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Abstract In {J. Comput. Phys. 229 (2010) 8105-8129}, we studied hybrid weighted
essentially non-oscillatory (WENO) schemes with different indicators for hyper-
bolic conservation laws on uniform grids for Cartesian domains. In this paper, we
extend the schemes to solve two-dimensional systems of hyperbolic conservation
laws on curvilinear grids for non-Cartesian domains. Our goal is to obtain sim-
ilar advantageous properties as those of the hybrid WENO schemes on uniform
grids for Cartesian domains. Extensive numerical results strongly support that the
hybrid WENO schemes with discontinuity indicators on curvilinear grids can also
save considerably on computational cost in contrast to the pure WENO schemes.
They also maintain the essentially non-oscillatory property for general solutions with
discontinuities and keep the sharp shock transition.
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748 G. Li, J. Qiu

1 Introduction

In this paper, we extend the hybrid weighted essentially non-oscillatory (WENO)
scheme with different indicators, which were originally investigated by Li and
Qiu [11] for Euler equations of gas dynamics, to efficiently solve two-dimensional
systems of hyperbolic conservation laws on non-Cartesian domains{

ut +∇ · f (u) = 0,
u(x, 0) = u0(x).

(1.1)

The key idea of finite difference WENO schemes is a nonlinear combination of
lower order approximations to fluxes in order to obtain a high order approximation.
The choice of weights distributed to each candidate stencil, which is a nonlinear
function of grid values, is crucial for the success of WENO schemes. For hyper-
bolic systems, WENO schemes are based on local characteristic decompositions and
flux splitting in order to get better numerical solutions, but with additional compu-
tational cost. Both procedures are key elements of WENO schemes. However, the
computational cost for using nonlinear weights and a local characteristic decompo-
sition is high. It should be mentioned that when the number of equations and spatial
dimension are increased, the growth of the computational cost is considerable. In
[11], we only considered hybrid WENO schemes on uniform grids for Cartesian
domains. It is well known that if only uniform grids are used for non-Cartesian
domains, the numerical results are unsatisfactory. Therefore, it is desirable to develop
efficient WENO schemes for non-Cartesian domains, which can keep original prop-
erties (e.g., the essentially non-oscillatory property near discontinuities and the sharp
shock transition) and more importantly obtain higher computational efficiency than
the original schemes. There have been a few attempts to overcome this drawback in
the one-dimensional case [3, 6, 15].

To attempt to circumvent the shortcomings of WENO scheme, the hybrid point
of view is noteworthy. In [11], Li and Qiu presented a hybrid version of WENO
schemes with high order upwind linear schemes for Euler equations of gas dynamics.
The main idea of the scheme is to identify discontinuities by a given indicator, recon-
struct the numerical flux by a WENO reconstruction in discontinuous regions and by
a upwind linear reconstruction in smooth regions where local characteristic decom-
positions and nonlinear weights for part of the procedure are avoided. Compared
with other hybrid schemes in [3, 6, 15], ours is more straightforward due to the close
relation between the WENO reconstruction and the upwind linear reconstruction.

As mentioned above, an important ingredient of hybrid schemes is an indicator to
automatically identify the location of a discontinuity in the solution. The indicators
in [11] are mainly based on the troubled cell (a cell that contains a discontinuity)
indicators, also called limiters for discontinuous Galerkin (DG) finite element meth-
ods. These have been investigated by Qiu and Shu [16]. Recently, Zhu and Qiu [25]
took these limiters as troubled cell indicators for adaptive Runge-Kutta discontinuous
Galerkin (RKDG) methods. In [11], we used the troubled cell indicators as discon-
tinuity indicators in order to identify discontinuities of the solution. By comparing
different indicators for one-dimensional Euler equations, we choose four better indi-
cators: a troubled cell indicator based on the average total variation of the solution
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Hybrid WENO schemes with different indicators on curvilinear grids 749

(ATV), the minmod-based TVB limiter (TVB) [2], the multi-resolution analysis of
Harten (MR) [5] and the shock-detection technique by Krivodonova et al. (KXRCF)
[8]. Hybrid WENO schemes with the above four discontinuity indicators result in
less CPU time, smaller percentages of reconstruction of the fluxes using WENO
reconstruction.

Furthermore, by virtue of the aforementioned four indicators in [11], Li et al. [10]
also investigated shallow water equations with source terms due to a non-flat bottom
topography and designed hybrid well-balanced WENO schemes, in which rigorous
theoretical analysis as well as extensive numerical results all indicate that the result-
ing schemes can maintain the exact conservation property (exact C-property) [1].
This is crucial for hyperbolic balance laws [14], in particular to gain higher efficiency
than the original well-balanced WENO schemes as reported in [24].

In this paper, we apply hybrid WENO schemes for two-dimensional systems of
hyperbolic conservation laws on non-Cartesian domains in the hope of obtaining sim-
ilar advantageous properties as those of hybrid WENO schemes in [10, 11]. Due to
the page limitation, we only consider the better indicators mentioned in [11], namely
ATV, TVB, MR and KXRCF.

The outline of this paper is as follows: in Section 2, we present formulations of
governing equations in the framework of a general coordinate system; in Section 3,
we describe the hybrid WENO scheme with high order upwind linear scheme; exten-
sive two-dimensional numerical examples are tested to demonstrate performance of
the current scheme in addressing issues of the computational efficiency (less CPU
time and smaller percentages of reconstruction of the numerical fluxes using the
WENO reconstruction) and the non-oscillatory property in Section 4; concluding
remarks are given in Section 5.

2 Governing equations in a general coordinate system

It is important to note that high order (third and higher order) finite difference
WENO schemes can be applied only to uniform or smoothly varying grids (e.g.,
curvilinear grids) [17, 18]. In general, when dealing with non-Cartesian domains,
the most well-known approach is based on transforming non-Cartesian domains in
physical spaces to Cartesian domains in computational spaces [22]. Subsequently,
the mapped Cartesian domains in the computational space are discretized by uniform
grids. Meanwhile, the partial differential equations (PDEs) in the physical space in
terms of a Cartesian coordinate system is transformed into a computational space in
a general coordinate system.

Using a coordinate transformation between a Cartesian coordinate system and a
general coordinate system {

ξ = ξ(x, y)

η = η(x, y),

the governing equations of two-dimensional systems of hyperbolic conservation laws
in the physical space in a Cartesian coordinate system (x, y)

Ut + F(U)x +G(U)y = 0, (2.1)
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750 G. Li, J. Qiu

can be transformed into the computational space in a general coordinate system
(ξ, η) as

Ût + F̂ξ + Ĝη = 0. (2.2)

In order to keep the resulting schemes conservative, the governing equations in the
computational space using a general coordinate system must be written primarily into
a conservative form as the original governing equations in the physical space. Then
the conservative variable and fluxes have the following forms

Û = 1

J
U, F̂ = 1

J
[ξxF + ξyG], Ĝ = 1

J
[ηxF + ηyG], (2.3)

with

J = 1

det(B)
and B =

[
xξ xη
yξ yη

]
.

