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A hybrid LDG-HWENO scheme is proposed for the numerical solution of KdV-type partial 
differential equations. It evolves the cell averages of the physical solution and its moments 
(a feature of Hermite WENO) while discretizes high order spatial derivatives using the 
local DG method. The new scheme has the advantages of both LDG and HWENO methods, 
including the ability to deal with high order spatial derivatives and the use of a small 
number of global unknown variables. The latter is independent of the order of the scheme 
and the spatial order of the underlying differential equations. One and two dimensional 
numerical examples are presented to show that the scheme can attain the same formal 
high order accuracy as the LDG method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider the numerical solution of KdV-type equations in one and two spatial dimensions. The local discontinuous 
Galerkin (LDG) method for this type of partial differential equations (PDEs) has been studied in [21,23]. The LDG method 
is an extension of the discontinuous Galerkin (DG) method aimed at solving PDEs containing higher than first order spatial 
derivatives. The DG method was first introduced by Reed and Hill [16] for solving linear hyperbolic problems for neutron 
transfer. A major development of the DG method was carried out by Cockburn et al. in a series of papers [2–6].

The basic idea of the LDG method is to rewrite a PDE with high order spatial derivatives into a system of first order 
PDEs and then discretize it by the DG method. It can achieve nonlinear stability without slope limiters when carefully 
designed. The sub-optimal error estimates in L2 norm were obtained for the smooth solution of linear equations and the 
cell entropy inequality was proven in [23]. While the LDG method also has many other advantages, it has the disadvantage 
of employing a large number of unknown variables and the number increases rapidly as the order of the method increases 
especially in multiple dimensions and for high order PDEs. On the other hand, the essentially non-oscillatory (ENO) schemes 
of Shu and Osher [19,20], the weighted ENO (WENO) schemes of Liu et al. [12] and Jiang and Shu [11], and Hermite 
WENO (HWENO) schemes of Qiu and Shu [14,15] have the advantage of employing a small number of unknown variables. 
But they have the disadvantage that the stencil used in reconstruction is becoming wider with an increasing order of 
accuracy.
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To avoid the disadvantages of DG/LDG and WENO schemes, based on the reconstruction procedure for HWENO limiter by 
Qiu and Shu [14,15] a hybrid RKDG-HWENO scheme was proposed by Balsara et al. [1] for hyperbolic conservation laws. It 
has intrinsic robustness and smaller stencils. The scheme evolves lower moments while reconstructing the higher moments 
of the solution. Dumbser et al. [8] extended the scheme to a new family of in-cell recovery DG method, referred to as 
P N P M methods, where P N indicates that a piecewise polynomial of degree N is used to represent a DG solution, and P M

stands for a reconstructed polynomial solution of degree M (M ≥ N) that is used to compute the numerical fluxes. This 
approach yields a general, unified framework that contains two important special cases, classical high order finite volume 
(FV) schemes (N = 0) and the conventional discontinuous Galerkin (DG) method (N = M), and has been applied successfully 
to simulate the Euler equations of compressible gas dynamics and the equations of ideal magnetohydrodynamics (MHD). 
P N P M methods were extended to the numerical solution of the compressible Navier–Stokes equations [7,13].

Motivated by the hybrid RKDG-HWENO and P N P M methods, we propose a hybrid LDG-HWENO scheme for the numerical 
solution of KdV-type PDEs. To our best knowledge, those methods have not been studied for higher order PDEs like KdV-type 
equations containing third order spatial derivatives. The new scheme employs LDG to approximate higher than first order 
spatial derivatives contained in the PDEs. Also different from HWENO methods in [14,15], where the cell averages of both 
the solution u and its first derivative ux are evolved in time and used in the reconstruction, we use the cell averages of u
(the solution) and u

x−x j
�x (the first moment(s)) which have been used in the reconstruction procedure for HWENO limiter 

[14,15]. Compared with LDG methods, the new scheme employs only a small number of (global) unknown variables and 
has the same stencils in the reconstruction. Moreover, since the solutions of KdV-type equations are smooth in general, only 
linear weights are used in our HWENO reconstruction (see Section 2), that is, the linear HWENO reconstruction is used 
in the new scheme. This makes the scheme more efficient because the computation of nonlinear weights typically takes a 
significant percentage of the total CPU time. Numerical examples show that the new scheme has a good long-term stability 
and can attain the same formal high order accuracy as the LDG method.

An outline of the paper is given as follows. The hybrid LDG-HWENO scheme is described in Sections 2 and 3 for one and 
two dimensional KdV-type equations, respectively. In Section 4, a selection of one and two dimensional numerical examples 
are presented to demonstrate the accuracy and the capability of the scheme. Conclusions are drawn in Section 5.

2. The hybrid LDG-HWENO scheme in one dimension

We consider the numerical solution of one dimensional KdV-type problems in the general form,

ut + f (u)x + (r′(u)g(r(u)x)x)x = 0, a < x < b, t > 0 (2.1)

with the initial condition

u(x,0) = u0(x), a ≤ x ≤ b

where f (u), r(u), and g(r) are given smooth functions. In this work, we consider a uniform mesh of cell size �x. De-
note the cells by I j = (x j− 1

2
, x j+ 1

2
), where x j+ 1

2
= 1

2 (x j + x j+1). As for the HWENO scheme [14,15], we want to find the 

approximations for the cell averages of u and u x−x j
�x of the solution of (2.1), i.e.,

ū j ≈ 1

�x

∫
I j

udx, v̄ j ≈ 1

�x

∫
I j

u
x − x j

�x
dx.

