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Abstract In (J. Comput. Phys. 229: 8105–8129, 2010), Li and Qiu investigated the hybrid
weighted essentially non-oscillatory (WENO) schemes with different indicators for Euler
equations of gas dynamics. In this continuation paper, we extend the method to solve the
one- and two-dimensional shallow water equations with source term due to the non-flat bot-
tom topography, with a goal of obtaining the same advantages of the schemes for the Euler
equations, such as the saving computational cost, essentially non-oscillatory property for
general solution with discontinuities, and the sharp shock transition. Extensive simulations
in one- and two-dimensions are provided to illustrate the behavior of this procedure.
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1 Introduction

In this continuous paper, we extend the hybrid weighted essentially non-oscillatory schemes
with different indicators which were investigated by Li and Qiu [11] for Euler equations
of the gas dynamics, to solve the one- and two-dimensional shallow water equations with
source term due to the non-flat bottom topography.

The shallow water equations, also referred to as the Saint-Venant system, have a wide
applications in hydraulic and coastal engineering, e.g., tidal flows in estuary and coastal wa-
ter regions, bore wave propagation, the stationary hydraulic jump and river, reservoir and
open channel flow, etc. The shallow water equations govern the flow of an incompressible
fluid with free surface when the depth of the fluid is small when compared to the charac-
teristic dimension of the problem. This system describes the flow as a conservation laws
with additional source term. These equations are obtained from the incompressible Euler
equations assuming that the pressure is hydrostatic and neglecting dissipative effects. The
one-dimensional shallow water equations take the following form:{

ht + (hu)x = 0,

(hu)t + (hu2 + 1
2 gh2)x = −ghbx,

(1.1)

where h, u are the water depth and water velocity, respectively; g is the gravitational con-
stant; b = b(x) denotes the bottom topography. For the homogeneous case, the performance
of the shallow water equations is similar to that of the compressible Euler equations in
aerodynamics. A lot of shock and discontinuity capture methods that are well developed in
aerodynamics can be used to solve the shallow water equations, including the cases with
strong discontinuity. However, the presence of the source term changes the property of the
system considerably. Here, for simplicity, we only consider the source term due to the bot-
tom topography (non-flat bottom). Other effects, such as friction on the bottom topography
and on the surface, wind forces, as well as variations of the channel width, can also result
in the additional source term. There are considerable efforts in the literature which have
been devoted to the development of the numerical methods to the conservation system with
source term (also called balance laws). In 1994, Bermudez and Vazquez [2] firstly proposed
the idea of the “exact conservation property” (exact C-property), which means that a scheme
is exactly compatible with the quiescent flow h + b = constant and hu = 0. This property
is necessary for the balancing between the flux gradient and the source term. An efficient
scheme should satisfy this property, and is termed as well-balanced scheme. Vukovic and
Sopta [19] incorporated the exact C-property into the essentially nonoscillatory (ENO) and
WENO schemes. Later, Crnjaric, Vukovic and Sopta [5] extended the property to the bed-
load sediment transport equation and presented schemes that achieved balance between the
flux gradient and the nonconservative product term. Rogers [14] presented an algebraic tech-
nique for the balancing between the flux gradient and the source term. The main idea is to
mathematically rearrange the shallow water equations to be balanced when Roe’s approx-
imation Riemann solver is applied in finite volume framework. Unfortunately, most of the
works mentioned above can not obtain the expected accuracy and handle the complicated
bottom topography simultaneously.

In order to overcome the drawback, Xing and Shu [20] introduced the high order well-
balanced finite difference WENO schemes, which can maintain the exact C-property and be
genuine high order accuracy for the general solutions of the shallow water equations. The
main idea of [20] is a special decomposition of the source term, such that a discretization of
the source term can be both high order accurate for the general solutions and exactly well
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balanced with the flux gradient for stationary flow. In 2006, Xing and Shu extended this idea
of decomposition of source term to a general class of balance laws in the framework of finite
difference schemes [21], and in the framework of finite volume methods and Runge-Kutta
discontinuous Galerkin (RKDG) finite element methods [22]. More recently, Xing et al. [23]
designed a positivity-preserving high order well-balanced discontinuous Galerkin methods
for the shallow water equations. Their methods can maintain the well balancing between
the flux gradient and the source term, and preserve the positivity of the water depth. It is
desirable that the numerical methods can handle the dry/wet fronts efficiently.

However, the high order well-balanced finite difference WENO schemes for the shal-
low water equations have a drawback, which is the same as that of finite difference WENO
schemes for the Euler equations of gas dynamics, i.e., the computational cost is very ex-
pensive. The drawback is mainly due to the computation of nonlinear weights and the local
characteristic decomposition procedure.

In [11], Li and Qiu investigated a hybrid version of WENO schemes with high order up-
wind linear schemes (we call it hybrid WENO schemes) for the Euler equations. The main
idea of the schemes is to identify discontinuity by a discontinuity indicator, then reconstruct
the numerical flux by WENO approximation in discontinuous regions and by up-wind linear
approximation in smooth regions in which the local characteristic decompositions and the
nonlinear weights for part of the procedure are avoided, hence the hybrid scheme can reduce
the computational cost while still maintaining non-oscillatory properties for problems with
strong discontinuity. An important component of the hybrid scheme is the indicator to au-
tomatically identify where the discontinuity of the solution is. These indicators are mainly
based on the troubled-cell indicators for the discontinuous Galerkin (DG) finite element
methods, are also called limiters, which are listed in [13] by Qiu and Shu. Recently, Zhu and
Qiu used these limiters as troubled-cell indicators for adaptive RKDG methods in [25]. In
[11], by comparing different indicators for the one-dimensional Euler equations, we choose
four better indicators: troubled-cell indicator based on the average total variation of the solu-
tion (ATV), the minmod-based TVB limiter (TVB) [3], multi-resolution analysis of Harten
(MR) [7] and a shock-detection technique by Krivodonova et al. (KXRCF) [9]. They result
in less CPU time, smaller percentage of reconstruction of fluxes by WENO approximation
and more accurate numerical solutions. Subsequently, we apply the better indicators to the
two-dimensional case. Extensive numerical experiments of one- and two-dimensional Euler
equations suggest that the hybrid WENO schemes with discontinuity indicators can save the
computational cost considerably while maintaining the non-oscillatory property for general
solution with discontinuities and the sharp shock transition.

In this paper, we apply the hybrid WENO schemes for the shallow water equations with
source term due to the non-flat bottom topography in the hope of obtaining the same prop-
erties as those of the hybrid WENO schemes in [11]. Due to the page limitation, we only
consider the better indicators mentioned in [11]: ATV, TVB, MR and KXRCF.

The outline of this paper is as follows. In Sect. 2, we describe the hybrid well-balanced
finite difference WENO schemes with high order up-wind linear schemes. Extensive one-
and two-dimensional numerical examples are presented to demonstrate the validation of
this scheme, addressing the issues of efficiency (less CPU time and smaller percentage of
reconstruction of numerical fluxes by WENO approximation), non-oscillatory property in
Sect. 3, and concluding remarks are given in Sect. 4.
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2 Description of Hybrid Well-balanced WENO Schemes with High Order Up-wind
Linear Schemes

In this section, we present hybrid well-balanced finite difference WENO schemes with high
order up-wind linear schemes for the shallow water equations on non-flat bottom topogra-
phy.