First, we treat the governing equations in the computational space using hybrid
WENO schemes with the better indicators in [11], then we recover the numerical
results in the physical space using an inverse coordinate transformation.

3 Hybrid WENO schemes with high order upwind linear schemes

In this section, we present the details of the procedure for implementing hybrid
schemes of WENO schemes with high order upwind linear schemes. For simplicity,
we consider the above procedures in the physical space using a Cartesian coordinate
system (x, y). The procedure in the computational space using a general coordinate
system (ξ, η) is similar to that in the physical space.

First, we use the one-dimensional scalar hyperbolic conservation law as an
example {

ut + f (u)x = 0,
u(x, 0) = u0(x).

(3.4)

For simplicity, we assume that grid points {xj } are uniform with �x = xj+1 − xj ,
xj+1/2 = xj +�x/2 and denote cells by Ij = [xj−1/2, xj+1/2], j = 1, 2, · · ·N . The
semidiscrete conservative high order finite difference scheme for Eq. 3.4 is given by

duj (t)

dt
= − 1

�x
(f̂j+1/2 − f̂j−1/2), (3.5)

where uj (t) is the numerical approximation to the point value u(xj , t), and numerical
fluxes f̂j+1/2 approximate hj+1/2 = h(xj+1/2) to a high order accuracy with h(x)

implicitly defined as in [7]

f (u(x)) = 1

�x

∫ x+�x/2

x−�x/2
h(ξ)dξ. (3.6)

Using upwinding for stability, we split a general flux into two parts either globally
or locally

f (u) = f+(u)+ f−(u), (3.7)
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with df+(u)/du ≥ 0 and df−(u)/du ≤ 0. For simplicity, we define

f±(u) = 1

2
(f (u)± αu), (3.8)

where α = max
u

|f ′(u)| and the maximum is taken over the whole relevant range of

u. This is the global Lax-Friedrichs flux splitting. The numerical fluxes f̂+
j+1/2 and

f̂−
j+1/2 are related to f+(u) and f−(u), respectively, and will be reconstructed using

either a WENO reconstruction in the discontinuous vicinity or a high order upwind
linear reconstruction in smooth regions. The details of the reconstructed numerical
fluxes f̂j+1/2 will be presented in subsection (3.2). Finally, we obtain the numerical
fluxes

f̂j+1/2 = f̂+
j+1/2 + f̂−

j+1/2,

and the semidiscrete scheme (3.5) written as an ordinary differential equation (ODE)
system

ut = L(u). (3.9)

The ODE system is discretized in time by a total variation diminishing (TVD) Runge-
Kutta method [19, 20]. For example the third order Runge-Kutta method is given
by

u(1) = un +�tL(un),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)), (3.10)

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)).

3.1 Algorithm for the hybrid WENO scheme

The procedure of (2r + 1)-th order hybrid WENO schemes with (2r + 1)-th order
upwind linear scheme is then described as follows using a given indicator.

Step 1. The troubled cell indicator is applied to identify locations of discontinuities
of the numerical solution only once, at the beginning of the Runge-Kutta
time discretization procedure.

Step 2. Reconstruction of the numerical fluxes is based on either the (2r + 1)-th
order WENO reconstruction in the discontinuous vicinity or the (2r+1)-th
order upwind linear reconstruction in the smooth vicinity. The numerical
fluxes f̂+

j+1/2 and f̂−
j−1/2 will be reconstructed using WENO reconstruc-

tion in stencils which contain a troubled cell identified in Step 1. For
example, let Ij0 be a troubled cell, then there are (2r + 1) stencils
{xj0−r+l , . . . , xj0+r+l}, l = −r, · · · , r which contain a discontinuity. The
numerical fluxes f̂+

j0+l+1/2 and f̂−
j0+l−1/2, l = −r, · · · , r will be recon-

structed using the (2r+1)-th order WENO reconstruction in these stencils.
The numerical fluxes f̂+

j+l+1/2 and f̂−
j+l−1/2 will be reconstructed using

the (2r + 1)-th order upwind linear reconstruction in the stencils which
do not contain any troubled cells. Finally, we obtain the numerical fluxes
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752 G. Li, J. Qiu

f̂j+1/2 = f̂+
j+1/2 + f̂−

j+1/2 in Eq. 3.5. With the numerical fluxes available,
we obtain the semidiscrete scheme (3.5) or (3.9) in a concise form.

Step 3. Finally, march the next time step using a third order Runge-Kutta method
(3.10).

3.2 Reconstruction of numerical fluxes

In this subsection, we present procedures for the reconstruction of the numerical
fluxes f̂+

j+1/2 using the (2r + 1)-th order WENO reconstruction or the (2r + 1)-th
order upwind linear reconstruction.

In the WENO reconstruction procedure, f̂+
j+1/2 is expressed as in [7]

f̂+
j+1/2 =

r∑
k=0

ωkq
r
k

(
f+
j+k−r , . . . , f

+
j+k

)
, (3.11)

where ωk are nonlinear weights, f+
i = f+(ui), i = j − r, . . . , j + r, and

qrk (g0, . . . , gr ) =
r∑

l=0

ark,lgl (3.12)

is a (r + 1) order approximation to f̂+
j+1/2 on the k-th stencil Sk =

(xj+k−r , . . . , xj+k), k = 0, 1, . . . , r , and ark,l, 0 ≤ k, l ≤ r, are constant
coefficients, see [17] for details.

The nonlinear weights ωk in Eq. 3.11 satisfy

ωk ≥ 0 and
r∑

k=0

ωk = 1,

and are designed to yield (2r + 1)-th order accuracy in regions where the solution is
smooth. In [7, 17] the nonlinear weights ωk are formulated as

ωk = αk
r∑

l=0
αl

with αk = Cr
k

(ε + ISk)2 , k = 0, 1, . . . , r, (3.13)

where Cr
k are linear weights, see [17]. ISk are smoothness indicators of f+(u) on

stencils Sk, k = 0, 1, . . . , r , and ε is a small constant used here to avoid the denomi-
nator becoming zero. We take ε = 10−6 in all test cases in this paper. We employ the
smoothness indicators proposed in [7, 17]

ISk =
r∑

l=1

∫ xj+1/2

xj−1/2

(�x)2l−1
(
q
(l)
k (x)

)2
dx,

where qk(x) is the reconstruction polynomial of f+(u) on the stencil Sk such that

