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Abstract In this paper we present a numerical scheme based on the local discontinuous
Galerkin (LDG) finite element method for one class of Sobolev equations, for example,
generalized equal width Burgers equation. The proposed scheme will be proved to have
good numerical stability and high order accuracy for arbitrary nonlinear convection flux,
when time variable is continuous. Also an optimal error estimate is obtained for the fully
discrete scheme, when time is discreted by the second order explicit total variation diminish-
ing (TVD) Runge-Kutta time-marching. Finally some numerical results are given to verify
our analysis for the scheme.

Keywords Sobolev equation · Local discontinuous Galerkin method · Fully-discrete ·
Stability analysis · Error estimate

1 Introduction

In this paper, we will present a numerical scheme based on local discontinuous Galerkin
(LDG) finite element method for the equation

ut + f (u)x − δuxx − μuxxt = 0, x ∈ I, t ∈ (0, T ], (1.1a)

u(x,0) = u0(x), x ∈ I, (1.1b)
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where I = (0,1), and f (u) is a smooth function of u. Here, μ is a given positive constant,
and δ is an arbitrary nonnegative constant. We do not pay attention to boundary condition in
this paper; hence the solution is considered to be either periodic or compactly supported.

This type of equation is also called as Sobolev equation, for the occurrence of the mixed
derivative with respect to temporal and spatial variables. It includes many classical equa-
tions arising in different fields, for example, thermodynamics, shear in second-order fluids,
and consolidation of clay. If f (u) = α(p + 1)−1up+1 with given constants α and p, (1.1a)
is referred as the generalized equal width Burgers equation; if δ = 0 and f (u) = αu+ 1

2βu2

with given numbers α and β , (1.1a) is referred as the regularized long-wave equation, or
Benjamin-Bona-Mahony (BBM) equation [10]. In general, (1.1) not only features a balance
between nonlinear and dispersive effects, but also takes into account mechanisms dissipa-
tion, if u(x, t) is looked upon as the amplitude of the long wave.

Many numerical approximations based on finite difference (and/or element) method have
been considered in the literature, for instance, [2, 4, 13, 16, 20]. In this paper we continue
this work and develop a class of the LDG method to solve (1.1), which uses completely dis-
continuous piecewise polynomial space for the numerical solution and the test functions in
space, coupled with explicit total variation diminishing (TVD) Runge-Kutta (RK) time dis-
cretization. We will show by theory analysis and numerical experiments that this proposed
scheme has strong stability and optimal accuracy, inheriting the advantages of Discontinu-
ous Galerkin (DG) method to capture discontinuous jump and/or sharp transient layer.

The LDG method is a particular version of DG method, which was introduced firstly
in 1973 by Reed and Hill [18], in the framework of neutron linear transport. Then it was
developed into Runge-Kutta DG (RKDG) method [6, 7] by Cockburn et al. for nonlinear
hyperbolic systems, by using a strong stable time-marching scheme, numerical flux and
slope limiter. Later, the LDG method was introduced by Cockburn and Shu in [8] as an ex-
tension of the DG method to general convection-diffusion problems, inspired by the work
of Bassi and Rebay [3] for compressible Navier-Stokes equation. After that, many work
on the develop of LDG method for higher order derivatives was carried out. For example,
Yan and Shu developed a series of LDG method for general KdV type equation containing
third derivatives in [23], and for some type of PDEs with fourth and fifth spatial derivatives
in [24]. Levy and Shu developed the LDG methods for nonlinear dispersive equations with
compactly supported traveling wave solutions in [15]. Xu and Shu further developed the
LDG methods for a series of nonlinear wave equations; please see [22] and the included
references. For a fairly complete set of references on DG methods as well as their imple-
mentation and applications, see the review paper by Cockburn and Shu [9].

In this paper we will propose a LDG method for (1.1) by defining three auxiliary vari-
ables, and transforming spatial derivative into temporal derivative. The main computation is
to solve an elliptic equation by the traditional LDG method, and the definition of numerical
flux is very nature and clear. We will prove this scheme is stable for any flux f (u). Similar
work can be found in [11, 12, 22], where the auxiliary variables are introduced in different
way. The another highlight in this paper is the optimal error estimates for semi-discrete and
fully-discrete scheme with the second TVD RK time-marching. As far as the authors know,
till now there are few works about error estimates for fully-discrete LDG scheme to solve
smooth solution of those equations with high order derivatives, such as (1.1). For semi-
discrete schemes, Cockburn and Shu [8] have discussed for the standard linear diffusion
equation, and Xu and Shu [21] have discussed for three kinds of nonlinear equations with
high order derivatives. In this paper we will adopt those tricks in [25, 26] to obtain optimal
error for the fully-discrete scheme with the second order explicit TVD RK time-marching.
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The rest content of this paper is organized as follows. In Sect. 2, we will describe the
scheme for (1.1) based on the LDG method, and present the stability analysis for the semi-
discrete scheme. Time discrete is also considered in this section, and the fully-discrete
scheme with the second order explicit TVD RK time-marching is given. In Sect. 3, the
optimal error estimates are obtained for the proposed schemes. Both semi-discrete and
fully-discrete schemes are considered in the simple case that the convection direction is
assumed to be from left to right. Some more technical proofs of two lemmas are collected
in Appendix A. In Sect. 4, three numerical experiments are presented to verify our error
estimate is optimal. Concluding remarks are given in Sect. 5.

2 Schemes Based on LDG Method

2.1 Equivalent Formulation

We will propose the scheme for (1.1) along the same line as in designing the general LDG
method. By introducing three auxiliary variables

w = ut , p = wx, q = ux, (2.1)

(1.1) can be rewritten into the following equivalent first-order differential system with regard
to the solution w = (u, q,w,p). It reads, for (x, t) ∈ I × (0, T ), that

ut = w, (2.2a)

qt = p, (2.2b)

w + (f (u) − δq − μp)x = 0, (2.2c)

p − wx = 0, (2.2d)

with initial value (denote �0,x = (�0)x for simplicity)

u(x,0) = u0(x), q(x,0) = u0,x(x), x ∈ I. (2.2e)

Remark that (2.2b) follows from the relation between three auxiliary variables, say, (2.1). By
transferring the derivative from space to time, we will avoid the spatial DG discrete directly
for equation q = ux , and design the correct numerical fluxes for (2.2c) and (2.2d) in a nature
way. By using the routine of LDG method for elliptic equation, this treatment also helps us
to code the program easily.

In what follows, we denote the solution in a compact form w = (wuq,wwp), where
wuq = (u, q) and wwp = (w,p). Further, we write (2.2c) and (2.2d) into a compact form
wwp + h(w)x = 0, with the flux

h(w) = (hw(w), hp(w)) = (f (u) − δq − μp,−w). (2.3)

Obviously this is an elliptic system with respect to the variable w, if wuq is given.
Thus we can obtain a scheme for (1.1) by simply discretizing the above system (2.2),

especially for the last two equations, (2.2c) and (2.2d), with the traditional LDG method.
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2.2 Finite Element Space and Notations

Let 0 = x1/2 < x3/2 < · · · < xN−1/2 < xN+1/2 = 1 be any regular partition of I , and denote
each cell Ij = [xj−1/2, xj+1/2] of length hj = xj+1/2 −xj−1/2, for j = 1,2, . . . ,N . The mesh
parameter is defined as h = max1≤j≤N hj < 1.

We would like to find the LDG approximation solution of (1.1), denoted by wh =
(uh, qh,ph,wh), in which each component belongs to the discontinuous finite element space

Vh = {
v ∈ L2(0,1) : v|Ij ∈ Pk(Ij ), j = 1,2, . . . ,N

}
, (2.4)

where Pk(Ij ) denotes the space of polynomials in the cell Ij of degree at most k ≥ 1. We
do not consider the piecewise constants in this paper, since the proposed scheme is the finite
volume method. Note that functions in Vh are allowed to have discontinuities across element
interfaces, which is very useful to enhance the numerical behaving.

Before presenting the detailed implementation of scheme, we first explain some notations
used in this paper. For any function z(x) ∈ L2(I ), we denote by z±

j+1/2 the limit of z(x) at the
interface point xj+1/2, from the right and left direction, respectively. Dropping the subscript
j + 1/2, we denote the jump and average, at each interface point, by [[z]] = z+ − z−, and
z̄ = (z+ + z−)/2, respectively.

Further, we will use three local projections in this paper. One is the local L2-projection of
z(x), denoted by Phz(x), which is defined in each element Ij , j = 1,2, . . . ,N , as the unique
function in Vh such that

∫

Ij

Phz(x)vh(x)dx =
∫

Ij

z(x)vh(x)dx, ∀vh(x) ∈ Pk(Ij ). (2.5)

The others are two kinds of local Gauss-Raudu projection [14] of z(x), denoted by Q
±
h z(x),

which is defined in each element Ij , j = 1,2, . . . ,N , as the unique function in Vh such that

∫

Ij

Q
±
h z(x)vh(x)dx =

∫

Ij

z(x)vh(x)dx, ∀vh(x) ∈ Pk−1(Ij ), (2.6)

together with boundary condition Q
±
h z(x∓

j±1/2) = z(x∓
j±1/2) solely at an endpoint of the

cell Ij . This projection has an advantage that the interpolation solution is exact at one end-
point of each cell.

