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volume schemes, such as the exact or approximate Riemann solvers serving as numerical
fluxes and limiters, which is termed as Runge-Kutta LDG (RKLDG) when TVD Runge-Kutta
method is applied for time discretization. It has the advantage of flexibility in handling
complicated geometry, h-p adaptivity, and efficiency of parallel implementation and has
been used successfully in many applications. However, the limiters used to control spuri-
Runge-Kutta time discretization ous os.cillations in 'the presence of stroqg shocks are less robu.st than the strategies .of
Discontinuous Galerkin method essentially non-oscillatory (ENO) and weighted ENO (WENO) finite volume and finite dif-
Convection-diffusion equations ference methods. In this paper, we investigated RKLDG methods with WENO and Hermite
Limiters WENO (HWENO) limiters for solving convection-diffusion equations on unstructured
meshes, with the goal of obtaining a robust and high order limiting procedure to simulta-
neously obtain uniform high order accuracy and sharp, non-oscillatory shock transition.
Numerical results are provided to illustrate the behavior of these procedures.

© 2010 Elsevier Inc. All rights reserved.

Keywords:
Weighted essentially non-oscillatory

1. Introduction

In this paper, we investigated the Runge-Kutta local discontinuous Galerkin (RKLDG) methods with weighted essentially
non-oscillatory (WENO) and Hermite WENO (HWENO) limiters for solving convection-diffusion problems:

{8tu+V'Fc(u)_v'Fd(u7vu):07 (11)

u(xv% 0) = uo(xv.y)7

on two dimensional unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simul-
taneously obtain uniform high order accuracy and sharp, non-oscillatory shock transition for the LDG methods.

In 1973, Reed and Hill [21] first introduced the discontinuous Galerkin (DG) method for solving neutron transport prob-
lem. From 1987, Cockburn and Shu developed the DG method in a series of papers [4-8], in which they established a frame-
work to easily solve nonlinear time dependent hyperbolic conservation laws, using explicit, nonlinearly stable high order
Runge-Kutta time discretizations [24] and DG discretization in space with exact or approximate Riemann solvers as interface
fluxes and total variation bounded (TVB) limiter [23] to achieve nonoscillatory properties for strong shocks. These schemes
are termed RKDG methods.
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An important component of RKDG methods for solving the conservation laws (1.1) with strong shocks in the solutions is a
nonlinear limiter, which is applied to detect discontinuities and control spurious oscillations near such discontinuities. Many
such limiters have been used in the literature on RKDG methods. For example, we mention the minmod type TVB limiter [4-
8], which is a slope limiter using a technique borrowed from the finite volume methodology; the moment based limiter [2]
and an improved moment limiter [3], which are specifically designed for discontinuous Galerkin methods and work on the
moments of the numerical solution. These limiters tend to degrade accuracy when mistakenly used in smooth regions of the
solution. In [19], Qiu and Shu investigated using weighted essentially nonoscillatory (WENO) finite volume methodology

Fig. 1. The limiting diagram.
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Fig. 3. Linear convection diffusion equation. Mesh. Triangle: h = 4/10.
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[11,13-15] as limiter for RKDG method and in the papers [18,20] they presented Hermite weighted essentially non-oscilla-
tory (HWENO) finite volume methodology as limiters for RKDG, for solving nonlinear hyperbolic conservation laws on struc-
tured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously achieve uniform high
order accuracy and sharp, nonoscillatory shock transition for the RKDG methods. The following framework has been
adopted:

Table 1
Up + Uy + Uy = By + Zuy,. u(x,y,0) = sin(0.57(x + y)). Periodic boundary conditions in both directions. t = 1, L' and L* errors. RKLDG with the WENO limiter
(M = 0.01) compared to RKLDG without limiter. The mesh points on the boundary are uniformly distributed with cell length h.