Similar to the procedure of HWENO limiter for DG in [14,15], we use here the first moment v̄ j instead of the cell average 
of ux which was used for HWENO scheme in [14,15]. This is more consistent with the basis functions of LDG (see (2.5)
below). We employ LDG (e.g., see [21,23]) for the discretization of high order spatial derivatives in (2.1). We first introduce 
the new variables

q = r(u)x, p = g(q)x,

and rewrite (2.1) as a system of first order differential equations,

ut + ( f (u) + r′(u)p)x = 0, (2.2)

p = g(q)x, (2.3)

q = r(u)x. (2.4)

Next, we consider the discretization of (2.3) and (2.4). Let p and q be approximated by

ph =
k∑

p(l)
j φ

( j)
l (x), qh =

k∑
q(l)

j φ
( j)
l (x), ∀x ∈ I j
l=0 l=0
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where φ( j)
l (x)’s are the orthogonal basis functions and k is the highest degree of polynomials used in the basis functions. 

The first five basis functions are

φ
( j)
0 (x) = 1, φ

( j)
1 (x) = x − x j

�x
, (2.5)

φ
( j)
2 (x) = (

x − x j

�x
)2 − 1

12
, φ

( j)
3 (x) = (

x − x j

�x
)3 − 3

20

x − x j

�x
,

φ
( j)
4 (x) = (

x − x j

�x
)4 − 3

14
(

x − x j

�x
)2 + 3

560
.

Multiplying (2.3) and (2.4) by test functions w and z, respectively, integrating over the interval I j , integrating by parts, and 
replacing function values at cell boundaries by their numerical fluxes (those quantities with “hats”) which we will define in 
the below, we obtain∫

I j

ph wdx +
∫
I j

g(qh)wxdx − ĝ j+ 1
2

w−
j+ 1

2
+ ĝ j− 1

2
w+

j− 1
2

= 0, (2.6)

∫
I j

qh zdx +
∫
I j

r(u)zxdx − r̂ j+ 1
2

z−
j+ 1

2
+ r̂ j− 1

2
z+

j− 1
2

= 0, (2.7)

where

w±
j± 1

2
= lim

x→x
j± 1

2
±0

w(x), z±
j± 1

2
= lim

x→x
j± 1

2
±0

z(x).

The test functions w and z in (2.6) and (2.7) are taken as the basis functions φ( j)
l (x), l = 0, 1, · · · , k, successively. The 

integrals in (2.6) and (2.7) are computed numerically using a Gaussian quadrature rule. For the (k + 1)th order accuracy, the 
integration must achieve (2k + 2)th order as the DG method. Thus, we use the (k + 1)-point Gaussian quadrature, namely,∫

I j

g(qh)wxdx ≈ �x
∑

G

g(qh(xG))wx(xG)wG ,

∫
I j

r(u)zxdx ≈ �x
∑

G

r(u(xG))zx(xG)wG ,

where wG ’s are the weights and xG ’s are the Gauss points. The function qh used in the first integral is obtained by solving 
(2.7) while the value u(xG) used in the second integral is reconstructed from the cell averages {ū j, ̄v j}. For example, the 
sixth order reconstruction procedure includes following three steps:

Step 1. Define the small stencils

S0 = {I j−1, I j, I ′j−1, I ′j}, S1 = {I j, I j+1, I ′j, I ′j+1}, S2 = {I j−1, I j, I j+1, I ′j}
and a bigger stencil S = {S0, S1, S2}, where I j and I ′j stand for intervals chosen for ū j and v̄ j , respectively. These stencils 
are used to construct polynomials p0(x), p1(x), and p2(x) of degree three and polynomial Q (x) of degree five,

1

�x

∫
I j+l

p0(x)dx = ū j+l,
1

�x

∫
I ′j+l=I j+l

p0(x)
x − x j

�x
dx = v̄ j+l, l = −1,0

1

�x

∫
I j+l

p1(x)dx = ū j+l,
1

�x

∫
I ′j+l=I j+l

p1(x)
x − x j

�x
dx = v̄ j+l, l = 0,1

1

�x

∫
I j+l

p2(x)dx = ū j+l,
1

�x

∫
I ′j=I j

p2(x)
x − x j

�x
dx = v̄ j, l = −1,0,1

1

�x

∫
I j+l

Q (x)dx = ū j+l,
1

�x

∫
I ′j+l=I j+l

Q (x)
x − x j

�x
dx = v̄ j+l, l = −1,0,1.

Step 2. For a given point x̂ ∈ I j , we find the linear weights, denoted by γ0, γ1 and γ2, such that

Q (x̂) =
2∑

γi pi(x̂).

i=0
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For example, for x̂ = x j+ 1
2

we have

γ0 = 25

189
, γ1 = 14

27
, γ2 = 22

63
.

Step 3. Finally, the HWENO reconstruction is given by

u(x̂) =
2∑

i=0

γi pi(x̂) = Q (x̂). (2.8)

Step 2 to Step 3 are repeated for each point x̂ ∈ {{xG }, x j− 1
2
, x j+ 1

2
}, where {xG} denotes the set of the Gauss points. Note 

that we have used only linear weights in the above reconstruction procedure (i.e., we only use reconstruction polynomial 
Q (x) in big stencil) since the solutions of KdV-type equations are smooth in general.

It is remarked that the reconstructed values of u at both ends of I j are denoted by u+
j− 1

2
and u−

j+ 1
2

, respectively. More-

over, the linear weights for some points can become negative. For example, for xG = x j− 0.5384693101056831
2

, the linear weights 
are γ0 = −1.19876833424689, γ1 = −0.189130224626382, and γ2 = 2.38789855887328. The negative weights may lead to 
instability of the reconstruction. The technique developed by Shi et al. [17] can be used to treat reconstruction procedure 
with negative weights; the interested reader is referred to [17] for the detail.

