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Abstract. In this paper, we develop a simplified hybrid weighted essentially non-os-

cillatory (WENO) method combined with the modified ghost fluid method (MGFM)
[31] to simulate the compressible two-medium flow problems. The MGFM can turn

the two-medium flow problems into two single-medium cases by defining the ghost

fluids state in terms of the predicted the interface state, which makes the material
interface “invisible”. For the single medium flow case, we adapt between the linear

upwind scheme and the WENO scheme automatically by identifying the regions of

the extreme points for the reconstruction polynomial as same as the hybrid WENO
scheme [55]. Instead of calculating their exact locations, we only need to know the

regions of the extreme points based on the zero point existence theorem, which is
simpler for implementation and saves computation time. Meanwhile, it still keeps

the robustness and has high efficiency. Extensive numerical results for both one

and two dimensional two-medium flow problems are performed to demonstrate the
good performances of the proposed method.
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1. Introduction

In this paper, we propose a simplified hybrid weighted essentially non-oscillatory
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(WENO) method with modified ghost fluid method (MGFM) [31] for simulating com-

pressible two-medium flow problems. For two-medium flow problems, the equation of

state (EOS) would switch between the different medium, which may cause numerical

oscillations or inaccuracies near the material interface. Hence, many researchers have

used various additional works and techniques to overcome this difficulty, and there are

two major options to simulate the compressible two-medium flow problems.

One is the front capturing method, where the high resolution methods are applied

to suppress the non-physical oscillations near discontinuities by bringing the numerical

diffusion or viscosity, which inherently exists in the method itself or is given artificially.

The front capturing method can deal with large deformation problems and relatively

easy to extend to high dimension. However, the numerical inaccuracies and oscillations

are inevitable near the interface, therefore, various techniques were introduced by Lar-

routurou [22], Karni [21], Abgrall [1], Abgrall and Karni [2], Shyue [44], Saurel and

Abgrall [39], Chen and Jiang [5] to resolve this difficulty. The other one is the front

tracking method, which terms the discontinuities between the two-medium flows as in-

ternal moving interfaces. It works well at multi-material interfaces, but it would have

difficulties about the entanglement of the Lagrangian meshes and the extension to high

dimension, and there are some typical methods about the front tracking method, such

as volume of fluid (VOF) method [13], level set method [46] and other front tracking

methods [7,47].

To combine the best properties of the front capturing and tracking methods, Fed-

kiw et al. [6] proposed a new numerical method for treating interfaces using a level set

function in Eulerian schemes named as the ghost fluid method (GFM), which makes the

interface “invisible”. In the framework of the GFM [6], the pressure and velocity at the

ghost fluid nodes near the interface are defined as the local real pressure and velocity,

while the density is obtained by isobaric fixing. It can easily turn the two-medium flow

problems into two single-medium flow cases, and for the single-medium flow problems,

many classical and mature schemes can be applied. Hence, it provides an alternative

and flexible way to simulate the two-medium flow problems, and the extension to high

dimension becomes fairly straightforward. However, it may cause numerical inaccura-

cies in the case of a strong shock impacting on the interface, and the reason may be

that the states near the interface are affected by the wave interaction and the material

properties on both sides. Therefore, Liu et al. [31] developed a modified ghost fluid

method (MGFM), in which a multi-material Riemann problem is defined and solved

approximately or exactly to predict the interfacial state, then, the predicted interfacial

state is applied to define the fluid values at the ghost points. The MGFM combines

the advantages of the GFM [6] and the implicit characteristic methods [29, 30], and

it takes the interaction of shock with the interface into consideration. Later, the inter-

face interaction GFM (IGFM) [15], the real GFM (RGFM) [48] and the practical GFM

(PGFM) [49] were developed following the idea of the Riemann problem-based tech-

nique in the MGFM [31]. The MGFM is robust and less problem related, and it has

been applied in various situations as in [26, 28, 32, 36, 51], and the accuracy analysis

and errors estimation can be seen in [27,50]. The GFM [6] and its relevant ghost fluid
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methods [15, 31, 48, 49] are non-conservative near the interface, and the conservative

scheme can be seen in [35].

Here, we would use the MGFM to define the ghost fluid state for the two-medium

flow problems considering its great performances, and for the single-medium flow

problems, many successful numerical schemes can be applied for it. Among them, the

finite difference or finite volume weighted essentially non-oscillatory (WENO) schemes

have been widely applied for the single-medium flow problems which usually contain

shock, contact discontinuities and sophisticated smooth structures simultaneously. And

in 1994, the first WENO scheme was constructed by Liu, Osher and Chan [33] on the

basis of ENO schemes [9–11], where all candidate stencils were used with a nonlin-

ear convex methodology to obtain higher order accuracy in the smooth regions, then,

Jiang and Shu [17] proposed the third and fifth-order finite difference WENO schemes

in multi-space dimension, in which a general definition for smoothness indicators and

nonlinear weights was presented. After this, WENO schemes have been further devel-

oped in [3, 14, 19, 20, 23, 40, 52, 54, 56], and more detailed review for WENO schemes

can be seen in [41,42]. However, the cost of computing the nonlinear weights and local

characteristic decompositions is still very high. Hence, Hill and Pullin [12] combined

the tuned center-difference schemes with WENO schemes to expect that the nonlinear

weights would be achieved automatically in the smooth regions away from shocks, but

a switching principle was still significant. Later, Li and Qiu [24] studied the hybrid

WENO scheme using different switching principles [37], which shows different princi-

ples would have different influences for the hybrid WENO scheme [24]. Recently, Sung

et al. [45] introduced a new troubled-cell indicator based on mean value property. The

majorities of the troubled-cell indicators need to adjust parameters for different prob-

lems to balance better non-oscillations near discontinuities and less computation cost,

simultaneously. Hence, Qiu et al. [53,55] used a new simple switching principle, which

employed different reconstruction method automatically based on the locations of all

extreme points of the big reconstruction polynomial for numerical flux. Then, we de-

velop this methodology in this paper, in which we only need to know the regions of the

extreme points, rather than calculating their exact locations as in [53,55].