2.3 LDG Scheme

Now we keep time in continuous and present the semi-discrete scheme of LDG method
with piecewise polynomials of degree at most k, which is referred to as LDG(k). It is given
as follows: for any time t ∈ (0, T ), find the approximate solution wh = (uh, qh,ph,wh) ∈
(Vh)

4, such that
∫

Ij

uh,t (x, t)v(x)dx −
∫

Ij

wh(x, t)v(x)dx = 0, (2.7a)

∫

Ij

qh,t (x, t)z(x)dx −
∫

Ij

ph(x, t)z(x)dx = 0, (2.7b)

∫

Ij

wh(x, t)s(x)dx −
∫

Ij

hw(wh)sx(x)dx + ĥw(wh)s(x)
∣∣j+1/2

j−1/2
= 0, (2.7c)
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∫

Ij

ph(x, t)r(x)dx −
∫

Ij

hp(wh)rx(x)dx + ĥp(wh)r(x)
∣
∣j+1/2

j−1/2
= 0, (2.7d)

hold for any test function (v, z, s, r) ∈ (Vh)
4 and j = 1,2, . . . ,N . Here and below we would

like to use the vertical line after a multi-valued function p, to denote its difference between
two endpoints, namely, p|j+1/2

j−1/2 = p−
j+1/2 − p+

j−1/2.
We would like to point out that the first two equations, (2.7a) and (2.7b), are not finite

element schemes in essence. They are equivalent to say uh,t = wh and qh,t = ph for any time
t ∈ (0, T ], since the trial functions and the test functions are in the same finite element space.
Thus we can compute the approximation solution by directly advancing every freedoms of
uh and qh by the freedoms of wh and ph, if the same bases of finite element space are used
for every trial functions. This property also plays an important role in our analysis.

To design a successful LDG scheme, it is important to define the numerical flux ĥ(wh)

in a correct way to ensure good stability. In this paper we take it as

ĥw(wh) = f̂ (u−
h , u+

h ) − δq+
h − μp+

h , ĥp(wh) = −w−
h , (2.8)

at each interface point, where the numerical flux f̂ (u−
h , u+

h ) is any locally Lipschitz E-flux
[17] consistent with the flux function f (u). In order to get optimal error estimate, the natural
choice is upwind flux, which satisfies

f̂ (u−, u+) =
{

f (u−) if f ′(u) ≥ 0 ∀u ∈ [min(u−, u+),max(u−, u+)],
f (u+) if f ′(u) < 0 ∀u ∈ [min(u−, u+),max(u−, u+)]. (2.9)

The best-known examples are the Godunov flux, the Engquist-Osher flux, and the Roe flux
with an entropy fix; for more details, please see [9].

The feature to define the numerical flux, (2.8), is that we use alternative direction for w

and p, and same direction for p and q . The former restriction for w and p is necessary for
the LDG method to solve elliptic equation, and the latter one for p and q is very natural since
qh,t = ph. In this paper, we also demand the same direction used in ĥp(w) as in the upwind
numerical flux f̂ (u−, u+). This restriction is only for optimal error, but not necessary for
stability. That is to say, the given numerical flux, (2.8), is very suitable when the numerical
flux is taken as f̂ (u−, u+) = f (u−); otherwise, it is the best choice to change the signs of
direction for ph, qh and wh, in (2.8), if f̂ (u−, u+) = f (u+).

The initial solution for (2.7) is given as an approximation of u0(x) and u0,x(x). In this
paper, we would like to take them depending on the definition of numerical flux. According
to the numerical flux (2.8), we take

uh(x,0) = Q
+
h u0(x) and qh(x,0) = Phu0,x(x), (2.10)

just for simplicity in stability analysis and error estimates. Now the semi-discrete LDG
method is described completely.

In the next paragraph we are going to prove that the LDG(k) scheme has a strong stability
for any numerical E-flux f̂ (u−

h , u+
h ). For convenience, we would like, for any piecewise

functions ϕ and ψ whose restriction in each cell Ij belong to H 1(Ij ), to abbreviate the
discretization in the cell Ij by virtue of the DG method, in the form

H±
j (ϕ,ψ) =

∫

Ij

ϕψx dx − (ϕ±ψ−)j+1/2 + (ϕ±ψ+)j−1/2, (2.11a)

Gj(ϕ,ψ) =
∫

Ij

f (ϕ)ψx dx − (f̂ (ϕ)ψ−)j+1/2 + (f̂ (ϕ)ψ+)j−1/2. (2.11b)
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The first operator, H±
j (·, ·), is used for linear variables ph, qh and wh, depending on the

direction of them in the numerical flux. The second one, Gj(·, ·), is used for nonlinear
(maybe linear) function f (u).

It is worthy to mention that the above linear operators H±
j (·, ·) are not symmetric for

their arguments. However, their combination has a very nice property.

Lemma 2.1 For any piecewise functions ϕ and ψ whose restriction in each cell Ij belong
to H 1(Ij ), we have, for j = 1,2, . . . ,N , that

H+
j (ϕ,ψ) + H−

j (ψ,ϕ) = −Δj(ϕ
+ψ−) ≡ −[

(ϕ+ψ−)j+1/2 − (ϕ+ψ−)j−1/2

]
, (2.12)

where Δjp denotes the center difference for a signal-valued function p at two endpoints of
the cell Ij .

Proof Since ϕψx + ψϕx = (ϕψ)x , a simple manipulation deduces that

H+
j (ϕ,ψ) + H−

j (ψ,ϕ) = (ϕψ)
∣∣j+ 1

2

j− 1
2
− (ϕ+ψ)

∣∣j+ 1
2

j− 1
2
− (ψ−ϕ)

∣∣j+ 1
2

j− 1
2

= −Δj(ϕ
+ψ−),

which completes the proof of this lemma. �

Theorem 2.1 For the numerical solution to scheme (2.7) with the initial setting (2.10), there
is a good stability as follows

d

dt

∫ 1

0

[
u2

h(x, t) + μq2
h(x, t)

]
dx ≤ 0. (2.13)

Proof Firstly we point out an interesting property from (2.10). This setting of initial solution
implies that qh(x,0) satisfies the equation paralleled to (2.7d), of the form

∫

Ij

qh(x,0)vh(x)dx + H−
j (uh(x,0), vh(x)) = 0, ∀vh ∈ Vh, j = 1,2, . . . ,N. (2.14)

It follows from an integration by parts for qh(x,0) = Phu0,x , since uh(x,0) = Q
+u0(x)

indicates H−
j (u0(x), vh(x)) = H−

j (uh(x,0), vh(x)) for any vh ∈ Vh.
Therefore, integration of equation (2.7d) in time from 0 to t ∈ (0, T ], yields that

∫

Ij

qhvh dx + H−
j (uh, vh) = 0, ∀v(x) ∈ Vh, j = 1,2, . . . ,N, (2.15)

holds for any time t ∈ (0, T ], since uh,t = wh,qh,t = ph and (2.14). It is equivalent to the
DG discrete of equation q = ux . Remark that the above result (2.15) is also true for t = 0.
This equation plays very important role in stability analysis here and error estimate below.

Let the test function s(x) = uh in (2.7c), and let vh(x) = δqh and vh(x) = μph in (2.15),
respectively. By Lemma 2.1, the sum of these new equations yields that

0 =
∫

Ij

[uhwh + δq2
h + μqhph]dx + δ

[
H+

j (qh, uh) + H−
j (uh, qh)

]

+μ
[
H+

j (ph,uh) + H−
j (uh,ph)

] − Gj(uh,uh)
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=
∫

Ij

[uhuh,t + δq2
h + μqhqh,t ]dx − δΔj (q

+
h u−

h )

−μΔj(p
+
h u−

h ) − Gj(uh,uh), (2.16)

where uh,t = wh and qh,t = ph are used again.
Next, we define the entropy flux for f (u), as usual, F(u) = ∫ u

f (s)ds, to deal with the
last term in (2.16). Then it follows from a series of manipulation that

−Gj(uh,uh) = −Δj(F (u−
h ) − f̂ (uh)u

−
h ) + ([[F(uh)]] − f̂ (uh)[[uh]]

)
j−1/2

, (2.17)

where the details of analysis are omitted, since they can be found in any paper about the
theory analysis of the DG method for conservation law, for example, [9]. The property of

E-flux implies that [[F(uh)]] − f̂ (uh)[[uh]] = ∫ u+
h

u−
h

(f (s) − f̂ (u−
h , u+

h ))ds ≥ 0. Consequently,

the last term in (2.17), denoted by �j−1/2, is not less than zero.
We sum up (2.16) over all elements Ij , j = 1,2, . . . ,N . By using (2.17) and periodic

boundary condition, we obtain

1

2

d

dt

∫ 1

0
(u2

h + μq2
h)dx + δ

∫ 1

0
q2

h dx +
∑

1≤j≤N

�j+1/2 = 0. (2.18)

Then it completes the proof of this theorem, since �j+1/2 ≥ 0. �

2.4 Time Marching

After we have chosen the basis functions of finite element space Vh, the semi-discrete
scheme (2.7) can be written in an ODE system with regard to the freedoms of wuq,h =
(uh, qh). For simplicity of notations, we still use the solution to represent its freedoms. The
system is given as follows:

[wuq,h]t = L(wuq,h) = wwp,h, (2.19)

where wwp,h = (wh,ph) is coupled with wuq,h by (2.7c) and (2.7d). It only takes a small
quantity of algebra manipulations in advancing directly the freedoms of approximation
solutions, by any standard ODE solver, for example, the r-order explicit TVD RK time-
marching, denoted by RK(r). Please refer to [19] for more details.

