use the same recipe as in [13] to compute the smoothness indicators for each polynomial on cell [xi , xi+1]:

βr =
5∑

k=1

xi+1ˆ

xi

�x2k−1
( ∂k

∂xk
(pr(x))

)2
dx, r = 0,1,2,3,4

We have the following expressions:

β0 = (−wi + wi+1)
2 + 1421461

2275

(
1

48
wi−2 − 1

16
wi−1 + 1

24
wi + 1

24
wi+1 − 1

16
wi+2 + 1

48
wi+3

)2

+ 13

3

(
− 131

3120
wi−2 + 391

1040
wi−1 − 521

1560
wi − 521

1560
wi+1 + 391

1040
wi+2 − 131

3120
wi+3

)2

+ 781

20

(
617

43736
wi−2 − 31123

131208
wi−1 + 14019

21868
wi − 14019

21868
wi+1 + 31123

131208
wi+2 − 617

43736
wi+3

)2

+ 21520059541

1377684

(
− 1

120
wi−2 + 1

24
wi−1 − 1

12
wi + 1

12
wi+1 − 1

24
wi+2 + 1

120
wi+3

)2

β1 = (wi−2 − 3wi−1 + 2wi)
2 + 13

3

(
1

2
wi−2 − wi−1 + 1

2
wi

)2

β2 = (wi+1 − wi)
2 + 13

(
1

wi+1 − wi + 1
wi−1

)2
3 2 2

11
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β3 = (wi+1 − wi)
2 + 13

3

(
1

2
wi+2 − wi+1 + 1

2
wi

)2

β4 = (−2wi+1 + 3wi+2 − wi+3)
2 + 13

3

(
1

2
wi+1 − wi+2 + 1

2
wi+3

)2

Step 3. Similar to [35], we define the parameter τ :

τ = (β0 − β1)
2 + (β0 − β2)

2 + (β0 − β3)
2 + (β0 − β4)

2

4

and the parameter β:

β =
τ

β1+ε + τ
β2+ε + τ

β3+ε + τ
β4+ε

4

Then, we can construct the discontinuity indicator ϕ:

ϕi+ 1
2

=
( 1

β + 1

)2

It has the following properties:

• 0 ≤ ϕi+ 1
2

≤ 1;

• ϕi+ 1
2

= 1 +O(�x6) in smooth areas;

• ϕi+ 1
2

is close to 0 near discontinuities.

The detailed proof of these properties is given in Appendix B.

2.2.5. Time discretization
In practice, we will use the third order TVD Runge-Kutta method to advance the nodal values:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U(1) = Un + �tL(Un)

U(2) = Un + 1

4
�t

(
L

(
Un) +L

(
U(1)

))
Un+1 = Un + 1

6
�t

(
L

(
Un) + 4L

(
U(2)

)
+L

(
U(1)

)) (27)

In fact, we have only described the first step of the third order Runge-Kutta method (27). As to the second and third 
steps, we will use the same idea used in the first step. Therefore, for each step, we need to construct the fluxes F̂ H and 
the fluxes F̂ L . Take the second step as an example. For the fluxes F̂ H , they can be constructed by combining fluxes from 
time levels tn and t(1) together according to equation (27). For the fluxes F̂ L , we need to calculate the fluxes F̂ L at those 
positions where they have been calculated in the time levels tn and t(1) . At this time, we can also obtain the corresponding 
interface stencil. For those F̂ L located inside the interface stencil, we can use the conservation law to obtain the fluxes; for 
those F̂ L located outside the interface stencil, we can follow the equation (6) to compute them. Then, we can construct the 
fluxes, advance the computational variables and finally define the new nodal values for fluid I and fluid II. Similar method 
can be applied to calculate the third step.

To summarize, we have the following general algorithm:

Algorithm 2
Input: U n,I

i , U n,I I
i , φn

i , φ∗
i , ̂F H

i+1/2, �t , �x

Output: U∗,I
i , U∗,I I

i

1: Apply U n,I
i and U n,I I

i to define the computational variables U n
i .

2: Based on the equations (6)-(14), compute the fluxes ̂F L .
3: Define the flux ̂F n .
4: Update the computational variables U∗

i .

5: Define the nodal values U∗,I
i for fluid I and nodal values U∗,I I

i for fluid II based on the equations (19)-(20)-(17)-(18).

2.2.6. Flowchart 1D
Step 1. According to Algorithm 1, input Un,I

i , Un,I I
i , φn

i , �t , �x, output U (1),I
i , U (1),I I

i , F̂ n
i+1/2, φ(1)

i . Up to now, we have 
finished the first step of the third order TVD Runge-Kutta method (27).

Step 2. According to Algorithm 1, input U (1),I , U (1),I I , φ(1) , �t , �x, output Ũ (2),I , Ũ (2),I I , F̂ (1) , φ̃(2) .
i i i i i i+1/2 i

12
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We construct F̂ H for the second step of the third order TVD Runge-Kutta method (27):

F̂ H
i+ 1

2
= 1

4

(
F̂ n

i+ 1
2

+ F̂ (1)

i+ 1
2

)
,

and the distance function φ(2) at the time level t(2) = tn + �t/2:

φ
(2)
i = 3

4
φn

i + 1

4
φ̃

(2)
i .

Then, according to Algorithm 2, input Un,I
i , Un,I I

i , φn
i , φ(2)

i , F̂ H
i+1/2, �t/2, �x, output U (2),I

i , U (2),I I
i . Up to now, we have 

finished the second step of the third order TVD Runge-Kutta method (27).
Step 3. According to Algorithm 1, input U (2),I

i , U (2),I I
i , φ(2)

i , �t , �x, output Ũ (3),I
i , Ũ (3),I I

i , F̂ (2)
i+1/2, φ̃(3)

i .

We construct F̂ H for the third step of the third order TVD Runge-Kutta method (27):

F̂ H
i+ 1

2
= 1

6

(
F̂ n

i+ 1
2

+ 4 F̂ (2)

i+ 1
2

+ F̂ (1)

i+ 1
2

)
,

and the distance function φn+1 at the time level tn+1 = tn + �t:

φn+1
i = 1

3
φn

i + 2

3
φ̃

(3)
i .

Then, according to Algorithm 2, input Un,I
i , Un,I I

i , φn
i , φn+1

i , F̂ H
i+1/2, �t , �x, output Un+1,I

i , Un+1,I I
i . Up to now, we have 

finished the third step of the third order TVD Runge-Kutta method (27).