In this paper, to keep the robustness of the MGFM [31] and high efficiency of the

hybrid WENO schemes [53, 55], we first use the methodology introduced in [31] to

predict the interfacial state based on a multi-material Riemann problem, then, the pre-

dicted interfacial state is applied to define the ghost fluid values, by which it turns

a two-medium flow problems into two single-medium cases. For the single-medium

problems, we would solve it by the hybrid WENO method, where we reconstruct the

numerical flux by upwind linear approximation directly if all extreme points of the

big reconstruction polynomial for numerical flux are located outside of the big stencil,

otherwise we use the classical WENO procedure [17]. But we only need to know the

regions of the extreme points in terms of the zero point existence theorem, instead of

calculating their exact locations as in [53, 55], and it is more easy for implementation

and saves computation time. Meanwhile, it still keeps the robustness of the WENO

scheme [17] and the MGFM [31] to simulate the two-medium flow problems. In addi-



A Hybrid WENO Method for Compressible Two-Medium Flow Problems 975

tion, it has higher efficiency with less computation costs than the WENO scheme [17]

for employing linear approximation straightforwardly in the smooth regions.

The organization of the paper is as follows: in Section 2, the detailed implementa-

tion procedures of the finite difference hybrid WENO scheme combined with the MGFM

are presented for two-medium flow problems. In Section 3, extensive numerical results

for gas-gas and gas-water interaction problems in one and two dimensions are pre-

sented to illustrate good performances of the proposed scheme. Concluding remarks

are given in Section 4.

2. Numerical methods

We first introduce the governing equations for the compressible two-medium flow

problems, then, we give a brief review about the finite difference hybrid WENO method

[55] for single-medium flow problems, but we have an improvement about the identi-

fication technique for the regions of the extreme points of the big reconstruction poly-

nomial. Next, we introduce the level set technique to track the moving interface, then,

we briefly introduce the modified ghost fluid method (MGFM) [31] to define the state

of ghost fluids. Finally, we give the summary of the implementation procedures.

2.1. Governing equations

We consider the hyperbolic conservations laws given as follows:

Ut +∇ · F (U) = 0, (2.1)

where U is (ρ, ρµ,E)T and F (U) is (ρµ, ρµ2 + p, µ(E + p))T for one dimensional Euler

equations, while for two dimensional Euler equations, U is (ρ, ρµ, ρν,E)T , and F (U) is

(F1(U), F2(U)) with

F1(U) =
(

ρµ, ρµ2 + p, ρµν, µ(E + p)
)T

,

F2(U) =
(

ρν, ρµν, ρν2 + p, ν(E + p)
)T

,

in which ρ is the density, µ and ν are the velocity components in the x and y directions,

respectively, p is the pressure, and E is the total energy. In order to close the systems,

the equations of state (EOS) is still required. The γ-law for gas is

ρe =
p

γ − 1
,

where e is the internal energy, and Tait EOS for the water medium [4,6,29] is given as

ρe =
p+NB̄

N − 1
,

in which B̄ = B −A, N = 7.15, A = 1.0× 105 Pa, and B = 3.31 × 108 Pa.
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2.2. Hybrid WENO scheme for single-medium flow

We first consider one dimensional scalar hyperbolic conservation laws

{

ut + fx(u) = 0,

u(x, 0) = u0(x).
(2.2)

We divide the computing domain by uniform grid points {xi}, and h is denoted as

xi+1−xi. The cell Ii is defined as [xi−1/2, xi+1/2], where xi+1/2 is set as xi+1/2 = xi+
h
2 ,

then the semi-discrete finite difference scheme of (2.2) is written as

dui(t)

dt
= −1

h

(

f̂i+ 1

2

− f̂i− 1

2

)

, (2.3)

in which ui(t) is represented as u(xi, t), and the numerical flux f̂i+1/2 is a fifth order

approximation of vi+1/2 = v(xi+1/2), in which v(x) is defined implicitly as in [17]

f
(

u(x)
)

=
1

h

∫ x+h
2

x−h
2

v(x)dx,

then the right hand item of (2.3) is the fifth order approximation for −fx(u) at xi.
For the stability of the finite difference scheme, we split the flux f(u) into two parts:

f(u) = f+(u) + f−(u), in which
df+(u)

du ≥ 0 and
df−(u)

du ≤ 0, and the Lax-Friedrichs flux

splitting method is applied here as

f±(u) =
1

2

(

f(u)± αu
)

,

where α = maxu |f ′(u)|.
Next, we introduce the detailed procedures for the reconstruction of the numer-

ical flux f̂+
i+1/2, which is the fifth order approximation of f+(u(xi+1/2)), and the re-

construction formulas for f̂−

i+1/2 are mirror symmetric with respect to xi+1/2 of that

for f̂+
i+1/2. f̂i+1/2 is finally taken as f̂+

i+1/2 + f̂−

i+1/2. Now, we first give a big stencil:

S0 = {Ii−2, . . . , Ii+2}, then we can easily obtain the fourth degree polynomial p0(x) in

terms of the following requirements as:

1

h

∫

Ij

p0(x)dx = f+(uj), j = i− 2, . . . , i+ 2.