1

�x

∫
Ii

qk(x)dx = f+
i , i = j + k − r, . . . , j + k,

and q
(l)
k is the l-th derivative of qk(x).
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For the high order upwind linear reconstruction, we use all the r candidate stencils,

i.e., S =
r⋃

k=0
Sk, which contains all (2r + 1) grid point values of f+(u), to obtain a

(2r + 1)-th order approximation to f̂+
j+1/2 in smooth parts such that

1

�x

∫
Ii

q2r+1
r (x)dx = f+

i , i = j − r, . . . , j + r,

and

f̂+
j+1/2 = q2r+1

r

(
f+
j−r , . . . , f

+
j+r

)
=

2r∑
l=0

blf
+
j+l−r , (3.14)

where bl, 0 ≤ l ≤ 2r are constant coefficients, for details, we refer to [17]. By simple
algebraic operations, we get

f̂+
j+1/2 = q2r+1

r (f+
j−r , . . . , f

+
j+r ) =

r∑
k=0

Cr
kq

r
k (f

+
j+k−r , . . . , f

+
j+k), (3.15)

here the coefficients Cr
k are the linear weights in Eq. 3.13, and in smooth parts ωk =

Cr
k +O((�x)r), k = 0, 1, . . . , r . Thus Cr

k are called optimal weights.
The procedure for the reconstruction of f̂−

j+1/2 is mirror symmetric to that of

f̂+
j+1/2 with respect to xj+1/2, we will not present it here.

Remark 1 For systems, in order to achieve a higher quality approximation at the
price of more complex computations, the WENO reconstruction is always applied
to the local characteristic decomposition, see [17] for details, while the upwind lin-
ear reconstructions is used component by component. For the two-dimensional case,
the reconstructions of the numerical fluxes are based on a dimension by dimension
implementation.

3.3 Description of the troubled cell indicators

In this subsection, we briefly review the four better troubled cell indicators in [11].
The first one and the third one are based on the variation of the solution and the
multi-resolution analysis [5], respectively. The remaining indicators result from the
limiters of DG method [16, 25].

For convenience of presentation for the troubled cell indicators, we construct a
quadratic polynomial on cell Ij at time step tn, denoted by

P2(x) = u
(0)
j + u

(1)
j

x − xj

�x
+ u

(2)
j

[(
x − xj

�x

)2

− 1

12

]
, x ∈ [xj−1/2, xj+1/2].

(3.16)
These are uniquely determined by the following interpolation conditions

P2(xk) = unk, k = j − 1, j, j + 1,
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i.e., P2(x) interpolates the data unk in the sense of point values. The resulting
expressions of its coefficients are

u
(0)
j = 1

24

(
unj−1 + 22unj + unj+1

)
, u

(1)
j = 1

2

(
unj+1 − unj−1

)
,

u
(2)
j = 1

2

(
unj−1 − 2unj + unj+1

)
.

We next describe different troubled cell indicators used in [11] in detail.

1. A troubled cell indicator based on the average total variation of the solution.
(ATV, we will use the same abbreviation as in [16, 25] for each indicator). Let
T V denote the total variation of the solution at the time step tn,

T V ≡ T V (un) =
∑
j

∣∣unj+1 − unj

∣∣.

If
∣∣unj+1 − unj

∣∣ ≥ μTV
N

, we declare that in the cell [xj , xj+1] the solution has
a discontinuity, and cells Ij and Ij+1 are identified as troubled cells. Here N is
the number of cells. 0 < μ < 1 is a ATV constant parameter. The choice of μ
depends on the solution. It is common in the literature to look at the variation
of the solution in order to indicate the presence of discontinuities at a particular
location [3, 15]. Moreover this simple definition of the discontinuity guarantees
that both shock waves and contact discontinuities are properly identified. How-
ever it is difficult to choose μ accurately, as μ is problem dependent. If μ is
chosen too small, this will increase computational cost unnecessarily; however
if μ is chosen too large, spurious oscillations will appear.

2. The minmod-based TVB limiter [2] (TVB). Let

ũj = P2(xj+1/2)− u
(0)
j , ˜̃uj = −P2(xj−1/2)+ u

(0)
j .

These are modified using the modified minmod function m̃, namely

ũ
(mod)
j = m̃

(
ũj , u

(0)
j+1 − u

(0)
j , u

(0)
j − u

(0)
j−1

)
,

˜̃u(mod)
j = m̃

( ˜̃uj , u(0)j+1 − u
(0)
j , u

(0)
j − u

(0)
j−1

)
,

(3.17)

where m̃ is given by

m̃(a1, a2, . . . , an) =
{
a1 if |a1| ≤ M(�x)2,

m(a1, a2, . . . , an) otherwise,
(3.18)

and the original minmod function m is defined as

m(a1, a2, . . . , an)=
{
s · min

1≤j≤n
|aj | if sign(a1)=sign(a2)= · · · =sign(an)=s,

0 otherwise.
(3.19)

The TVB limiter parameter M > 0 is a constant.
If ũ(mod)

j �= ũj or ˜̃u(mod)
j �= ˜̃uj , we declare the cell Ij as a troubled cell.

Unfortunately, the TVB limiter parameter M also depends on the equation under
consideration. There is no automatic switch that works well for all situations.
For scalar problems it is possible to estimate M by the initial condition as in [2]
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(M is proportional to the second derivative of the initial data at smooth extrema),
however it is difficult to estimate M for system of equations. If M is chosen too
small, more cells containing discontinuities will be identified than necessary,
which increases computational cost; however if M is chosen too large, spurious
oscillations will arise.

3. The multi-resolution analysis of Harten [5] (MR). This relies on given point
values uj of the solution u(x). Let ũj denote the approximation to uj which is
obtained from the unique polynomial ũ(x) of degree one that interpolates u(x)
at xj−1 and xj+1,

ũj = ũ(xj ) = 1

2
(uj−1 + uj+1),

and let dj denote the corresponding approximation error:

dj = uj − ũj .

If u(x) at x = x̄ has p − 1 continuous derivatives and a jump discontinuity
in its p-th derivative as denoted by [·], then for xj near x̄

dj ≈
{
(�x)p[u(p)] p ≤ 2
(�x)2u(2) p ≥ 2.

(3.20)

In this paper, if |dj | ≥ εMR�x, the cell Ij is identified as a troubled cell, here
εMR is a multi-resolution parameter.

4. The shock-detection technique by Krivodonova et al. [8] (KXRCF). Partition
the boundary of a cell Ij into two portions ∂I−j and ∂I+j , where the flow is into
(
v · 
n < 0, 
n is the normal vector to ∂Ij ) and out of (
v · 
n > 0) Ij , respectively.
The cell Ij is identified as a troubled cell, when∣∣∣∣

∫
∂I−j

(uh|Ij − uh|Inj )ds
∣∣∣∣

h
k+1

2
j

∣∣∂I−j ∣∣∣∣∣∣uh|Ij ∣∣∣∣
> 1, (3.21)

here hj is the radius of the circumscribed circle in the element Ij . Inj is the
neighbor of Ij on the side of ∂I−j and the norm is based on an element average
for the one-dimensional case. Herein, we take k as the degree of the polynomial
P2(x) in Eq. 3.16, namely k = 2.