In this paper we would like to adopt RK(2) time-marching, which is defined as follows:

wn	
uq,h = wn

uq,h + τnL(wn
uq,h), (2.20a)

wn+1
uq,h = 1

2
wn

uq,h + 1

2
wn	

uq,h + 1

2
τnL(wn	

uq,h), (2.20b)

where L(wuq,h) = wwp,h, and τn = tn+1 − tn is the time step. We refer to this fully-discrete
scheme as RKLDG(2,k), if the finite element space Vh is of piecewise polynomials of degree
at most k. The detail implementation is given as follows:

1. compute the initial solution u0
h and q0

h by (2.10);
2. until the final time T , compute for n = 0,1,2, . . .

• get wn
h and pn

h from un
h and qn

h , by (2.7c) and (2.7d);
• get un	

h and qn	
h by (2.20a);
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• get wn	
h and pn	

h from un	
h and qn	

h , by (2.7c) and (2.7d);
• get un+1

h and qn+1
h by (2.20b).

Since (2.7c) and (2.7d) are coupled into an algebraic system of linear equations, we need use
a linear equation solver twice in each complete step of RK(2). In this paper we use Gaussian
elimination method with partial pivoting.

To ensure the stability of scheme RKLDG(2,k), time step τn(< 1) has to be restricted
under a suitable time-spatial condition. In this paper it is enough to demand

δ2τn ≤ Mδh
2, and max

1≤j≤N
|f ′(un

j+ 1
2
)|τn ≤ Mf h, (2.21)

for arbitrary positive constant Mδ , however, and a fixed CFL number Mf = 1/(4M). The
constant M will be given in error estimate to the fully discrete scheme, see (3.35) below.
In particular, for convenience we would like to take each time step in same length τ(< 1),
under the following restriction

δ2τ ≤ Mδh
2, and Smaxτ ≤ Mf h, (2.22)

with the same constants as those in (2.21), where Smax is the maximum absolution of f ′(u)

taken over a relevant range of u(x, t), the exact solution of (1.1).

3 Error Estimates

In this section we will present a priori error estimates to the semi-discrete scheme LDG(k)
and the fully-discrete scheme RKLDG(2,k) for smooth solution of (1.1). Below we denote
by C (maybe with indicates) a positive constant depending solely on the exact solution,
which may have a different value in each occurrence.

3.1 Preliminaries

3.1.1 Notations of Sobolev Space

For 1 ≤ r ≤ +∞ and integers s ≥ 0, let Ws,r (Ω) represent the well-known Sobolev spaces
consisting of functions with (distributional) derivatives of order less than or equal to s in
Lr(Ω). Also, let ‖ ·‖s,r,Ω denote the usual norm. Next, let the scalar inner product on L2(Ω)

be denoted by (·, ·)Ω , and the associated norm by ‖·‖Ω . Further, ‖·‖∞,Ω represents the norm
on L∞(Ω), and ‖ · ‖L∞(Ws,r (Ω)) the norm on L∞([0, T ],Ws,r (Ω)). If Ω = I we omit it. See
Adams [1] for more details.

In this paper we also use some notations for vector-valued function. For any p = (p1,p2)

and q = (q1,q2), we denote the μ-inner product by (p,q)μ = p1q1 + μp2q2, where μ is
a given positive constant. The corresponding norm is denoted by ‖p‖2

μ = ‖p1‖2 + μ‖p2‖2.
We use K(p,q) to denote a vector composed of the scalar inner product of those components
with same-index, i.e., K(p,q) = ((p1,q1), (p2,q2)).

3.1.2 Smoothness Assumptions and Remarks on the Flux

In this paper we assumed that each component of the solution, w� = �, is smooth enough,
for example, w� ∈ L∞([0, T ];Wk+1,∞) for � = u,q,p and w. The assumptions to w and
p are equivalent to say that ut and qt are in L∞([0, T ];Wk+1,∞). It follows from Sobolev
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embedding theorem H 2,∞(I ) ↪→ C1(I ) in one dimension that both u(x, t) and its first order
spatial derivative are continuous and bounded in I × [0, T ], since k ≥ 1.

Also, we assume that the flux function f (u) itself and up to the second order derivatives
are all bounded on R. If not, we can modify the flux f (u) to satisfy this assumption, as we
have done in [25]. To emphasize the nonlinearity of the flux f (u), we use C	 to denote the
positive constant depending solely on the maximum of |f ′′|. Remark that C	 = 0 for a linear
flux f = cu.

In addition we assume that the convection direction contains f ′(u) ≥ 0, in order to
present error estimate in a clear fashion. Now the numerical flux in the proposed scheme
is defined by (2.8) with f̂ (u−, u+) = f (u−). There is no essential difficulty in obtaining
error estimate for general cases, if we introduce the quantity α(f̂ ;u−, u+) to measure the
diffusion of numerical flux; please refer to [25].

3.1.3 Short Notations with Respect to the Flux

Below we will use some compact notations with regard to f (u). For any function p, we
denote the bounded constant in error estimates by a short form C(p) = C + C	h

−2‖p‖2∞,
where C and C	 are independent of h and p. Further, we define two compact operators for
any functions p and q, in the form

A(p,q) =
∑

1≤j≤N

|f ′(pj+ 1
2
)|[[q]]2

j+ 1
2
, B(p,q) =

∑

1≤j≤N

‖f ′(pj+ 1
2
)qx‖2

Ij
, (3.1)

where pj+1/2 is the (left-limiting) value of p at the right endpoint of the cell Ij . The first
one is used to denote the sum of jump of q at every interface points, corresponding to the
diffusion of numerical flux f̂ . Similar notation has been used in [25]. The second one is
used to denote the sum of L2-norm of first order spatial derivative of q over all elements.
The relation between two operators will be given in Lemma 3.7 and Corollary 3.1.

3.1.4 Properties of Finite Element Space

Gauss-Raudu projection (2.6) is a very useful tool to obtain the optimal error estimate for
the DG method. By virtue of the scaling technique [5], it is easy to get, for the interpolation
error η±

z = z(x) − Q
±
h z(x), that

‖η±
z ‖ + h

1
2 ‖η±

z ‖∞ + h
1
2 ‖η±

z ‖Γh
≤ C‖z(x)‖k+1,∞hk+1, (3.2)

where Γh is the union of the interface point of every elements, and C is a positive constant
independent of h and z(x).

Finally, we list some inverse properties of the finite element space Vh that will be used
in our error analysis. For any vh ∈ Vh, there exists a positive constant C, independent of vh

and h, such that

(i) ‖vh,x‖ ≤ Ch−1‖vh‖;
(ii) ‖vh‖Γh

≤ Ch−1/2‖vh‖;
(iii) ‖vh‖∞ ≤ Ch−1/2‖vh‖.

(3.3)

For more details of these inverse properties, we refer the reader to [5].
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3.2 Error Estimate for the Semi-Discrete LDG Method

By e� = �h − � we denote the error for each component of the solution of (1.1), where
� = u,q,w and p. Further, we use a short notation euq = (eu, eq) and ewp = (ew, ep). Sim-
ilar notations are used for short below. According to the definition of numerical flux (2.8),
we divide each component of error into two parts by using different kind of Gauss-Raudu
projection. They reads

e� = (�h − Q
+
h �) − (� − Q

+
h �) = ξ� − η�, for � = u,w; (3.4a)

e� = (�h − Q
−
h �) − (� − Q

−
h �) = ξ� − η�, for � = q,p; (3.4b)

where ξ� ∈ Vh need to be estimated below, and η� is the interpolation error. Remark that
η−

u = η−
w = η+

p = η+
q = 0 at each interface point. From (3.2), we have that

‖η�‖ + h1/2‖η�‖∞ + h1/2‖η�‖Γh
≤ C‖�‖L∞(Wk+1,∞)h

k+1, t ∈ [0, T ], (3.5)

where C is a positive constant independent of h and �.

3.2.1 Error Equation

Now we are going to estimate the error ξ� ∈ Vh by virtue of the energy analysis. To this
end, we first multiply the test functions vu, vq, vw and vp , respectively, on both hand side
of each equation in (2.2), and then make some integrations by parts. This process gives us
four almost same equations as (2.7), except the diminishing subscript h, since f̂ (u−, u+) =
f (u) for the continuous function u at each interface point. Next, we subtract them from the
corresponding equation in (2.7). Finally, we sum up the resulted equations over all elements
Ij , j = 1,2, . . . ,N , to deduce that

K(euq,t , vuq) = K(ewp, vuq), K(ewp, vwp) = H(euq, vwp), ∀t ∈ (0, T ], (3.6)

hold for any test function vuq = (vu, vq) and vwp = (vw, vp) in (Vh)
2. Here K(·, ·) has been

defined in Sect. 3, and H(·, ·) is used to denote the LDG spatial discrete for wwp , in the form

H(euq, vwp) =
( ∑

1≤j≤N

[
Kj(eu, vw) − μH+

j (ep, vw) − δH+
j (eq, vw)

]
,−

∑

1≤j≤N

H−
j (ew, vp)

)
,

where Kj(eu, vw) = Gj(uh, vw)−Gj(u, vw) is relevant to the convection flux f (u), and not
equal to Gj(u − uh, vw) in general.