2.3. Conservation

In summary, our method can be divided into three steps:
1. We use the nodal values for fluid I and fluid II at time level tn to construct the nodal values for the computational 

variables.
2. Then, we update the nodal values for the computational variables:

Un+1
i = Un

i − �t

�x

(
F̂ i+1/2 − F̂ i−1/2

)
where

F̂ i+1/2 = F̂ H
i+1/2 for i �= in − 1 & in & in + 1

and

F̂ i+1/2 = F̂ L
i+1/2 + ϕ

(
F̂ H

i+1/2 − F̂ L
i+1/2

)
for i = in − 1, in, in + 1

Here, we take F̂ H
i+1/2 = 1

6

(
F̂ n

i+ 1
2

+ 4 F̂ (2)

i+ 1
2

+ F̂ (1)

i+ 1
2

)
and ϕ = min(ϕin−1/2, ϕin+1/2, ϕin+3/2).

3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II at time level tn+1 .
We can see that the construction and redistribution in the first step and the third step do not violate the conservation 

law. As to the second step, we use the conservative scheme to update the values of the computational variables. Therefore, 
our method is conservative.

3. Two-dimensional numerical schemes

The two-dimensional system for the compressible fluid can be written as follows:

Ut + F (U )x + G(U )y = 0, (28)

where U = (ρ, ρu, ρv, E)T , F (U ) = (ρu, ρu2 + p, ρuv, u(E + p))T and G(U ) = (ρv, ρuv, ρv2 + p, v(E + p))T . Here (u, v)

is the velocity vector, and the definition of ρ , E and p is the same as before. The equation of state for 2D is as follows:

γ -law : E = 1
ρ(u2 + v2) + p

, Tait EOS : E = 1
ρ(u2 + v2) + p + γ p
2 γ − 1 2 γ − 1

13
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3.1. Description of the finite difference scheme in 2D

Now, we describe the high order finite difference scheme in the two dimensional case. In our scheme, we again take the 
CFL number as 0.5.

For simplicity, the computational domain is equally divided: a = x0 < x1 < · · · < xNx = b, and c = y0 < y1 < · · · < yN y = d. 
We denote the cell Ii, j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
] as the corresponding cell of the node (xi, y j).

We denote the nodal values for fluid I as {Un,I
i, j }, and nodal values for fluid II as {Un,I I

i, j }. Now, we can define the compu-
tational variable {Un

i, j}:

• When cell Ii, j is fully covered by fluid I at time level tn , we take Un
i, j = Un,I

i, j

• When cell Ii, j is fully covered by fluid II at time level tn , we take Un
i, j = Un,I I

i, j

• When cell Ii, j is a mixed cell at time level tn: Un
i, j = αi, j U

n,I
i, j + (1 − αi, j)Un,I I

i, j

where αi, j is the volume fraction of the fluid I in the cell Ii, j .
Then, we can update the computational variable {Un

i, j} to next time level t∗

U∗
i, j = Un

i, j − �t

�x
( F̂ n

i+ 1
2 , j

− F̂ n
i− 1

2 , j
) − �t

�y
(Ĝn

i, j+ 1
2

− Ĝn
i, j− 1

2
) (29)

We also need to build the flux F̂ H and the flux F̂ L in order to construct our numerical flux. For the flux F̂ H , similar to the 
one dimensional case, we have

F̂ H
i+ 1

2 , j
= F̂ (U−

i+ 1
2 , j

, U+
i+ 1

2 , j
) − ϕi+ 1

2 , j

(
1

24
�x2 Fxx

∣∣∣
x

i+ 1
2
,y j

− 7

5760
�x4 Fxxxx

∣∣∣
x

i+ 1
2
,y j

)
(30)

Similarly, we can obtain the fluxes Ĝ H
i, j+ 1

2
.

Next, we will describe the way to construct the low order flux F̂ L .
Similar to the one dimensional case, we evolve the distance function based on the velocity obtained by solving the 

Riemann problem at the interface, and determine the interface position at the new time level. We will also use the WENO 
interpolation at the interface. The value will be obtained by calculating the WENO interpolation in the x and y directions 
and taking the average of them. For simplicity, we regard the interface in the mixed cell as a straight line, and choose the 
center of the line as the interpolation position in the x and y directions.

When the cell Iin, jn contains the interface, it is not suitable to be computed for a full time step. Therefore it is suggested 
that the cell Iin, jn should be merged with its neighboring cells to generate an interface stencil. The detailed steps will be 
introduced in subsection 3.1.2. Now, we denote the r-th interface stencil at time level tn as A(r)(tn). The interface �(tn)

divide the interface stencil into two parts: A(r)
I (t) for fluid I and A(r)

I I (t) for fluid II. Now, we begin to deduce the formula 
for A(r)

I (t).
Similar to the ALE method, we integrate the equation (28) in space and time, then we have

t∗ˆ

tn

dt
¨

A(r)
I (t)

(
Ut + F (U )x + G(U )y

)
dxdy = 0 (31)

According to the Gauss theorem, we obtain

t∗ˆ

tn

dt
¨

A(r)
I (t)

Utdxdy +
t∗ˆ

tn

dt
˛

∂ A(r)
I (t)

(
F (U ) · nx + G(U ) · ny

)
ds = 0 (32)

Then, we use the Reynold’s transport theorem:

d

dt

¨

A(r)
I (t)

U dxdy =
¨

A(r)
I (t)

Utdxdy +
˛

∂ A(r)
I (t)

U (
−→
V · −→n )ds (33)

where 
−→
V is the normal velocity along the interface. Combining (32) and (33), we get the following equation:
14
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Fig. 3. Example for the interface stencil. Line: the interface stencil; Dotted line: cells within the interface stencil. Red: fluid I.

t∗ˆ

tn

d

dt

¨

A(r)
I (t)

U dxdydt +
t∗ˆ

tn

dt
˛

∂ A(r)
I (t)

(F (U ) · nx + G(U ) · ny) − U (
−→
V · −→n )ds = 0 (34)

It can be represented by two parts: one consists of the four segments of the interface zone being cut by the interface; 
the other one consists of the segment of the interface inside the interface zone. Hence, we can rewrite the equation (34):

U∗
I,A(r)(tn)

= 1∑
Ii, j∈A(r)

I (tn)

α∗
i, j

( ∑
Ii, j∈A(r)

I (tn)

αn
i, j U

n
I −

∑
Ii, j∈A(r)(tn)

�n
i, j�t

�x�y
F̂si, j

− �t

�x

j2∑
j= j1

[Si2( j)+ 1
2 , j F̂ L

i2( j)+ 1
2 , j

− Si1( j)− 1
2 , j F̂ L

i1( j)− 1
2 , j

]

− �t

�y

i2∑
i=i1

[Si, j2(i)+ 1
2

Ĝ L
i, j2(i)+ 1

2
− Si, j1(i)− 1

2
Ĝ L

i, j1(i)− 1
2
]
)

(35)