Remark 2 From the above list of indicators, we observe that ATV, TVB and MR
indicators are all dependent on parameters, while the KXRCF indicator is free of
parameters. The parameter-free indicator is desirable for general hyperbolic con-
servation laws. For two-dimensional Euler equations of gas dynamics, we take the
entropy in the computational space as an indicator variable to identify troubled cells.
For shallow water equations, we apply both the water depth and the water velocity
simultaneously in the computational space to detect troubled cells. The troubled cell
indicators work in ξ - and η-direction, respectively, to identify troubled cells.

Remark 3 All the indicators except ATV depend only on the cell and its two neigh-
boring cells, so the reconstruction of the numerical flux is dependent on the cell and
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its 2r neighboring cells, these local properties guarantee that this hybrid approach is
a highly parallel method.

Remark 4 This technique in this paper can be applied to finite volume WENO
schemes directly and the implementation of the indicators is nearly the same.
The main difference between the two types of schemes lies in the reconstruc-
tion procedure. For the finite difference scheme, we obtain the numerical fluxes
using a WENO or upwind linear reconstruction directly; while for the finite
volume scheme, we get u±j+1/2 first, which ultimately results in the numerical
fluxes.

4 Numerical results

This section is devoted to extensive numerical experiments for two-dimensional sys-
tems of hyperbolic conservation laws. This includes the Euler equations and shallow
water equations in order to demonstrate the performance of the current hybrid WENO
scheme. Comparisons are concentrated mainly on using CPU time and percentages
of the reconstruction of the fluxes using WENO reconstruction. In all the numerical
examples, we take the ATV parameter μ as 0.6. The TVB parameter M and the multi-
resolution parameter εMR are chosen to be 0.01, 0.05 and 1., 0.8 for Euler equations
and shallow water equations, respectively. In all test cases, we adopt the third order
Runge-Kutta method for the time discretization, and the CFL number is taken as 0.6.
In the figures for the numerical results, the solid line stands for reference solutions
and “�” represents numerical solutions. In time history figures, each symbol “©”
denotes the position of the reconstruction of the flux using WENO reconstruction.

4.1 Euler equations of the gas dynamics

First, we consider two-dimensional Euler equations using the present hybrid WENO
scheme. The PDE for the two-dimensional Euler equations in the physical space in
Cartesian coordinate system (x, y) is as follows

⎡
⎢⎢⎣

ρ

ρu

ρv

E

⎤
⎥⎥⎦
t

+

⎡
⎢⎢⎣

ρu

ρu2 + p

ρuv

u(E + p)

⎤
⎥⎥⎦
x

+

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p

v(E + p)

⎤
⎥⎥⎦
y

= 0, (4.22)

where ρ is the density, u and v are the velocities in x− and y−direction, respectively,
E is the total energy, and p is the pressure, which is related to the total energy by
E = p

γ − 1 + 1
2ρ(u

2 + v2) with γ = 1.4.

Example 4.1 Cylindrical explosion problem [23]. This test case is similar to a two-
dimensional Riemann problem. Flow variables take constant values in each of these
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regions and are joined by a circular discontinuity initially. The two constant states
are chosen to be

(ρ, u, v, p) =
{
(1, 0, 0, 1) if x2 + y2 ≤ 0.42

(0.125, 0, 0, 0.1) otherwise.

The physical domain is a circular domain with radius r = 1 positioned at the origin
in the x − y plane. We choose the computational domain to be [0, 1]× [0, 2π] in the
r − θ plane. The transformation between Cartesian coordinate system (x, y) and a
general coordinate system (r, θ) is given by{

x = r cos(θ)
y = r sin(θ).

(4.23)

See [21] for the governing equations and the explicit presentation of eigenvalues
and eigenvectors of the two-dimensional Euler equations with a general coordinate
system. We solve the test case up to t = 0.25.

In Table 1, we document CPU time and percentages of the reconstruction of the
fluxes using WENO reconstruction for the third and fifth order schemes, respectively.
We can see that the hybrid WENO scheme costs about one third of the CPU time
of the pure WENO scheme. We clearly see that these are smaller percentages for
the reconstruction of the fluxes using WENO reconstruction with finer grids, as we
expect.

Table 1 Cylindrical explosion problem

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
CPU Percent CPU Percent

20 × 120 WENO 22.91 100.00 25.86 100.00

ATV 10.03 30.36 12.06 33.42

TVB 11.14 32.34 13.00 37.23

MR 12.28 41.41 13.78 43.24

KXRCF 11.08 30.72 13.31 36.57

60 × 360 WENO 1704.45 100.00 1960.50 100.00

ATV 559.45 15.97 640.19 18.30

TVB 585.11 16.02 669.53 18.18

MR 632.25 21.47 733.59 23.59

KXRCF 605.75 17.39 733.47 20.66

180 × 1080 WENO 117048.56 100.00 119882.40 100.00

ATV 39106.48 9.46 39256.80 10.36

TVB 35646.77 6.35 36071.95 8.10

MR 36911.52 8.31 38266.00 9.39

KXRCF 40584.63 9.05 42582.03 10.00

Comparison of CPU time and percentages of the reconstruction of the fluxes using WENO reconstruction
between pure WENO and hybrid WENO schemes
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Fig. 1 Cylindrical explosion problem using a fifth order scheme with 180 × 1080(r × θ) cells, t = 0.25.
From top to bottom: 1D cut of density for the y = 0 plane, density contours, 1D cut of pressure for the
y = 0 plane, pressure contours and the cells in which fluxes are reconstructed using WENO reconstruction
for the last time step. From left to right: ATV, TVB, MR and KXRCF

Due to the cylindrical symmetry, the solutions of the full two-dimensional system
(4.22) are equivalent to the solutions of the following cylindrical one-dimensional
system with geometric source terms [23]

⎡
⎣ ρ

ρu

E

⎤
⎦
t

+
⎡
⎣ ρu

ρu2 + p

u(E + p)

⎤
⎦
r

= −1

r

⎡
⎣ ρu

ρu2

u(E + p)

⎤
⎦ , (4.24)
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with r being a radial direction, which is also solved on a very fine grid with N = 3240
cells as radial reference solutions to compare the numerical results. To save space, we
only show the numerical results on the most refined grid with 180 × 1080 uniform
cells using a fifth order scheme in Fig. 1. From the figures, we can clearly observe
that all numerical results are axially symmetric due to the symmetry of the curvilinear
grid and are in good agreement with the reference solutions. The cells where fluxes
are reconstructed using WENO reconstruction at the last time step are also presented
in Fig. 1.