Multiplying (2.2) with 1 and x−x j
�x and integrating them by parts over I j , we have

dū j

dt
= − 1

�x
( f (u) + r′(u)p)|I j , (2.9)

dv̄ j

dt
= − 1

�x
( f (u) + r′(u)p)

x − x j

�x
|I j + 1

�x2

∫
I j

( f (u) + r′(u)p)dx. (2.10)

The integral term in (2.10) is approximated by the (k + 1)-point Gaussian quadrature rule as for (2.6) and (2.7). We obtain 
the numerical scheme as

dū j

dt
= − 1

�x
[( f̂ j+ 1

2
+ r̂′

j+ 1
2

p̂ j+ 1
2
) − ( f̂ j− 1

2
+ r̂′

j− 1
2

p̂ j− 1
2
)], (2.11)

dv̄ j

dt
= − 1

2�x
[( f̂ j+ 1

2
+ r̂′

j+ 1
2

p̂ j+ 1
2
) + ( f̂ j− 1

2
+ r̂′

j− 1
2

p̂ j− 1
2
)] + 1

�x2
F j, (2.12)

where

F j = �x
∑

G

( f (u(xG)) + r′(u(xG))ph(xG))wG ≈
∫
I j

( f (u) + r′(u)ph)dx.

A key component of the above described hybrid LDG-HWENO scheme is to define the numerical fluxes in (2.6), (2.7), 
(2.11), and (2.12) to ensure the accuracy and stability of the scheme. We define

f̂ j+ 1
2

= f̂ (u−
j+ 1

2
, u+

j+ 1
2
), ĝ j+ 1

2
= ĝ(q−

j+ 1
2
,q+

j+ 1
2
),

p̂ j+ 1
2

= p+
j+ 1

2
, r̂ j+ 1

2
= r(u−

j+ 1
2
),

r̂′
j+ 1

2
=

r(u+
j+ 1

2
) − r(u−

j+ 1
2
)

u+
j+ 1

2
− u−

j+ 1
2

,

where

p±
j+ 1

2
= ph(x j+ 1

2
± 0), q±

j+ 1
2

= qh(x j+ 1
2

± 0),

and u±
j+ 1

2
are the reconstructed values of u by the HWENO method as described in Step 1–Step 5. It is noted that the choice 

of the numerical fluxes is not unique. The key part is that p̂ and r̂ must be taken from the opposite sides. The numerical 
flux f̂ (a, b) for f (u) should satisfy the following conditions:

(i) f̂ (a, b) is a Lipschitz continuous function in both arguments a and b;
(ii) f̂ is consistent with f (u), namely, f̂ (u, u) = f (u);

(iii) f̂ (a, b) is a monotone flux, i.e., it is non-decreasing in a and non-increasing in b.
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In this paper, we use the local Lax–Friedrichs (LLF) flux,

f̂ (a,b) = 1

2
[ f (a) + f (b) − α(b − a)], α = max

u∈[min(a,b),max(a,b)]
| f ′(u)|.

The numerical flux ĝ(c, d) for g(q) should also satisfy conditions (i) and (ii) but the condition (iii) should be replaced by

(iii)′ −ĝ(q−, q+) is a monotone flux for −g(q), namely, ĝ(c, d) is non-increasing in c and non-decreasing in d.

Corresponding to the LLF flux, we have

ĝ(c,d) = 1

2
[g(c) + g(d) − α(c − d)], α = max

q∈[min(c,d),max(c,d)]
|g′(q)|.

We note that (2.7) can be solved independently on each cell for qh in terms of the cell averages {ū j, ̄v j}. Similarly, 
(2.6) can be solved on each cell for ph in terms of qh . As a consequence, the global unknown variables involve only ū j and 
v̄ j , which are governed by a system of ordinary differential equations. In our computation, the system is integrated in time 
using an explicit TVD Runge–Kutta method [18], such as the 3rd TVD Runge–Kutta method for solving

ut = L(u, t),

where L(u, t) is a spatial discretization operator,

u∗ = un + �tL(un, tn)

u∗∗ = 3

4
un + 1

4
(u∗ + �tL(u∗, tn + �t))

un+1 = 1

3
un + 2

3
(u∗∗ + �tL(u∗∗, tn + 1

2
�t)).

From the construction of the scheme, it is not difficult to show formally that the method is of (k + 1)th order in space 
(k ≤ 4) and third order in time, i.e.,

en
h = O(�t3) +O(�xk+1).

Since an explicit scheme is used, the time step is subject to the CFL condition and should be taken as �t = O(�x3). For 
this choice, the error is dominated by the spatial discretization error.

3. The hybrid LDG-HWENO method in two dimensions

In this section we describe the method for two dimensional problems. We consider the general form

ut + f1(u)x + f2(u)y + [r′
1(u)(g11(r1(u)x)x + g12(r1(u)x)y)]x

+ [r′
2(u)(g21(r2(u)y)x + g22(r2(u)y)y)]y = 0, (x, y) ∈ (a,b) × (c,d) (3.1)

subject to a periodic boundary condition and the initial condition

u(x, y,0) = u0(x, y), (x, y) ∈ (a,b) × (c,d)

where fm(u), rm(u), and gmn(r) are given smooth nonlinear functions.
We use a rectangle mesh of cell size �x and �y in x and y directions, respectively. We denote the cells by

Ii j = (xi− 1
2
, xi+ 1

2
) × (y j− 1

2
, y j+ 1

2
),

where

xi+ 1
2

= 1

2
(xi + xi+1), y j+ 1

2
= 1

2
(y j + y j+1).

We approximate the cell averages of u, u x−xi
�x , u y−y j

�y and u x−xi
�x

y−y j
�y by

ūi j ≈ 1

�x�y

∫
Ii j

udxdy,

v̄ i j ≈ 1

�x�y

∫
I

u
x − xi

�x
dxdy,
i j
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w̄i j ≈ 1

�x�y

∫
Ii j

u
y − y j

�y
dxdy,

Z̄ i j ≈ 1

�x�y

∫
Ii j

u
x − xi

�x

y − y j

�y
dxdy.