By taking the test function (vuq, vwp) = (ξu,μξq, ξu,0) in (3.6), we will get the following
error equation

(eu,t , ξu) + μ(eq,t , ξq) = K ⊗ H(ew, ξuq) ≡
∑

1≤j≤N

Kj ⊗ Hj (ew, ξuq), (3.7)

where ew = (eu, eq, ew, ep), ξuq = (ξu, ξq) and

Kj ⊗ Hj (ew, ξuq) =
∫

Ij

μepξq dx − μH+
j (ep, ξu) − δH+

j (eq, ξu) + Kj(eu, ξu). (3.8)

In what follows we will analyze the right-hand side term of (3.7), in order to obtain the
error estimate. Remark that Kj ⊗ Hj (ew, ξuq) includes two kinds of terms, where H±

j (·, ·)
is linear for both arguments, and Kj(·, ·) is linear only for the second argument.
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Lemma 3.1 Suppose the interpolation property (3.5) is satisfied; then we have that

K ⊗ H(ew, ξuq) ≤ Ch2k+2 + 1

2
(μ − δ)‖ξq‖2 +

∑

1≤j≤N

Kj (eu, ξu) + μ

∫ 1

0
ηqξp dx, (3.9)

where C is the positive constant independent of h and wh.

Proof Since (2.15) is consistent with q = ux , we have, for any time t ∈ (0, T ], that
∫

Ij

eqvh dx + H−
j (eu, vh) = 0, vh ∈ Vh, j = 1,2, . . . ,N. (3.10)

This fact is the foundation of our proof to this lemma.
Take the test function vh = −δξq and vh = −μξp in (3.10), respectively. By adding two

new equations to the formula of Kj ⊗ Hj (ew, ξuq), we get that

Kj ⊗ Hj (ew, ξuq)

=
∫

Ij

[μepξq − δeqξq − μeqξp]dx

︸ ︷︷ ︸
�0

+Kj(eu, ξu)

− δ(H+
j (ξq, ξu) + H−

j (ξu, ξq))
︸ ︷︷ ︸

�1

−μ(H+
j (ξp, ξu) + H−

j (ξu, ξp))
︸ ︷︷ ︸

�2

+ δ(H+
j (ηq, ξu) + H−

j (ηu, ξq)) + μ(H+
j (ηp, ξu) + H−

j (ηu, ξp))
︸ ︷︷ ︸

�3

. (3.11)

Below we will estimate each above term, separately.
By arithmetic mean inequality and Schwartz inequality, it is easy to get that

�0 =
∫

Ij

[
δ(ηqξq − ξ 2

q ) + μ(ηqξp − ηpξq)
]

dx

≤ μ

∫

Ij

ηqξp dx + 1

2
(μ − δ)‖ξq‖2

Ij
+ 1

2

[
μ‖ηp‖2

Ij
+ δ‖ηq‖2

Ij

]
. (3.12)

Next, it follows from Lemma 2.1 that �1 + �2 = −δΔj (ξ
+
q ξ−

u ) − μΔj(ξ
+
p ξ−

u ). Further, we
assert that �3 = 0 since each term included there is equal to zero. To show that, we take
H+

j (ηq, ξu) as an example. Obviously it is true, as an immediate consequence of Gauss-
Raudu projection (2.6).

We substitute all estimates about �i, i = 0,1,2,3 into (3.11), and sum up the resulted
inequality over all elements Ij , j = 1,2, . . . ,N . Finally, by using the interpolation property
(3.5) and periodic boundary condition, we complete the proof of this lemma. �

Along the same line as [25], we can obtain the following lemma to estimate Kj(eu, ξu).
For the completeness of this paper, the proof will be given in the appendix.

Lemma 3.2 Suppose the interpolation property (3.5) is satisfied; then we have that
∑

1≤j≤N

Kj (eu, ξu) ≤ C(eu)
[‖ξu‖2 + h2k+2

] − 1

2
A(u, ξu),

where C and C	 in C(eu) are the positive constants independent of h and wh.
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Based on the above lemmas, we can get the optimal error estimate for the semi-discrete
scheme.

Theorem 3.1 Assume that each component of the exact solution of the problem (1.1) satisfy
w� ∈ L∞([0, T ];Wk+1,∞(I )) for � = u,q,w and p; Let wh = (uh, qh,wh,ph) be the nu-
merical solution of (2.7) with the initial setting (2.10), where the finite element space Vh is of
piecewise polynomials of degree at most k ≥ 1, defined on arbitrary regular triangulations
of I = [0,1]. Then there exists a positive constant C > 0 independent of h and wh, such that

‖u − uh‖2
L∞(L2)

+ μ‖q − qh‖2
L∞(L2)

≤ Ch2k+2. (3.13)

Proof To deal with the nonlinearity of the flux f (u), we would like to use a priori assump-
tion as follows: for h small enough, there exists a constant C0 > 0 independent of h, such
that

‖eu‖L∞(L∞) ≤ C0h. (3.14)

For linear convection flux this assumption is not necessary. We will verify this assumption
is reasonable at the end of this proof.

The a priori assumption (3.14) implies that C(eu) ≤ C for any time t ∈ [0, T ], where C

is a positive constant independent of t, h and wh. Together with Lemmas 3.1 and 3.2, (3.7)
yields that

1

2

d

dt
‖ξuq‖2

μ + δ

2
‖ξq‖2 + 1

2
A(u, ξu) ≤ Ch2k+2 + C‖ξuq‖2

μ + S, ∀t ∈ (0, T ], (3.15)

where S = ∫ 1
0 [ηu,t ξu + μηq,t ξq + μηqξp]dx. We do not estimate S at any certain time t , but

tend to estimate its integration in the time interval [0, t]. Since Gauss-Raudu projection (2.6)
is linear for time, it is obvious that ηu,t = ηw ; thus it follows ξq,t = ξp from the semi-discrete
scheme (2.7b). Then Young’s inequality yields that

∫ t

0
S(s)ds = μ

∫ 1

0

[
ηq(t)ξq(t) − ηq(0)ξq(0)

]
dx +

∫ t

0

∫ 1

0
ηu,t ξu(s)dx ds

≤ μ

4
‖ξq‖2(t) + μ

4
‖ξq‖2(0) + μ‖ηq‖2(t) + μ‖ηq‖2(0)

+C

∫ t

0

[‖ξu‖2 + ‖ηu,t‖2
]
(s)ds

≤ μ

4
‖ξq‖2(t) + μ

4
‖ξq‖2(0) + C

∫ t

0
‖ξu‖2(s)ds + Ch2k+2, (3.16)

where the interpolation property (3.5) is used.
We integrate inequality (3.15) in time, and substitute (3.16) into the new inequality. Then

we obtain, for any time t ∈ (0, T ], that there exists a positive constant C independent of t, h

and wh, such that

‖ξuq‖2
μ(t) + δ

∫ t

0

[‖ξq‖2 + A(u, ξu)
]
(s)ds ≤ C

[∫ t

0
‖ξuq‖2

μ(s)ds + ‖ξuq‖2
μ(0) + h2k+2

]
.

An application of the classical Gronwall lemma for the above inequality implies that

‖ξuq‖2
μ(t) ≤ C

[
h2k+2 + ‖ξuq‖2

μ(0)
] ≤ Ch2k+2, ∀t ∈ (0, T ], (3.17)
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where we have used the approximation property of initial solutions

ξu(0) = 0, ‖ξq(0)‖ ≤ C‖u0,x‖k+1h
k+1, (3.18)

since uh(x,0) = Q
+
h u0(x) and qh(x,0) = Phu0,x(x). Finally, (3.13) follows from triangular

inequality combing (3.17) with the interpolation property (3.5).
Before we complete this proof, we have to verify the a priori assumption is reasonable.

Obviously the initial solution can be bounded by Ch for h small enough. By the interpolation
property (3.5) and inverse property (iii) in (3.3), we can get from inequality (3.17) that

‖eu‖∞ ≤ Ch−1/2‖ξu‖ + ‖ηu‖∞ ≤ Chk+1/2, ∀t ∈ (0, T ],

where C is the positive constant independent of h. Thus the a priori assumption (3.14) holds
for h small enough, since k ≥ 1. Now we complete the proof of this theorem. �

3.3 Error Estimate for the Fully-Discrete LDG Method

In this subsection we would like to obtain the optimal error estimate for the fully-discrete
LDG scheme, RKLDG(2,k). To do that, the solution of (1.1) is assumed to have same
smoothness as that for the semi-discrete scheme, and �t t t ∈ L∞([0, T ],L2) in addition,
for � = u and q .

Let [T/τ ] be the maximum integer not greater than T/τ . Following [25] we define the
reference function with respect to the second stage of RK(2), of the form

�
	(t) = �(t) + τ�t (t), for � = u,q,p,w, (3.19)

and denote �
n = �(tn) and �

n	 = �
	(tn), for any n ≤ [T/τ ]. Denote the error at each stage

of RK(2) by en
�

= �
n
h − �

n and en	
�

= �
n	
h − �

n	, respectively.
Below we use notation � to represent n and n	. According to the definition of numerical

flux (2.8), we use different projections to divide each component of the error e� into two
parts, as we have done for semi-discrete scheme. They reads

e
�
� = (�

�

h − Q
+
h �

�) − (�� − Q
+
h �

�) = ξ
�
� − η

�
�, for � = u,w; (3.20a)

e
�
� = (�

�

h − Q
−
h �

�) − (�� − Q
−
h �

�) = ξ
�
� − η

�
�, for � = q,p; (3.20b)

where ξ
�
� ∈ Vh need to be estimated below, and η

�
� is the interpolation error. Remark that

(η�
u)

− = (η�
w)− = (η�

p)+ = (η�
q)

+ = 0 at each interface point. From (3.2), we have that

‖η�
�‖ + h1/2‖η�

�‖∞ + h1/2‖η�
�‖Γh

≤ C‖�‖k+1,∞hk+1, ∀n ≤ [T/τ ], (3.21)

where C is a positive constant independent of n,h, τ and �.