For simplicity,
(x−xi)

h is set as ξ, then we have

p0(x) =
1

1920

[

(

−116f+
i−1 + 9f+

i−2 + 2134f+
i − 116f+

i+1 + 9f+
i+2

)

− 40
(

34f+
i−1 − 5f+

i−2 − 34f+
i+1 + 5f+

i+2

)

ξ
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+ 120
(

12f+
i−1 − f+

i−2 − 22f+
i + 12f+

i+1 − f+
i+2

)

ξ2

+ 160
(

2f+
i−1 − f+

i−2 − 2f+
i+1 + f+

i+2

)

ξ3

− 80
(

4f+
i−1 − f+

i−2 − 6f+
i + 4f+

i+1 − f+
i+2

)

ξ4)

]

.

To increase the efficiency, we also use the thought of the hybrid WENO schemes [53,

55], in which the linear upwind approximation or WENO reconstruction is applied

automatically based on the locations of the extreme points of the big polynomial p0(x).
More explicitly, if all extreme points are located outside of the big spatial stencil S0,

f̂+
i+1/2 is taken as p0(xi+1/2) directly, otherwise the classical WENO procedures [17]

would be used to reconstruct it. Unlike the hybrid WENO schemes [53,55] solving the

real zero points of p′0(x) exactly, we identify the regions of the extreme points of p0(x)
in terms of the zero point existence theorem as that if the endpoint values of p′0(x) and

the extreme values of p′0(x) have same signs on the big stencil S0, it means there is

no single zero points of p′0(x) on S0, that is to say, there is no extreme points of p0(x)
located in S0. Also, we present their performances in the numerical examples, which

shows the new identification skill can catch the regions for the extreme points of the

big polynomial p0(x) as the old one in [53,55], but it has higher efficiency. In addition,

the new one has simpler implementation procedure as it only needs to solve the zero

points of the quadratic polynomial p′′0(x), while the old one has to calculate the roots

of the cubic polynomial p′0(x).

Then, we review the classical WENO procedure [17] for the reconstruction of f̂+
i+1/2.

Firstly, the big stencil S0 is divided into three smaller stencils: S1 = {Ii−2, Ii−1, Ii},

S2 = {Ii−1, Ii, Ii+1} and S3 = {Ii, Ii+1, Ii+2}, then the polynomials pl(x) are obtained

by the following requirements as:

1

h

∫

Ij

pl(x)dx = f+(uj), j = i− 3 + l, . . . , i− 1 + l, l = 1, 2, 3.

The explicit values of pl(x) at the point xi+1/2 can be seen in [17], and the linear

weights are computed by p0(xi+1/2) =
∑3

l=1 γlpl(xi+1/2), in which γ1 =
1
10 , γ1 =

3
5 and

γ2 = 3
10 . To measure how smooth these small polynomials pl(x) are in the target cell

Ii, we use the same definition of smoothness indicators βl seen in [17,41] as

βl =

2
∑

α=1

∫

Ii

h2α−1

(

dαpl(x)

dxα

)2

dx,

then the nonlinear weights are

ωl =
ωl

∑3
k=1 ωk

, ωl =
γl

(βl + ε)2
, l = 1, 2, 3,

where ε = 10−6, and the explicit values of ωl also can be seen in [17]. Finally, the
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WENO reconstruction of f̂+
i+1/2 is

f̂+
i+ 1

2

=
3

∑

l=1

ωlpl(xi+ 1

2

).

After the spatial discretization, the semi-discrete scheme (2.3) is discretized by the

third order TVD Runge-Kutta method [43] in time as


















u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL

(

u(1)
)

,

u(n+1) =
1

3
un +

2

3
u(2) +

2

3
∆tL

(

u(2)
)

.

(2.4)

Remark 2.1. For the systems, such as the one dimensional compressible Euler equa-

tions, WENO procedure is performed in the local characteristic directions to overcome

the oscillations nearby discontinuities as in [17], while the linear approximation is

directly computed in each component. For two dimensional problems, the spatial re-

construction is performed by dimension by dimension.

2.3. Level set equation

We choose the next level set technique to track the moving interface. For one di-

mensional problems, the level set equation is

φt + µφx = 0, (2.5)

while for two dimensional case it is written as

φt + µφx + νφy = 0, (2.6)

where φ is a signed distance function, µ and ν are the velocity of the flow in the x
and y directions, respectively. We solve Eqs. (2.5) and (2.6) by the fifth order finite

difference hybrid WENO method introduced in Appendix A. However, if the velocity

field has a large gradient in the vicinity of the interface, the level set method may

cause seriously distorted contours. Therefore, the re-initialization technique is needed

to remedy this influence. For one dimensional problems, we can obtain the position

of the interface exactly by Newton’s iteration method, then we re-distribute the signed

distance function φ. For two dimensional case, the interface is a curve, so we need to

use other ways for re-initialization, in which we solve the re-initialization equation as

φt + S(φ0)
(√

φ2
x + φ2

y − 1
)

= 0, (2.7)

where S is the sign function of φ0, and Eq. (2.7) is also calculated by the hybrid WENO

method shown in Appendix A. Other methods can also be applied, such as the recent

high order arbitrary Lagrangian-Eulerian finite difference WENO scheme for Hamilton-

Jacobi equations [25].
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2.4. Modified ghost fluid method

We use the modified ghost fluid method (MGFM) [31] to define the information of

the ghost cells as it considers the interaction of shock with the interface correctly. The

main procedures of the MGFM are that we first predict the interface state by solving

a two-medium Riemann problem exactly or approximately, then the predicted interface

state is used to define the ghost fluid state for each fluid, by which it turns a two-

medium flow problem into two single-medium flow problems.