For the discretization of high order spatial derivatives using LDG, we introduce the new variables

q1 = r1(u)x, q2 = r2(u)y, p1 = g11(q1)x + g12(q1)y, p2 = g21(q2)x + g22(q2)y, (3.2)

and rewrite (3.1) as a first order system

ut + ( f1(u) + r′
1(u)p1)x + ( f2(u) + r′

2(u)p2)y = 0, (3.3)

coupled with (3.2). We approximate pm, qm(m = 1, 2) by polynomials,

pm =
k∑

l=0

p(i j)
m,lφ

(i j)
l (x, y), qm =

k∑
l=0

q(i j)
m,l φ

(i j)
l (x, y), m = 1,2 ∀(x, y) ∈ Ii j

where φ(i j)
l (x, y)’s are the basis functions,

φ
(i j)
0 = 1, φ

(i j)
1 = x − xi

�x
, φ

(i j)
2 = y − y j

�y
, φ

(i j)
3 = (

x − xi

�x
)2 − 1

12

φ
(i j)
4 = (

x − xi

�x
)(

y − y j

�y
), φ

(i j)
5 = (

y − y j

�y
)2 − 1

12
, · · ·

To discretize (3.2), we multiply it by test functions wm and zm , respectively, and integrate the resulting equations by 
parts over the cell Ii j . Using numerical fluxes for quantities on the boundary of the cell, we have∫

Ii j

p1 w1dxdy +
∫
Ii j

g11(q1)(w1)xdxdy +
∫
Ii j

g12(q1)(w1)ydxdy

−
y

j+ 1
2∫

y
j− 1

2

[
ĝ11(q1(xi+ 1

2
, y))w1(x−

i+ 1
2
, y) − ĝ11(q1(xi− 1

2
, y))w1(x+

i− 1
2
, y)

]
dy

−
x

i+ 1
2∫

x
i− 1

2

[
ĝ12(q1(x, y j+ 1

2
))w1(x, y−

j+ 1
2
) − ĝ12(q1(x, y j− 1

2
))w1(x, y+

j− 1
2
)

]
dx = 0, (3.4)

∫
Ii j

p2 w2dxdy +
∫
Ii j

g21(q2)(w2)xdxdy +
∫
Ii j

g22(q2)(w2)ydxdy

−
y

j+ 1
2∫

y
j− 1

2

[
ĝ21(q2(xi+ 1

2
, y))w2(x−

i+ 1
2
, y) − ĝ21(q2(xi− 1

2
, y))w2(x+

i− 1
2
, y)

]
dy

−
x

i+ 1
2∫

x
i− 1

2

[
ĝ22(q2(x, y j+ 1

2
))w2(x, y−

j+ 1
2
) − ĝ22(q2(x, y j− 1

2
))w2(x, y+

j− 1
2
)

]
dx = 0, (3.5)

∫
Ii j

q1z1dxdy +
∫
Ii j

r1(u)(z1)xdxdy

−
y

j+ 1
2∫

y
j− 1

2

[
r̂1(u(xi+ 1

2
, y))z1(x−

i+ 1
2
, y) − r̂1(u(xi− 1

2
, y))z1(x+

i− 1
2
, y)

]
dy = 0, (3.6)
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∫
Ii j

q2z2dxdy +
∫
Ii j

r2(u)(z2)ydxdy

−
x

i+ 1
2∫

x
i− 1

2

[
r̂2(u(x, y j+ 1

2
))z2(x, y−

j+ 1
2
) − r̂2(u(x, y j− 1

2
))z2(x, y+

j− 1
2
)

]
dx = 0. (3.7)

This leads to equations including double integrals and line integrals on the cell Ii j . As for the one dimensional case, the 
volume integrals can be approximated by the tensor product Gaussian quadrature rule with (k + 1) points in each direction, 
and the line integrals can be computed by the (k + 1)-point Gaussian quadrature rule.

The final discrete equations are obtained by replacing those the volume and line integrals by the Gaussian quadrature 
formulas. To save space, we omit these equations here. Instead, we point out that p1, p2, q1, q2 are obtained by solving 
(3.4)–(3.7) and the values of u at (x̂, ŷ) with x̂ ∈ {xi− 1

2
, xi+ 1

2
, {xG1 }} and ŷ ∈ {y j− 1

2
, y j+ 1

2
, {yG2 }} are reconstructed from 

the cell averages as in the one dimensional case. For reconstruction on Cartesian meshes, one can adopt either a direct 
two dimensional procedure or a dimension-by-dimension strategy [17]. In this paper, we use the dimension-by-dimension 
strategy [24]. First, we perform two y-direction reconstructions, i.e.,

{ūmn, w̄mn} −→ ūi+l, j( ŷ) ≈ 1

�x

∫
Ii+l, j

u(x, ŷ)dx, l = −1,0,1, ŷ ∈ {y j− 1
2
, y j+ 1

2
, {yG2}}

{v̄mn, Z̄mn} −→ ūx,i+l, j( ŷ) ≈ 1

�x

∫
Ii+l, j

ux(x, ŷ)dx, l = −1,0,1, ŷ ∈ {y j− 1
2
, y j+ 1

2
, {yG2}}.

Then we use ū( ŷ) and ūx( ŷ) to perform x-direction reconstruction to get an approximation to u(x̂, ŷ), i.e.,

{ūmn( ŷ), ūx,m,n( ŷ)} −→ ũ(x̂, ŷ) ≈ u(x̂, ŷ), x̂ ∈ {xi− 1
2
, xi+ 1

2
, {xG1}}, ŷ ∈ {y j− 1

2
, y j+ 1

2
, {yG2}}.