2.1 A Review of Well-balanced WENO Schemes

In this subsection, we give a short overview of the well-balanced WENO schemes [20].
For simplicity, we take the one-dimensional case as an example. At first, as in [20], we

split the source term −ghbx into two terms ( 1
2gb2)x − g(h + b)bx . Therefore the original

equations (1.1) become

{
ht + (hu)x = 0,

(hu)t + (hu2 + 1
2gh2)x = ( 1

2 gb2)x − g(h + b)bx,
(2.1)

which can be denoted by

Ut + f (U)x = G1 + G2,

where U = (h,hu)T , f (U) = (hu,hu2 + 1
2gh2)T , G1 = (0, ( 1

2gb2)x)
T , G2 = (0,−g(h +

b)bx)
T . This special splitting in the source term of (2.1) is crucial for the design of the

well-balanced WENO schemes.
We consider a numerical scheme for (2.1). A scheme is called a linear scheme if all the

spatial derivatives are approximated by a linear finite difference operator. A linear finite
difference operator D is defined as that one can satisfy

D(αf1 + βf2) = αD(f1) + βD(f2) (2.2)

for any constants α,β and grid functions f1 and f2.
However, the WENO schemes are nonlinear. The nonlinearity comes from the nonlinear

weight, which in turn comes from the nonlinearity of the smoothness indicators. In order to
construct a linear scheme which can maintain the exact C-property even with the presence
of the nonlinearity of the nonlinear weight. Xing and Shu [20] adopted the following pro-
cedures, so that the exact C-property is maintained and accuracy and nonlinear stability are
not affected.

To present their basic ideas, we firstly considered the situation when the WENO scheme
is applied without the flux splitting and the local characteristic decomposition.

For the still water stationary solutions of (2.1), we have

h + b = constant and hu = 0. (2.3)

For any consistent linear scheme, the first equation (hu)x will not impose any difficulties.
The WENO approximation to dx with d = hu2 + 1

2gh2 can be eventually written as

dx |x=xj
≈

r+1∑
k=−r−1

akdj+k ≡ Dd(d)j . (2.4)
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For the approximation to ( 1
2 gb2)x and bx in the source term of (2.1), they use the finite

difference operator Dd where d = hu2 + 1
2gh2 is fixed, namely to use the same coefficients

ak obtained from the smoothness indicators of d = hu2 + 1
2 gh2. So

(
1

2
gb2

)
x

|x=xj
≈

r+1∑
k=−r−1

ak

(
1

2
gb2

)
j+k

≡ Dd

(
1

2
gb2

)
, (2.5)

bx |x=xj
≈

r+1∑
k=−r−1

akbj+k ≡ Dd(b)j . (2.6)

By the minor modifications, we observe that the finite difference operator Dd with the
coefficient ak based on the smoothness indicators of d = hu2 + 1

2 gh2 fixed is a linear finite
difference operator which satisfy (2.2). Thus the second equation has the truncation error

Dd

(
hu2 + 1

2
gh2

)
− Dd

(
1

2
gb2

)
+ g(h + b)Dd(b) = 0.

Proposition 2.1 Linear schemes for the shallow water equations (2.1) for the still water
stationary solutions (2.3) can maintain the exact C-property [20].

Moreover, the WENO schemes with flux splitting and local characteristic field decom-
position maintain the exact C-property, see [20] for more details. In addition, here the flux
splitting is taken a modification, i.e.,

f ±(U) = 1

2

[(
hu

hu2 + 1
2gh2

)
± αi

(
h + b

hu

)]
, (2.7)

where

αi = max
u

|λi(u)| (2.8)

with λi(u) being the ith eigenvalue of the Jacobian matrix f ′(U). This minor modification
is justified since b does not depend on the time t . Similar technique is used in the surface
gradient method of Zhou et al. [24].

The basic idea is to use the linear finite difference operator Dd in (2.4) with nonlinear
weights whose smoothness indicators obtained from f ±(U) in (2.7) fixed, and apply the
operator Dd to approximate (0, 1

2gb2)T
x and (0, b)T

x in the source term. This amounts to split
the two derivatives in the source term as(

0
1
2gb2

)
x

= 1

2

(
0

1
2gb2

)
x

+ 1

2

(
0

1
2 gb2

)
x

,

(
0
b

)
x

= 1

2

(
0
b

)
x

+ 1

2

(
0
b

)
x

(2.9)

and apply the same flux splitting WENO procedure to approximate them i.e., one half part of
each source term is approximated by the linear finite difference operator Dd with coefficients
ak obtained from the computation of f +(U), and the remaining part by the linear finite
difference operator Dd with coefficients ak obtained from the computation of f −(U). We
refer to [20] for more details.

Remark 1 Especially, the well-balanced WENO schemes reduce to the original WENO
schemes [8, 16, 17], when the bottom topography is flat (b = 0), i.e., free of source term.
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Remark 2 For the two-dimensional case⎛
⎝ h

hu

hv

⎞
⎠

t

+
⎛
⎝ hu

hu2 + 1
2gh2

huv

⎞
⎠

x

+
⎛
⎝ hv

hvu

hv2 + 1
2gh2

⎞
⎠

y

=
⎛
⎝ 0

−ghbx

−ghby

⎞
⎠ , (2.10)

where u and v are the water velocity in x- and y-direction, respectively, the source term are
again split as for the one-dimensional case

−ghbx =
(

1

2
gb2

)
x

− g(h + b)bx,−ghby =
(

1

2
gb2

)
y

− g(h + b)by.

2.2 Description of the Discontinuity Indicators

In this subsection we give a brief review of the better discontinuity indicators which give
better performances than other indicators in [11].

For convenience of presentation of the discontinuity indicators, we construct a quadratic
polynomial on cell [xj−1/2, xj+1/2] at time step tn, denoted by P2(x):

P2(x) = u
(0)
j + u

(1)
j

x − xj

�x
+ u

(2)
j

[(
x − xj

�x

)2

− 1

12

]
, x ∈ [xj−1/2, xj+1/2],

such that

P2(xk) = un
k, k = j − 1, j, j + 1,

we have:

u
(0)
j = 1

24
(un

j−1 + 22un
j + un

j+1), u
(1)
j = 1

2
(un

j+1 − un
j−1), u

(2)
j = 1

2
(un

j−1 − 2un
j + un

j+1).

Now we describe different discontinuity indicators in detail:

1. Discontinuity indicator based on the average total variation of the solution. (ATV, we
will use the same abbreviation as in [13,25] for each indicator). Let T V denote the total
variation of the solution at time step tn,

T V ≡ T V (un) =
∑

j

|un
j+1 − un

j |.

If |un
j+1 − un

j | ≥ θ T V
N

, we declare that in cell [xj , xj+1] the solution has a discontinuity,
and cells Ij and Ij+1 are identified as troubled cells. Here N is the number of cells.
0 < θ < 1 a constant, is the ATV parameter. The choice of θ depends on the solution. It
is common in the literature to look at the variation of the solution in order to indicate the
presence of discontinuities at a particular location [4, 12]. Moreover this simple definition
of the discontinuity guarantees that both shock waves and contact discontinuities are
properly identified. But it is difficult to choose θ accurately, for θ is problem-dependent.
If θ is chosen too small, this will increase computational cost unnecessarily; however if
θ is chosen too large, spurious oscillations will appear.

2. The minmod-based TVB limiter [3] (TVB). Let

ũj = P2(xj+1/2) − u
(0)
j , ˜̃uj = −P2(xj−1/2) + u

(0)
j .
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These are modified by the modified minmod function

ũ
(mod)
j = m̃(ũj , u

(0)

j+1 − u
(0)
j , u

(0)
j − u

(0)

j−1),

˜̃u(mod)
j = m̃( ˜̃uj ,u

(0)

j+1 − u
(0)
j , u

(0)
j − u

(0)

j−1),
(2.11)

where m̃ is given by

m̃(a1, a2, . . . , an) =
{

a1 if |a1| ≤ M(�x)2,

m(a1, a2, . . . , an) otherwise,
(2.12)

and the minmod function m is given by

m(a1, a2, . . . , an) =
{

s · min1≤j≤n |aj | if sign(a1) = sign(a2) = · · · = sign(an) = s,

0 otherwise.
(2.13)

The TVB limiter parameter M > 0 is a constant.
If ũ

(mod)
j �= ũj or ˜̃u(mod)

j �= ˜̃uj , we declare the cell Ij as a discontinuous cell.
Unfortunately, the TVB limiter parameter M is dependent on the problem. There is

no automatic switch which works well for various situations. For scalar problems it is
possible to estimate M by the initial condition as in [3] (M is proportional to the second
derivative of the initial data at smooth extrema), however it is difficulty to estimate M

for system of equations. If M is chosen too small, more cells containing discontinuities
will be identified than necessary, therefore increasing computational cost; however if M

is chosen too large, spurious oscillations will appear.
3. Multi-resolution analysis of Harten [7] (MR). Given the point values {uj }N

0 of function
u(x). Let ũj denote the approximation to uj which is obtained from the unique polyno-
mial ũ(x) of degree one that interpolates u(x) at xj−1, xj+1,

ũj = ũ(xj ) = 1

2
(uj−1 + uj+1),

and let dj denote the corresponding approximation error:

dj = uj − ũj .