For one dimensional case, we only introduce how to define the ghost fluid state for

Medium 1 in detail, and the definition of the ghost fluid state for Medium 2 is similar.

Let us assume that the interface is located between i and i + 1 seen in Fig. 1, then we

use the state of Ui−1 and Ui+2 to define the two-medium Riemann problem suggested

in [31], and obtain the interfacial state: uI (velocity), pI (pressure), ρLI (density at

left-side) and ρRI (density at right-side). Later, we take the predicted uI , pI , ρ
L
I as the

velocity, pressure and density at the ghost point i + 1, but at these points i, i + 2 and

i+3, the pressure and velocity are those on the real local fluid, and the density at these

points is replaced by the isentropic fixing [6,31].

For two dimensional case, it would have one difficulty about the definition of the

two-medium Riemann problem for there is two velocity components. However, we

can know the normal direction −→n near the interface employing the level set function

(−→n = ∇φ/|∇φ|), then we obtain the normal velocity uN and tangential velocity uT , in

which uN is defined as (µ, ν) · −→n , then, we apply the normal velocity uN , the pressure

p and the density ρ to define the two-medium Riemann problem like one dimensional

case. In terms of the MGFM [31], we need to define a computation domain for each

medium that includes boundary points and grid points in the interfacial regions by

|φ| < ǫ, where ǫ is set to be 3max(∆x,∆y) for the fifth order hybrid WENO scheme.

Later, we would only introduce the definition of the state for Medium 1 at the points

A and B (seen in Fig. 2) in detail. To define the state at the point A in Medium 1, we

need to find other point next to the interface (|φ| < ǫ) located in the Medium 2, and let

us assume that B is the target point as the angle made by the normal of B and A is the

minimum, then we define Riemann problem in the normal direction as

Interface

ii− 1i− 2 i+ 1 i+ 2 i+ 3

uI

pI

ρLI ρRI

Medium 1 Medium 2

Real

Ghost

uI velocity at interface

pI pressure at interface

ρLI density at left-side interface

ρRI density at right-side interface

Figure 1: Isentropic fixing for 1D two-medium flow problems.
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A

B

Medium 1

Medium 2

Interface

Real

Ghost

Figure 2: Isentropic fixing for 2D two-medium flow problems.

U |t=tn =

{

UA,

UB ,

in which UA = (ρA, uAN , pA) and UB = (ρB , uBN , pB), then we can solve it approximately

or exactly to predict the state uI (velocity), pI (pressure), ρAI (density at medium 1)

and ρBI (density at medium 2). Notice that node A is located in Medium 1, then we

only need to define the density by isentropic fixing [6, 31], but node B is located in

Medium 2, therefore, we need to define the state at node B by uI , pI and ρAI , and its

tangential velocity is still the original one. In addition, the definition of the ghost fluid

state for Medium 2 is similar.

2.5. Summary of the procedures

Now, we give a brief summary of the procedures for simulating two-medium flow

problems. Let us assume that the flow state at tn has been obtained, then we can

advance the respective quantities to tn+1 following as:

Algorithm 2.1

1: Calculate the time step ∆t, satisfying the stability condition over the whole range.

2: Solve the level set function φ, and obtain the locations of the interface in the next

intermediate time step introduced in Section 2.3.

3: Define the Riemann problem near the interface and predict the interface state,

then use it to define the fluid values at the ghost points for Mediums 1 and 2,

respectively, given in Section 2.4.

4: Solve the governing equations for Mediums 1 and 2, respectively, advancing the

solution to the next intermediate time level, shown in Section 2.2.

5: Repeat Steps 2-4 at each intermediate time step of the third order TVD Runge-Kutta

method, and advance the solution from Un to Un+1, then, re-initialize the level set

function φ.
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3. Numerical results

In this section, we perform the numerical results of the new simplified hybrid WENO

scheme and classical WENO scheme [17] with the modified ghost fluid method for two-

medium flow problems which are outlined in the previous section, and the CFL number

is set as 0.6. In addition, we also make a comparison between the new identification

skill for the regions of the extreme points introduced in the previous section and the

old one used in the hybrid WENO schemes [53,55]. The units for the density, velocity,

pressure, length and time are kg/m3, m/s, Pa, m, and s, respectively.

Here, we use the new/simplified hybrid WENO method to denote the new sim-

plified finite difference hybrid WENO scheme with the modified ghost fluid method

developed in this paper, and use the classical WENO method to represent the classical

finite difference WENO scheme [17] with the modified ghost fluid method. In addi-

tion, we use the old hybrid WENO method to denote the finite difference hybrid WENO

scheme [55] with the modified ghost fluid method.

Example 3.1. This problem was taken from [6], and the initial conditions are

(ρ, µ, p, γ) =

{

(

1, 0, 1 × 105, 1.4
)

, x ∈ [0, 0.5),
(

0.125, 0, 1 × 104, 1.2
)

, x ∈ [0.5, 1].