Here, we choose i1, i2, j1, j2 such that the set {Ii, j : i1 ≤ i ≤ i2, j1 ≤ j ≤ j2} is the smallest stencil to cover A(r)(tn). i2( j) and 
i1( j) represent the maximum and minimum indices in the x direction when j is given. Likewise, j2(i) and j1(i) represent 
the maximum and minimum indices in the y direction when i is given. See Fig. 3 for an example. Now, {Ii, j : in ≤ i ≤
in + 1, jn ≤ j ≤ jn + 1} covers the interface stencil. When j = jn + 1, there is only one cell Iin, jn+1 inside the interface 
stencil. Hence we know that the maximum index in the x direction is i2( j) = in , and the minimum index is also i1( j) = in . 
When j = jn , both the cell Iin, jn and the cell Iin+1, jn are inside the interface stencil. Hence the maximum index in the 
x direction is i2( j) = in + 1, and the minimum index is i1( j) = in , and so on. Similar approach can be used to determine 
the maximum and minimum indices in the stencil in the y direction when i is given. αn

i, j , α
∗
i, j , Si± 1

2 , j and Si, j± 1
2

are 
the fraction volumes of fluid I, see section 3.1.1 for detailed steps to determine them. Un

I,A(r)(tn)
is the cell average in the 

interface stencil for fluid I at time level tn:

Un
I,A(r)(tn)

= 1

|A(r)
I (tn)|

¨

A(r)
I (tn)

U dxdy

Here, we assign Un
I,A(r)(tn)

to the nodes in fluid II in the interface stencil A(r)(tn), and then compute the numerical fluxes F̂ L

and Ĝ L . �n
i, j is the length of the interface inside the cell Ii, j . F̂ s i, j is the interface flux:

F̂ s = (0, p · nx, p · ny, p(u · nx + v · ny))
T (36)

where (nx, ny) is the unit normal at the interface, and p and (u, v) are the pressure and velocity which can be obtained by 
solving the Riemann problem at the interface.

Similarly, we can also obtain the cell average U∗
I I,A(r)(tn)

for fluid II in the stencil A(r)(tn). Then, we can define the 
temporary nodal value using U∗

I,A(r)(tn)
and U∗

I I,A(r)(tn)
:

U∗,t = α∗ U∗
(r) n + (1 − α∗ )U∗

(r) n (i, j) ∈ A(r)(tn)
i, j i, j I,A (t ) i, j I I,A (t )

15
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where α∗
i, j is the fraction volume of fluid I in the cell Ii, j at time level t∗ . Then, similar to the one dimensional case, we 

can figure out the fluxes inside the interface stencil, for example, F̂ L
in+1/2, jn

and Ĝ L
in, jn+1/2 in Fig. 3.

Now, we can determine the flux. Regarding the flux F̂ n , if (xi+1/2, y j) is not in any interface stencil, we take

F̂ n
i+1/2, j = F̂ H

i+1/2, j

Otherwise, we have

F̂ n
i+1/2, j = F̂ L

i+1/2, j + ϕ
(

F̂ H
i+1/2, j − F̂ L

i+1/2, j

)
where ϕ = min

{
ϕi±1/2, j, ϕi, j±1/2

∣∣∣Ii, j ∈ A(r)(tn), r = 1, 2, 3, · · ·
}

. Similar approach can be used to calculate Ĝn .

Next, we can evolve the computational variables based on equation (29). Now, we can determine the updated nodal 
values {U∗,I

i, j } and {U∗,I I
i, j }:

• When cell Ii, j is fully covered by fluid I at time level t∗ , we take

U∗,I
i, j = U∗

i, j (37)

• When cell Ii, j is fully covered by fluid II at time level t∗ , we take

U∗,I I
i, j = U∗

i, j (38)

• When cell Ii, j is a mixed cell at time level t∗:
(1) If α∗

i, j > 0.5, then it is a small cell for fluid II. We choose:

U∗,I I
i, j = ϕU∗

i, j + (1 − ϕ)U∗
I I,A(r)(tn)

U∗,I
i, j = U∗

i, j − (1 − α∗
i, j)U∗,I I

i, j

α∗
i, j

(39)

where U∗
i, j is obtained by equation (29). U∗

I I,A(r)(tn)
is the cell average value for fluid II in the interface stencil 

A(r)(tn) at time level t∗ .
(2) If α∗

i, j ≤ 0.5, then it is a small cell for fluid I. We choose:

U∗,I
i, j = ϕU∗

i, j + (1 − ϕ)U∗
I,A(r)(tn)

U∗,I I
i, j = U∗

i, j − α∗
i, j U

∗,I
i, j

1 − α∗
i, j

(40)

where U∗
i, j is obtained by equation (29), U∗

I,A(r)(tn)
is the cell average value for fluid I in the interface stencil A(r)(tn)

at time level t∗ .

Similarly, we take ϕ = min
{
ϕi±1/2, j, ϕi, j±1/2

∣∣∣Ii, j ∈ A(r)(tn), r = 1, 2, 3, · · ·
}

.

Then, we can perform our two-dimensional scheme following the flowchart similar to the one dimensional one. To save 
space, we omit the detailed steps here. It should be noted that in two dimensional case we will perform the reinitialization 
routine every 100 steps to avoid the distance function φ from becoming too flat or too steep.

In the remainder of this section, we elaborate on describing the implementations in detail, including the way to generate 
the interface stencils, the way to calculate the volume fraction, the way to implement the level set method, and so on.

3.1.1. Volume fraction
The volume fraction is computed based on the distance function φ. It measures the ratio of φ < 0 to the whole cell. We 

treat the interface as a straight line in the cell for simplicity. In general, we have many cases which need to be considered. 
By rotation, they can be divided into five generic cases:

1. φi− 1
2 , j+ 1

2
> 0, φi− 1

2 , j− 1
2

> 0, φi+ 1
2 , j− 1

2
> 0, φi+ 1

2 , j+ 1
2

> 0

In this case, we take αi, j = 0.
2. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
> 0, φi+ 1

2 , j− 1
2

> 0, φi+ 1
2 , j+ 1

2
> 0

See Fig. 4(a). According to the proportion, we have

a =
∣∣∣ φi− 1

2 , j+ 1
2

φ 1 1 − φ 1 1

∣∣∣, b =
∣∣∣ φi− 1

2 , j+ 1
2

φ 1 1 − φ 1 1

∣∣∣

i− 2 , j− 2 i− 2 , j+ 2 i+ 2 , j+ 2 i− 2 , j+ 2
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Fig. 4. Red: The part for φ < 0; Line: interface.