If u(x) at x = x̄ has p − 1 continuous derivatives and a jump discontinuity in its p-th
derivative as denoted by [·], then for xj near x̄

dj ≈
{

(�x)p[u(p)], p ≤ 2,

(�x)2u(2), p ≥ 2.
(2.14)

In this paper, if |dj | ≥ εMR�x, the cell Ij is identified as a discontinuous cell, here εMR

is a multi-resolution parameter.
4. A shock-detection technique by Krivodonova et al. [9] (KXRCF). Partition the boundary

of a cell Ij into two portions ∂I−
j and ∂I+

j , where the flow is into (	v · 	n < 0, 	n is the
normal vector to ∂Ij ) and out of (	v · 	n > 0) Ij , respectively. The cell Ij is identified as a
discontinuous cell, if

| ∫
∂I−

j
(uh|Ij − uh|Inj

)ds|

h
k+1

2
j |∂I−

j |‖uh|Ij ‖
> 1, (2.15)
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here hj is the radius of the circumscribed circle in the element Ij . Inj
is the neighbor of

Ij on the side of ∂I−
j and the norm is based on an element average in one-dimensional

case.

Remark 3 We summarize the relevant properties of the solution to the two-dimensional
shallow water equations? For detail, we refer to [18].

• The left and right waves for x-direction or the bottom and top waves for y-direction, are
either shock or rarefaction waves and the middle wave is always a shear wave.

• For x-direction, across the left and right waves both h and u change but v remains con-
stant; across the middle wave v changes discontinuously both h and u remain constant.
The property is similar for y-direction.

Consequently, for the one-dimensional shallow water equations, we use the water depth h

and the water velocity u at the same time as indicator variables to identify the discontinuities.
For the two-dimensional case, the discontinuity indicators work in x- and y-direction,

respectively, to identify the discontinuities. For the x-direction, we use the water depth h

and the water x-velocity u to identify the discontinuity, and for the y-direction, we apply
the water depth h and the water y-velocity to detect the discontinuities.

2.3 Algorithm of Hybrid Well-balanced WENO Schemes

The procedure of the (2r + 1)th-order well-balanced WENO schemes with the (2r + 1)th-
order up-wind linear schemes is then presented in the following.

Step 1. The discontinuity indicator is applied to identify troubled cell, namely the loca-
tions of discontinuity of the numerical solution, only once at the beginning of the Runge-
Kutta time discretization procedure.

Step 2. Reconstruction of the numerical flux based on either the (2r +1)th-order WENO
approximation in the discontinuous vicinage or the (2r + 1)th-order up-wind linear ap-
proximation in the smooth vicinage. The numerical fluxes f̂ +

j+1/2 and f̂ −
j−1/2 will be re-

constructed by WENO approximations in the stencils which contain a troubled cell identi-
fied in the Step 1. For example, let Ij0 to be a troubled cell, then there are (2r + 1) sten-
cils {xj0−r+l , . . . , xj0+r+l}, l = −r, . . . , r which contain a discontinuity, the numerical fluxes
f̂ +

j0+l+1/2 and f̂ −
j0+l−1/2, l = −r, . . . , r will be reconstructed by the (2r +1) order WENO ap-

proximation in these stencils. And the numerical fluxes f̂ +
j0+l+1/2 and f̂ −

j0+l−1/2, l = −r, . . . , r

will be reconstructed by the (2r + 1) order up-wind linear approximation in the sten-
cils which do not contain any troubled cells. Finally, we obtain the numerical fluxes
f̂j+1/2 = f̂ +

j+1/2 + f̂ −
j+1/2, in which f̂ +

j+1/2, f̂
−
j+1/2 are reconstructed by WENO approxima-

tion or up-wind linear approximation.
Step 3. The approximation to the derivatives in the source term is constructed with split-

ting (2.9) as the above procedure accordingly.

2.4 The Procedure for the Reconstruction of Numerical Flux

In this subsection we describe the reconstruction for the numerical flux by the WENO ap-
proximation and the high order up-wind linear approximation.

We start with the description for the one-dimensional case. Given grid points {xj }, we
define cell size, cell center and cell by �x = xj+1 − xj , xj+1/2 = xj + �x/2 and Ij =
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[xj−1/2, xj+1/2], respectively. For the shallow water equations on non-flat bottom topography
(2.1), we must obtain the numerical flux f̂j+1/2 to approximate f (U)x , so that

f (U)x |x=xj
≈ f̂j+1/2 − f̂j−1/2

�x
.

We take the reconstruction for the numerical flux of one-dimensional scalar conservation
laws as an example. The numerical flux f̂j+1/2 approximates hj+1/2 = h(xj+1/2) to a high
order accuracy with h(x) implicitly defined as in [8, 16]

f (u(x)) = 1

�x

∫ x+�x/2

x−�x/2
h(ξ)dξ. (2.16)

To take up-winding into account, we split a general flux into two parts either globally or
locally

f (u) = f +(u) + f −(u), (2.17)

where df +(u)/du ≥ 0 and df −(u)/du ≤ 0. For simplicity, we define

f ±(u) = 1

2
(f (u) ± αu), (2.18)

where α = maxu |f ′(u)| are the maximum is taken over the whole relevant range of u. This is
the global Lax-Friedrichs flux splitting. The numerical fluxes f̂ +

j+1/2 and f̂ −
j+1/2 are relative

to f +(u) and f −(u), respectively and will be reconstructed by either WENO approxima-
tion in the discontinuous regions or high order up-wind linear approximation in the smooth
regions. Then we have the numerical flux

f̂j+1/2 = f̂ +
j+1/2 + f̂ −

j+1/2.

We only present the procedure for the reconstruction of the numerical flux f̂ +
j+1/2. The

formulae for the negative part of the split flux are symmetric (with respect to xj+1/2) and
will not be presented.

The key idea of the WENO approximation is a convex combination of lower order fluxes
based on candidate stencils Sk = {xj+k−r , . . . , xj+k}, k = 0,1, . . . , r to obtain a higher order
approximation. The choice of the weight ωk to each candidate stencil, which is a nonlinear
function of the grid values, is crucial to the success of the WENO approximation. For more
discussions of the WENO approximation to f̂ +

j+1/2, we refer to [8, 16, 17].
For the high order up-wind linear approximation, we use all the r candidate stencils Sk =

{xj+k−r , . . . , xj+k}, k = 0,1, . . . , r , i.e., S = ⋃r

k=0 Sk , which contains (2r + 1) grid point
values of f +(u), to obtain a (2r + 1)th-order approximation to f̂ +

j+1/2 in smooth regions
such that

1

�x

∫
Ii

q2r+1
r (x)dx = f +

i , i = j − r, . . . , j + r,

and

f̂ +
j+1/2 = q2r+1

r (f +
j−r , . . . , f

+
j+r ) =

2r∑
l=0

blf
+
j+l−r , (2.19)
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where bl,0 ≤ l ≤ 2r are constant coefficients, for details, we refer to [16]. By simple algebra
operation, we get

f̂ +
j+1/2 = q2r+1

r (f +
j−r , . . . , f

+
j+r ) =

r∑
k=0

Cr
kq

r
k (f

+
j+k−r , . . . , f

+
j+k), (2.20)

where the coefficient Cr
k is the linear weight and in smooth regions ωk = Cr

k + O(�xr), k =
0,1, . . . , r . Thus Cr

k bear the name of optimal weight.
With the numerical flux f̂j+1/2 = f̂ +

j+1/2 + f̂ −
j+1/2 based on the WENO approximation

and the high order up-wind linear approximation, we can approximate

f (u)x |x=xj
≈ f̂j+1/2 − f̂j−1/2

�x
.