3.3.1 Error Equations

Now we want to get the error equation about ξ
�
�. To this end, we firstly consider the time-

marching of exact solution of (1.1). By a series of Taylor expansion [25] in time for u and
q , one can deduce that the solution w� satisfies, for any test function (vuq, vwp) ∈ (Vh)

4 and
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n < [T/τ ], that

K(wn	
uq, vuq) = K(wn

uq, vuq) + τ K(wn
wp, vuq), (3.22a)

K(wn
wp, vwp) = H(wn

uq, vwp), (3.22b)

K(wn+1
uq , vuq) = 1

2
K(wn

uq, vuq) + 1

2
K(wn	

uq, vuq)

+ τ

2
K(wn	

wp, vuq) + K(E n, vuq), (3.22c)

K(wn	
wp, vwp) = H(wn	

uq, vwp) + K(Ẽ n
x , vwp), (3.22d)

where E n is the local time-discrete error about wuq after one complete step of RK(2), and
Ẽ n is resulted from the nonlinear perturbation of convection flux f (u) after the first stage of
RK(2). In detail, they are given by

E n = 1

2

∫ τ

0
s(s − τ)wuq,ttt (t

n + s)ds, Ẽ n =
(

(un
t )

2
∫ τ

0
(τ − s)f ′′(un + sun

t )ds,0

)
,

hence ‖E n‖ = O(τ 3) and ‖Ẽ n
x ‖ = O(τ 2) for any n < [T/τ ].

By subtracting (3.22) from the fully-discrete scheme RKLDG(2,k), we obtain the fol-
lowing equation about ξ

�
�. It reads, for any n < [T/τ ], that

K(ξn	
uq , vuq) = K(ξn

uq, vuq) + τ K(en
wp, vuq) + K(Dn	

uq, vuq), (3.23a)

K(en
wp, vwp) = H(en

uq, vwp), (3.23b)

K(ξn+1
uq , vuq) = 1

2
K(ξn

uq, vuq) + 1

2
K(ξn	

uq , vuq)

+ τ

2
K(en	

wp, vuq) + K(Dn+1
uq + E n, vuq), (3.23c)

K(en	
wp, vwp) = H(en	

uq, vwp) + K(Ẽ n
x , vwp), (3.23d)

hold for any vuq and vwp in (Vh)
2, where Dn	

uq = ηn	
uq −ηn

uq and Dn+1
uq = ηn+1

uq − (ηn
uq +ηn	

uq)/2.
Since Gauss-Raudu projection (2.6) is linear for time, we also have

‖Dn	
uq‖ + ‖Dn+1

uq ‖ + ‖ηn+1
uq − ηn

uq‖ ≤ Chk+1τ, ∀n < [T/τ ], (3.24)

where C is the positive constant independent of n,h and τ .
We are going to obtain the optimal error estimate for the RKLDG(2,k) scheme, by virtue

of energy analysis for (3.23), along the same line as in [25]. To do that, we take different test
function in each equation of (3.23). Let vuq = (ξn

u ,μξn
q ) in (3.23a), vwp = (ξn

u ,0) in (3.23b),
vuq = (ξn	

u ,μξn	
q ) in (3.23c), and vwp = (ξn	

u ,0) in (3.23d), respectively. By summing up the
above new equations, after a simple manipulation we can finally get the following energy
equation

‖ξn+1
uq ‖2

μ − ‖ξn
uq‖2

μ = J ⊗ H(en
w, ξn

uq)︸ ︷︷ ︸
R1

+ J 	 ⊗ H	(en	
w , ξn	

uq )
︸ ︷︷ ︸

R2

+‖ξn+1
uq − ξn	

uq‖2
μ︸ ︷︷ ︸

R3

, (3.25a)

where R1 and R2 are inheriting from the semi-discrete scheme, of the form

J ⊗ H(en
w, ξn

uq) = τ K ⊗ H(en
w, ξn

uq) + (Dn	
uq , ξ

n
uq)μ, (3.25b)
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J 	 ⊗ H	(en	
w , ξn	

uq ) = τ K ⊗ H(en	
w , ξn	

uq ) + (2Dn+1
uq + 2E n + Ẽ n

x , ξn	
uq )μ, (3.25c)

and R3 is resulted from the second order explicit RK time-marching. Below we will estimate
them separately.

3.3.2 Estimates to R1 and R2

The main term in formula (3.25b) is K ⊗ H(en
w, ξn

uq), which is easy to estimate as we have
done for the semi-discrete scheme. Thus we only present the conclusion and the sketch of
proof.

Lemma 3.3 Suppose the interpolation property (3.21) is satisfied; then we have, for any
n < [T/τ ], that

R1 ≤ C(en
u)

[
h2k+2 + ‖ξn

u ‖2
]
τ + μτ

∫ 1

0
ηn

qξ
n
p dx + 1

2
(μ − δ)‖ξn

q ‖2τ − 1

2
A(un, ξn

u )τ,

where C and C	 in C(en
u) are the positive constants independent of n,h, τ and wh.

Proof Recall that (3.10) plays an important role in the proof for Lemma 3.1. We will show
this property is also true for the fully-discrete scheme.

In fact, it follows from an inductive analysis. By substituting the time-marching relation,
between w�

uq,h and w�

wp,h, into the DG spatial discrete of getting p
�

h from w
�

h, we deduce that
∫

Ij

q
�

hvh(x)dx + H−
j (u

�

h, vh) = 0, ∀vh ∈ Vh, j = 1,2, . . . ,N,

since the initial solutions u0
h and q0

h are given by (2.10). As an immediate consequence of
equation q� = u�

x , we have the following important equation
∫

Ij

e�
qvh(x)dx + H−

j (e�
u, vh) = 0, ∀vh ∈ Vh, j = 1,2, . . . ,N. (3.26)

Please keep in mind that the errors we want to estimate and the test functions are both
staying at the same time now. Along the same line as in Lemma 3.1, we add two equations
by taking vh = −δξn

q and vh = −μξn
p in (3.26), respectively. It yields an almost same es-

timate as (3.9), except the appending supscript n. Also the estimate to the convection flux
is almost same as Lemma 3.2. The left inner product is easy to estimate by using Young’s
inequality and the interpolation property (3.24). Finally, we collect up the above estimates
and complete the proof of this lemma. �

There is a similar conclusion for the second term R2, along the same line. Here we only
present the result without any proof.

Lemma 3.4 Suppose the interpolation property (3.21) is satisfied; then we have, for any
n < [T/τ ], that

R2 ≤ Cτ 6 + C(en	
u )

[
h2k+2 + ‖ξn	

u ‖2
]
τ

+μτ

∫ 1

0
ηn	

q ξn	
p dx + 1

2
(μ − δ)‖ξn	

q ‖2τ − 1

2
A(un	, ξn	

u )τ,

where C and C	 in C(en	
u ) are the positive constants independent of n,h, τ and wh.
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3.3.3 Estimate to R3

We can estimate the third term R3 under a suitable time-space restriction, namely, (2.22).
To describe this more clearly, we use notation M to emphasize the positive constant inde-
pendent of n,h, τ,w and wh, which may have a different value in each occurrence.

We utilize the structure of RK(2) time-marching to estimate R3. Subtracting equation
(3.23c) from (3.23a), we have, for any vuq ∈ (Vh)

2, that

K(ξn+1
uq − ξn	

uq , vuq) = τ

2
K(en	

wp − en
wp, vuq) + K(Dn+1

uq − 1

2
Dn	

uq + E n, vuq).

Let vuq = (ξn+1
u − ξn	

u ,μ(ξn+1
q − ξn	

q )) in the above equation, and sum up the new equations.
A simple application of Young’s inequality yields that

‖ξn+1
uq − ξn	

uq‖2
μ ≤ 1

2
‖ξn	

wp − ξn
wp‖2

μτ 2 + Ch2k+2τ 2 + Cτ 6, (3.27)

where the interpolation property (3.24) and ‖E n‖ = O(τ 3) are used.
Now we have to estimate ‖ξn	

wp − ξn
wp‖μ. To do that, we subtract (3.23b) from (3.23d),

with the same test function vwp = ξn	
wp − ξn

wp . It deduces that

‖ξn	
wp − ξn

wp‖2
μ =

∑

1≤j≤N

[
Kj(e

n	
u , vw) − Kj(e

n
u, vw)

]

︸ ︷︷ ︸
T1(vwp)

−
∑

1≤j≤N

[
δH+

j (en	
q − en

q, vw)
]

︸ ︷︷ ︸
T2(vwp)

−
∑

1≤j≤N

[
μH+

j (en	
p − en

p, vw) + μH−
j (en	

w − en
w, vp)

]

︸ ︷︷ ︸
T3(vwp)

+(ηn	
wp − ηn

wp + Ẽ n
x , vwp)μ

︸ ︷︷ ︸
T4(vwp)

. (3.28)

Next we will estimate each above term, separately.
It is easy to get an estimate to T1(vwp), along the same line as [25]. For completeness of

this paper, we give the proof in the appendix.