In flow and out flow boundary conditions are applied here, and the final computed

time t is 0.0007. We present the computed density ρ, velocity µ and pressure p by the

new/simplified hybrid WENO and classical WENO methods against the exact solution

in Fig. 3. We can see that both methods capture the location of the material inter-

face correctly. These two schemes also have similar numerical results, and the over-

all results are comparable to analysis, but the new/simplified hybrid WENO method

can achieve higher efficiency in comparison with the classical WENO method for sav-

ing 22.93% computation time. In addition, the new/simplified hybrid WENO method

can save 9.25% CPU time in comparison with the old hybrid WENO method by cal-

culation. 15.13% and 15.14% points are computed using the WENO procedure in the

Figure 3: Example 3.1. t=0.0007. From left to right: density; velocity; pressure. Solid line: the exact
solution; plus signs: the results of the classical WENO method; squares: the results of the new/simplified
hybrid WENO method. Grid points: 200.
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new/simplified hybrid WENO and old hybrid WENO methods, respectively. The time

history of the locations of WENO reconstruction for two methods is presented at the

top of Fig. 6. These results show that the new identification skill in the new/simplified

hybrid WENO method can identify the regions of the extreme points correctly as the

old one in the old hybrid WENO method, but the new one has higher efficiency. The

new identification technique is also simpler as it only needs to solve the zero points of

a quadratic polynomial, while the old one has to calculate the roots of a cubic polyno-

mial.

Example 3.2. This problem is also taken from [6], which contains a right going shock

refracting at an air-helium interface with a reflected rarefaction wave, and the initial

conditions are given as

(ρ, µ, p, γ) =











(

4.3333, 3.2817
√
105, 1.5 × 106, 1.4

)

, x ∈ [0, 0.05),
(

1, 0, 1 × 105, 1.4
)

, x ∈ [0.05, 0.5),
(

0.1379, 0, 1 × 105, 5/3
)

, x ∈ [0.5, 1]

with inflow/outflow boundary conditions. The initial strength of the shock is pl/pR =
15 at x = 0.05, and the interface of air and helium is located at x = 0.5. We ran the

code to a final time of 0.0005, and the computed density ρ, velocity µ and pressure p
by the new/simplified hybrid WENO and classical WENO methods against the exact

solution are shown in Fig. 4. We can see the contact discontinuity is located in the cor-

rect cell, and both methods have similar results, but the new/simplified hybrid WENO

method can achieve higher efficiency in comparison with the classical WENO method

for saving 16.41% CPU time. In addition, the new/simplified hybrid WENO method

can save 9.54% computation time in comparison with the old hybrid WENO method by

calculation. 25.07% and 24.50% points are computed using the WENO procedure in the

new/simplified hybrid WENO and old hybrid WENO methods, respectively. The time

history of the locations of WENO reconstruction is presented at the middle of Fig. 6,

which illustrates that the new identification skill in the new/simplified hybrid WENO

method catches the regions of the extreme points as the old one in the old hybrid

Figure 4: Example 3.2. t=0.0005. From left to right: density; velocity; pressure. Solid line: the exact
solution; plus signs: the results of the classical WENO method; squares: the results of the new/simplified
hybrid WENO method. Grid points: 200.



A Hybrid WENO Method for Compressible Two-Medium Flow Problems 983

WENO method. However, the new identification technique has higher efficiency, and it

is also simpler for it only needs to calculate the roots of a quadratic polynomial.

Example 3.3. We solve the governing equations (2.1) for one dimensional Euler equa-

tions with the following Riemann initial conditions:

(ρ, µ, p, γ) =











(

1.3333, 0.3535
√
105, 1.5 × 105, 1.4

)

, x ∈ [0, 0.05),
(

1, 0, 1 × 105, 1.4
)

, x ∈ [0.05, 0.5),
(

3.1538, 0, 1 × 105, 1.249
)

, x ∈ [0.5, 1].

The final computed time t is 0.0017. This example is also taken from [6], and the com-

puted density ρ, velocity µ and pressure p by the new/simplified hybrid WENO and

classical WENO methods against the exact solution are given in Fig. 5. The numeri-

cal results illustrate that both schemes capture the contact discontinuity correctly, with

non-oscillations and similar comparable results. However, the new/simplified hybrid

WENO method saves almost 25.49% computation time comparing with the classical

WENO method. In addition, the new/simplified hybrid WENO method with the new

identification skill can save 8.31% CPU time in comparison with the old hybrid WENO

method by calculation. 8.48% and 8.52% points are computed using the WENO proce-

dure in the new/simplified hybrid WENO and old hybrid WENO methods, respectively.

The time history of the locations of WENO reconstruction by the two hybrid methods

is presented at the bottom of Fig. 6. These results illustrate that the new identification

technique in the new/simplified hybrid WENO method catches the regions of the ex-

treme points as the old one in the old hybrid WENO method, but the new/simplified

hybrid WENO method with the new one has higher efficiency, and the new identifica-

tion technique is also simpler.

Example 3.4. This problem is taken from [31], having a strong shock on a gas-gas

interface, and the strength of the right shock wave is up to pL/pR = 100. The initial

Figure 5: Example 3.3. T=0.0017. From left to right: density; velocity; pressure. Solid line: the exact
solution; plus signs: the results of the classical WENO method; squares: the results of the new/simplified
hybrid WENO method. Grid points: 200.
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Figure 6: The points where the WENO procedures are performed for Examples 3.1-3.3. From left to right:
the results of the old hybrid WENO method; the results of the new/simplified hybrid WENO method.

conditions are given as follows:

(ρ, µ, p, γ) =











(

0.3884, 27.1123
√
105, 1.0 × 107, 5/3

)

, x ∈ [0, 0.3),
(

0.1, 0, 1 × 105, 5/3
)

, x ∈ [0.3, 0.4),
(

1, 0, 1 × 105, 1.4
)

, x ∈ [0.4, 1].