For the one-dimensional system of shallow water equations on non-flat bottom topogra-
phy (2.1), we can similarly approximate f (U)x |x=xj

with the modified flux splitting (2.7).
In addition, in order to achieve better qualities at the price of more complicated computa-
tions, the WENO approximation is always used with a local characteristic decomposition,
see [16] for details, while the up-wind linear approximation is used component by compo-
nent. Similarly, we can approximate the two derivatives in the source term (0, 1

2gb2)T
x and

(0, b)T
x with splitting (2.9) as the procedure for the approximation to f (U)x .

Now, we consider that whether the hybrid well-balanced WENO scheme can maintain
the exact C-property.

Firstly, in the discontinuous regions, the hybrid well-balanced WENO scheme is in fact
the well-balanced WENO scheme of Xing and Shu [20], so it can maintain the exact C-
property, we refer to [20] for further discussions.

Subsequently, we consider the hybrid well-balanced WENO scheme in the smooth re-
gions. Here the scheme is the component-wise up-wind linear scheme without local char-
acteristic decomposition. Now the flux f (U) is written as a sum of f +(U) and f −(U),
where f +(U) and f −(U) are the modified flux splitting in (2.7). For the still water sta-
tionary solution (2.3), by the consistency of the up-wind linear scheme, the effect of the

viscosity term ±αi

(
h+b

hu

)
towards the approximation to f (U)x is zero. So, it is clear that

(2.4) with d = (hu,hu2 + 1
2 gh2)T being a vector grid function can represent a flux splitting

up-wind linear approximation, with a simple splitting f ±(U) = 1
2 f (U), and ak being 2 × 2

matrices depending linearly on the constant coefficients of the (2r + 1)th-order fixed stencil
approximation to f ±(U). The key idea now is to use the difference operator Dd of (2.4) and
apply it to approximate (0, 1

2gb2)T
x and (0, b)T

x with the splitting in (2.9). We can prove the
component-wise up-wind linear scheme with flux splitting and with the special handling of
the source term described in (2.9) is a linear scheme, so it can maintain the exact C-property.

At last, we consider the hybrid well-balanced WENO scheme at the interface between
the smooth and the discontinuous regions. Without loss of generality, we assume that the
positive part and the negative part of the numerical flux f̂j+1/2 are from the component-
wise up-wind linear approximation and the WENO approximation with local characteristic
decomposition, respectively. We denote both the parts by f̂

+,uw
j+1/2 and f̂

−,WENO
j+1/2 , respectively.

At the same time we assume that the positive and the negative parts of the numerical flux
f̂j−1/2 are all from the component-wise up-wind linear approximation and denoted by f̂

+,uw
j−1/2

and f̂
−,uw
j−1/2, respectively.
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f̂
+,uw
j+1/2 can be written out in the following form

f̂
+,uw
j+1/2 =

r∑
k=−r

ckf
+
j+k

=
r∑

k=−r

ck

1

2
(fj+k + αUj+k)

= 1

2

r∑
k=−r

ckfj+k + 1

2

r∑
k=−r

ck(αUj+k), (2.21)

where f + = f +(U) is defined in (2.7) with U = (h + b,hu)T and f = f (U) = (hu,hu2 +
1
2gh2)T being vector grid functions, ck are 2 × 2 diagonal matrices depending linearly on
the constant coefficients of the (2r + 1)th-order fixed stencil approximation to f + on the
stencil {xj−r , . . . , xj+r}, and α is a 2 × 2 diagonal matrix involving αi in (2.8).

f̂
−,WENO
j+1/2 can be written out as follows

f̂
−,WENO
j+1/2 =

r+1∑
k=−r+1

akf
−
j+k

=
r+1∑

k=−r+1

ak

1

2
(fj+k − αUj+k)

= 1

2

r+1∑
k=−r+1

akfj+k − 1

2

r+1∑
k=−r+1

ak(αUj+k), (2.22)

where f − = f −(U) is defined in (2.7) with U = (h + b,hu)T and f = f (U) = (hu,hu2 +
1
2gh2)T being vector grid functions, ak are 2 × 2 matrices depending nonlinearly on the
smoothness indicators of f −, and α is also a 2 × 2 diagonal matrix involving αi in (2.8).

So we have

f̂
hybrid
j+1/2 = f̂

+,uw
j+1/2 + f̂

−,WENO
j+1/2 . (2.23)

Similarly, f̂
+,uw
j−1/2 has the following form

f̂
+,uw
j−1/2 =

r−1∑
k=−r−1

ĉkf
+
j+k

=
r−1∑

k=−r−1

ĉk

1

2
(fj+k + αUj+k)

= 1

2

r−1∑
k=−r−1

ĉkfj+k + 1

2

r−1∑
k=−r−1

ĉk(αUj+k), (2.24)

where f + = f +(U) is defined in (2.7) with U = (h + b,hu)T and f = f (U) = (hu,hu2 +
1
2gh2)T being vector grid functions, ĉk are 2 × 2 diagonal matrices depending linearly on
the constant coefficients of the (2r + 1)th-order fixed stencil approximation to f + on the
stencil {xj−r−1, . . . , xj+r−1}, and α is a 2 × 2 diagonal matrix involving αi in (2.8).
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f̂
−,uw
j−1/2 can be written out in the below form

f̂
−,uw
j−1/2 =

r∑
k=−r

ckf
−
j−k

=
r∑

k=−r

ck

1

2
(fj−k − αUj−k)

= 1

2

r∑
k=−r

ckfj−k − 1

2

r∑
k=−r

ck(αUj−k), (2.25)

where f − = f −(U) is defined in (2.7) with U = (h + b,hu)T and f = f (U) = (hu,hu2 +
1
2gh2)T being vector grid functions, ck are the same 2 × 2 matrices as in (2.21), and α is a
2 × 2 diagonal matrix involving αi in (2.8).

Consequently, we can obtain

f̂ uw
j−1/2 = f̂

+,uw
j−1/2 + f̂

−,uw
j−1/2. (2.26)

With the formulae in (2.21), (2.22), (2.24) and (2.25), the approximation to f (U)x can
be written out as follows

f (U)x |x=xj
≈ 1

�x
(f̂

hybrid
j+1/2 − f̂ uw

j−1/2)

= 1

�x

[(
1

2

r∑
k=−r

ckfj+k + 1

2

r∑
k=−r

ck(αUj+k) + 1

2

r+1∑
k=−r+1

akfj+k

− 1

2

r+1∑
k=−r+1

ak(αUj+k)

)

−
(

1

2

r−1∑
k=−r−1

ĉkfj+k + 1

2

r−1∑
k=−r−1

ĉk(αUj+k) + 1

2

r∑
k=−r

ckfj−k

− 1

2

r∑
k=−r

ck(αUj−k)

)]

= 1

2�x

(
r∑

k=−r

ckfj+k −
r−1∑

k=−r−1

ĉkfj+k

)
+ 1

2�x

(
r+1∑

k=−r+1

akfj+k −
r∑

k=−r

ckfj−k

)

+ 1

2�x

(
r∑

k=−r

ck(αUj+k) −
r−1∑

k=−r−1

ĉk(αUj+k)

)

+ 1

2�x

(
r∑

k=−r

ck(αUj−k) −
r+1∑

k=−r+1

ak(αUj+k)

)
. (2.27)

It should be noted that with ±αU = ±α
(

h+b

hu

)
instead of the original ±α

(
h

hu

)
in the

flux splitting (2.7), the former becomes a constant vector for the still water stationary so-
lutions (2.3). By U we denote Uj+k with an abuse of notation. So αUj+k = αU is also a
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constant vector. Consequently