In addition, we also compute the L1 and L2 errors for the density and the pressure
from x = 0 to x = 1 in the y = 0 plane, see Tables 2 and 3, respectively. The
tables imply that the hybrid WENO scheme has a slight advantage over the pure
WENO scheme in terms of the accuracy of the numerical solution. We conjecture
that this by product of hybrid WENO schemes thanks to the following two possible
reasons: on one hand it has to do with the computation of nonlinear weights and local
characteristic decompositions, which results in accumulation of truncation errors; on
the other hand, it relates to the fact that limited numerical fluxes are always less
accurate than unlimited ones. Herein, the WENO reconstruction is limited due to
nonlinear weights, while the upwind linear reconstruction is unlimited.

Example 4.2 Flow past a semi-cylinder [4, 7]. In this test, we implement a sim-
ulation of a Mach 3 supersonic flow past a semi-cylinder. In physical space, a

Table 2 Cylindrical explosion problem

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
L1 error L2 error L1 error L2 error

20 × 120 WENO 4.9496E-2 7.3251E-2 3.1897E-2 4.4988E-2

ATV 4.7997E-2 7.1617E-2 3.1872E-2 4.4835E-2

TVB 4.7211E-2 6.8881E-2 3.1860E-2 4.4612E-2

MR 4.7536E-2 7.3133E-2 3.1856E-2 4.4654E-2

KXRCF 4.6469E-2 6.7966E-2 3.1841E-2 4.4621E-2

60 × 360 WENO 1.8300E-2 2.9850E-2 1.0948E-2 1.8784E-2

ATV 1.6775E-2 2.7141E-2 1.0807E-2 1.8368E-2

TVB 1.6828E-2 2.5227E-2 1.0438E-2 1.8419E-2

MR 1.7507E-2 2.7512E-2 1.0498E-2 1.8442E-2

KXRCF 1.6678E-2 2.5965E-2 1.0437E-2 1.8298E-2

180 × 1080 WENO 5.7934E-3 1.3021E-3 3.9104E-3 9.9739E-3

ATV 5.5396E-3 1.2130E-2 3.8376E-3 9.8447E-3

TVB 5.4854E-3 1.2103E-2 3.8224E-3 9.9527E-3

MR 5.5852E-3 1.2120E-3 3.8014E-3 9.9016E-3

KXRCF 5.6833E-3 1.2292E-2 3.8067E-3 9.9426E-3

Comparison of L1 and L2 errors for the density between pure WENO and hybrid WENO schemes
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Table 3 Cylindrical explosion problem

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
L1 error L2 error L1 error L2 error

20 × 120 WENO 5.6316E-2 9.5166E-2 3.3843E-2 5.5846E-2

ATV 5.3735E-2 9.3204E-2 3.3655E-2 5.5668E-2

TVB 5.2504E-2 8.8971E-2 3.3545E-2 5.5668E-2

MR 5.6180E-2 9.4940E-2 3.3621E-2 5.5747E-2

KXRCF 5.3843E-2 9.2019E-2 3.3516E-2 5.5515E-2

60 × 360 WENO 1.8749E-2 3.6925E-2 1.0342E-2 2.1578E-2

ATV 1.6846E-2 3.3085E-2 1.0468E-2 2.0921E-2

TVB 1.6086E-2 2.9661E-2 9.9200E-3 2.0925E-2

MR 1.7707E-2 3.3448E-2 9.9886E-3 2.0954E-2

KXRCF 1.6552E-2 3.0831E-2 9.9007E-3 2.0698E-2

180 × 1080 WENO 5.0490E-3 1.2105E-2 3.5091E-3 9.3013E-3

ATV 4.8683E-3 1.1657E-2 3.4590E-3 9.0404E-3

TVB 5.0227E-3 1.2102E-2 3.4218E-3 9.2856E-3

MR 4.9268E-3 1.1705E-2 3.3825E-3 9.1647E-3

KXRCF 5.0219E-3 1.2075E-2 3.4010E-3 9.2635E-3

Comparison of L1 and L2 errors for the pressure between pure WENO and hybrid WENO schemes

semi-cylinder with unit radius is positioned at the origin on the x − y plane. The

computational domain is a rectangle [1, 5] ×
[
π
2 ,

3π
2

]
in the r − θ plane. The

coordinate transformation is the same as in Eq. 4.23.
This problem is initialized by a Mach 3 flow moving from left toward the semi-

cylinder. A reflective boundary condition is imposed at the surface of the cylinder,
i.e., r = 1, an inflow boundary condition is applied at r = 5, and an outflow boundary
condition is applied at θ = π

2 and θ = 3π
2 .

In Table 4, we make a comparison for CPU time and percentages of the recon-
struction of the fluxes using WENO reconstruction for the third and fifth order
schemes. We can see that the hybrid WENO scheme costs about one third to one
half of the CPU time of the pure WENO scheme. We also see that the percent-
ages of the reconstruction of the fluxes using WENO reconstruction for hybrid
WENO schemes is less than 20% for both third and fifth order schemes, and
smaller percentages of the reconstruction of the fluxes using WENO reconstruc-
tion with the refinement of grids as we expect. In order to save space, we only
present the numerical results for the most refined grid with 320 × 240 uniform
cells using fifth order schemes in Figs. 2 and 3. In Fig. 4, we also show the
cells where the fluxes are reconstructed using WENO reconstruction at the last
time step.
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Table 4 Flow past a semi-cylinder

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
CPU Percent CPU Percent

80 × 60 WENO 3.01 100.00 3.53 100.00

ATV 1.38 17.57 1.31 19.20

TVB 1.13 6.79 1.09 8.27

MR 1.16 12.22 1.11 15.54

KXRCF 1.18 7.09 1.15 7.75

160 × 120 WENO 23.98 100.00 27.85 100.00

ATV 10.22 13.29 10.10 15.92

TVB 8.81 4.54 7.88 5.87

MR 9.15 10.56 8.76 14.79

KXRCF 9.35 4.69 7.65 5.66

320 × 240 WENO 192.95 100.00 230.56 100.00

ATV 82.90 11.62 81.20 12.44

TVB 68.09 2.98 75.65 3.55

MR 75.17 8.50 71.17 12.56

KXRCF 69.10 2.55 78.90 3.15

Comparison of CPU time and percentages of the reconstruction of the fluxes using WENO reconstruction
between pure WENO and hybrid WENO schemes

Fig. 2 Flow past a semi-cylinder using a fifth order scheme with 320×240 (r×θ) cells. Pressure contours.
From left to right: ATV, TVB, MR and KXRCF
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Fig. 3 Flow past a semi-cylinder using a fifth order scheme with 320 × 240 (r × θ) cells. Mach number
contours. From left to right: ATV, TVB, MR and KXRCF

Example 4.3 Flow past a cylinder [13]. In this test, we aim to carry out a simulation
of a Mach 3 supersonic flow past a full cylinder. In the physical space, a full cylinder
of unit radius is positioned at the origin in the x-y plane. The computational domain
is chosen to be [1, 5] × [0, 2π] in the r − θ plane. The coordinate transformation is
the same as in Eq. 4.23.