Then, based on the triangle area formula, we have:

αi, j = 1

2
ab = 1

2

∣∣∣ φi− 1
2 , j+ 1

2

φi− 1
2 , j− 1

2
− φi− 1

2 , j+ 1
2

∣∣∣∣∣∣ φi− 1
2 , j+ 1

2

φi+ 1
2 , j+ 1

2
− φi− 1

2 , j+ 1
2

∣∣∣
3. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
< 0, φi+ 1

2 , j− 1
2

> 0, φi+ 1
2 , j+ 1

2
> 0

See Fig. 4(b). Based on the trapezoidal area formula, we have

αi, j = 1

2

(∣∣∣ φi− 1
2 , j− 1

2

φi− 1
2 , j− 1

2
− φi+ 1

2 , j− 1
2

∣∣∣ +
∣∣∣ φi− 1

2 , j+ 1
2

φi+ 1
2 , j+ 1

2
− φi− 1

2 , j+ 1
2

∣∣∣)
4. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
< 0, φi+ 1

2 , j− 1
2

> 0, φi+ 1
2 , j+ 1

2
< 0

See Fig. 4(c). Based on the triangle area formula, we have:

αi, j = 1 − 1

2

∣∣∣ φi+ 1
2 , j− 1

2

φi− 1
2 , j− 1

2
− φi+ 1

2 , j− 1
2

∣∣∣∣∣∣ φi+ 1
2 , j− 1

2

φi+ 1
2 , j+ 1

2
− φi+ 1

2 , j− 1
2

∣∣∣
5. φi− 1

2 , j+ 1
2

< 0, φi− 1
2 , j− 1

2
< 0, φi+ 1

2 , j− 1
2

< 0, φi+ 1
2 , j+ 1

2
< 0

In this case, we take αi, j = 1.

3.1.2. Mixing procedure
In this subsection, we will introduce a way to generate interface stencil. It is based on the normal vector of the interface 

which can change dynamically with the interface evolution. Now, we will introduce the procedure in detail.
1. Obtain the normal vector
We need to obtain the normal vector at the corners of the cell. We can use the following equation to compute the 

normal vector at the node (xi+ 1
2
, y j+ 1

2
):

−→n i+ 1
2 , j+ 1

2
=

∇φ∗
i+ 1

2 , j+ 1
2

|∇φ∗
i+ 1

2 , j+ 1
2
|

where ∇φ∗
i+ 1

2 , j+ 1
2

can be obtained using the distance function at time level t∗ by the WENO method.

Then, for any cell Ii, j which is mixed at time level tn or t∗ , we can compute the sum of the x and y components of the 
normal vector at the corners of the cell:

Snx
i, j =

∑
|φ∗

x i± 1
2 , j± 1

2
|, Sny

i, j =
∑

|φ∗
y i± 1

2 , j± 1
2
|

We also need to compute the fraction volume of the fluid I in the cell, denoted as α∗
i, j .

2. Generate the interface stencils [15]

• If α∗
i, j > 0.5

♥ If 
∣∣∣|Snx

i, j| − |Sny
i, j|

∣∣∣ < 10−6,

♦ If α∗
i−1, j < α∗

i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j .
♥ Otherwise,

♦ If |Snx
i, j| > |Sny

i, j|,
* If α∗

i−1, j < α∗
i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j . 

See cell C in Fig. 5.
17
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Fig. 5. Formation of the interface stencils. Pink: the interface stencil. Curve: the interface. Fluid I: φ < 0. Fluid II: φ > 0.

♦ Otherwise,
* If α∗

i, j+1 < α∗
i, j−1, cell Ii, j will merge with the cell Ii, j+1. Otherwise, cell Ii, j will merge with the cell Ii, j−1. 

See cell B in Fig. 5.
• Otherwise,

♥ If 
∣∣∣|Snx

i, j| − |Sny
i, j|

∣∣∣ < 10−6,

♦ If α∗
i−1, j > α∗

i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j .
♥ Otherwise,

♦ If |Snx
i, j| > |Sny

i, j|,
* If α∗

i−1, j > α∗
i+1, j , cell Ii, j will merge with the cell Ii−1, j . Otherwise, cell Ii, j will merge with the cell Ii+1, j . 

See cell D in Fig. 5.
♦ Otherwise,

* If α∗
i, j+1 > α∗

i, j−1, cell Ii, j will merge with the cell Ii, j+1. Otherwise, cell Ii, j will merge with the cell Ii, j−1. 
See cell A in Fig. 5.

Then, we can obtain the interface stencils.

3.1.3. Characteristic projection in 2D
Considering the following quasi-linear form of the Euler equation:

Wt + A(W )W x + B(W )W y = 0

where

W =

⎛⎜⎜⎝
ρ
u
v
p

⎞⎟⎟⎠ A(W ) =

⎛⎜⎜⎝
u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 ρc2 0 u

⎞⎟⎟⎠ B(W ) =

⎛⎜⎜⎝
v 0 ρ 0
0 v 0 0
0 0 v 1/ρ

0 0 ρc2 v

⎞⎟⎟⎠
We then give the left and right eigenvector matrices of matrix A(W ) as:

Rx(W ) =

⎛⎜⎜⎝
1 1 0 1

− c
ρ 0 0 c

ρ

0 0 1 0
c2 0 0 c2

⎞⎟⎟⎠ Lx(W ) =

⎛⎜⎜⎝
0 − ρ

2c 0 1
2c2

1 0 0 − 1
c2

0 0 1 0
0 ρ

2c 0 1
2c2

⎞⎟⎟⎠
and we also give the left and right eigenvector matrices of matrix B(W ) as:
18
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R y(W ) =

⎛⎜⎜⎝
1 1 0 1
0 0 1 0

− c
ρ 0 0 c

ρ

c2 0 0 c2

⎞⎟⎟⎠ L y(W ) =

⎛⎜⎜⎝
0 0 − ρ

2c
1

2c2

1 0 0 − 1
c2

0 1 0 0
0 0 ρ

2c
1

2c2

⎞⎟⎟⎠
Here, c refers to sound speed. It is advised that, when the fluxes are computed along a cell boundary, a one dimensional 
local characteristic decomposition normal to the boundary is performed. The detailed steps can be seen in section 2.2.2.

3.1.4. Level set method
In the two dimensional case, the distance function satisfies the following expression:

φt + Vn|∇φ| = 0 (41)

where φ is the distance function defined at the half nodes. Vn is the normal velocity which can be obtained by solving 
the Riemann problem in the mixed cells, assigning the values to the corners of the cells, and extrapolating the values by 
extending functions [19]:

qτ + sign(φ)
∇φ

|∇φ|∇q = 0

Here, q is the extended variable. Then, we can obtain the semi-discrete scheme of equation (41):

dφ

dt
= −(v+

i+ 1
2 , j+ 1

2

√
max ((a+)2, (b−)2) + max ((c+)2, (d−)2)

+v−
i+ 1

2 , j+ 1
2

√
max ((a−)2, (b+)2) + max ((c−)2, (d+)2))

(42)

where vi+ 1
2 , j+ 1

2
is the normal velocity at the half node (xi+ 1

2
, y j+ 1

2
), x+ = max(x, 0), x− = min(x, 0). Here a, b, c, d refer 

to φ−
x , φ+

x , φ−
y , φ+

y respectively. The values of φ±
x and φ±

y can be obtained by the WENO method. The third order TVD 
Runge-Kutta method will be used to improve the temporal accuracy for the scheme (42).