1

2�x

(
r∑

k=−r

ck(αUj+k) −
r−1∑

k=−r−1

ĉk(αUj+k)

)

= 1

2�x

(
r∑

k=−r

ck(αU) −
r−1∑

k=−r−1

ĉk(αU)

)

= 1

2�x

[(
r∑

k=−r

ck

)
(αU) −

(
r−1∑

k=−r−1

ĉk

)
(αU)

]

= 1

2�x

[
I · (αU) − I · (αU)

]
= 0, (2.28)

where I is a 2 × 2 identity matrix, the equivalents
∑r

k=−r ck = I and
∑r−1

k=−r−1 ĉk = I are
due to the consistency of the up-wind linear approximation for the still water stationary
solutions (2.3). By the consistency of the up-wind linear approximation and the WENO
approximation for the still water stationary solutions (2.3), and with the similar procedure
as above, we can obtain

1

2�x

(
r∑

k=−r

ck(αUj−k) −
r+1∑

k=−r+1

ak(αUj+k)

)
= 0. (2.29)

Consequently, the hybrid approximation to f (U)x in (2.27) can be eventually written out
as

f (U)x |x=xj
≈ 1

�x
(f̂

hybrid
j+1/2 − f̂ uw

j−1/2)

= 1

2�x

(
r∑

k=−r

ckfj+k −
r−1∑

k=−r−1

ĉkfj+k

)

+ 1

2�x

(
r+1∑

k=−r+1

akfj+k −
r∑

k=−r

ckfj−k

)

=
r+1∑

k=−r−1

βkfj+k

≡ Df (f )j , (2.30)

where βk are 2 × 2 matrices depending on the smoothness indicators involving f + and on
the constant coefficients of the (2r + 1)th-order fixed stencil approximation to f ±. The key
idea now is to use the finite difference operator Df and apply this finite difference operator
Df to approximate (0, 1

2 gb2)T
x and (0, b)T

x in the source term with the special handling (2.9).
A key observation is that the finite difference operator Df with the coefficient matrices βk

fixed is a linear finite difference operator on any grid function, i.e.,

Df (a1f1 + a2f2) = a1Df (f1) + a2Df (f2)
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for constants a1, a2 and any grid functions f1, f2. Thus the proof of Proposition 2.1 will
go through and we can prove that the hybrid well-balanced WENO schemes with the mod-
ified flux splitting (2.7) and with the special handling of the source term described in (2.9),
maintain the exact C-property.

For the other cases of the hybrid well-balanced WENO schemes, we can prove the exact
C-property with the similar procedure described above.

In summary, the hybrid well-balanced WENO schemes can maintain the exact C-property
for the still water stationary solution (2.3).

Remark 4 For two-dimensional cases, the reconstruction of fluxes is based on dimension by
dimension fashion.

3 Numerical Results

In this section we carry out extensive numerical experiments on one- and two-dimensional
shallow water equations to demonstrate the performances of the hybrid well-balanced
WENO schemes with the discontinuity indicators. Comparisons are concentrated mainly
on the CPU time and on the percentage of reconstruction of fluxes by WENO approxima-
tion. We have checked the numerical accuracy for the hybrid schemes, we can see numerical
accuracy of the four hybrid schemes is similar to that of WENO scheme as we expect, but
for save space, we do not show the accuracy test results in the paper. Because the numerical
results are not sensitive to the indicator parameters, so we apply the uniform parameters, i.e.,
θ = 0.9, M = 0.01 and εMR = 0.1, respectively, in all the computations. In all the numerical
examples, time discretization is by the classical forth order Runge-Kutta method [15], and
the CFL number is taken as 0.6. The gravitational constant g is taken as 9.812. In all the
figures, “©” represents where the flux is reconstructed by WENO approximation.

3.1 Test for the Exact C-property

We test the exact C-property of the hybrid well-balanced WENO schemes. We choose two
different bottom topographies on domain [0,10]. The first bottom topography is smooth

b(x) = 5e− 2
5 (x−5)2

, (3.1)

and the second bottom topography is discontinuous

b(x) =
{

4 if 4 ≤ x ≤ 8,

0 otherwise.
(3.2)

The initial data are the still water stationary solutions

h + b = 10 and hu = 0.

This still water stationary solutions should be exactly preserved. We solve the solution up
to t = 0.5. CPU time comparison among the original well-balanced WENO schemes and
the hybrid well-balanced WENO schemes for the two different bottom topographies are
given in Tables 1 and 2, respectively. From the tables, we can clearly observe that the hy-
brid well-balanced WENO schemes can save computational cost by 60–70% compared with
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Table 1 Test for the exact C-property on smooth bottom topography (3.1), t = 0.5. The total CPU time of
6 runs with n = 50 ∗ i (i = 1, . . . ,6) cells, and the ratios of the total CPU time by the 3rd-, 5th-, 7th- and
9th-order hybrid well-balanced WENO schemes over that of the same order original well-balanced WENO
schemes

Scheme or 3rd-order 5th-order 7th-order 9th-order

indicators CPU Ratio CPU Ratio CPU Ratio CPU Ratio

WENO 5.19 1.00 5.30 1.00 9.20 1.00 17.22 1.00

ATV 1.98 0.38 1.98 0.37 3.23 0.35 5.61 0.33

TVB 1.08 0.21 1.08 0.20 1.36 0.15 1.77 0.10

MR 1.59 0.31 1.63 0.31 2.59 0.28 4.25 0.25

KXRCF 0.89 0.17 0.94 0.18 1.03 0.11 1.03 0.06

Table 2 Test for the exact C-property on smooth bottom topography (3.2), t = 0.5. The total CPU time of
6 runs with n = 50 ∗ i (i = 1, . . . ,6) cells, and the ratios of the total CPU time by the 3rd-, 5th-, 7th- and
9th-order hybrid well-balanced WENO schemes over that of the same order original well-balanced WENO
schemes

Scheme or 3rd-order 5th-order 7th-order 9th-order

indicators CPU Ratio CPU Ratio CPU Ratio CPU Ratio

WENO 5.20 1.00 5.20 1.00 9.02 1.00 17.20 1.00

ATV 1.06 0.20 1.09 0.21 1.55 0.17 2.30 0.13

TVB 1.13 0.22 1.17 0.23 1.64 0.18 2.48 0.14

MR 1.02 0.20 1.05 0.20 1.63 0.28 2.44 0.14

KXRCF 1.27 0.24 1.30 0.25 1.83 0.20 2.70 0.16

the same order original well-balanced WENO schemes. In order to show that the exact C-
property is maintained even with round off error, we use single, double and quadruple pre-
cision to carry out the computation, and present the L1 error for the water depth and the
water discharge and the percentage of reconstruction of fluxes by WENO approximation by
the 3rd-, 5th-, 7th- and 9th-order hybrid well-balanced WENO schemes using n = 50 ∗ i

(i = 1, . . . ,6) cells for the two different bottom topographies in Figs. 1 and 2, respectively.
We can clearly see that the L1 error of the hybrid well-balanced WENO schemes is at the
level of round off error for different precisions, verifying the expected exact C-property. In
order to save space, in this paper we do not show the L∞ errors which are similar to L1

errors.

3.2 1-Rarefaction and 2-Shock Problem

We first consider a test case of one-dimensional shallow water equations (2.1) on a step
bottom [1]. The computational domain is [−10,10]. The bottom topography has a step

b(x) =
{

0 if x ≤ 0,

1 otherwise,
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Fig. 1 Test for the exact C-property on smooth bottom topography (3.1), t = 0.5. L1 error of water depth
(left), L1 error of water discharge (middle), percentage of reconstruction of fluxes by WENO approximation
(right). From top to bottom: 3rd-, 5th-, 7th- and 9th-order schemes. “S”, “D” and “Q” represent Single,
Double and Quadruple precision, respectively

the initial data are as follows

h(x,0) =
{

4 if x ≤ 0,

1 otherwise,
and u(x,0) = 0.