Lemma 3.5 Let ε be any given small positive constant. Suppose that the interpolation prop-
erties (3.21) and (3.24) are satisfied; then we have, for any vw ∈ Vh and n < [T/τ ], that

T1(vwp) ≤ ε‖vw‖2 + [
C(en

u) + C(en	
u )

]
h2k+2 + C(en

u)‖ξn
u ‖2 + C(en	

u )‖ξn	
u ‖2

+MSmaxh
−1 A(un, ξn

u ) + MSmaxh
−1 A(un	, ξn	

u ) + MB(un, ξn
u ) + MB(un	, ξn	

u ),

where A(·, ·) and B(·, ·) have been defined in Sect. 3.1, and the positive constants C,C	 and
M are independent of n,h, τ , and wh; however, maybe depending on ε.

Let ε be any given small positive constant, and keep in mind below that vwp = ξn	
wp −

ξn
wp . Since H+

j (ηn	
q − ηn

q, vw) = 0 for Gauss-Raudu projection (2.6), we can use the inverse
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properties (i) and (ii) in (3.3), and Young’s inequality, to have that

T2(vwp) = −δ
∑

1≤j≤N

H+
j (ξn	

q − ξn
q , vw) ≤ δ‖ξn	

q − ξn
q ‖‖vw,x‖ + δ‖ξn	

q − ξn
q ‖Γh

‖[[vw]]‖Γh

≤ ε‖vw‖2 + Cδ2h−2
(‖ξn	

q ‖2 + ‖ξn
q ‖2

)
. (3.29a)

Also there holds H+
j (ηn	

p − ηn
p, vw) = H−

j (ηn	
w − ηn

w, vw) = 0, hence Lemma 2.1 together
with periodic boundary condition yields that

T3(vwp) = −μ
∑

1≤j≤N

[
Δj(v

+
p v−

w) − H+
j (ηn	

p − ηn
p, vw) − H−

j (ηn	
w − ηn

w, vp)
] = 0. (3.29b)

By interpolation property (3.24) and ‖Ẽ n
x ‖ = O(τ 2), Young’s inequality yields that

T4(vwp) ≤ ε‖vwp‖2
μ + Ch2k+2 + Cτ 4. (3.29c)

Finally substituting estimate (3.29) and Lemma 3.5 into (3.28), we can obtain an estimate
to ‖ξn	

wp −ξn
wp‖μ, if ε is small enough, for instance, ε = 1/8. Then an immediate consequence

of this result and (3.27) is the estimate we wanted. We conclude it in the next lemma.

Lemma 3.6 Suppose the interpolation properties (3.21) and (3.24) are satisfied; then we
have, for any n < [T/τ ], that

R3 ≤ [
C(en

u) + C(en	
u )

]
h2k+2τ 2 + Cτ 6

+C(en
u)‖ξn

u ‖2τ 2 + C(en	
u )‖ξn	

u ‖2τ 2 + Cδ2h−2‖ξn
q ‖2τ 2 + Cδ2h−2‖ξn	

q ‖2τ 2

+MSmaxh
−1

[
A(un, ξn

u ) + A(un	, ξn	
u )

]
τ 2 + MB(un, ξn

u )τ 2 + MB(un	, ξn	
u )τ 2,

where C and C	 are the positive constants independent of n,h, τ , and wh.

In Lemma 3.6 there emerges a new term B(u�, ξ �
u), so we have to get an upper bound

for it. The next lemma shows the relation between the spatial derivative and the jumps at
boundary points, namely, B(u�, ξ �

u) can be controlled by A(u�, ξ �
u) in some sense.

Lemma 3.7 Suppose that the interpolation property (3.21) is satisfied; then we have, for
any n < [T/τ ], that

B(u�, ξ �
u) ≤ MS�

maxh
−1 A(u�, ξ �

u) + C‖ξ �
u‖2 + C‖ξ �

q‖2 + Ch2k+2, � = n,n	, (3.30)

where S�
max is the maximum of convection speed |f ′(u�)| over all boundary points, and C

and M are the positive constants independent of n,h and τ .

Proof Recall H−
j (ηn	

u −ηn
u, vh) = 0 for any vh ∈ Vh and j = 1,2, . . . ,N , since Gauss-Raudu

projection (2.6). Integration by parts for (3.26) yields that

∫

Ij

ξ �
u,xvh dx =

∫

Ij

e�
qvh dx − [[ξu]]�

j− 1
2
v+

h,j− 1
2
, ∀vh ∈ Vh, j = 1,2, . . . ,N.
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We take the test function vh = ξ �
u,x in this equation, and control the trace v+

h,j−1/2 by the
inverse inequality (ii) in (3.3). Then Young’s inequality yields that

‖ξ �
u,x‖2

Ij
≤ C‖ξ �

q‖2
Ij

+ Mh−1[[ξ �
u]]2

j− 1
2
+ C‖η�

q‖2
Ij

.

We can complete the proof of this lemma, by substituting the above inequality and the inter-
polation property (3.21), into the formula of B(u�, ξ �

u), since u is smooth enough. �

Corollary 3.1 Suppose that the interpolation property (3.21), and the general time-spatial
condition τ = O(h) are satisfied; then we have, for any n < [T/τ ], that

B(u�, ξ �
u) ≤ MSmaxh

−1 A(u�, ξ �
u) + C‖ξ �

u‖2 + C‖ξ �
q‖2 + Ch2k+2, � = n,n	, (3.31)

where C and M are the positive constants independent of n,h and τ .

Proof We only need to point out that Sn
max ≤ Smax and Sn	

max ≤ Smax + Cτ 2. The former is
obvious, and the latter follows from f ′(un	) − f (un+1) = O(un + τun

t − un+1) = O(τ 2),
since f and u are assumed to be smooth enough. Then (3.31) is an immediate consequence
of Lemma 3.7 and the inverse property (ii) in (3.3). �

To obtain the error estimate for the fully-discrete scheme RKLDG(2,k), we also need to
build up the relation between errors ξn

uq and ξn	
uq . The proof for this conclusion is very similar

as that for Lemma 3.6, so omitted here.

Lemma 3.8 Suppose that the interpolation property (3.21) is satisfied; then we have, for
any n < [T/τ ], that

‖ξn	
uq −ξn

uq‖2
μ ≤ C(en

u)
[
h2k+2 +‖ξn

u ‖2
]
τ 2 +Cδ2h−2‖ξn

q ‖2τ 2 +CA(un, ξu)τ
2 +CB(un, ξu)τ

2,

where C and C	 are the positive constants independent of n,h, τ , and wh.

3.3.4 Main Conclusion

Based on the above lemmas, we can obtain the optimal error estimate for the fully-discrete
scheme RKLDG(2,k). The result is given in the following theorem.

Theorem 3.2 Assume each component of the exact solution of the problem (1.1) sat-
isfy w� ∈ L∞(Wk+1,∞(I )) for � = u,q,w,p, and �t t t ∈ L∞(L2) for � = u,q; Let
wh = (uh, qh,wh,ph) be the numerical solution of the fully-discrete scheme, RKLDG(2, k),
with the initial setting (2.10), where the finite element space Vh is of piecewise polynomials
of degree at most k ≥ 1, defined on arbitrary regular triangulations of I = [0,1], and the
time step is restricted under the CFL condition (2.22). Then there exists a positive constant
C independent of n,h, τ and wh such that

‖u(tn) − un
h‖2 + μ‖q(tn) − qn

h‖2 ≤ Ch2k+2 + Cτ 4, ∀n ≤ [T/τ ]. (3.32)

Proof As we have done before, to deal with the nonlinearity of convection flux f (u), we
use the following a priori assumption: for h small enough, there exists a positive constant
C1 independent of n,h, τ and wh such that

‖em
u ‖∞ ≤ C1h, ‖em	

u ‖∞ ≤ C1h, ∀m ≤ n. (3.33)
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For linear flux f (u), this assumption is not necessary. It is obvious that this assumption is
true for n = 0, since (3.18) and the interpolation property (3.21). Later we will prove it is
also reasonable for n + 1.

The a priori assumption (3.33) implies that C(en
u) + C(en	

u ) ≤ C, where C is a positive
constant independent of n,h and τ . By using the inverse inequalities (i) and (ii) in (3.3),
Lemma 3.8 implies that, if τ = O(h) then

‖ξn	
uq‖2

μ ≤ C‖ξn
uq‖2

μ + Ch2k+2τ 2. (3.34)

Now we substitute those estimates for R1, R2 and R3, given in Lemmas 3.3, 3.4 and
3.6, into the energy equation (3.25a). Then by using Corollary 3.1 and inequality (3.34), we
obtain that, if τ = O(h), there exists a positive constant C independent of n,h, τ and wh

such that

‖ξn+1
uq ‖2

μ − ‖ξn
uq‖2

μ + δ

2
‖ξn

q ‖2τ + δ

2
‖ξn	

q ‖2τ + 1

2
A(un, ξn

u )τ + 1

2
A(un	, ξn	

u )τ

≤ C(h2k+2τ + τ 6) + C‖ξn
uq‖2

μτ + μ(ηn
q, ξ

n
p)τ + μ(ηn	

q , ξn	
p )τ

︸ ︷︷ ︸
μT n

RK

+Cδ2h−2‖ξn
q ‖2τ 2

︸ ︷︷ ︸
Gn

1

+MSmaxh
−1

[
A(un, ξn

u ) + A(un	, ξn	
u )

]
τ 2

︸ ︷︷ ︸
Gn

2

, (3.35)

where M is the positive constant independent of n,h, τ,w and wh.
The last two terms in (3.35) can be controlled by using the time-spatial restriction (2.22).