h RKLDG with WENO limiter RKLDG without limiter
I! error Order L error Order L! error Order L error Order

p! 4/10 6.12E-2 2.19E-1 1.63E-2 7.81E-2

4/20 2.44E-2 1.33 9.38E-2 1.23 3.84E-3 2.09 2.24E-2 1.80

4/40 6.14E-3 1.99 3.42E-2 1.46 9.15E-4 2.07 6.00E-3 1.90

4/80 1.28E-3 2.26 1.07E-2 1.67 2.17E-4 2.07 1.52E-3 1.98

4/160 2.38E-4 2.43 3.13E-3 1.78 5.13E-5 2.09 3.71E-4 2.03
p? 4/10 7.05E-3 3.91E-2 6.91E-4 3.39E-3

4/20 1.34E-3 2.39 5.29E-3 2.88 8.20E-5 3.07 5.12E-4 2.72

4/40 1.68E—4 2.99 7.90E-4 2.73 9.72E-6 3.07 6.55E-5 2.96

4/80 1.58E-5 3.40 1.27E-4 2.63 1.09E-6 3.14 7.98E—6 3.03

4/160 1.42E-6 3.47 1.77E-5 2.84 1.45E-7 2.91 9.31E-7 3.09

Table 2
U + Uy + Uy = 2ty + 2 uyy,. u(x,y,0) = sin(0.57(x + y)). Periodic boundary conditions in both directions. t =1, L' and L™ errors. RKLDG with the HWENO
limiter (M = 0.01) compared to RKLDG without limiter. The mesh points on the boundary are uniformly distributed with cell length h.

h RKLDG with HWENO limiter RKLDG without limiter
L! error Order L> error Order L' error Order L> error Order

p! 4/10 1.23E-1 3.59E-1 1.63E-2 7.81E-2

4/20 4.60E-2 1.42 1.68E—1 1.09 3.84E-3 2.09 2.24E-2 1.80

4/40 1.59E-2 1.53 6.55E—-2 1.37 9.15E-4 2.07 6.00E—3 1.90

4/80 3.27E-3 2.28 2.20E-2 1.57 2.17E-4 2.07 1.52E-3 1.98

4/160 5.83E—4 2.48 6.63E-3 1.73 5.13E-5 2.09 3.71E-4 2.03
p? 4/10 6.97E-3 4.39E-2 6.91E-4 3.39E-3

4/20 1.00E-3 2.79 4.74E-3 3.21 8.20E-5 3.07 5.12E-4 2.72

4/40 1.24E-4 3.02 5.50E—4 3.11 9.72E-6 3.07 6.55E-5 2.96

4/80 1.38E-5 3.17 6.62E-5 3.05 1.09E-6 3.14 7.98E—6 3.03

4/160 1.63E-6 3.08 9.68E—-6 2.77 1.45E-7 2.91 9.31E-7 3.09

Fig. 4. 2D equations. Mesh. Triangle: h = 2/10.
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Table 3

2D equations: initial data p(x,y,0) =1+ 0.2sin(n(x +y)), u(x,y,0) = 0.5, v(x,y,0) = 0.5, and p(x,y,0) = 1. Periodic boundary conditions in both directions.
t = 2. Asymptotic convergence L' and L™ errors. RKLDG with the WENO limiter (M = 0.01) compared to RKLDG without limiter. The mesh points on the
boundary are uniformly distributed with cell length h.

h RKLDG with WENO limiter RKLDG without limiter
L' error Order L> error Order L' error Order L*> error Order