This test case produces a 1-rarefaction spreading to the left and a 2-shock traveling right.
In Table 3, we document the CPU time and the percentages of reconstruction of fluxes by
WENO approximation. From Table 3, we can observe that the hybrid schemes can save com-
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Fig. 2 Test for the exact C-property on discontinuous bottom topography (3.2), t = 0.5. L1 error of water
depth (left), L1 error of water discharge (middle), percentage of reconstruction of fluxes by WENO approxi-
mation (right). From top to bottom: 3rd-, 5th-, 7th and 9th-order schemes. “S”, “D” and “Q” represent Single,
Double and Quadruple precision, respectively

putational cost by 50–60% and only about 30% reconstruction of fluxes are approximated
by WENO approximation. We can also observe that the percentages of reconstruction of
fluxes by WENO approximation decrease with mesh refinement in most cases, which is
a very desirable property for the troubled-cell indicators. For all the indicators, we show
the water surface level h + b, the water discharge hu at t = 1 against the exact solution
and time history of reconstruction of fluxes by WENO approximation in Fig. 3. We can
clearly observe that the numerical results for all cases keep sharp discontinuity transition
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Table 3 1-rarefaction and 2-shock problem. Comparison on CPU time and percentage of reconstruction of
fluxes by WENO approximation among original well-balanced WENO and hybrid well-balanced WENO
schemes

N Scheme or 3rd-order 5th-order 7th-order 9th-order

indicators CPU Percent CPU Percent CPU Percent CPU Percent

50 WENO 0.06 100.00 0.06 100.00 0.11 100.00 0.16 100.00

ATV 0.05 48.77 0.05 47.18 0.06 46.22 0.09 55.50

TVB 0.05 49.14 0.06 54.17 0.08 52.72 0.09 59.77

MR 0.03 45.34 0.05 49.39 0.09 73.95 0.14 62.83

KXRCF 0.05 55.21 0.05 62.75 0.08 49.19 0.09 56.80

100 WENO 0.20 100.00 0.23 100.00 0.39 100.00 0.56 100.00

ATV 0.11 33.18 0.11 31.42 0.17 31.22 0.28 40.06

TVB 0.09 34.67 0.13 39.27 0.19 40.33 0.29 45.19

MR 0.08 34.59 0.13 37.14 0.25 53.77 0.41 64.78

KXRCF 0.13 41.71 0.14 40.05 0.20 40.47 0.28 44.05

200 WENO 0.80 100.00 0.89 100.00 1.50 100.00 2.25 100.00

ATV 0.25 22.49 0.27 20.61 0.44 21.18 0.86 33.47

TVB 0.27 21.57 0.33 25.86 0.63 32.49 0.92 35.55

MR 0.25 24.45 0.31 25.09 0.59 30.04 0.95 37.16

KXRCF 0.28 24.08 0.34 27.57 0.61 31.91 0.95 36.12

and are mostly oscillation-free. In order to save space, in this paper we do not show the
results by the 3rd-, 7th- and 9th-order schemes which are similar to those by the 5th-order
scheme.

3.3 1-Shock and 2-Shock Problem

The second test case is also on a step bottom [1]. The computational domain is [−10,10].
The bottom topography is as follows

b(x) =
{

0 if x ≤ 0,

1 otherwise,

the initial data are given by

h(x,0) =
{

4 if x ≤ 0,

1 otherwise,
and u(x,0) =

{
5 if x ≤ 0,

−0.9 otherwise.

This test case produces two shocks: the first one moving to the left and the second one
to the right. In Table 4, we document the CPU time and the percentages of reconstruction
of fluxes by WENO approximation between the 3rd-, 7th-, 5th- and 9th-order original well-
balanced WENO schemes and the hybrid well-balanced WENO schemes. From the Table 4,
we can observe that the hybrid schemes can save the computational cost by 55–75% and
only about 35% reconstruction of fluxes are approximated by WENO approximation. It is
clear that the percentages of reconstruction of fluxes by WENO approximation decrease
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Fig. 3 1-rarefaction and 2-shock problem by the 5th-order scheme with different indicators, t = 1. From left
to right: water surface level h+ b, water discharge hu and time history of reconstruction of fluxes by WENO
approximation

with mesh refinement in most cases, which is a very desirable property for the troubled-
cell indicators. For all the indicators, we show the water surface level, the water discharge
at t = 1 against the exact solution and time history of reconstruction of fluxes by WENO
approximation in Fig. 4. It is evident that the numerical results for all cases have a good
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Table 4 1-shock and 2-shock problem. Comparison on CPU time and percentage of reconstruction of fluxes
by WENO approximation among original well-balanced WENO and hybrid well-balanced WENO schemes

N Scheme or 3rd-order 5th-order 7th-order 9th-order

indicators CPU Percent CPU Percent CPU Percent CPU Percent

50 WENO 0.09 100.00 0.11 100.00 0.16 100.00 0.25 100.00

ATV 0.05 33.03 0.06 31.41 0.08 42.23 0.13 46.95

TVB 0.06 52.41 0.06 50.75 0.09 52.60 0.14 55.24

MR 0.06 41.40 0.05 40.16 0.09 48.42 0.11 52.64

KXRCF 0.06 17.72 0.05 17.91 0.05 17.94 0.08 17.98

100 WENO 0.36 100.00 0.34 100.00 0.55 100.00 0.92 100.00

ATV 0.13 21.66 0.11 20.78 0.22 27.44 0.34 30.26

TVB 0.16 36.67 0.17 39.87 0.28 40.68 0.44 41.88

MR 0.11 29.11 0.16 29.71 0.25 35.49 0.41 40.46

KXRCF 0.13 9.84 0.15 11.42 0.16 12.68 0.17 13.29

200 WENO 1.23 100.00 1.30 100.00 2.14 100.00 3.77 100.00

ATV 0.34 13.37 0.34 12.32 0.58 17.91 0.97 20.59

TVB 0.45 23.26 0.53 33.04 0.91 33.69 1.39 34.29

MR 0.41 18.59 0.45 23.92 0.88 30.51 1.39 33.56

KXRCF 0.34 10.54 0.36 11.74 0.50 12.70 0.72 13.21

resolution and are mostly free of oscillations. Due to the space limitation, we only present
the numerical results of the 5th-order schemes.

3.4 A Small Perturbation of a Steady-state Water

The following quasi-stationary test was proposed by LeVeque [10]. It was chosen to demon-
strate the capability of the hybrid well-balanced WENO scheme for the computation on a
rapidly varying flow over a smooth bottom, and the perturbation of a stationary state. The
bottom topography consists of a bump

b(x) =
{

0.25(cos(10π(x − 1.5)) + 1) if 1.4 ≤ x ≤ 1.6,

0 otherwise,

the initial condition are given as

h(x,0) =
{

1 − b(x) + ε if 1.1 ≤ x ≤ 1.2,

1 − b(x) otherwise,
and u(x,0) = 0,

where ε is a non-zero perturbation constant. Two cases have been run: ε = 0.2 (big pulse)
and ε = 0.001 (small pulse).