3.1.5. Reinitialization
In order to ensure the φ does not become too flat or too steep along the interface, we need to use the reinitialization 

procedure [30]:

φτ + sign(φ0)(|∇φ| − 1) = 0

where φ0 is obtained from the level set method. Then, we have:

dφ

dτ
= −

(
s+

i+ 1
2 , j+ 1

2
(
√

max ((a+)2, (b−)2) + max ((c+)2, (d−)2) − 1)

+s−
i+ 1

2 , j+ 1
2
(
√

max ((a−)2, (b+)2) + max ((c−)2, (d+)2) − 1)
)

Here, si+ 1
2 , j+ 1

2
is a sign function valued at (xi+ 1

2
, y j+ 1

2
). x+ = max(x, 0), x− = min(x, 0). The definition of a± , b± , c± , 

d± is the same as before. In practice, third order TVD Runge-Kutta method will be used to discretize the pseudo-time 
derivative. The stopping criterion for this iteration is e1 < �τ�x�y or k ≤ 20, where the e1 is the L1 difference between 
two consecutive iteration steps and k is the total iteration number. We take �τ = 0.1 min(�x, �y) in the experiment. The 
re-initialization procedure is performed every 100 time steps.

3.2. Conservation

In summary, our method in the two dimensional case can also be divided into three steps:
1. We use the nodal values for fluid I and fluid II at time level tn to construct the nodal values for the computational 

variables.
2. Then, we update the computational variables

Un+1
i, j = Un

i, j − �t

�x

(
F̂ i+1/2, j − F̂ i−1/2, j

) − �t

�y

(
Ĝ i, j+1/2 − Ĝ i, j−1/2

)
3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II.
The first and third steps are performed in a conservative manner. As to the second step, we update the nodal values 

based on a conservative scheme. Therefore, our method is conservative.
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Table 1
CPU time.

Example 1 2 3 4 5 6 7

Time(s) 64.30 2.71 1.40 2.37 2.27 0.55 0.43

Table 2
Accuracy test for density in 1D.

L∞ error order L2 error order L1 error order

80 1.48E-04 3.32E-05 1.05E-05
120 2.81E-05 4.09 5.21E-06 4.57 1.55E-06 4.72
160 6.97E-06 4.84 1.28E-06 4.87 3.67E-07 5.01
200 2.48E-06 4.63 4.22E-07 4.98 1.19E-07 5.07
240 9.81E-07 5.09 1.69E-07 5.03 4.68E-08 5.10
280 4.63E-07 4.87 7.72E-08 5.07 2.12E-08 5.15
320 2.33E-07 5.15 3.91E-08 5.09 1.07E-08 5.14

4. Numerical tests

In this section, we present the results of our numerical experiments. The CFL numbers are taken as 0.5 for both the 
one-dimensional and the two-dimensional cases, except that we will choose �t = O(�x5/3) to guarantee that the spatial 
error dominates for the accuracy tests. In order to plot the final result, we will restore the computational value using nodal 
values for fluid I and fluid II, and impose the following conditions to compute density velocity and pressure in the mixed 
cell:

1

γ − 1
= α

γ I − 1
+ 1 − α

γ I I − 1

γ p

γ − 1
= αγ I pI

γ I − 1
+ (1 − α)γ I I pI I

γ I I − 1

where γ and p are the physical parameters defined in the mixed cell, α is the volume fraction of fluid I. γ I and pI are the 
physical parameters defined in the fluid I, γ I I and pI I are the physical parameters defined in the fluid II. We emphasize 
that these definitions of mixed equation of state in the mixed cells are introduced only for the purpose of plotting the final 
results, they do not participate in the computation of time evolution of the numerical solution at all.

We also list the CPU cost for Example 1 to Example 7, see Table 1.

Example 1. Artificial accuracy test in 1D.

We consider the artificial accuracy test [10]. We take γ = 3. The initial conditions are:

ρ(x,0) = 1 + 0.2 sin(x)

2
√

γ
, u(x,0) = √

γ ρ(x,0), p(x,0) = ρ(x,0)γ

The computational domain is [0, 2π ]. Periodic boundary conditions are used in this test. By the special choice of the pa-
rameter γ , initial conditions and boundary conditions, we can verify that 2

√
γ ρ(x, t) is the exact solution of the following 

Burgers equation:

μt + 1

2
(μ2)x = 0, μ(x,0) = 1 + 0.2 sin(x)

The velocity and pressure satisfy the following relation:

u(x, t) = √
γ ρ(x, t), p(x, t) = ρ(x, t)γ .

It is easy to verify that the solution of the Burgers equation above is smooth up to time T = 5. We set the final time T = 3. 
At this time, the solution is still smooth. We also put an artificial interface for which the fluids I and II are the same to 
both sides of the interface, however the full interface treating algorithm is applied. The initial artificial interface is located 
at x = π . We list the error and numerical accuracy order in Table 2. We can see that our method can achieve the designed 
fifth order of accuracy. We also test the accuracy of the discontinuity indicator by using the density from the final time, see 
Table 3. We can see that the discontinuity indicator can achieve the designed precision.

Example 2. A pure interface problem in 1D.

We solve a Riemann problem consisting of a single contact discontinuity in gas dynamics:
20



F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
Table 3
Accuracy test for discontinuity indicator in 1D.

L∞ error order L2 error order L1 error order

80 2.38E-06 4.33E-07 1.30E-07
120 3.07E-07 5.05 4.81E-08 5.42 1.24E-08 5.80
160 6.30E-08 5.51 9.36E-09 5.69 2.28E-09 5.89
200 1.76E-08 5.71 2.56E-09 5.81 6.07E-10 5.94
240 6.09E-09 5.82 8.76E-10 5.88 2.05E-10 5.96
280 2.46E-09 5.88 3.52E-10 5.91 8.15E-11 5.97
320 1.12E-09 5.92 1.59E-10 5.93 3.67E-11 5.98

Fig. 6. Pure interface problem. From left to right: density, velocity, pressure. Line: exact solution; Square: numerical solution obtained by using the current 
WENO method (in velocity and pressure, the base has been subtracted); Plus: numerical solution obtained by using WENO-JS method (in velocity and 
pressure, the base has been subtracted).

Fig. 7. Shock interacting with sine waves. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO method, 
N = 300; Plus: numerical solution obtained by using WENO-JS method, N = 300; Line: Reference, N = 2000.