In Fig. 7, we present the computed density ρ, velocity µ and pressure p by the new/sim-

plified hybrid WENO and classical WENO methods against the exact solution at the final

time 0.0001. We can see that two methods work well for simulating this two-phase flow
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Figure 7: Example 3.4. t=0.0001. From left to right: density; velocity; pressure. Solid line: the exact
solution; plus signs: the results of the classical WENO method; squares: the results of the new/simplified
hybrid WENO method. Grid points: 200.

problem, and capture the correct location of the interface between two gases. Com-

paring with the classical WENO method, the new/simplified hybrid WENO method

saves almost 15.98% computation time. In addition, the new/simplified hybrid WENO

method with the new identification skill can save 14.52% CPU time in comparison with

the old hybrid WENO method by calculation. 26.76% and 25.52% points are performed

using the WENO procedure in the new/simplified hybrid WENO and old hybrid WENO

methods, respectively. The time history of the locations of WENO reconstruction by

two hybrid methods is given at the top of Fig. 10, which illustrates the new identifi-

cation skill in the new/simplified hybrid WENO method identifies the regions of the

extreme points as the old one in the old hybrid WENO method, but the new/simplified

hybrid WENO method with the new one has higher efficiency. The new identification

technique in the new/simplified hybrid WENO method is also simpler as it only needs

to solve the roots of a quadratic polynomial, while the old one in the old hybrid WENO

method has to calculate the zero points of a cubic polynomial.

Example 3.5. We consider the gas-water shock tube problem taken from [36], and the

initial condition are given as

(ρ, µ, p, γ)T =

{

(

1270, 0, 8 × 108, 1.4
)T

, x ∈ [0, 0.5),
(

1000, 0, 1 × 105, 7.15
)T

, x ∈ [0.5, 1].

This underwater explosion problem has extremely high pressure in the gas medium,

therefore, there is a very strong shock in the water. The final computation time is

0.00016. We present the computed density ρ, velocity µ and pressure p by the new/sim-

plified hybrid WENO and classical WENO methods against the exact solution in Fig. 8,

which illustrates two schemes capture the location of the material interface correctly

and have good performance in the smooth and discontinuous regions. In addition,

the new/simplified hybrid WENO method saves about 16.53% CPU time. Moreover,

the new/simplified hybrid WENO method with the new identification skill can save

13.93% computation time in comparison with the old hybrid WENO method with the

old identification technique by calculation. Both 20.68% points are computed using the
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Figure 8: Example 3.5. t=0.00016. From left to right: density; velocity; pressure. Solid line: the exact
solution; plus signs: the results of the classical WENO method; squares: the results of the new/simplified
hybrid WENO method. Grid points: 200.

WENO procedure in the new/simplified hybrid WENO and old hybrid WENO methods,

respectively. The time history of the locations of WENO reconstruction in two hybrid

methods is given at the middle of Fig. 10. These results show that the new identification

skill in the new/simplified hybrid WENO can catch the regions of the extreme points

as the old one in the old hybrid WENO method. However, the new/simplified hybrid

WENO method with the new identification skill has higher efficiency, and the procedure

of the new one is also simpler.

Example 3.6. This gas-water shock tube problem is taken from [6], which has higher

energy of the explosive gaseous medium than the problem given in Example 3.5, and

the initial conditions are

(ρ, µ, p, γ)T =

{

(

1630, 0, 7.81 × 109, 1.4
)T

, x ∈ [0, 0.5),
(

1000, 0, 1 × 105, 7.15
)T

, x ∈ [0.5, 1].

We ran the code to the final time 0.0001, then, we give the computed density ρ,

velocity µ and pressure p by the new/simplified hybrid WENO and classical WENO

methods against the exact solution in Fig. 9, which shows two schemes work well

for this tough gas-water problem with non-oscillation in the non-smooth regions, and

Figure 9: Example 3.6. t=0.0001. From left to right: density; velocity; pressure. Solid line: the exact
solution; plus signs: the results of the classical WENO method; squares: the results of the new/simplified
hybrid WENO method. Grid points: 200.
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capture the right interface between two mediums. In addition, the new/simplified

hybrid WENO method has higher efficiency for saving almost 15.12% CPU time. More-

over, the new/simplified hybrid WENO method with the new identification skill can

save 13.52% computation time in comparison with the old hybrid WENO method by

calculation. Both 32.88% points are computed using the WENO procedure in two hy-

brid WENO method. The time history of the locations of WENO reconstruction in the

new/simplified hybrid WENO and old hybrid WENO methods is given at the bottom

of Fig. 10, which shows that the new identification skill in the new/simplified hybrid

Figure 10: The points where the WENO procedures are performed for Examples 3.4-3.6. From left to right:
the results of the old hybrid WENO method; the results of the new/simplified hybrid WENO method.
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WENO method can catch the regions of the extreme points correctly as the old one, but

the new/simplified hybrid WENO method with the new one has higher efficiency, and

the new identification technique is also simpler.

Example 3.7. This problem is a Mach 1.22 air shock acting on a helium bubble, then

we solve the governing equations (2.1) for two dimensional Euler equations, and its

physical initial schematic diagram is shown in the left of Fig. 11. The reflective condi-

tions are applied in the upper and lower boundary, while the inflow/outflow conditions

are given in the left and right boundary, respectively. The non-dimensionalized initial

conditions are given as follows

(ρ, µ, ν, p, γ) =











(1, 0, 0, 1, 1.4), pre-shocked air,

(1.3764, 0.394, 0, 1.5698, 1.4), post-shocked air,

(0.138, 0, 0, 5/3), helium,

φ =
√

x2 + y2 − 1, level set,

in which φ ≤ 0 represents helium and φ > 0 represents the air. In addition, the region

for x < 1.2 is the post-shocked air state.