We present the CPU time and the percentages of reconstruction of fluxes by WENO
approximation for the two cases in Tables 5 and 6, respectively. Table 5 of big pulse shows
that the hybrid schemes can save the computational cost by about 50% and only about 30–
50% reconstruction of fluxes are approximated by WENO approximation. Table 6 of small
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Fig. 4 1-shock and 2-shock problem by the 5th-order scheme with different indicators, 200 cells, t = 1.
From left to right: water surface level h + b, water discharge hu and time history of reconstruction of fluxes
by WENO approximation

pulse shows that the hybrid schemes can save the computational cost by about 45% and only
about 30% reconstruction of fluxes are approximated by WENO approximation. We can
observe that the percentages of reconstruction of fluxes by WENO approximation decrease
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Table 5 Small perturbation of a steady-state with a big pulse. Comparison on CPU time and percentage of
reconstruction of fluxes by WENO approximation among original well-balanced WENO and hybrid well-
balanced WENO schemes

N Scheme or 3rd-order 5th-order 7th-order 9th-order

indicators CPU Percent CPU Percent CPU Percent CPU Percent

50 WENO 0.08 100.00 0.11 100.00 0.13 100.00 0.16 100.00

ATV 0.03 52.63 0.05 54.13 0.08 58.35 0.11 63.81

TVB 0.05 72.30 0.05 73.50 0.08 74.93 0.13 76.47

MR 0.05 51.84 0.05 56.03 0.09 63.93 0.11 69.04

KXRCF 0.06 67.95 0.05 71.64 0.08 72.31 0.11 74.63

100 WENO 0.23 100.00 0.23 100.00 0.36 100.00 0.66 100.00

ATV 0.11 39.94 0.11 40.59 0.20 43.14 0.32 46.08

TVB 0.14 56.56 0.19 61.09 0.27 62.72 0.44 63.61

MR 0.08 37.00 0.11 40.55 0.20 43.89 0.33 46.82

KXRCF 0.13 49.19 0.12 65.56 0.23 55.57 0.38 57.59

200 WENO 0.88 100.00 0.95 100.00 1.44 100.00 2.42 100.00

ATV 0.34 31.91 0.39 32.00 0.59 33.30 0.97 34.79

TVB 0.42 41.02 0.52 45.68 0.75 46.78 1.34 51.22

MR 0.31 24.42 0.38 27.15 0.50 29.73 0.84 32.28

KXRCF 0.36 31.65 0.40 50.29 0.61 35.89 1.06 38.89

Table 6 Small perturbation of a steady-state with a small pulse. Comparison on CPU time and percentage
of reconstruction of fluxes by WENO approximation among original well-balanced WENO and hybrid well-
balanced WENO schemes

N Scheme or 3rd-order 5th-order 7th-order 9th-order

indicators CPU Percent CPU Percent CPU Percent CPU Percent

50 WENO 0.07 100.00 0.08 100.00 0.09 100.00 0.14 100.00

ATV 0.05 51.45 0.05 53.01 0.08 57.27 0.09 62.75

TVB 0.03 49.49 0.05 57.54 0.06 62.81 0.11 67.68

MR 0.03 25.22 0.03 41.18 0.06 51.99 0.09 59.77

KXRCF 0.05 61.39 0.05 66.40 0.06 69.57 0.11 71.40

100 WENO 0.20 100.00 0.22 100.00 0.34 100.00 0.59 100.00

ATV 0.11 38.97 0.12 39.23 0.16 42.08 0.31 44.66

TVB 0.11 39.27 0.13 45.72 0.19 47.88 0.28 50.26

MR 0.09 32.49 0.11 38.55 0.19 42.05 0.31 45.00

KXRCF 0.13 42.78 0.12 43.99 0.22 47.29 0.36 50.27

200 WENO 0.70 100.00 0.73 100.00 1.38 100.00 2.16 100.00

ATV 0.33 30.85 0.32 30.71 0.56 31.82 0.83 33.26

TVB 0.30 26.62 0.31 32.95 0.67 36.28 1.02 37.86

MR 0.32 30.18 0.33 31.08 0.58 32.30 0.91 33.82

KXRCF 0.31 30.19 0.31 32.59 0.64 34.13 0.95 35.86
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with mesh refinement in most cases, which is a very desirable property for troubled-cell
indicators. For all the indicators, we show the water surface level, the water discharge at
t = 0.2 against the reference solution and time history of reconstruction of fluxes by WENO
approximation in Fig. 5 (big pulse) and Fig. 6 (small pulse). In the water surface level and
the water discharge figures, the solid line is the reference solution computed by the 5th-order
finite difference WENO scheme using 3000 grid points. The numerical results are resolved
accurately, free of spurious numerical oscillations, and look very comparable to those found
in the other existing literature. In order to save space, in this paper we do not present the
results by the 3rd-, 7th- and 9th-order schemes which are similar to those by the 5th-order
scheme.

3.5 The Dam Break Problem over a Rectangular Bump

In this example, we simulate a dam break problem over a rectangular bump, which involves
a rapidly varying flow over a discontinuous bottom. The computational domain is [0,1500].
The bottom topography has the following form

b(x) =
{

8 if |x − 750| ≤ 1500/8,

0 otherwise,

the initial conditions are given by

h(x,0) =
{

20 − b(x) if x ≤ 750,

15 − b(x) otherwise,
and u(x,0) = 0.

In Table 7, we compare the CPU time and the percentages of reconstruction of fluxes
by WENO approximation between the original well-balanced WENO schemes and the hy-
brid well-balanced WENO schemes. Table 7 indicates that the hybrid schemes can save
the computational cost by about 80% and only about 20–30% reconstruction of fluxes are
approximated by WENO approximation. We can observe that the percentages of reconstruc-
tion of fluxes by WENO approximation decrease with mesh refinement in most cases. For
all the indicators, we show the water surface level, the water discharge at t = 15 against
the reference solution and time history of reconstruction of fluxes by WENO approximation
in Fig. 7. In the water surface level and the water discharge figures, the solid line is the
reference solution computed by the 5th-order finite difference WENO scheme using 3000
grid points. It is clear that the numerical results are resolved accurately and almost free of
oscillations. In order to save space, we only present the numerical results of the 5th-order
schemes, for the results by the 3rd-, 7th- and 9th-order schemes which are similar to those
by the 5th-order schemes.

3.6 A Small Perturbation of a Two-dimensional Steady-state Water

This is a classical example to show the capability of the proposed scheme for the perturbation
of the stationary state, given by LeVeque [10]. The PDEs are (2.10). We solve the system in
a rectangular domain [0,2] × [0,1]. The bottom topography is an isolated elliptical shaped
hump

b(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2
,
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Fig. 5 Small perturbation of a steady-state with a big pulse by the 5th-order scheme with different indicators,
200 cells, t = 0.2. From left to right: water surface level h + b, water discharge hu and time history of
reconstruction of fluxes by WENO approximation
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Fig. 6 Small perturbation of a steady-state with a small pulse by the 5th-order scheme with different indica-
tors, 200 cells, t = 0.2. From left to right: water surface level h + b, water discharge hu and time history of
reconstruction of fluxes by WENO approximation

Author's personal copy



552 J Sci Comput (2012) 51:527–559

Table 7 The dam break problem over a rectangular bump. Comparison on CPU time and percentage of
reconstruction of fluxes by WENO approximation among original well-balanced WENO and hybrid well-
balanced WENO schemes

N Scheme or 3rd-order 5th-order 7th-order 9th-order

indicators CPU Percent CPU Percent CPU Percent CPU Percent

50 WENO 0.04 100.00 0.05 100.00 0.06 100.00 0.07 100.00

ATV 0.02 40.42 0.03 43.89 0.04 47.66 0.05 51.28

TVB 0.01 31.57 0.02 35.59 0.03 39.82 0.04 42.34

MR 0.02 25.34 0.02 32.88 0.03 40.12 0.03 47.36

KXRCF 0.03 76.47 0.03 80.24 0.04 82.17 0.05 84.74

100 WENO 0.09 100.00 0.08 100.00 0.16 100.00 0.23 100.00

ATV 0.05 29.06 0.05 32.25 0.06 35.26 0.09 37.85

TVB 0.02 11.88 0.05 15.84 0.06 19.80 0.08 23.76

MR 0.03 15.23 0.03 23.27 0.07 27.99 0.09 31.98

KXRCF 0.05 42.42 0.06 50.88 0.09 48.48 0.18 70.98

200 WENO 0.34 100.00 0.36 100.00 0.58 100.00 0.89 100.00

ATV 0.09 19.45 0.11 20.98 0.19 33.30 0.28 25.67

TVB 0.08 6.08 0.09 8.45 0.11 46.78 0.16 13.91

MR 0.09 12.04 0.09 16.04 0.18 29.73 0.25 23.12

KXRCF 0.13 23.08 0.14 26.69 0.17 35.89 0.36 33.45

Fig. 7 The dam break problem over a rectangular bump by the 5th-order with different indicators, 500 cells,
t = 15. Water surface level h + b (top) and time history of reconstruction of fluxes by WENO approximation
(bottom). From left to right: ATV, TVB, MR and KXRCF

the initial conditions are given by

h(x, y,0) =
{

1 − b(x, y) + 0.01 if 0.05 ≤ x ≤ 0.15,

1 − b(x, y) otherwise,
and u(x, y,0) = v(x, y,0) = 0.
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Table 8 A small perturbation of
a two-dimensional steady-state
water, t = 0.24. Comparison on
CPU time and percentage of
reconstruction of fluxes by
WENO approximation among the
original well-balanced WENO
and the hybrid well-balanced
WENO schemes