(ρ, u, p, γ , p) =
{
( 1,1,1,1.4,0), x < 0.2
(0.125,1,1, 4,1), x ≥ 0.2

The computational domain is [0, 1]. We set the final time T = 0.32 and N = 200. Fig. 6 shows the result. The base velocity 
and pressure have been subtracted. From the figures, we can see that the interface propagates at the correct speed, and the 
oscillations solved by using the current WENO method in velocity and pressure are much smaller than the one solved by 
using the classical WENO method in [13], denoted as the WENO-JS method in the figure.

Example 3. Shock interacting with sine waves.

This example is tested in [32]. We solve the Euler equation with the following initial conditions

(ρ, u, p, γ , p) =
{
( 3.857143,2.629369,10.333333, 1.4,0), x < −4.0
(1 + 0.2 sin(5x), 0, 1,1.666666,0), x ≥ −4.0

The computational domain is [−5, 5]. We compute the solution of this problem to T = 1.8 with N = 300, and show the 
final result in Fig. 7. The reference solution is obtained with N = 2000. We compare the computed result using the current 
WENO method with the one using the WENO-JS method, we can see that they are nearly the same. We also compare our 
result with the one in [6], we can see that the results are comparable although our scheme uses fewer degrees of freedom.
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Fig. 8. Strong shock impacting on a gas-gas interface. N = 200. From left to right: density, velocity, pressure. Square: numerical solution obtained by present 
WENO method; Star: numerical solution obtained by finite difference WENO based GFM; Line: exact solution.

Fig. 9. Gas-water Riemann problem I. N = 300. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO method; 
Plus: numerical solution obtained by WENO-JS method; Line: exact solution.

Example 4. Strong shock impacting on a gas-gas interface

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
(0.3856,27.0784,100.0,5/3,0), x < 0
( 1, 0, 1, 1.4,0), x ≥ 0

The example is taken from [16]. The domain is [−500, 500] and the grid number N = 200. We list the results using the 
current WENO method, WENO-JS method, and the finite difference WENO based original GFM at time t = 20 in Fig. 8. It is 
clear that there are discrepancies in locations of the shock front and interface for the result obtained by GFM in comparison 
to the analytical solution. These incorrect features do not occur for our scheme.

Example 5. Gas-water Riemann problem I

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
(1.241,0, 2.753,1.4, 0), x < 0
(0.991,0,3.059 × 10−4,5.5,1.505), x ≥ 0

The example is taken from [6]. The domain is [−5, 5] and the grid number N = 300. We list the computed results using 
both the current WENO method and the WENO-JS method at time t = 1 in Fig. 9. From the figures, we can see that both 
methods obtain correct interface location and high resolution. Comparing with the one in [6], we can see that our scheme 
produces a small trough along the interface in the density plot, but is otherwise a good approximation to the exact solution.

Example 6. Gas-water Riemann problem II

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
( 0.01,−100.0,100.0, 1.4, 0), x < 0
(1.002, 0, 50,7.15,3309), x ≥ 0
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Fig. 10. Gas-water Riemann problem II. N = 200. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO 
method; Plus: numerical solution obtained by WENO-JS method; Line: exact solution.

Fig. 11. Gas-water Riemann problem III. N = 200. From left to right: density, velocity, pressure. Square: numerical solution obtained by present WENO 
method; Plus: numerical solution obtained by WENO-JS method; Line: exact solution.

The example is taken from [17]. The domain is [−5, 5] and the grid number N = 200. In this case, double rarefaction waves 
are generated in gas and water media respectively. We show the computed results using both the current WENO method 
and the WENO-JS method at time t = 0.01 in Fig. 10. From the figures, we can see that both methods obtain correct interface 
location and high resolution.

Example 7. Gas-water Riemann problem III.

We consider the following initial condition:

(ρ, u, p, γ , p) =
{
(1000, 0,25000,7.15,3309), x < 2
( 1,−10, 1, 1.4, 0), x ≥ 2

The domain is [−5, 5] and the grid number N = 200. In this case, a very strong rarefaction wave is reflected back into the 
water. We plot the numerical result at time t = 0.25. From Fig. 11, we can see that the result obtained by using WENO-
JS method produces a jump at the interface, while the correct interface location and high resolution are obtained by our 
method.

Example 8. Artificial accuracy test in 2D.

We consider the 2D artificial accuracy test. We take γ = 3. The initial conditions are:

ρ(x, y,0) = 1 + 0.2 sin(
x+y

2 )√
2γ

u(x, y,0) = v(x, y,0) =
√

γ

2
ρ(x, y,0) p(x, y,0) = ρ(x, y,0)γ

The computational domain is [0, 4π ] × [0, 4π ]. Periodic boundary conditions are used in this test. By the special choice 
of parameter γ , initial conditions and boundary conditions, we can verify that 

√
2γ ρ(x, y, t) is the exact solution of the 

following Burgers equation:

μt + 1
(μ2)x + 1

(μ2)y = 0 μ(x, y,0) = 1 + 0.2 sin(
x + y

)

2 2 2
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Table 4
Accuracy test for density in 2D.

L∞ error order L2 error order L1 error order

80 × 80 1.52E-04 3.19E-05 9.57E-06
120 × 120 3.13E-05 3.90 5.51E-06 4.33 1.57E-06 4.46
160 × 160 8.02E-06 4.73 1.43E-06 4.70 3.96E-07 4.79
200 × 200 2.89E-06 4.57 4.82E-07 4.87 1.32E-07 4.91
240 × 240 1.15E-06 5.04 1.96E-07 4.95 5.32E-08 5.00
280 × 280 5.49E-07 4.81 9.06E-08 4.99 2.44E-08 5.04
320 × 320 2.78E-07 5.10 4.63E-08 5.03 1.24E-08 5.06

and the velocity and pressure satisfy the relation: u(x, y, t) = v(x, y, t) =
√

γ
2 ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ . It is easy to 

verify that the solution of the Burgers equation above is smooth up to time T = 5. We set the final time T = 3. At this time, 
the solution is still smooth. The initial artificial interface is located at 

√
(x − 2π)2 + (y − 2π)2 = π . We list the error and 

numerical accuracy order in Table 4. We can see that our method can achieve the designed fifth order accuracy.

Example 9. Pure interface problem in 2D.

We solve a pure interface problem in 2D where the interface is a straight line:

(ρ, u, v, p, γ , p) =
{
( 1,1,1,1,1.4,0), x + 5y − 1.5 > 0
(0.125,1,1,1, 4,1), x + 5y − 1.5 ≤ 0

The computational domain is [0, 1] × [0, 1]. We set the final time T = 0.32. Fig. 12 shows the result. The solutions along 
the cut line y = x are also shown in the figures. The base velocity and pressure have been subtracted. From the figures, we 
can see that the interface propagates at the correct speed, and no oscillations other than those at the round-off error are 
observed in velocity and pressure.