p! 2/10 2.63E-2 5.69E-2 4.00E-3 1.67E-2

2/20 6.87E-3 1.94 1.66E—2 1.77 7.48E—4 2.42 3.81E-3 2.14

2/40 1.42E-3 227 4.27E-3 1.96 1.65E—4 2.18 9.01E-4 2.08

2/80 2.82E-4 2.33 1.15E-3 1.89 3.91E-5 2.08 2.17E-4 2.05
p? 2/10 6.41E-3 2.04E-2 2.38E-4 9.37E-4

2/20 1.36E-3 224 4.32E-3 2.25 3.15E-5 2.92 1.85E-4 2.34

2/40 1.73E-4 2.97 5.68E—4 2.93 4.12E-6 2.93 2.60E-5 2.83

2/80 2.13E-5 3.02 7.62E-5 2.90 5.06E-7 3.02 3.07E-6 3.08

Table 4

2D equations: initial data p(x,y,0) =1+ 0.2sin(n(x +y)), u(x,y,0) = 0.5, v(x,y,0) = 0.5, and p(x,y,0) = 1. Periodic boundary conditions in both directions.
t = 2. Asymptotic convergence L' and L™ errors. RKLDG with the HWENO limiter (M = 0.01) compared to RKLDG without limiter. The mesh points on the
boundary are uniformly distributed with cell length h.

h RKLDG with HWENO limiter RKLDG without limiter
L' error Order L> error Order L' error Order L*> error Order
p! 2/10 3.05E-2 6.21E-2 4.00E-3 1.67E-2
2/20 9.24E-3 1.73 2.21E-2 1.49 7.48E—4 242 3.81E-3 2.14
2/40 2.17E-3 2.09 7.18E-3 1.63 1.65E—4 2.18 9.01E-4 2.08
2/80 4.53E-4 2.26 2.26E-3 1.67 3.91E-5 2.08 2.17E-4 2.05
p? 2/10 4.69E-3 1.78E-2 2.38E-4 9.37E-4
2/20 9.52E-4 2.30 3.02E-3 2.56 3.15E-5 2.92 1.85E—4 2.34
2/40 1.16E—4 3.03 3.79E-4 2.99 4.12E-6 2.93 2.60E-5 2.83
2/80 1.38E-5 3.07 4.84E-5 297 5.06E—7 3.02 3.07E-6 3.08
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Fig. 5. The laminar flow problem. Mesh.

Table 5
The laminar flow problem. The maximum and average percentages of troubled cells subject to the WENO limiting.

M, =04, Re,, =5000 and o = 0°

M 1 50 100
p! Max. per 63.1 5.15 1.63
Ave. per 49.2 0.97 0.40
p? Max. per 67.2 12.5 6.50

Ave. per 55.2 9.65 0.87
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Step 1: First, identify the “troubled cells”, namely those cells which might need the limiting procedure.

Step 2: Then, replace the solution polynomials in those troubled cells by reconstructed algebraic polynomials using the
WENO and HWENO methodologies which maintain the original cell averages, have the same orders of accuracy
as before, but are less oscillatory.

Table 6
The laminar flow problem. The maximum and average percentages of troubled cells subject to the HWENO limiting.

M, =04, Re,, =5000 and o = 0°

M

100

p! Max. per
Ave. per

p? Max. per
Ave. per

64.2
47.7

66.3
61.1

8.78
0.70

13.7
8.88

1.26
0.12

4.85
0.97
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Fig. 6. The laminar flow problem. Velocity. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter. Left: second order (k = 1); right: third
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order (k = 2). Solid line: reference solution; circles: the results of numerical schemes. The TVB constant M = 100.
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This technique works quite well in one and two-dimensional test problems in [19] and in the followup work [18,20]
where the more compact Hermite WENO methodology was used to reconstruct polynomials in the troubled cells on struc-
tured meshes. These methods were extended to unstructured meshes by Zhu et al. [26,27] and Luo et al. [17].