Fig. 4 Flow past a semi-cylinder using a fifth order scheme with 320×240 (r × θ) cells. The cells where
the fluxes are reconstructed using WENO reconstruction at the last time step. From left to right: ATV,
TVB, MR and KXRCF
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Table 5 Flow past a cylinder

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
CPU Percent CPU Percent

120 × 40 WENO 25.07 100.00 79.05 100.00

ATV 13.77 25.14 40.99 27.53

TVB 16.80 24.55 44.27 30.86

MR 15.68 31.36 42.51 33.05

KXRCF 17.66 26.79 49.85 30.91

240 × 80 WENO 239.08 100.00 635.76 100.00

ATV 108.62 19.77 316.09 20.11

TVB 123.96 18.02 335.90 22.46

MR 117.40 24.74 329.49 26.05

KXRCF 128.53 17.93 343.82 22.28

480 × 160 WENO 2134.96 100.00 4294.57 100.00

ATV 842.33 11.71 2256.12 13.84

TVB 974.43 16.53 2489.08 18.47

MR 928.28 18.41 2373.81 20.87

KXRCF 988.86 17.06 2468.76 18.71

Comparison of CPU time and percentages of the reconstruction of the fluxes using WENO reconstruction
between pure WENO and hybrid WENO schemes

This problem is initialized by a Mach 3 flow moving from left toward a cylinder.
A reflective boundary condition is imposed at the surface of the cylinder, i.e., r = 1.

The comparison of CPU time and percentages of reconstruction of the fluxes using
WENO reconstruction for the pure and hybrid WENO schemes is documented in
Table 5. We can see that the hybrid WENO scheme costs about half of the CPU time
of the pure WENO scheme for third and fifth order schemes, respectively. We also see
that the percentages of the reconstruction of the fluxes using WENO reconstruction

Fig. 5 Flow past a cylinder using a fifth order scheme with 480 × 160(r × θ) cells. Pressure contours.
From left to right: ATV, TVB, MR and KXRCF
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Fig. 6 Flow past a cylinder using a fifth order scheme with 480×160(r×θ) cells. Mach number contours.
From left to right: ATV, TVB, MR and KXRCF

for the hybrid WENO scheme is less than 35 % for both third and fifth order schemes.
Smaller percentages of the reconstruction of the fluxes using WENO reconstruction
on finer grids, as we expect. To save space, we only show the numerical results on
the most refined grid with 480 × 160 uniform cells by fifth order schemes in Figs. 5
and 6. The cells where the fluxes are reconstructed using WENO reconstruction at
the last time step are presented in Fig. 7.

4.2 Shallow water equations

Lastly, we solve shallow water equations using the current hybrid WENO scheme.
The PDE for the two-dimensional case in a Cartesian coordinate system has the
following form

⎡
⎣ h

hu

hv

⎤
⎦
t

+
⎡
⎣ hu

hu2 + 1
2gh

2

huv

⎤
⎦
x

+
⎡
⎣ hv

hvu

hv2 + 1
2gh

2

⎤
⎦
y

= 0. (4.25)

Fig. 7 Flow past a cylinder using a fifth order scheme with 480 × 160(r × θ) cells. The cells where the
fluxes are reconstructed using WENO reconstruction at the last time step. From left to right: ATV, TVB,
MR and KXRCF
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Here h stands for the water depth, u and v are the water velocity in the x- and y-
directions, respectively, and g denotes the gravitational constant, which is taken as
9.812.

Example 4.4 Circular dam-break problem. Here we consider an idealized circular
dam-break problem [22]. We assume a dam to be enclosed by an infinitely thin cir-
cular wall with radius r = 2.5 in a circular physical domain with radius r = 20 in
the x − y plane. The initial conditions are given by

h(x, y, 0) =
{

2.5 if x2 + y2 ≤ 2.52

0.5 otherwise,
and u(x, y, 0) = v(x, y, 0) = 0.

The dam wall is assumed to collapse instantaneously.
The flow becomes rapidly trans-critical due to the difference in the water depth.

We implement this simulation on a curvilinear grid and study the wave propagation
phenomena. Since this is an axially symmetric flow, we choose the computational
domain to be in the r − θ plane. The coordinate transformation is defined as in
Eq. 4.23. We refer to Appendix A for the explicit representations of the eigenval-
ues and eigenvectors for the two-dimensional shallow water equations in a general
coordinate system. We solve this test case up to t = 0.4.

In Table 6, we document the CPU time and percentages of the reconstruction of the
fluxes using WENO reconstruction for the third and fifth order schemes. We clearly

Table 6 Circular dam-break problem

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
CPU Percent CPU Percent

60 × 20 WENO 1.42 100.00 1.66 100.00

ATV 0.50 25.87 0.53 22.66

TVB 0.39 8.98 0.44 11.06

MR 0.44 11.43 0.47 14.37

KXRCF 0.47 10.33 0.55 14.38

180 × 60 WENO 99.30 100.00 115.75 100.00

ATV 32.44 15.57 32.52 15.02

TVB 29.61 6.01 28.03 6.92

MR 31.00 10.53 29.42 10.71

KXRCF 31.75 6.57 31.25 8.04

540 × 180 WENO 6078.10 100.00 8848.41 100.00

ATV 2263.56 12.50 2347.80 12.43

TVB 1977.13 3.46 2059.61 3.47

MR 2028.36 8.05 2054.34 7.24

KXRCF 2148.83 3.20 2203.48 3.28

Comparison of CPU time and percentages of the reconstruction of the fluxes using WENO reconstruction
between pure WENO and hybrid WENO schemes
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Fig. 8 Circular dam-break problem using a fifth order scheme with 540 × 180 (r × θ) cells, t = 0.4.
From top to bottom: 1D cut of water depth for the y = 0 plane, contours of the water depth and the cells
where the fluxes are reconstructed using WENO reconstruction at the last time step. From left to right:
ATV, TVB, MR and KXRCF

find that the hybrid WENO scheme can save about 65-70 % of the computational
cost compared to the pure WENO scheme and only 26 % fewer flux reconstructions
using WENO reconstruction. It is obvious that smaller percentages of the fluxes are
reconstructed using WENO reconstruction on finer grids, as we expect.