Example 10. Shock impacting on a gas-gas interface in 2D

We next consider an air shock impacting on a helium bubble. The schematic for this problem is given in Fig. 13 where 
the upper and lower boundary conditions are non-reflective open boundaries. The left and right boundary conditions are 
the inflow and outflow, respectively. The initial conditions are:

(ρ, u, v, p, γ , p) =
⎧⎨⎩( 1, 0,0, 1,1.4,0), Pre-shocked air

(1.3764,0.394,0,1.5698,1.4,0), Post-shocked air
( 0.138, 0,0, 1,5/3,0), Helium

and the level set function φ = √
x2 + y2 − 1, where φ < 0 represents helium and φ > 0 represents the air. The post-shock 

air state is given for x < −1.2.
In order to eliminate the “start-up” error mentioned in [22], we will use the numerical shock, namely we run our code 

for the pure shock condition until it settles down, then we add the bubble and start the computation. We plot density 
contours at time t = 0.5, t = 1.0, t = 2.0 and t = 4.0. From Fig. 14, we can see that the main features of the solution are 
correctly captured.

Example 11. Shock impacting on a water-gas interface in 2D

In the final problem, we consider an underwater shock interacting with a gas bubble in an open domain. We examine 
an underwater shock wave making impact on a gas bubble. The schematic for this problem is given in Fig. 13. The non-
dimensionalized initial conditions are:

(ρ, u, v, p, γ , p) =
⎧⎨⎩( 1000, 0,0, 1,7.15,3309), Pre-shocked water

(1176.3576,1.1692,0,9120,7.15,3309), Post-shocked water
( 1, 0,0, 1, 1.4, 0), Gas

and the level set function φ = √
x2 + y2 −1, where φ < 0 represents the gas and φ > 0 represents the water. The post-shock 

water state is given for x < −1.2.
In this problem, very complex physics will occur at later time, and we stop our computation before the bubble collapse. 

We plot the contours of density for the numerical shock in Fig. 15 at t = 0.06, t = 0.19, t = 0.357 and t = 0.471 respectively. 
From the figures, we can see that high resolution is obtained by our method.
F. Zheng, C.-W. Shu and J. Qiu Journal of Computational Physics 445 (2021) 110597
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Fig. 12. Pure interface problem. 100 × 100 cells. From top to bottom: density, velocity in the x direction, velocity in the y direction, pressure. From left to 
right: solution in the whole domain, solution along the cut line y = x. Square: numerical solution (in velocity and pressure, the base has been subtracted); 
Line: exact solution (in velocity and pressure, the base has been subtracted).
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Fig. 13. Schematic for Example 10 and Example 11. Left: Example 10; Right: Example 11.

Fig. 14. Shock impacting on a gas-gas interface in 2D, with 280 × 240 cells, 30 equally spaced density contours from 0.1 to 1.6. Top left: t = 0.5; Top right: 
t = 1.0; Bottom left: t = 2.0; Bottom right: t = 4.0.

5. Concluding remarks

In this paper, we propose a conservative finite difference method to solve the two-medium flows. An alternative high 
order finite difference formulation is adopted to allow WENO interpolation on the physical variables of velocity and pressure, 
instead of WENO reconstruction or interpolation on the conserved variables. Numerical benchmarks show that the proposed 
scheme has high order accuracy and high resolution, ability to locate the correct interface position and non-oscillatory 
velocity and pressure transition across interfaces. Further research to improve efficiency and robustness of the conservative 
finite difference scheme for two-medium flows is ongoing. Extension to three-medium flows will also be considered in the 
future. The methodology extends naturally, however careful algebraic manipulations are needed in the mixed cells where 
all three media co-exist.
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Fig. 15. Shock impacting on a water-gas interface in 2D, with 280 × 240 cells, 30 equally spaced density contours from 0 to 1200. Top left: t = 0.06; Top 
right: t = 0.19; Bottom left: t = 0.357; Bottom right: t = 0.471.
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Appendix A. The proof of Proposition 2.2

Proof. The same as before, we assume the interface x(tn) at time level tn satisfies x(tn) ∈ [xin−1/2, xin+1/2]. Due to the 
C F L condition, the interface x(t∗) at time level t∗ could only be in the cell Iin−1, Iin or Iin+1. For simplicity, we assume 
x(t∗) ∈ [xin+1/2, xin+3/2], see Fig. 1. The proof for the other cases is similar.

According to Fig. 1, we need to calculate the convex combination of F̂ H and F̂ L at xin−1/2, xin+1/2, xin+3/2. We analyze 
F̂ n

in−1/2 and F̂ n
in+3/2 first. Because the flux F̂ L

i+1/2, i = in ± 1 is only first order accurate, we have

F̂ L
i+1/2 = F (U )i+1/2 +O(�x), i = in ± 1

where the F (U )i+1/2 refers to the exact flux at xi+1/2. Therefore, if we require ϕ = 1 +O(�x4), then we have
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F̂ n
i+1/2 − F (U )i+1/2 = F̂ L

i+1/2 + ϕ( F̂ H
i+1/2 − F̂ L

i+1/2) − F (U )i+1/2

= O(�x5), i = in ± 1

Next, we will analyze the flux F̂ n
in+1/2.

We assume U (xi, tn) is the exact solution at xi at time level tn . We denote α∗
I = x(t∗) − xin−1/2, αn

I = x(tn) − xin−1/2, 
Un

I = Un,I
in

, U (xin , tn) = αn
I Un,I

in
+ (1 − αn

I )Un,I I
in

.
In the smooth region, {φ∗

i+1/2} and {φn
i+1/2} satisfy:

φ∗
i+1/2 = φn

i+1/2 − �t(u+
i+ 1

2

√
max (((φ−

x )+)2, ((φ+
x )−)2) + u−

i+ 1
2

√
max (((φ−

x )−)2, ((φ+
x )+)2))

where φ±
x can be obtained by the WENO method. Due to the property of the distance function, we have |φ±

x | = 1 +O(�x5). 
Therefore, we obtain the following equation:

φ∗
in+1/2 = φn

in+1/2 − �tu +O(�x5)

As to x(tn), x(t∗) and φn , φ∗ , we have

α∗
I

2�x
= x(t∗) − xin−1/2

2�x
= x(t∗) − xin−1/2

xin+3/2 − xin−1/2
= 0 − φ∗

in−1/2

φ∗
in+3/2 − φ∗

in−1/2

=0 − φn
in−1/2 + u�t

φn
in+3/2 − φn

in−1/2
+O(�x4) = x(tn) − xin−1/2

2�x
+ u�t

2�x
+O(�x4)