In 1997, Bassi and Rebay [1] extended a high order of discontinuous finite element method for the Euler equations to the
case of the compressible Navier-Stokes equations without limiting procedure, providing the numerical solution is smooth
enough. In [16], high order of accuracy was added by using spectral hp expansion on standard unstructured meshes by Lom-
tev and Karniadakis. It was more efficient and could get exponential accuracy and flow simulations on three dimensional
unstructured meshes. In [9], Cockburn and Shu studied the local discontinuous Galerkin (LDG) methods for nonlinear
time-dependent convection-diffusion systems. The proposed LDG methods are L?-stable in the nonlinear case. An important
part of DG methods for solving convection-diffusion equations (1.1) is the treatment of diffusion term. The treatment in [9]
is to suitably rewrite the convection-diffusion system into a larger, degenerate, first-order system and then discretize it by
the RKDG method. The other treatment was presented by Gassner et al. [12], they used the exact solution of the diffusive
generalized Riemann problem to define a numerical flux discontinuous Galerkin schemes. The main advantage of this pro-
cedure is that the definition of the numerical flux is based on the same data as the advection flux, no different treatment of
the diffusion terms is necessary, e.g. by assuming continuity at the grid cell interfaces.

In this continuation paper, we extend the method applied in [10,18-20,26,27] to solve convection-diffusion equations
(1.1) on two dimensional unstructured meshes. We use the WENO and HWENO reconstructions based on the cell averages
or derivative cell averages of neighboring cells to reconstruct the moments directly. This turns out to be a robust way to re-
tain the original high order accuracy of the LDG method. The details of these procedures for the second and third order LDG
methods with WENO and Hermite WENO limiters are described in Section 2 and the extensive numerical results are pre-
sented in Section 3 to verify the accuracy and stability of this approach. Concluding remarks are given in Section 4.

0.5 L1 1 1-]
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Fig. 7. NACA0012 airfoil mesh zoom in.

Table 7
NACA0012 airfoil problem. The maximum and average percentages of troubled cells subject to the WENO limiting and HWENO limiting. Case 1:
M, =0.8, Re,, =73 and o = 10°; case 2: M, =2, Re,, = 106 and o = 10°; case 3: M, = 0.85, Re,. = 2000 and o = 0°; case 4: M., = 0.5, Re,. = 5000 and
o=2°

M Case 1 Case 2 Case 3 Case 4
1 10 100 1 10 100 1 10 100 1 10 100
RKLDG with WENO limiter
p! Max. per 6.24 2.99 0.92 11.1 6.33 2.11 9.26 4.92 2.03 9.33 4.96 1.72
Ave. per 3.63 1.56 0.43 8.96 5.61 1.85 4.64 1.32 0.25 3.80 1.19 0.27
p? Max. per 8.23 5.29 1.52 14.1 8.29 2.20 8.48 4.30 2.50 9.25 6.09 2.59
Ave. per 3.53 2.01 0.53 8.75 5.49 1.28 3.37 1.14 0.18 2.61 1.50 0.16

RKLDG with HWENO limiter

p! Max. per 7.78 3.28 0.97 13.8 6.88 2.27 11.1 524 1.90 10.0 4.53 1.55
Ave. per 5.51 242 0.57 10.4 6.04 2.02 7.64 2.56 0.52 5.90 222 0.38
p? Max. per 9.01 4.98 1.52 14.8 8.82 2.49 9.40 4.70 2.09 9.33 5.03 1.93

Ave. per 4.74 2.58 0.60 9.72 5.89 1.66 6.44 1.84 0.25 4.34 1.20 0.16
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2. WENO and HWENO reconstructions as limiters to the RKLDG method on unstructured meshes

In this section we present the details of the procedures of RKLDG with WENO and HWENO limiters for solving convec-
tion-diffusion problems (1.1).