The values ̃u(x̂, ŷ) are used in computing the volume and line integrals.
Multiplying (3.3) with 1, x−xi

�x , y−y j
�y and x−xi

�x
y−y j
�y , integrating over Ii j by parts, and using numerical fluxes on the cell 

boundary, we get

dūi j

dt
= − 1

�x�y

y
j+ 1

2∫
y

j− 1
2

Ĥ1(xi+ 1
2
, y) − Ĥ1(xi− 1

2
, y)dy

− 1

�x�y

x
i+ 1

2∫
x

i− 1
2

Ĥ2(x, y j+ 1
2
) − Ĥ2(x, y j− 1

2
)dx, (3.8)

dv̄i j

dt
= − 1

2�x�y

y
j+ 1

2∫
y

j− 1
2

Ĥ1(xi+ 1
2
, y) + Ĥ1(xi− 1

2
, y)dy

− 1

�x�y

x
i+ 1

2∫
x

i− 1
2

(Ĥ2(x, y j+ 1
2
) − Ĥ2(x, y j− 1

2
))

x − xi

�x
dx

+ 1

�x2�y

∫
Ii j

H1dxdy, (3.9)

dw̄ij

dt
= − 1

�x�y

y
j+ 1

2∫
y

j− 1

(Ĥ1(xi+ 1
2
, y) − Ĥ1(xi− 1

2
, y))

y − y j

�y
dy
2
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− 1

2�x�y

x
i+ 1

2∫
x

i− 1
2

(Ĥ2(x, y j+ 1
2
) + Ĥ2(x, y j− 1

2
))dx

+ 1

�x�y2

∫
Ii j

H2dxdy, (3.10)

dZ̄i j

dt
= − 1

2�x�y

y
j+ 1

2∫
y

j− 1
2

(Ĥ1(xi+ 1
2
, y) + Ĥ1(xi− 1

2
, y))

y − y j

�y
dy

− 1

2�x�y

x
i+ 1

2∫
x

i− 1
2

(Ĥ2(x, y j+ 1
2
) + Ĥ2(x, y j− 1

2
))

x − xi

�x
dx

+ 1

�x2�y

∫
Ii j

H1
y − y j

�y
dxdy + 1

�x�y2

∫
Ii j

H2
x − xi

�x
dxdy, (3.11)

where H1 = f1(u) + r′
1(u)p1 and H2 = f2(u) + r′

2(u)p2.
The volume integrals and line integrals are approximated by a Gaussian quadrature rule as for (3.4)–(3.7). If we use Gb

to stand for a boundary point (x̂, ŷ), then the numerical fluxes Ĥi(Gb), r̂i(Gb), and ĝi j(Gb) (i = 1, 2, j = 1, 2) can be defined 
similarly as in one dimension, viz.,

f̂ i(u(Gb)) = f̂ i(u−(Gb), u+(Gb)), ĝi j = ĝi j(q
−
i (Gb),q+

i (Gb)),

p̂i = p+
i (Gb), r̂i = ri(u−(Gb)),

r̂′
i(u(Gb)) = ri(u+(Gb)) − ri(u−(Gb))

u+(Gb) − u−(Gb)
, Ĥi = f̂ i + r̂′

i p̂i,

where u±(Gb), q±
i (Gb), and p±

i (Gb) are the left (or “in”) and right (or “out”) limits of the solutions u, qi , and pi at the 
cell interface Gb , respectively. As in one dimension, f̂ i(u(Gb)) is a monotone flux for f̂ i(u, u) = f i(u) and −ĝi j is a flux for 
−ĝi j(qi, qi) = −gij(qi). Also, the choice of the fluxes is not unique. We must take p̂ and r̂ from the opposite sides.

Once again, the discrete equations can be obtained accordingly. To save space, they are omitted here.
The resultant ODE system is integrated in time with an explicit third order TVD Runge–Kutta method.

4. Numerical examples

In this section we present numerical results obtained with the hybrid LDG-HWENO scheme described in the previous 
sections for four examples each in one and two dimensions.

4.1. One dimensional examples

Example 4.1. We compute the solution of the linear equation

ut + uxxx = 0, 0 < x < 2π, t > 0

subject to the initial condition u(x, 0) = sin(x) and the periodic boundary condition. The equation is in the form of (2.1)
with f (u) = 0, r(u) = u, g(r) = r. The exact solution is given by u(x, t) = sin(x + t). The L1, L2, and L∞ norm of the error 
and the convergence order are shown in Table 4.1. It can be seen that the scheme with Pk elements in DG gives at least a 
(k + 1)th order of accuracy.

Recall that the explicit 3rd TVD Runge–Kutta method is employed for time integration. The CFL stability condition re-
quires the time step to satisfy

�t ≤ C�x3 (4.1)

for some constant C depending on the PDE under consideration and the highest degree (k) of approximation polynomials 
but not on �t and �x. For the current example, it is found that C ≈ 0.00909, 0.00149, and 0.00147 for k = 2, 3, and 4, 
respectively. Apparently, C decreases with increasing k.
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Table 4.1
Example 4.1: periodic boundary conditions, and T = 1.0.

k n 10 20 40 80 160

2

L1 1.418e−3 1.540e−4 1.849e−5 2.275e−6 2.826e−7
Order 3.20 3.06 3.02 3.01
L2 1.465e−3 1.669e−4 2.023e−5 2.507e−6 3.127e−7
Order 3.13 3.04 3.01 3.00
L∞ 1.942e−3 2.284e−4 2.812e−5 3.513e−6 4.403e−7
Order 3.09 3.02 3.00 3.00