This shock impacting on a helium bubble problem had been experimentally studi-

ed in [8]. The computed density contours at time 0.5, 1.0, 2.0, and 4.0 on a uniform

mesh of 280 × 240 grid points are shown in Fig. 12, where we can observe that the

numerical results are comparable to the results given in [8]. Our computation for this

example stops at time t = 4.0 before the generation of the strong re-entrant jet, which

is a complex physical phenomenon, and might need to employ very fine meshes or

adaptive refinement technique in [18, 38]. Then, we would give some descriptions

for the numerical results. At first, a initial shock impacts on the helium bubble, then

a part of the incident shock refracts into the helium bubble, and other part of the shock

reflects from the surface and backs into the air. At t = 0.5, we can see that the initial

regular shock becomes irregular having bifurcation of the shock on the bubble surface

(-3,-3)

(4,3)

x=-1.2

Post-

shocked Pre-shocked air

air

Helium

bubble

(-4,-3)

(3,3)

x=-1.2

Post-shocked

water
Pre-shocked water

Gas

Figure 11: Physical domain for Example 3.7 (left) and Example 3.8 (right).
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Figure 12: Example 3.7. The results computed by the classical WENO method (left) and new/simplified
hybrid WENO method (right). 30 equally spaced density contours from 0.1 to 1.6. From top to bottom are
T = 0.5, T = 1.0, T = 2.0 and T = 4.0, respectively. Grid points: 280 × 240.
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for the sound speed in helium is faster than that in air, which was also observed in the

experimental results given in [8]. At t = 1.0, the refracted shock inside the bubble is

interacted with the rear of the bubble and enters into the air, but the incident shock

just goes through the top of the helium bubble, and the whole bubble starts moving to

the right. At t = 2.0, the incident shock has gone through the whole bubble, and the

shape of the bubble begins to misshape. After this, a re-entrant jet begins to form. At

t = 4.0, the re-entrant jet actually is formed, and the interface would be instable, when

the re-entrant jet becomes stronger and stronger, which would affect the rear side of

the bubble and cause the bubble to collapse, and the quite fine meshes or adaptive

refinement technique might be needed seen in [18,38]. Hence, our computation stops

at the non-dimensional time t = 4.0.

Finally, we also find that the results computed by the new/simplified hybrid WENO

and the classical WENO methods are similar, but the new/simplified hybrid WENO

method saves almost 35.49% computation time as we use linear approximation directly

for the governing equation, the level set function and its re-initialization in the smooth

regions. In addition, the new/simplified hybrid WENO method with the new identifi-

cation skill can save 9.41% computation time in comparison with the old hybrid WENO

method by calculation. 2.84% and 2.75% points are computed using the WENO pro-

cedure in the new/simplified hybrid WENO and old hybrid methods at the final time

step, respectively. The locations of WENO reconstruction computed by the two hybrid

WENO methods at the final time step are given at the top of Fig. 14, which illustrates

that the new identification skill has similar ability as the old one in the old hybrid

WENO method, but the new/simplified hybrid WENO method with the new one has

higher efficiency, and the new one is simpler as it only needs to solve the roots of

a quadratic polynomial, while the old one has to calculate the zero points of a cubic

polynomial.

Example 3.8. The final example is a initial Mach 1.653 planar underwater shock in-

teracting with a gas bubble in an open domain taken from [36], then we solve the

governing equations (2.1) for two dimensional Euler equations with the next non-

dimensionalized initial conditions:

(ρ, µ, ν, p, γ) =











(1000, 0, 0, 1, 7.15), pre-shocked water,

(1176.3333, 1.1692, 0, 9120, 7.15), post-shocked water,

(1, 0, 0, 1.4), gas,

φ =
√

x2 + y2 − 1, level set,

where φ ≤ 0 represents gas and φ > 0 represents the water. In addition, the region

for x < 1.2 is the post-shocked water state. The physical initial schematic diagram is

given in the right of Fig. 11. Reflective boundary conditions are applied in the upper

and lower boundary. In flow and out flow boundary conditions are given in the left and

right boundary, respectively. We present the computed density contours at t = 0.06,

t = 0.19, t = 0.357 and = 0.481. The detailed physical analysis can be found in [30]
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Figure 13: Example 3.8. The results computed by the classical WENO method (left) and new/simplified
hybrid WENO method (right). 30 equally spaced density contours from 1.0 to 1200. From top to bottom
are t = 0.06, t = 0.19, t = 0.357 and t = 0.481, respectively. Grid points: 280 × 240.
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for the earlier stage, while in [34] for the late time. Our numerical results are similar

to those obtained by Qiu et al. [36], where they solved this problem by the discon-

tinuous Galerkin finite element methods with MGFM. Again, our computation stops

at time = 0.481 before the form of the strong re-entrant jet, and the bubble does not

collapse at this time. From Fig. 13, we can see that the density contours computed by

the new/simplified hybrid WENO and classical WENO methods are similar, however,

the new/simplified hybrid WENO method has higher efficiency in comparison with the

classical WENO scheme for saving almost 27.13% computation time. In addition, the

new/simplified hybrid WENO method with the new identification skill can save 12.00%
CPU time in comparison with the old one in the old hybrid WENO method by calcu-

lation. 19.05% and 19.21% points are computed using the WENO procedure in the

two hybrid WENO methods at the final time step, respectively. The locations of WENO

reconstruction at the final time step are presented at the bottom of Fig. 14, which il-

lustrates that the new identification skill in the new/simplified hybrid WENO method

can identify the regions of the extreme points as the old one in the old hybrid WENO

method, but the new/simplified hybrid WENO method with the new one has higher

efficiency, and the new one has simpler implementation procedure.