Since δ2τ = O(h2), we have Gn
1 ≤ C‖ξn

q ‖2τ . Since Smaxτ ≤ h/(4M), we can control Gn
2

by the interface’s jumps on the left-hand side of (3.35). Consequently, by summing up the
inequality (3.35) over the time level from 0 to n, we finally get that

‖ξn+1
uq ‖2

μ + δ

2

∑

m≤n

[‖ξm
q ‖2 + ‖ξm	

q ‖2
]
τ + 1

4

∑

m≤n

[
A(um, ξm

u ) + A(um	, ξm	
u )

]
τ

≤ C
∑

m≤n

[‖ξm
uq‖2

μτ + h2k+2τ + τ 6
] + ‖ξuq(0)‖2

μ + μ
∑

m≤n

T n
RK, (3.36)

under the time-spatial restriction (2.22), where C is the positive constant independent of
n,h, τ , and wh.

The last term in (3.36) can be looked upon as the discretization of μ
∫ tn+1

tn
T (t)dt , where

T (t) = ∫ 1
0 ηq(x, t)ξp(x, t)dx. Recall that we have used an integration by parts to transfer

the position of time derivative, in the error estimate for the semi-discrete scheme. So we
rearrange the order of sum in time to give a discrete version of integration by parts. After a
simple manipulation, it is easy to get the following identity

T n
RK = (ηn

q, ξ
n
p)τ + (ηn	

q , ξn	
p )τ = (ηn

q, ξ
n	
p + ξn

p)τ + (ηn	
q − ηn

q, ξ
n	
p )τ

= (ηn
q, ξ

n+1
q − ξn

q ) − (ηn
q, (ξ

n+1
q − ξn

q ) − τ(ξn	
p + ξn

p)) + (ηn	
q − ηn

q, ξ
n	
p )τ

= (ηn+1
q , ξn+1

q ) − (ηn
q, ξ

n
q )

−(ηn+1
q − ηn

q, ξ
n+1
q ) + (ηn	

q − ηn
q,a)

︸ ︷︷ ︸
�1

−(ηn	
q − ηn

q,b) − (ηn
q,c)

︸ ︷︷ ︸
�2

, (3.37)
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where a = 2ξn+1
q − ξn	

q − ξn
q , b = a− τξn	

p , and c = (ξn+1
q − ξn

q )− τ(ξn	
p + ξn

p). By Young’s
inequality and the interpolation property (3.24), it is easy to see

�1 ≤ 1

4
‖ξn+1

q ‖2τ + C
[‖ξn	

q ‖2 + ‖ξn
q ‖2 + h2k+2

]
τ. (3.38)

To estimate �2, we need to estimate b and c by the structure of RK(2) time-marching. It is
easy to get from (3.23a) and (3.23c), respectively, that

(b, vh) = −τ(ηn	
p , vh) + 2(Dn+1

q + E n
q , vh), ∀vh ∈ Vh; (3.39a)

(c, vh) = −τ(ηn	
p + ηn

p, vh) + (2Dn+1
q − Dn	

q + 2E n
q , vh), ∀vh ∈ Vh. (3.39b)

Take the test function vh = b in (3.39a), and vh = c in (3.39b), respectively. Then Young’s
inequality yields that ‖b‖2 + ‖c‖2 ≤ Ch2k+2τ 2 + Cτ 6, where the interpolation properties
(3.21) and (3.24), and E n

q = O(τ 3) are used. Therefore, Young’s inequality yields that

�2 ≤ 1

2

(‖ηn	
q − ηn

q‖2 + τ‖ηn
q‖2 + ‖b‖2 + τ−1‖c‖2

) ≤ Ch2k+2τ + Cτ 5. (3.40)

Then together with inequalities (3.38) and (3.40), equation (3.37) yields that

∑

m≤n

T m
RK ≤ (ηn+1

q , ξn+1
q ) − (η0

q , ξ
0
q ) + 1

4
‖ξn+1

q ‖2τ + C
∑

m≤n

[‖ξn	
q ‖2 + ‖ξn

q ‖2 + h2k+2 + τ 4
]
τ

≤ 1

2
‖ξn+1

q ‖2 + C‖ξ 0
q ‖2 + C

∑

m≤n

[‖ξn	
q ‖2 + ‖ξn

q ‖2 + h2k+2 + τ 4
]
τ, (3.41)

since τ < 1, where Young’s inequality and interpolation property (3.21) are used.
We substitute inequality (3.41) into (3.36). By using inequality (3.34) and the initial

approximation property (3.18), we can obtain that there exists a positive constant C inde-
pendent of n,h, τ and wh, such that

1

2
‖ξn+1

uq ‖2
μ ≤ C

∑

m≤n

‖ξm
uq‖2

μτ + C(h2k+2 + τ 4), ∀n < [T/τ ].

An application of discrete Gronwall lemma for the above inequality implies that

‖ξn+1
uq ‖2

μ ≤ Ch2k+2 + Cτ 4, ∀n < [T/τ ]. (3.42)

Finally, triangular inequality combining (3.42) with the interpolation property (3.21) gives
estimate (3.32).

In order to complete the proof of this theorem, we need to verify the a priori assumption
(3.14) is reasonable for n + 1. By the interpolation property (3.21) and the inverse property
(iii) in (3.3), we have, from the conclusion (3.42), that

‖en+1
u ‖∞ ≤ Ch−1/2‖ξn+1

u ‖ + ‖ηn+1
u ‖ ≤ Ch− 1

2 (hk+1 + τ 2).

It implies ‖en+1
u ‖∞ ≤ C1h if h small enough, since k ≥ 1 and τ = O(h). Based on this new

result, we use Lemma 3.8 to get ‖ξ (n+1)	
u ‖ ≤ C(hk+1 + τ 2). Repeating above analysis, we

can see that ‖e(n+1)	
u ‖∞ ≤ C1h if h small enough. Thus the a priori assumption also holds

for (n + 1)	. Till now we complete the proof of this theorem. �
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4 Numerical Experiment

In this section, we will present some numerical examples to demonstrate the error order of
the proposed LDG method. The second order explicit Runge-Kutta time discretization and
uniform meshes are used in the calculation. In Tables from 1 to 3 we list the numerical error
and corresponding order in different norms, which show the scheme has an optimal error in
L2-norm, as we have proved in this paper.

Example 1 Let δ = μ = 1 and f (u) = 0, consider (1.1) with periodic boundary condition
u(0, t) = u(2π, t), and initial solution u(x,0) = sinx. This is a pure parabolic-type Sobolev
equation, with the exact solution u(x, t) = e−t/2 sinx. We compute this equation till the final
time T = 1. The time-space restriction is taken as τ = h2 for piecewise linear polynomials,
and τ = 0.09h2 for piecewise quadratic polynomials, respectively.

Example 2 Let μ = 1, δ = 2 and f (u) = 2u, consider (1.1) with periodic boundary con-
dition u(0, t) = u(2π, t), and initial solution u(x,0) = sinx. Its exact solution is u(x, t) =
e−t sin(x − t). We compute this equation till the final time T = 1. The time-space restric-
tion is taken as τ = min{0.15h,h2} for piecewise linear polynomials, and τ = 0.09h2 for
piecewise quadratic polynomials, respectively.

Example 3 Let δ = 0 and f (u) = αu+ 1
2βu2 with given numbers α,β , (1.1) is just a regular

long wave equation (RLW). Consider it with periodic boundary condition u(a, t) = u(b, t),
with the exact solution

u(x, t) = 3(c − 1)sech2

[√
c − 1

4μc
(x − ct − d)

]
, (4.1)

where c and d are two given parameters. The initial condition u(x,0) is given by the above
formula. In our simulation, we set α = β = 1,μ = 0.1, a = 0, b = 20, c = 2 and d = 8,
and compute this equation till the final time T = 1. The time-space restriction is taken as
τ = 0.15h for piecewise linear polynomials, and τ = 0.09h3/2 for piecewise quadratic poly-
nomials, respectively. Remark that the latter setting is only for getting the optimal error order
in space.