3

L1 4.701e−5 2.545e−6 1.511e−7 9.275e−9 5.770e−10
Order 4.21 4.07 4.03 4.01
L2 5.121e−5 2.785e−6 1.661e−7 1.024e−8 6.389e−10
Order 4.20 4.07 4.02 4.00
L∞ 7.113e−5 3.887e−6 2.341e−7 1.444e−8 9.021e−10
Order 4.19 4.05 4.02 4.00

4

L1 1.174e−4 3.655e−6 1.145e−7 3.618e−9 1.110e−10
Order 5.01 5.00 4.98 5.03
L2 1.217e−4 3.961e−6 1.252e−7 3.988e−8 1.228e−10
Order 4.94 4.98 4.97 5.02
L∞ 1.571e−4 5.359e−6 1.734e−7 5.584e−9 1.728e−10
Order 4.87 4.95 4.96 5.01

Table 4.2
Example 4.2: periodic boundary conditions and T = 0.5.

k n 40 80 160 320 640

2

L1 6.218e−3 7.157e−4 8.185e−5 9.755e−6 1.198e−6
Order 3.12 3.13 3.07 3.03
L2 9.789e−3 1.084e−3 1.243e−4 1.488e−5 1.831e−6
Order 3.17 3.12 3.06 3.02
L∞ 3.793e−2 4.225e−3 4.752e−4 5.716e−5 7.060e−6
Order 3.17 3.15 3.06 3.02

3

L1 2.318e−3 5.273e−5 2.076e−6 1.064e−7 6.606e−9
Order 5.46 4.67 4.29 4.01
L2 3.145e−3 7.757e−5 3.237e−6 1.689e−7 1.019e−8
Order 5.34 4.58 4.26 4.05
L∞ 8.637e−3 2.799e−4 1.095e−5 6.143e−7 3.836e−8
Order 4.95 4.68 4.16 4.00

4

L1 5.904e−3 8.765e−5 3.265e−6 1.119e−7 4.293e−9
Order 6.07 4.75 4.87 4.70
L2 7.852e−3 1.299e−4 4.637e−6 1.591e−7 5.851e−9
Order 5.92 4.81 4.87 4.77
L∞ 2.768e−2 6.381e−4 2.078e−5 6.978e−7 2.436e−8
Order 5.44 4.94 4.90 4.84

Example 4.2. In order to see the accuracy of the scheme for nonlinear problems, we compute the classical soliton solution 
of the KdV equation

ut − 3(u2)x + uxxx = 0, −10 ≤ x ≤ 12.

The initial condition is given by

u(x,0) = −2sech2(x),

and the exact solution is

u(x, t) = −2sech2(x − 4t).

For this example, f (u) = −3u2, r(u) = u, g(r) = r. Table 4.2 gives the error of the numerical solution at t = 0.5. We can see 
that the (k + 1)th order of accuracy of the scheme is achieved for this nonlinear problem.

Example 4.3. In this example we compute several classical soliton solutions of the KdV equation

ut + (
u2

2
)x + εuxxx = 0.

Here, f (u) = u2
, r(u) = u, g(r) = εr.
2
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Fig. 4.1. Example 4.3: Single soliton case. Top: P 2 elements are used with 160 cells; Bottom: P 4 elements are used with 160 cells.

The single soliton case has the initial condition

u(x,0) = 3csech2(k(x − x0))

with c = 0.3, x0 = 0.5, k = 1
2

√
c
ε , and ε = 5 ×10−4. The solution is computed in x ∈ (0, 2) with periodic boundary conditions 

and shown in Fig. 4.1.
The double soliton collision case has the initial condition

u(x,0) = 3c1sech2(k1(x − x1)) + 3c2sech2(k2(x − y))

with c1 = 0.3, c2 = 0.1, x1 = 0.4, y = 0.8, ki = 1
2

√
ci
ε for i = 1, 2, and ε = 4.84 × 10−4. The solution shown in Fig. 4.2 is 

computed in x ∈ (0, 2) with a periodic boundary condition.
The triple soliton splitting case has the initial condition

u(x,0) = 2

3
sech2(

x − 1√
108ε

)

with ε = 10−4. The solution shown in Fig. 4.3 is computed in x ∈ (0, 3) with a periodic boundary condition.
In order to see the long time performance of the scheme, we compute all the solitons up to t = 200. The numerical 

solutions are shown in Figs. 4.4–4.6. It can be seen that the peaks of the solitons are almost the same (except for the 
interaction regions). This indicates that the new scheme performs well even for a relatively long time.

Example 4.4. We compute in this example the KdV zero dispersion limit of conservation laws. The equation is

ut + (
u2

2
)x + εuxxx = 0, x ∈ (0,1)

subject to the periodic boundary condition and the initial condition

u(x,0) = 2 + 0.5sin(2πx).

We compute the solution to t = 0.5 with ε = 10−4, 10−5, 10−6, and 10−7. These numerical solutions are shown in Figs. 4.7
and 4.8.



764 D. Luo et al. / Journal of Computational Physics 313 (2016) 754–774
Fig. 4.2. Example 4.3: Double soliton collision case. Top: P 2 elements are used with 320 cells; Bottom: P 4 elements are used with 320 cells.

Fig. 4.3. Example 4.3: Triple soliton splitting case. Top: P 2 elements are used with 320 cells; Bottom: P 4 elements are used with 320 cells.
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Fig. 4.4. Example 4.3: Single soliton case. P 2 elements are used with 640 cells.

Fig. 4.5. Example 4.3: Double soliton collision case. P 2 elements are used with 640 cells.



766 D. Luo et al. / Journal of Computational Physics 313 (2016) 754–774
Fig. 4.6. Example 4.3: Triple soliton splitting case. P 2 elements are used with 640 cells.