=αn
I + u�t

2�x
+O(�x4)

So, we have

α∗
I = αn

I + u�t +O(�x5)

As to the flux, we have

F̂ in− 1
2

= F̂ (U−, U+) − ϕin− 1
2

(
1

24
�x2 Fxx

∣∣∣
x

in− 1
2

− 7

5760
�x4 Fxxxx

∣∣∣
x

in− 1
2

)

= F (U )

∣∣∣
x

in− 1
2

+O(�x2) =
⎛⎝ ρu

ρu2 + p
u(E + p)

⎞⎠∣∣∣
x

in− 1
2

+O(�x2)

= uin− 1
2

⎛⎝ ρ
ρu
E

⎞⎠∣∣∣
x

in− 1
2

+
⎛⎝ 0

p
up

⎞⎠∣∣∣
x

in− 1
2

+O(�x2)

� uin−1/2Un,I
in−1/2 + Fsin−1/2 +O(�x2)

= uUn
I + Fsin−1/2 +O(�x)

and

Un
I = Un,I

in
= αn

I Un,I
in

+ (1 − αn
I )Un,I I

in
+O(�x) = U (xin , tn) +O(�x)

Therefore, according to Fig. 1, we have

U∗,t
in

= U∗
I = 1

α∗
I

(
αn

I Un
I − �t( F̂ s − F̂ L

in− 1
2
)
)

=
(
αn

I Un
I + �tuUn

I − �t( F̂ s − Fsin− 1
2
)
)

+O(�x�t)

α∗
I

=
(
αn

I Un
I + �tuUn

I

) +O(�x�t)

α∗
I

=Un
I +O(�t) = U (xin , tn) +O(�x)

(43)

Similarly, we can also obtain
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U∗,t
in+1 = U (xin+1, tn) +O(�x)

If �t =O(�xr), r ≤ 2, according to formula (14) we obtain

F̂ L
in+1/2 = 1

2

(
F̂ L

in−1/2 − U∗,t
in

− Un
in

�t
�x

)
+ 1

2

(
U∗,t

in+1 − Un
in+1

�t
�x

+ F̂ L
in+3/2

)

= 1

2

(
F̂ L

in−1/2 − U∗,t
in

− U (xin , tn)

�t
�x

)
+ 1

2

(
U∗,t

in+1 − U (xin+1, tn)

�t
�x

+ F̂ L
in+3/2

)

= 1

2

(
F̂ L

in−1/2 + F̂ L
in+3/2

)
+O(�x2−r)

=
(

F (U ) − 1

24
�x2 F (U )xx + 7

5760
�x4 F (U )xxxx

)∣∣∣
xin+1/2

+O(�x2−r)

That means the flux F̂ L
in+1/2 would be at least zero order accuracy to approximate the flux ̂̂F in+1/2. Due to ϕ = 1 +O(�x5), 

as to the formula (16), we have

F̂ n
in+1/2 − ̂̂F in+1/2

=(1 − ϕ) F̂ L
in+1/2 + ϕ F̂ H

in+1/2 −
(

F (U ) − 1

24
�x2 F (U )xx + 7

5760
�x4 F (U )xxxx

)∣∣∣
xin+1/2

=(1 − ϕ)O(�x2−r) +O(�x5)

=O(�x5)

To conclude, if ϕ = 1 +O(�x5) and �t =O(�xr), r ≤ 2, then the convex combination of ̂F H and ̂F L (16) satisfies formula 
(26). �
Appendix B. The proof for properties of discontinuity indicator

Firstly, due to β ≥ 0, we have

0 ≤ ϕi+ 1
2

≤ 1

Secondly, we verify the accuracy order in the smooth region. Based on Taylor expansion at xi+ 1
2

, we have:

β0 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 + 1

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

7

80
w(2)(xi+1/2)w(4)(xi+1/2) + 1

960
w(1)(xi+1/2)w(5)(xi+1/2) + 1043

960
w(3)(xi+1/2)

2
)

�x6 +O(�x8)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β1 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 − 23

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

−13

4
w(2)(xi+1/2)w(3)(xi+1/2) + 2w(1)(xi+1/2)w(4)(xi+1/2)

)
�x5 +O(�x6)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β2 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 + 1

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

−13

12
w(2)(xi+1/2)w(3)(xi+1/2)

)
�x5 +O(�x6)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β3 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 + 1

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

13
w(2)(xi+1/2)w(3)(xi+1/2)

)
�x5 +O(�x6)
12
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= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

β4 = w(1)(xi+1/2)
2
�x2 +

(
13

12
w(2)(xi+1/2)

2 − 23

12
w(1)(xi+1/2)w(3)(xi+1/2)

)
�x4

+
(

13

4
w(2)(xi+1/2)w(3)(xi+1/2) − 2w(1)(xi+1/2)w(4)(xi+1/2)

)
�x5 +O(�x6)

= w(1)(xi+1/2)
2
�x2

(
1 +O(�x2)

)
= O(�x2)

Therefore, we obtain the following relation:

β1 − β0 = −2w(1)(xi+1/2)w(3)(xi+1/2)�x4 +O(�x5)

β2 − β0 = −13

12
w(2)(xi+1/2)w(3)(xi+1/2)�x5 +O(�x6)

β3 − β0 = 13

12
w(2)(xi+1/2)w(3)(xi+1/2)�x5 +O(�x6)

β4 − β0 = −2w(1)(xi+1/2)w(3)(xi+1/2)�x4 +O(�x5)

It is easy to verify

τ = (β0 − β1)
2 + (β0 − β2)

2 + (β0 − β3)
2 + (β0 − β4)

2

4
= O(�x8)

and

β = 1

4

(
τ

β1 + ε
+ τ

β2 + ε
+ τ

β3 + ε
+ τ

β4 + ε

)
= O(�x6)

Therefore, in the smooth region, the discontinuity indicator ϕi+ 1
2

satisfies:

ϕi+ 1
2

=
( 1

β + 1

)2 = 1 +O(�x6)

Thirdly, when the big stencil contains a discontinuity, we have

β0 = O(1)

As to the small stencils S1, S2, S3, S4, one of them can avoid the discontinuity. For example, we assume S1 can avoid 
discontinuity, then we have:

β1 = O(�x2)

As to τ and β , we obtain

τ = (β0 − β1)
2 + (β0 − β2)

2 + (β0 − β3)
2 + (β0 − β4)

2

4
= O(1)

and

β = 1

4

(
τ

β1 + ε
+ τ

β2 + ε
+ τ

β3 + ε
+ τ

β4 + ε

)
= O(�x−2)

Therefore, the discontinuity indicator satisfies:

ϕi+ 1
2

=
( 1

β + 1

)2 = O(�x4) −→ 0
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