2.1. Description of RKLDG method

Given a triangulation consisting of cells 4;, P¥(4;) denotes the set of polynomials of degree at most k defined on 4;. Here k
could actually change from cell to cell, but for simplicity we assume it is a constant over the whole triangulation. In the LDG
method, the solution as well as the test function space is given by V¥ = {v(x,y) : v(x,y)\A} € P*(4;)}. We emphasize that the
procedure described below does not depend on the specific basis chosen for the polynomials. We adopt a local orthogonal
basis over a target cell, such as 4o : {¢|”(x,y), [ =0,...,K;K = (k+1)(k+2)/2 - 1}:

y(()O)(Xv.V) :1’

0 X —Xo
v5><x.,y>:m,

(0) X—Xo Y—Yo
Uy (X, =a + +a

5 (%,Y) 21 \/W o] 22

2
X —X X — X

7}(30)()( y) ( 4 |0) + 031 0 +a32y 0+(1337

Table 8
NACAO0012 airfoil problem. The lift, drag and moment of force coefficients subject to the WENO limiting and HWENO limiting. Case 1: M., = 0.8, Re,, = 73 and
o =10°; case 2: M, =2, Re,, =106 and o = 10°; case 3: M. = 0.85, Re., = 2000 and « = 0°; case 4: M, = 0.5, Re.. = 5000 and o = 2°.

M Case 1 Case 2
1 10 100 1 10 100
RKLDG with WENO limiter
p! CL 0.557 0.557 0.557 0.318 0.318 0318
cD 0.661 0.661 0.661 0.554 0.554 0.554
M 0.220 0.221 0.220 0.169 0.169 0.169
p? CL 0.582 0.582 0.582 0.305 0.305 0.305
cD 0.664 0.664 0.664 0.570 0.570 0.571
M 0.226 0.226 0.227 0.163 0.162 0.163
Case 3 Case 4
p! CL —3.69E-6 —3.62E-6 —3.65E-6 3.83E-2 3.83E-2 3.84E-2
cD 0.116 0.116 0.116 5.27E-2 5.27E-2 5.27E-2
M —1.41E-6 —1.33E-6 —1.33E-6 —6.73E-3 —6.73E-3 —6.73E-3
p? CL 1.09E-5 1.35E-5 1.05E-5 3.83E-2 3.83E-2 3.83E-2
cD 0.120 0.120 0.120 5.60E-2 5.60E-2 5.60E-2
M —9.26E-6 —7.92E-6 —8.94E-6 —6.42E-3 —6.41E-3 —6.42E-3

RKLDG with HWENO limiter

Case 1 Case 2
p! CL 0.557 0.557 0.557 0.318 0.318 0.318
cD 0.661 0.661 0.661 0.554 0.554 0.554
M 0.220 0.220 0.220 0.169 0.169 0.169
p? CL 0.581 0.581 0.582 0.303 0.303 0.303
cD 0.663 0.663 0.663 0.566 0.566 0.566
M 0.226 0.226 0.226 0.161 0.161 0.161
Case 3 Case 4
p! @) 5.74E-5 6.03E-5 3.80E-5 3.85E-2 3.85E-2 3.85E-2
cD 0.116 0.116 0.116 5.28E-2 5.28E-2 5.28E-2
M 5.40E-6 7.45E—6 3.93E-6 —6.70E-3 —6.69E-3 —6.70E-3
p? CL 1.31E-4 1.19E-4 1.02E-4 3.84E-2 3.83E-2 3.83E-2
cD 0.120 0.120 0.120 5.60E—2 5.60E—2 5.60E—2

™M 1.10E-5 1.34E-5 1.28E-5 —6.35E-3 —6.41E-3 —6.41E-3
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Fig. 8. NACA0012 airfoil. M, = 0.8, Re,. = 73 and o = 10°. Mach number. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter. Twenty
equally spaced Mach number contours from 0.03 to 1.02. Left: k = 1; right: k = 2.
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Fig. 9. NACA0012 airfoil. M, = 2, Re,, = 106 and « = 10°. Mach number. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter. Twenty
equally spaced Mach number contours from 0.09 to 1.94. Left: k = 1; right: k = 2.
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2

) (X—X0)" | (X—X0)(y —¥o) X—X Y=Y
vy, (x,y)=a + +a +a

s (X,Y) 41 o] o] 42 o] 43 o]