Fig. 4.7. Example 4.4: Zero dispersion limit of conservation laws. P 2 elements are used.
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Fig. 4.8. Example 4.4: Zero dispersion limit of conservation laws. P 4 elements are used.

4.2. Two dimensional examples

Example 4.5. In this example we compute the solution of the linear equation

ut + uxxx + u yyy = 0, (x, y) ∈ (0,2π) × (0,2π)

with the initial condition u(x, y, 0) = sin(x + y) and the periodic boundary condition in both directions. Here, f1(u) =
f2(u) = 0, g12 = g21 = 0, g11(r) = g22(r) = r, r1(u) = r2(u) = u. The exact solution is given by u(x, y, t) = sin(x + y − 2t). 
The L1, L2, and L∞ norm of the error and the convergence order of the scheme are shown in Table 4.3. It can be seen 
clearly that the scheme with Pk elements in DG gives the (k + 1)th order of convergence.

Example 4.6. In this example [22] we consider the Zakharov–Kuznetsov (ZK) equation

ut + uux + ε(uxxx + u yyx) = 0. (4.2)

Here, f1(u) = u2

2 , f2(u) = 0, g12 = g22 = 0, g11(r) = g21(r) = εr, r1(u) = r2(u) = u. The steady progressive wave solution is 
of the form

u(x, y, t) = 3csech2(0.5

√
c

ε
((x − ct − x0)cosθ + (y − y0)sinθ)), (4.3)

where θ is an inclined angle with respect to the x-axis and (x0, y0) is the location of the peak of the initial u. We can 
see in Tables 4.4 and 4.5 that the method with Pk elements gives the (k + 1)th order of convergence. The computational 
domains are (−16, 16) × (−16, 16) in Table 4.4 and (0, 48) × (0, 16) in Table 4.5, respectively.

Example 4.7. In this example [22] we show the steady progressive wave propagation of the ZK equation (4.2). First, we show 
the single steady progressive wave in Figs. 4.9 and 4.10 with the initial condition

u(x, y,0) = 3csech2(0.5

√
c

ε
((x − x0)cosθ + (y − y0)sinθ)), (4.4)
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Table 4.3
Example 4.5: periodic boundary conditions and T = 1.

k n × n 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50

2

L1 3.609e−3 3.576e−4 9.786e−5 3.972e−5 1.988e−5
Order 3.34 3.20 3.13 3.10
L2 3.756e−3 3.788e−4 1.050e−4 4.300e−5 2.165e−5
Order 3.31 3.16 3.10 3.08
L∞ 4.588e−3 5.091e−4 1.436e−4 5.916e−5 3.000e−5
Order 3.17 3.12 3.08 3.04

3

L1 1.902e−4 7.385e−6 1.219e−6 3.538e−7 1.380e−7
Order 4.69 4.44 4.30 4.22
L2 1.913e−4 7.780e−6 1.308e−6 3.830e−7 1.503e−7
Order 4.62 4.40 4.27 4.19
L∞ 2.418e−4 1.037e−5 1.789e−6 5.273e−7 2.083e−7
Order 4.54 4.33 4.25 4.16

Table 4.4
Example 4.6: periodic boundary condition in both directions, c = 0.01, ε = 0.01, θ = 0, x0 = 0, y0 = 0, T = 1.

k n × n 40 × 40 50 × 50 60 × 60 70 × 70 80 × 80

2

L1 1.043e−6 3.151e−7 1.162e−7 5.747e−8 3.218e−8
Order 5.36 5.47 4.88 3.98
L2 2.769e−6 8.216e−7 3.108e−7 1.449e−7 8.037e−8
Order 5.44 5.33 4.95 4.41
L∞ 1.225e−5 3.639e−6 1.740e−6 7.808e−7 4.106e−7
Order 5.44 4.05 5.20 4.81

3

L1 4.540e−7 9.451e−8 2.918e−8 1.043e−8 4.314e−9
Order 7.03 6.45 6.67 6.61
L2 1.200e−6 2.658e−7 7.797e−8 2.757e−8 1.125e−8
Order 6.76 6.73 6.74 6.71
L∞ 5.612e−6 1.210e−6 3.307e−7 1.110e−7 4.257e−8
Order 6.88 7.11 7.08 7.18

Table 4.5
Example 4.6: periodic boundary condition in the x-direction and Dirichlet boundary condition in the y-directions, c = 0.01, ε = 0.01, θ = π

12 , x0 = 24, 
y0 = 8, and T = 1.

k n × n 60 × 60 70 × 70 80 × 80 90 × 90 100 × 100

2

L1 5.366e−7 2.352e−7 1.133e−7 6.017e−8 3.562e−8
Order 5.35 5.47 5.37 4.98
L2 1.821e−6 7.759e−7 3.709e−7 1.975e−7 1.159e−7
Order 5.53 5.53 5.35 5.06
L∞ 1.222e−5 5.137e−6 2.753e−6 1.710e−6 9.783e−7
Order 5.62 4.67 4.04 5.30

3

L1 2.561e−7 8.737e−8 3.563e−8 1.644e−8 8.264e−9
Order 6.98 6.72 6.57 6.53
L2 8.420e−7 2.931e−7 1.205e−7 5.491e−8 2.718e−8
Order 6.85 6.66 6.67 6.67
L∞ 5.145e−6 1.977e−6 9.909e−7 3.976e−7 2.441e−7
Order 6.20 5.17 7.75 4.63

where θ is the inclined angle with respect to the x-axis. The periodic boundary condition in both x- and y-directions 
are used when θ = 0. Since the solution cannot be periodic in y-direction when θ �= 0, we use for this case the Dirichlet 
boundary condition in the y-direction and a periodic boundary condition in the x-direction.