As the problem has cylindrical symmetry, along the radial direction r we can
derive an inhomogeneous one-dimensional system [22], namely

[
h

hu

]
t

+
[

hu

hu2 + 1
2gh

2

]
r

= −1

r

[
hu

hu2

]
. (4.26)

In order to cross-check the numerical results, we also implement numerical compu-
tations on an inhomogeneous one-dimensional system (4.26), and compare results
with those obtained from two-dimensional system (4.25). This means that we solve
the inhomogeneous system (4.26) on a very fine grid with N = 3240 cells to pro-
duce a radial reference solution. To save space, we only show the numerical results
on the most refined grid with 540× 180 uniform cells using a fifth order scheme and
the cells where the fluxes are reconstructed using WENO reconstruction at the last
time step are shown in Fig. 8. The numerical solutions agree with the reference solu-
tion well. We can clearly observe that all the numerical results are axially symmetric
owning to symmetry of the curvilinear grid.
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Table 7 Circular dam-break problem

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
L1 error L2 error L1 error L2 error

60 × 20 WENO 0.9966 0.5370 0.6107 0.3348

ATV 0.9898 0.5260 0.5902 0.3246

TVB 0.9362 0.5001 0.5832 0.3204

MR 0.9677 0.5137 0.5837 0.3205

KXRCF 0.7625 0.4262 0.5887 0.3227

180 × 60 WENO 0.3388 0.2139 0.2143 0.1459

ATV 0.3203 0.2053 0.2042 0.1427

TVB 0.3241 0.2038 0.2034 0.1426

MR 0.3228 0.2074 0.2040 0.1428

KXRCF 0.2695 0.1819 0.2018 0.1418

540 × 180 WENO 0.1303 0.1139 0.0736 0.0727

ATV 0.1221 0.1040 0.0670 0.0678

TVB 0.1163 0.0999 0.0665 0.0675

MR 0.1222 0.1040 0.0673 0.0680

KXRCF 0.1148 0.9891 0.0674 0.0680

Comparison of L1 and L2 errors for the water depth between pure WENO and hybrid WENO schemes

Analogously, we compute the L1 and L2 errors for the water depth from x = 0
to x = 20 in the y = 0 plane, see Table 7. The numerical results in the table imply
that the hybrid WENO scheme can also produce slightly more accurate numerical
solutions compared to those of the pure WENO scheme.

Example 4.5 Fluid-structure interaction problem [9]. We consider a planar shock
wave moving towards a cylinder. The initial conditions are as follows

(h, u, v) =

⎧⎪⎨
⎪⎩

(
4,

√
45g

8
, 0

)
if x ≤ −2

(1, 0, 0) otherwise,

here g is the gravitational constant. A bow shock will form upstream from the cylin-
der once the flowing water hits the cylinder. We solve this problem on the curvilinear
grid in the r−θ plane. The coordinate transformation is again the same as in Eq. 4.23.
We solve this test case up to t = 0.35.

In Table 8, we compare the CPU time and percentages of reconstruction of the
fluxes using WENO reconstruction for third and fifth order schemes. We can clearly
see that the hybrid WENO scheme can save about 65 % of the computational cost
compared with the pure WENO scheme and almost less than 40 % of the fluxes
are reconstructed using WENO reconstruction. It is obvious that a smaller percent-
age of the fluxes are reconstructed using WENO reconstruction with finer grids, as
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Table 8 Fluid-structure interaction problem

Nr ×Nθ Scheme or Third order scheme Fifth order scheme

indicators
CPU Percent CPU Percent

120 × 40 WENO 1.03 100.00 1.26 100.00

ATV 0.80 34.74 1.02 38.33

TVB 0.58 35.95 0.70 39.34

MR 0.52 33.52 0.64 37.98

KXRCF 0.41 10.22 0.52 20.13

240 × 80 WENO 8.34 100.00 10.21 100.00

ATV 3.45 30.25 4.09 32.11

TVB 3.84 24.00 4.52 26.35

MR 3.39 20.87 4.04 23.63

KXRCF 3.20 10.34 3.89 13.58

480 × 160 WENO 70.95 100.00 85.95 100.00

ATV 27.77 13.58 31.35 15.37

TVB 32.53 17.12 36.28 18.70

MR 28.78 13.71 32.56 15.84

KXRCF 28.07 6.76 33.06 8.33

Comparison of CPU time and percentages of the reconstruction of the fluxes using WENO reconstruction
between pure WENO and hybrid WENO schemes

we expect. In order to save space, we only show the numerical results on the most
refined grid with 480 × 160 uniform cells using a fifth order scheme and the cells
where the fluxes are reconstructed using WENO reconstruction at the last time step
in Fig. 9.

Remark 5 Herein, we only consider the two-dimensional shallow water equations
on a plane physical domain. In fact, the numerical schemes for global shallow
water equations on a sphere have significant applications in the atmospheric mod-
eling. Therein, the physical domain is on a spherical surface. Therefore, we must
find a transformation that maps the non-Cartesian physical domain onto a Cartesian
computational domain. The cubed sphere geometry is a desirable choice. Detailed
information can be found in [12]. A cube with identical side length is inscribed into
a sphere, such that eight vertices of the cube exactly touch the sphere. A central pro-
jection projects the faces of the inscribed cube onto the spherical surface. Then the
sphere is decomposed into six identical regions. Based on the projection, the cube
face is free of singularities and employs identical metric terms, thus resulting in a
curvilinear coordinate system on the spherical surface. Eventually, we obtain a trans-
formation between a local Cartesian coordinate system for the computational domain
and a curvilinear coordinate system for the physical domain. In other words, we trans-
form the curvilinear grid for the physical domain into the uniform Cartesian grid for

Author's personal copy



Hybrid WENO schemes with different indicators on curvilinear grids 769

Fig. 9 Fluid-structure interaction problem using a fifth order scheme with 480 × 160 (r × θ) cells, t =
0.35. Contours of the water depth (top) and the cells where the fluxes are reconstructed using WENO
reconstruction at the last time step (bottom). From left to right: ATV, TVB, MR and KXRCF

the computational domain. By means of the transformation, the generalization of the
hybrid WENO scheme on the curvilinear grid is straightforward.

5 Concluding remarks

In this paper, we study hybrid WENO schemes with different indicators on curvilin-
ear grids for non-Cartesian physical domains. A variety of benchmark examples for
two-dimensional systems of hyperbolic conservation laws (including Euler equations
and shallow water equations) are tested. Extensive numerical results strongly indi-
cate that the current hybrid WENO schemes maintain the advantageous properties
of the pure WENO schemes such as the non-oscillatory property near discontinuities
and keeping the sharp shock transition. On the other hand, the hybrid WENO scheme
has a great advantage over the pure WENO scheme in terms of improved computa-
tional efficiency. Also, the hybrid WENO scheme can result in slightly more accurate
numerical solutions than the pure WENO scheme. In addition, it is observed that the
KXRCF indicator is superior to other indicators since it is free of parameters. The
resulting hybrid WENO scheme with the KXRCF indicator has great potential in
practical applications. Our ongoing research work includes proposing a hybrid finite
difference WENO scheme for the global shallow water equations on a sphere and
studying the hybrid finite volume WENO scheme for unstructured grids.
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Appendix A: Two-dimensional shallow water equations in a general coordinate
system

Notations:
h : water depth
u : x − velocity
v : y − velocity
c : celerity
g : gravitational constant

Given a coordinate transformation between the Cartesian coordinate system and
general coordinate system

ξ = ξ(x, y), η = η(x, y),

we obtain the two-dimensional shallow water equations in a general coordinate

Ût + F̂ξ + Ĝη = 0.