2 2

0) (x —Xo) (X=%)Y =Yo) , ¥ = yo) X Xo y
Us'(X,y)=4a +a + +a

5 (X,Y) 51 o] 52 4ol ol ol 54

o

+ (44,

04 Uss,

where (xo,Y,) and |4,| are the barycenter and the area of the target cell 4, respectively. Then we would need to solve a linear
system to obtain the values of a,, by the orthogonality property:

/ 0% (x,y) v}o)(x,y)dxdy = W;dj (2.1)
4o
with w; = fA dxdy

The numerlcal solutlon up(x,y,t) in the space V¥ can be written as:

K

un(x,y,6) = > ug () 1" (x,y), for (x,y) € 4

1=0
and the degrees of freedom uf)')(t) are the moments defined by:
)= g [ miey 0 yyidy. 10, K
1

We use the methodology that adopted in [1,9,16]: let the gradient of the conservative variables Vu = q(u) to be the aux-
iliary unknowns of the convection-diffusion equation, and Eq. (1.1) is reformulated as the coupled system for the unknowns
q and u:

q—Vu=0,
2.2
{atu+V~Fc(u)—V-Fd(u,q):O. 2-2)

Yic
T

Yic
T

Yic
T

Yic
T

Fig. 10. NACA0012 airfoil. M, = 0.85, Re., = 2000 and & = 0°. Mach number. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter. Thirty
equally spaced Mach number contours from 0.05 to 1.05. Left: k = 1; right: k = 2.
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Reconstruction of g, = 31 ,q{ »”’(x,y) to approximate to g = Vu in 4, in V£ Multiply q with a basis ' (x,y), [ =0,1,...,K
of Vﬁ, and integrate the first equation of (2.2) over the cell 4o, we obtain:

q 1 (7/ 2\ (X, y)un(x,y, t) - nds+/ Up(X,, t)-Vv,(O)(xyy)dxdy) (2.3)
w Jodg J 4y

where n is the outward unit normal of the triangle boundary 94,. In (2.3) the volume integral terms can be computed exactly

or by suitable numerical quadratures which are exact for polynomials of degree up to 2k for the element integral and up to

2k + 1 for the edge integral. In this paper, we use Ac Gaussian points (Ac = 6 for k = 1 and A¢ = 7 for k = 2) for the element

quadrature and E; Gaussian points (Eg = 2 for k = 1 and E¢ = 3 for k = 2) for the edge quadrature:

/ up(x,y.t) - Vol (x.y)dxdy ~ | 40| 3 ocun(xc.¥e. t) - Vi (Xc, o), (2.4)
4o G
3
/ un(x,y, )9 (x,y) - nds ~ > (0o, | > Gcttn(Rig, Vg, ) v Rug, Iug) - M, (2.5)
049 =1 G

where (x¢,y¢) € 4o and (X, yu,) € 04o, are the Gaussian quadrature points, and o¢ and 6 are the Gaussian quadrature
weights. Since the edge integral is on element boundaries where the numerical solution is discontinuous, we use a numerical
flux function to replace uy(x,y,t) - n. Since we are constructing the discrete analogue of a diffusive operator, we define the
numerical flux function as: u;; - n, where u* are the values of u;, outside the cell 4, (inside the neighboring cell) at the Gauss-
ian point (xy,yu., t). The test function 1/}0) in the boundary integral in (2.5) is taken from inside the cell 4o. The computed
auxiliary variables g, (x,y) are then used in the weak form of the second equation of (2.2).