The double soliton collision case has the initial condition

u(x, y,0) =
2∑

j=1

3c jsech2(0.5

√
c j

ε
((x − x j)cosθ + (y − y j)sinθ)), (4.5)

where c1 = 0.45, c2 = 0.25, ε = 0.01, θ = 0, x1 = 2.5, y1 = 0, x2 = 3.3, y2 = 0. The results with periodic boundary conditions 
in both coordinate directions in (0, 8) × (0, 8) using P 2 elements with 150 × 150 uniform cells are shown in Fig. 4.11.

Example 4.8. In this example [22] we show the numerical results for the equation

ut + (3u2)x + uxxx + uxyy = 0. (4.6)
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Fig. 4.9. Example 4.7: The single steady progressive wave propagation with the initial condition (4.4). c = 1, ε = 0.01, θ = 0, x0 = 2.5, y0 = 4. Periodic 
boundary condition in both coordinate directions in (0, 8) × (0, 8). P 2 elements with 150 × 150 uniform cells are used.

Fig. 4.10. Example 4.7: The single steady progressive wave propagation with the initial condition (4.4). c = 0.1, ε = 0.01, θ = π
6 , x0 = 16, y0 = 8. Periodic 

boundary condition in the x-direction and Dirichlet boundary condition in the y-direction in (0, 32) × (0, 16). P 2 elements with 150 × 150 uniform cells 
are used.

Here, f1(u) = 3u2, f2(u) = 0, g12 = g22 = 0, g11(u) = g21(u) = u, r1(u) = r2(u) = u. A cylindrically symmetric solitary 
solution was obtained and its evolutions as well as interactions were investigated numerically in [10]. This type of solitary 
solution, also called the bell-shaped pulse, can be expressed as
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Fig. 4.11. Example 4.7: Double soliton collision profiles and periodic boundary condition in both coordinate directions in (0, 8) × (0, 8). P 2 elements with 
150 × 150 uniform cells are used.

Table 4.6
Example 4.8: Coefficients for the solitary wave solution of the equation (4.6).

n a2n n a2n

1 −1.25529873 6 −0.00281281
2 0.21722635 7 −0.00138352
3 0.06452543 8 −0.00070289
4 0.00540862 9 −0.00020451
5 −0.00332515 10 −0.00003053

u(x, y, t) = c

3

10∑
n=1

a2n(cos(2n arccot(

√
c

2
r)) − 1), (4.7)

where c is the velocity of the solitary wave solution and r = √
(x − ct)2 + y2. The coefficients are collected in Table 4.6. 

We use the Dirichlet boundary condition given by the exact solution. The stable propagation of a single pulse is shown in 
Fig. 4.12.

Then, we proceed to show the collision of two pulses with the initial condition

u(x, y,0) =
2∑

j=1

c j

3

10∑
n=1

a2n(cos(2n arccot(
√

c j

2
r j)) − 1), (4.8)

where c1 and c2 are the velocities of the solitary wave solutions, ri = √
(x − xi)

2 + (y − yi)
2 (i = 1, 2), and (xi, yi)’s are the 

locations of the peaks of u. When the centers of the two pulses are situated on the same line with y = const, the collision 
is called a direct collision and otherwise called a deviated collision [10]. The numerical solutions obtained for the cases of 
a direct collision and a deviated collision of two pulses are shown in Figs. 4.13 and 4.14, respectively.

5. Conclusions and further comments

In the previous sections we have studied a hybrid LDG-HWENO scheme for solving KdV-type equations. The scheme 
uses the cell averages of the physical solution and first moment(s) as unknown variables (a feature of HWENO) while 
approximates high order spatial derivatives using the local DG method. It has less unknown variables than a pure LDG 
method and can be applied to problems involving high order spatial derivatives. Numerical results have been presented for 
a selection of one and two dimensional linear and nonlinear examples. They confirm the designed convergence order of the 
scheme.

The new scheme employs an explicit TVD Runge–Kutta method for time integration and is subject to the CFL condition 
which requires an extremely small time step restriction of the form �t = O(�x3). How to avoid this restriction using 
suitable implicit time discretization will be an interesting topic for future work. In this aspect, it is worth pointing out 
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Fig. 4.12. Example 4.8: Evolution of a single bell-shaped pulse solution for (4.6) with c = 4, x0 = 10, and y0 = 16. The used domain is (0, 32) × (0, 32). P 2

elements with 100 × 100 uniform cells are used.

Fig. 4.13. Example 4.8: Direct collision of two bell-shaped pulses solution for (4.6) with the initial condition (4.8) and c1 = 4, c2 = 1, x1 = 32, y1 = 32, 
x2 = 40, y2 = 32, and Dirichlet boundary condition. The computational domain is (0, 64) × (0, 64). P 2 elements with 200 × 200 uniform cells are used.
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Fig. 4.13. (continued)

Fig. 4.14. Example 4.8: Deviated collision of two bell-shaped pulses solution for (4.6) with the initial condition (4.8) and c1 = 4, c2 = 1, x1 = 8, y1 = 14, 
x2 = 16, y2 = 16. and Dirichlet boundary condition. The computational domain is (0, 32) × (0, 32). P 2 elements with 150 × 150 uniform cells are used.

that an unconditionally stable LDG scheme has been recently proposed by Dumbser and Facchini [9] for Boussinesq-type 
equations. The scheme, based on space–time discontinuous Galerkin finite elements, avoids the severe restriction on the 
time step.

Finally, we point out that the scheme proposed in this work can be extended to unstructured meshes with slight mod-
ifications. In that case, the dimension-by-dimension HWENO reconstruction used in this work, which can be used only 
for rectangular meshes, should be replaced with the genuine 2D version of HWENO reconstruction [17] that works for 
unstructured meshes.



D. Luo et al. / Journal of Computational Physics 313 (2016) 754–774 773
Fig. 4.14. (continued)
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