Figure 14: The points where the WENO procedures are performed at the final time step for Examples 3.7
and 3.8. From left to right: the results of the old hybrid WENO method; the results of the new/simplified
hybrid WENO method.
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4. Concluding remarks

In this paper, we combine the new simplified hybrid WENO method with the modi-

fied ghost fluid method [31] to simulate the compressible two-medium flow problems,

which adapts between the linear upwind approximation and WENO reconstruction au-

tomatically in terms of the regions of the extreme points for the big reconstruction

polynomial, and we have an improvement about the identification technique for the

regions of the extreme points of the big reconstruction polynomial. This new switch

principle is not only simple for we does not need to adjust the parameters, but also

it is efficient as we just need to know the range of the extreme point for the big re-

construction polynomial, rather than solving the exact location of the extreme point as

the old one in hybrid WENO schemes [53, 55]. Comparing with the classical WENO

scheme [17], the new simplified hybrid WENO scheme is more efficient with less nu-

merical errors in the smooth region and less computation costs, meanwhile, the new

simplified hybrid WENO scheme with MGFM is robust and non-oscillatory to simulate

these two-medium flow problems. However, this WENO method combined with MGFM

may fail when the changes of interface topology occur such as bubble collapse, which

would be further studied in future works. In general, these numerical results all show

the good performances of the new simplified hybrid WENO scheme with the modified

ghost fluid method.

Appendix A. The finite difference hybrid WENO method for
Hamilton-Jacobi equations

The next finite difference hybrid WENO method for Hamilton-Jacobi equations is

mainly developed from the fifth order WENO scheme introduced by Jiang and Peng

[16] to solve the Hamilton-Jacobi equations (2.5)-(2.7) in Section 2.2.

We first consider one dimensional Hamilton-Jacobi equation

{

φt +H(x, t, φ, φx) = 0,

φ(x, 0) = φ0(x).
(A.1)

The computing domain is divided by uniform grid points {xi}, and the semi-discrete

form of (A.1) is
dφi(t)

dt
= −Ĥ

(

xi, t, φi, φ
+
xi
, φ−

xi

)

, (A.2)

where φi(t) is represented as φ(xi, t), and φ±
xi

are linear or WENO approximations for
∂φ(xi)
∂x . Ĥ is a numerical flux to approximate H, and we use the Lax-Friedrichs (LF) flux

here as

Ĥ(x, t, φ, u+, u−) = H

(

x, t, φ,
u+ + u−

2

)

− α(u+, u−)
u+ − u−

2
,
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where α is maxu |H1(u)|, where H1 is represented as the partial derivative of H with

respect to φx.

Next, we only introduce the reconstruction procedures for φ−
xi

, and the reconstruc-

tion for φ+
xi

is mirror symmetric with respect to xi of that for φ−
xi

. Firstly, we can easily

obtain the fourth degree polynomial p0(x) to approximate φx in terms of the require-

ments

1

∆x

∫ xi+k

xi+k−1

p0(x)dx =
1

∆x

∫ xi+k

xi+k−1

φxdx =
1

∆x
(φxi+k

− φxi+k−1
), k = 0,±1,±2.

To increase the efficiency, if all extreme points of p0(x) are located outside of the big

spatial stencil, φ−
xi

is taken as p0(xi) directly, otherwise we would use the next classical

WENO procedures [16, 17], and the method to identify the regions of the extreme

points for p0(x) has been detailedly introduced in Section 2.2.

Now, we would give a brief review of the WENO reconstruction for φ−
xi

. Similarly,

we obtain three quadratic polynomials pl(x) to approximate φx, satisfying

1

∆x

∫ xi+k+l−2

xi+k+l−3

pl(x)dx =
1

∆x

∫ xi+k+l−2

xi+k+l−3

φxdx

=
1

∆x
(φxi+k+l−2

− φxi+k+l−3
), k = −1, 0, 1, l = 1, 2, 3.

For saving space, the explicit values of pl(xi), the linear weights γl, the smoothness

indicators βl, and the nonlinear weights ωl are not present here, and these expressions

can be seen in [16,17]. Finally, the WENO reconstruction of φ−
xi

is approximated by

φ−

xi
=

3
∑

l=1

ωlpl(xi).

For the two dimensional Hamilton-Jacobi equation
{

φt +H(x, y, t, φ, φx, φy) = 0,

φ(x, y, 0) = φ0(x, y),
(A.3)

the computing domain is divided by uniform grid points {(xi, yj)}, and the semi-

discrete form of (A.3) is

dφi,j(t)

dt
= −Ĥ

(

xi, yj , t, φi,j , φ
+
x,i,j, φ

−

x,i,j, φ
+
y,i,j , φ

−

y,i,j

)

, (A.4)

where φi,j(t) is represented as φ(xi, yj, t). φ
±

x,i,j and φ±

y,i,j are linear or WENO approx-

imations for
∂φ(xi,yj)

∂x and
∂φ(xi,yj)

∂y , respectively. Ĥ is a numerical flux to approximate

H, and we use the Lax-Friedrichs (LF) flux here as

Ĥ
(

xi, yj, t, φi,j , u
+, u−, v+, v−

)

= H

(

xi, yj, t, φi,j ,
u+ + u−

2
,
v+ + v−

2

)

− α
u+ − u−

2
− β

v+ − v−

2
,
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where α is maxu |H1(u, v)| and β is maxv |H2(u, v)|. H1 and H2 are represented as the

partial derivative of H with respect to φx and φy, respectively. Finally, φ±

x,i,j and φ±

y,i,j

are reconstructed by dimension by dimension as one dimension case.

For the time discretization, the semi-discrete schemes (A.2) and (A.4) are dis-

cretized by the third order Runge-Kutta method [43] in (2.4) of Section 2.2.
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