Here

Û = 1
J

⎡
⎣ h

hu

hv

⎤
⎦ ,

F̂ = 1
J

⎛
⎝ξx

⎡
⎣ hu

hu2 + 1
2gh

2

huv

⎤
⎦+ ξy

⎡
⎣ hv

hvu

hv2 + 1
2gh

2

⎤
⎦
⎞
⎠

= 1
J

⎛
⎝U

⎡
⎣ h

hu

hv

⎤
⎦+ 1

2gh
2

⎡
⎣ 0
ξx
ξy

⎤
⎦
⎞
⎠ ,

Ĝ = 1
J

⎛
⎝ηx

⎡
⎣ hu

hu2 + 1
2gh

2

huv

⎤
⎦+ ηy

⎡
⎣ hv

hvu

hv2 + 1
2gh

2

⎤
⎦
⎞
⎠

= 1
J

⎛
⎝V

⎡
⎣ h

hu

hv

⎤
⎦+ 1

2gh
2

⎡
⎣ 0
ηx
ηy

⎤
⎦
⎞
⎠ ,

where

J = det

[
ξx ξy
ηx ηy

]
= 1/ det

[
xξ xη
yξ yη

]
,

U = ξxu+ ξyv,

V = ηxu+ ηyv.

Using the following notation

Mξ =
√
ξ2
x + ξ2

y ,

ξ̃x = ξx
Mξ

,

ξ̃y = ξy
Mξ

,

θ̃ξ = ξ̃xu+ ξ̃yv,
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we obtain the Jacobian matrix

∂F̂

∂Û
=
⎡
⎣ 0 ξx ξy

ξx(c
2 − u2)− ξyuv 2ξxu+ ξyv ξyu

−ξxuv + ξy(c
2 − v2) ξxv ξxu+ 2ξyv

⎤
⎦ ,

its corresponding eigenvalues are as follows

λ1 = U − cMξ , λ2 = U, λ3 = U + cMξ ,

its right eigenvectors are given by

R1 =
⎡
⎣ 1
(θ̃ξ − c)ξ̃x + ξ̃y(ξ̃yu− ξ̃xv)

(θ̃ξ − c)ξ̃y − ξ̃x(ξ̃yu− ξ̃xv)

⎤
⎦ , R2 =

⎡
⎣ 0
−ξy/ξx

1

⎤
⎦ ,

R3 =
⎡
⎣ 1
(θ̃ξ + c)ξ̃x + ξ̃y(ξ̃yu− ξ̃xv)

(θ̃ξ + c)ξ̃y − ξ̃x(ξ̃yu− ξ̃xv)

⎤
⎦ ,

and its left eigenvectors have the following form

L1 = 1
2c

(
(θ̃ξ + c), −ξ̃x , −ξ̃y

)
,

L2 =
(
(ξ̃yu− ξ̃xv)ξ̃x, −ξ̃x ξ̃y , ξ̃2

x

)
,

L3 = − 1
2c

(
(θ̃ξ − c), −ξ̃x , −ξ̃y

)
.

The eigenstructure for ∂Ĝ

∂Û
can be obtained similarly. We omit the explicit

presentations to save space.

References

1. Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms.
Comput. Fluids 23, 1049–1071 (1994)

2. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

3. Cosat, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation
laws. J. Comput. Appl. Math. 204, 209–218 (2007)

4. Hafez, M., Wahba, E.: Inviscid flows over a cylinder. Comput. Methods Appl. Mech. Eng. 193, 1981–
1995 (2004)

5. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–
338 (1994)

6. Hill, D.J., Pullin, D.I.: Hybrid tuned center-difference-WENO method for large eddy simulations in
the presence of strong shocks. J. Comput. Phys. 194, 435–450 (2004)

7. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126,
202–228 (1996)

8. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting
with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–
338 (2004)

9. LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge University Press, Cam-
bridge (2002)

10. Li, G., Lu, C., Qiu, J.: Hybrid well-balanced WENO schemes with different indicators for shallow
water equations. J. Sci. Comput. 51, 527–559 (2012)

Author's personal copy



772 G. Li, J. Qiu

11. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J.
Comput. Phys. 229, 8105–8129 (2010)

12. Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin transport scheme on the cubed sphere.
Mon. Weather Rev. 133, 814–828 (2004)

13. Nithiarasu, P., Zienkiewicz, O.C., Satyasai, B.V.K., Morgan, K., Codina, R., Vazquez, M.: Shock
capturing viscosities for the general fluid mechanics algorithm. Int. J. Numer. Methods Fluids 28,
1325–1353 (1998)

14. Noelle, S., Xing, Y.L., Shu, C.-W.: High-order well-balanced schemes. In: Puppo, G., Russo, G. (eds.)
Numerical Methods for Balance Laws. Quaderni di Matematica (2010)

15. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J.
Comput. Phys. 178, 81–117 (2002)

16. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin
methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013
(2005)

17. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyper-
bolic conservation laws, NASA/CR-97-206253, ICASE Report NO.97-65

18. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated
problems. SIAM Rev. 51, 82–126 (2009)

19. Shu, C.-W., Osher, S.: Efficient implenmentiation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77, 439–471 (1988)

20. Shu, C.-W., Osher, S.: Efficient implenmentiation of essentially non-oscillatory shock-capturing
schemes, II. J. Comput. Phys. 83, 32–78 (1989)

21. Shu, C.-W., Zang, T.A., Erlebacher, G., Whitaker, D., Osher, S.: High-order ENO schemes applied to
two- and three-dimensional compressible flow. Appl. Numer. Math. 9, 45–71 (1992)

22. Toro, E.F.: Shock-capturing methods for free-surface shallow flows. Wiley, Chichester (2001)
23. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, Berlin

(2009)
24. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation

property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)
25. Zhu, H., Qiu, J.: Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators:

one-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

Author's personal copy


	Hybrid WENO schemes with different indicators on curvilinear grids
	Abstract
	Introduction
	Governing equations in a general coordinate system
	Hybrid WENO schemes with high order upwind linear schemes
	Algorithm for the hybrid WENO scheme
	Reconstruction of numerical fluxes
	Description of the troubled cell indicators

	Numerical results
	Euler equations of the gas dynamics
	Shallow water equations

	Concluding remarks
	Acknowledgments
	Appendix A: Two-dimensional shallow water equations in a general coordinate system
	References