Table 1 Example 1. Errors and orders for P1 and P2 with RK(2); T = 1

N L1 error L1 order L2 error L2 order L∞ error L∞ order

P1 10 4.94E–03 6.61E–03 2.26E–02

20 1.25E–03 1.98 1.64E–03 2.01 5.40E–03 2.07

40 3.16E–04 1.99 4.11E–04 2.00 1.34E–03 2.01

80 7.91E–05 2.00 1.03E–04 2.00 3.34E–04 2.00

160 1.98E–05 2.00 2.57E–05 2.00 8.34E–05 2.00

P2 10 2.61E–04 3.36E–04 8.95E–04

20 3.34E–05 2.96 4.22E–05 3.00 1.17E–04 2.94

40 4.17E–06 3.00 5.28E–06 3.00 1.47E–05 2.99

80 5.21E–07 3.00 6.60E–07 3.00 1.84E–06 3.00

160 6.51E–08 3.00 8.25E–08 3.00 2.31E–07 3.00
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Table 2 Example 2. Errors and orders for P1 and P2 with RK(2); T = 1

N L1 error L1 order L2 error L2 order L∞ error L∞ order

P1 10 4.41E–03 5.48E–03 1.66E–02

20 1.09E–03 2.02 1.36E–03 2.01 4.14E–03 2.00

40 2.72E–04 2.00 3.39E–04 2.01 1.03E–03 2.01

80 6.44E–05 2.08 8.21E–05 2.04 2.71E–04 1.92

160 1.59E–05 2.02 2.04E–05 2.01 6.89E–05 1.98

P2 10 2.52E–04 3.08E–04 6.83E–04

20 2.68E–05 3.23 3.38E–05 3.19 9.06E–05 2.91

40 3.22E–06 3.06 4.06E–06 3.06 1.20E–05 2.91

80 3.97E–07 3.02 5.01E–07 3.02 1.55E–06 2.96

160 4.94E–08 3.01 6.23E–08 3.01 1.96E–07 2.98

Table 3 Example 3. Errors and orders for P1 and P2 with RK(2); T = 1

N L1 error L1 order L2 error L2 order L∞ error L∞ order

P1 20 4.06E–02 9.98E–02 5.24E–01

40 1.01E–02 2.00 2.70E–02 1.88 1.68E–01 1.64

80 2.84E–03 1.84 7.12E–03 1.92 5.51E–02 1.61

160 7.78E–04 1.87 1.91E–03 1.90 1.59E–02 1.79

320 2.08E–04 1.90 5.05E–04 1.92 4.33E–03 1.88

P2 20 1.11E–02 2.89E–02 1.56E–01

40 1.64E–03 2.75 4.31E–03 2.75 3.10E–02 2.33

80 2.27E–04 2.86 5.86E–04 2.88 4.18E–03 2.89

160 2.86E–05 2.99 7.38E–05 2.99 5.35E–04 2.96

320 3.55E–06 3.01 9.17E–06 3.01 6.76E–05 2.99

5 Concluding Remarks

In this paper we presented a LDG method to solve one class of Sobolev equation (1.1), by
introducing three auxiliary variables. For semi-discrete scheme, it is proved to be of good
stability and high order accuracy. Time-discrete is also considered by virtue of the second or-
der explicit TVD Runge-Kutta time-marching, and an optimal error estimate is also obtained
for this fully-discrete scheme. Finally, numerical experiment verifies the optimal order of the
proposed scheme. In the ongoing work, we will discuss how to extend and analyze this LDG
method to high dimensional nonlinear Sobolev equations, and with another time-marching.

Appendix A

A.1 Proof of Lemma 3.2

We can prove this lemma by the following Taylor expansions [25] for the convection func-
tion f (u), in the cell Ij and at the interface points, respectively. They read



458 J Sci Comput (2009) 41: 436–460

f (u) − f (uh) = f ′(u)ξu − f ′(u)ηu + 1

2
f ′′

u · (eu)
2, in the cell Ij ; (A.1a)

f (u) − f (u−
h ) = f ′(u)ξ−

u − f ′(un)η−
u + 1

2
f̃ ′′

u · (e−
u )2, at the endpoint xj+ 1

2
. (A.1b)

Here f ′′ = f ′′(θ1u + (1 − θ1)uh) and f̃ ′′ = f ′′(θ2uj+ 1
2

+ (1 − θ2)uh,j+ 1
2
), with θi ∈ (0,1),

are the mean value of the second order derivative of f (u).
Since we have assumed f̂ (u−

h , u+
h ) = f (u−

h ) in this paper, the proof is more easier than
that in [25]. After some simple manipulations, we can have that

∑

1≤j≤N

Kj (eu, ξu) =
∑

1≤j≤N

∫

Ij

f ′(u)ξuξu,x dx +
∑

1≤j≤N

f ′(uj+ 1
2
)ξ−

u,j+ 1
2
[[ξu]]j+ 1

2

−
∑

1≤j≤N

∫

Ij

f ′(u)ηuξu,x dx −
∑

1≤j≤N

f ′(uj+ 1
2
)η−

u,j+ 1
2
[[ξu]]j+ 1

2

+ 1

2

∑

1≤j≤N

∫

Ij

f ′′
u · (eu)

2ξu,x dx + 1

2

∑

1≤j≤N

f̃ ′′ · (e−
u,j+ 1

2
)2[[ξu]]j+ 1

2
,

where each above term is denoted by Yi , i = 1, . . . ,6.
Firstly, a simple integration by parts yields that

Y1 + Y2 = −1

2

∑

1≤j≤N

∫

Ij

∂xf
′(u)(ξu)

2 dx −
∑

1≤j≤N

f ′(uj+ 1
2
)({{ξu}} − ξ−

u )j+ 1
2
[[ξu]]j+ 1

2

≤ C	‖ξu‖2 − 1

2

∑

1≤j≤N

|f ′(uj+ 1
2
)|[[ξu]]2

j+ 1
2
.

Recall that |f ′(u) − f ′(uj+1/2)| = O(h) in the cell Ij for smooth solution u. By using the
interpolation property (3.5), and the inverse property (i) in (3.3), we can get that

Y3 + Y4 = −
∑

1≤j≤N

∫

Ij

[
f ′(u) − f ′(uj+ 1

2
)
]
ηuξu,x dx −

∑

1≤j≤N

∫

Ij

f ′(uj+ 1
2
)ηuξu,x dx

≤ C‖ηu‖2 + Ch2‖ξu,x‖2 ≤ Ch2k+2 + C‖ξu‖2,

where the definition of projection (2.6) is used twice. Along the same line, we use the inter-
polation property (3.5), and the inverse properties (i) and (ii) in (3.3), to get that

Y5 + Y6 ≤ C	‖eu‖∞
[‖ξu,x‖‖eu‖ + ‖ξu‖Γh

‖eu‖Γh

]

≤ [
C	 + C	h

−2‖eu‖2
∞

][‖ξu‖2 + h2k+2
]
.

Thus we complete the proof of Lemma 3.2 by summing up the above inequalities.

A.2 Proof of Lemma 3.5

Let Q�(vw) = ∑
1≤j≤N Kj (e

�
uq, vw), then T1(vwp) = Qn	(vw) − Qn(vw). In this paper we

need not to give sharp estimate as [25], to the difference of Qn	(vw) and Qn(vw), and only
analyze each of them along the same line as for Lemma 3.2. Below we give the estimate for
Q�(vw), and drop the supscript � for convenience.
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By using the same Taylor expansion as (A.1), and noticing f̂ (u−
h , u+

h ) = f (u−
h ), after a

simple manipulation we can divide Q1(vw) into six terms, of the form

Q�(vw) =
∑

1≤j≤N

∫

Ij

f ′(u)ξuvw,x dx +
∑

1≤j≤N

f ′(uj+ 1
2
)ξ−

u,j+ 1
2
[[vw]]j+ 1

2

−
∑

1≤j≤N

∫

Ij

f ′(u)ηuvw,x dx −
∑

1≤j≤N

f ′(uj+ 1
2
)η−

u,j+ 1
2
[[vw]]j+ 1

2

+ 1

2

∑

1≤j≤N

∫

Ij

f ′′ · (eu)
2vw,x dx + 1

2

∑

1≤j≤N

f̃ ′′ · (e−
u,j+ 1

2
)2[[vw]]j+ 1

2
,

where each above term is denoted as Zi , i = 1, . . . ,6.
Firstly, an integration by parts yields that

Z1 + Z2 = −
∑

1≤j≤N

f ′(uj+ 1
2
)[[ξu]]j+ 1

2
vw,j+ 1

2
−

∑

1≤j≤N

∫

Ij

f ′(uj+ 1
2
)ξu,xvw dx

−
∑

1≤j≤N

∫

Ij

[
f ′(u)

]
x
ξuvw dx −

∑

1≤j≤N

∫

Ij

[
f ′(u) − f ′(uj+ 1

2
)
]
ξu,xvw dx.

Since |f ′(u) − f ′(uj+1/2)| = O(h) in each cell Ij , by Young’s inequality and the inverse
properties (i) and (ii) in (3.3), we have

Z1 + Z2 ≤ ε‖vu‖2 + C‖ξu‖2 + Mε

∑

1≤j≤N

‖f ′(uj+ 1
2
)ξu,x‖2

Ij

+Mεh
−1

∑

1≤j≤N

|f ′(uj+ 1
2
)|2[[ξu]]2

j+ 1
2

≤ ε

6
‖vu‖2 + C‖ξu‖2 + Mε B(u, ξu) + MεSmaxh

−1 A(u, ξu),

where Mε solely depends on ε. The left four terms, Zi , i = 3,4,5,6, can be estimated as Yi .
By Gauss-Raudu projection (2.6), and the inverse property (i) and (ii) in (3.3), we have

Z3 + Z4 ≤ ε

6
‖vu‖2 + Ch2k+2,

Z5 + Z6 ≤ ε

6
‖vu‖2 + C	h

−2‖eu‖2
∞(‖ξu‖2 + h2k+2).

Summing up the above conclusions we can get an estimate to Q�(vw), and then complete
the proof of this lemma.
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