Nx × Ny Scheme or 3rd-order 5th-order

indicators CPU Percent CPU Percent

150 × 75 WENO 5.95 100.00 9.84 100.00

ATV 2.07 8.52 2.13 8.36

TVB 2.31 7.84 2.57 10.68

MR 2.06 7.64 2.09 7.31

KXRCF 2.55 8.49 2.83 10.51

300 × 150 WENO 47.81 100.00 78.66 100.00

ATV 14.25 5.88 15.82 5.65

TVB 18.25 5.25 19.45 7.93

MR 15.47 6.14 16.21 5.97

KXRCF 19.81 4.41 20.57 6.46

600 × 300 WENO 408.07 100.00 637.23 100.00

ATV 103.79 3.05 131.20 3.40

TVB 112.14 4.25 161.91 5.91

MR 127.35 4.97 139.12 4.81

KXRCF 111.22 2.10 166.87 3.89

Table 9 A small perturbation of
a two-dimensional steady-state
water, t = 0.48. Comparison on
CPU time and percentage of
reconstruction of fluxes by
WENO approximation among the
original well-balanced WENO
and the hybrid well-balanced
WENO schemes

Nx × Ny Scheme or 3rd-order 5th-order

indicators CPU Percent CPU Percent

150 × 75 WENO 11.92 100.00 19.77 100.00

ATV 4.17 11.57 4.47 11.61

TVB 4.62 9.62 5.41 14.17

MR 4.09 6.85 4.24 8.58

KXRCF 5.05 7.64 5.87 13.93

300 × 150 WENO 95.65 100.00 156.47 100.00

ATV 31.42 8.00 32.95 7.96

TVB 33.66 6.24 39.75 10.55

MR 31.34 7.20 33.24 7.72

KXRCF 38.97 3.18 41.81 7.65

600 × 300 WENO 815.73 100.00 1274.02 100.00

ATV 253.64 5.18 270.07 4.98

TVB 298.85 4.71 328.71 7.90

MR 256.00 6.54 287.09 6.70

KXRCF 301.59 1.37 334.37 4.12

In Tables 8–9, we document the CPU time and the percentages of reconstruction of
fluxes by WENO approximation by the 3rd- and the 5th-order schemes at t = 0.24 and
t = 0.48, respectively. We can clearly see that the hybrid well-balanced WENO schemes
can save 60–75% computational cost compared with the original well-balanced WENO
schemes and only less 15% reconstruction of fluxes are approximated by WENO approxi-
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Fig. 8 A small perturbation of a two-dimensional steady-state water by the 5th-order schemes with differ-
ent indicators, 600 × 300 cells, t = 0.24. Contours of h + b (left) and reconstructions of fluxes by WENO
approximation at the last time step (right)

mation. It is desirable that smaller percentage of reconstruction of fluxes are approximated
by WENO approximation with finer meshes. To save space, we only show the contours
of the water surface level h + b and reconstructions of fluxes by WENO approximation
at the last time step on the most refined mesh with 600 × 300 uniform cells by the 5th-
order schemes at t = 0.24 and t = 0.48 in Figs. 8 and 9, respectively. Figures 8 and 9

Author's personal copy



J Sci Comput (2012) 51:527–559 555

Fig. 9 A small perturbation of a two-dimensional steady-state water by the 5th-order schemes with differ-
ent indicators, 600 × 300 cells, t = 0.48. Contours of h + b (left) and reconstructions of fluxes by WENO
approximation at the last time step (right)

display the right-going disturbance as it propagates past the hump. The numerical results
suggest that our schemes can resolve the complex small-scale features of the flow very
well.
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Table 10 Two-dimensional dam
break problem. Comparison on
CPU time and percentage of
reconstruction of fluxes by
WENO approximation among
original WENO and hybrid
WENO schemes

Nx × Ny Scheme or 3rd-order 5th-order

indicators CPU Percent CPU Percent

100 × 100 WENO 1.72 100.00 3.05 100.00

ATV 0.60 25.08 0.76 37.47

TVB 0.50 2.90 0.58 11.61

MR 0.46 1.65 0.52 5.69

KXRCF 0.54 3.07 0.67 6.03

200 × 200 WENO 22.63 100.00 39.66 100.00

ATV 7.35 8.00 9.16 29.31

TVB 4.50 6.24 5.04 10.55

MR 5.99 7.20 6.83 4.39

KXRCF 6.95 4.18 7.25 5.36

400 × 400 WENO 308.82 100.00 546.95 100.00

ATV 106.91 14.64 161.00 14.19

TVB 99.36 2.37 144.42 4.72

MR 92.40 2.34 138.48 3.68

KXRCF 103.12 2.13 147.28 4.15

3.7 Two-dimensional Dam Break Problem

This two-dimensional dam break problem is the one presented in [6]. The numerical example
deals with a partial failure of a dam. The objective of this test case is to study the capability
of the scheme. We consider the test case of a partial dam break on a flat bottom (b = 0)

and the computational domain is a square domain [0,200]× [0,200], where the water flows
from left to right through a breach located at x = 100, between y = 95 and y = 170. The
initial water depth and velocity are as follows

h(x, y,0) =
{

10 if x ≤ 100,

5 otherwise,
and u(x, y,0) = v(x, y,0) = 0.

The boundary conditions at x = 0 and x = 200 are assumed to be transmissive and all
the others are imposed with reflective boundary conditions. We solve this problem up to
t = 7.2.

In Table 10, we document the CPU time and the percentages of reconstruction of fluxes
by WENO approximation. We can obviously observe that the hybrid well-balanced WENO
schemes can save 65–75% computational cost compared with the original well-balanced
WENO schemes and only less 40% reconstruction of fluxes are approximated by WENO
approximation. It is evident that the smaller percentage of reconstruction of fluxes are ap-
proximated by WENO approximation with the finer meshes as we expect. To save space, we
only show the numerical results on the most refined mesh with 400 × 400 uniform cells by
the 5th-order scheme at t = 0.72 in Fig. 10. The numerical results indicate that the schemes
provide a very high resolution of both the circular shock wave and the vortices formed on the
breach. Reconstructions of fluxes by WENO approximation at the last time step are shown
in Fig. 11.
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Fig. 10 Two-dimensional dam break problem by hybrid well-balanced WENO schemes with different indi-
cators, 400 × 400 cells, t = 7.2. Water depth contours

4 Concluding Remarks

In this paper, we continue studying the hybridization of the WENO schemes with the high
order up-wind linear schemes in [11] to solve the shallow water equations on non-flat bottom
topography. Extensive numerical results of one- and two-dimensional cases indicate that the
hybrid well-balanced WENO schemes have the following properties: good capturing of the
strong discontinuities, high resolution, essentially non-oscillatory and sharp shock transition
and saving computational cost.
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Fig. 11 Two-dimensional dam break problem by hybrid well-balanced WENO schemes with different indi-
cators, 400 × 400 cells, t = 7.2. Reconstructions of fluxes by WENO approximation at the last time step
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