In order to determine the approximate solution, we evolve the degrees of freedom ug)(t):

d 1
a“g)(f) (

= / (Fe(tn(x,¥,0)) = Fa(un(x,y, 1), 4%, ¥))) - (V2" (x,y)dxely
1

4o

_/‘)A (Fc(uh(x,y,t))—Fd(uh(x,y,t),qh(x,y)))-nv;o)(x,y)ds), 1:07’K (26)
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Fig. 11. NACAO0012 airfoil. M, = 0.5,Re,. = 5000 and o = 2°. Mach number. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter. Thirty
equally spaced Mach number contours from 0.01 to 0.58. Left: k = 1; right: k = 2.
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In (2.6) the volume integral terms again can be computed either exactly or by suitable numerical quadratures which are
exact for polynomials of degree up to 2k for the element integral and up to 2k + 1 for the edge integral. We use:

/ (Felun(%,y,1)) — Fa(n(x,y, ), 4 (x,))) - (V0% (x,y))dxdy

4o

~ |4 Z o6(Fe(un(xc.ye, 1)) — Fa(un(Xc.Ye, £), qu(Xc.¥¢))) - (V0% (%6, ¥¢)). (2.7)
C

/a (Felun(x,9,0) = Fa(un(x,9,0), 44 (x.9) - nv” (x,y)ds

3
_ _ _ _ _ _ _ 0) ,— —
~ > 1040, > G (Fe(un(Rig Yug 1)) — Fa(un (g, Vg, 1), G (Kug, Ip)) - uvf” Rg Y ) (2.8)
11=1 4

where (x¢,y¢) € 4o and (X, yu,) € 04o, are the Gaussian quadrature points, and o¢ and 6 are the Gaussian quadrature
weights. Since the edge integral is on element boundaries where the numerical solution is discontinuous, the flux of convec-
tion term F.(un(x,y,t)) - n at Gaussian quadrature point (X, ., t) can be approximated by a monotone numerical flux, such
as the simple Lax-Friedrichs flux, which is given by:

o 1 _ o _ o
Fe(un(Xug, Yug, t)) -n~ j{(Fc(u’(XUGJ’uG, t)) + Fe(u™ (Xug, Vg, 1)) - n — o(u™ (Rug,, Y £) — U™ (X, e, £)) 3,

where o is taken as an upper bound for |F.(u) - n| in the scalar case, or the absolute value of eigenvalues of the Jacobian in the
n direction for the system case, and u~ and u* are the values of u;, inside the cell 4, and outside the cell 4, (inside the neigh-
boring cell) at the Gaussian point (Xy,Yu,t). The idea of using such a numerical flux is borrowed from a finite volume
methodology.

The flux of diffusion term Fq(us(x,y,t),q,(x,y)) -n at Gaussian quadrature point (X;,Yu.,t) can be approximated by
numerical flux, such as:

Fa(un(Xug, Y- £), q(Xug, Yug)) - 1~ Fa(u™ (Xug, Vg, ), 4~ (Xug, Y )) - 1,
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Fig. 12. NACAO0012 airfoil. M, = 0.8, Re,. = 73 and o = 10°. Pressure distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter.
Left: k = 1; right: k = 2. Circles: numerical solution of RKLDG with (H) WENO limiters; squares: numerical solution of [1] (k = 3).
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where g~ is the value of g, inside the cell 4y at the Gaussian point (X, i, t). The test function vl“)) (x,y) in the boundary
integral in (2.8) is taken from inside the cell 4o.

The semi-discrete scheme (2.6) is discretized in time by a non-linear stable Runge-Kutta time discretization [24], e.g. the
third-order version:

u® = u™ + AtL(u"),
u@ =3y + 1u® 4 LA (uM)
um = Lum 4 2u@ 2 AL (u®).

(2.9)

The method described above can compute solutions to (1.1), which are either smooth or have weak shocks and other dis-
continuities, without further modification. If the discontinuities are strong, however, the scheme will generate significant
oscillations and even nonlinear instability. To avoid such difficulties, we borrow the technique of a slope limiter from the
finite volume methodology and use it after each Runge-Kutta inner stage (or after the complete Runge-Kutta time step)
to control the numerical solution.

In this paper, we will use the limiter adopted in [8] only to detect “troubled cells”. The main procedure is as follows. We
use (Xm,,Ym,), £=1,2,3, to denote the midpoints of the edges on the boundary of the target cell 4o, and (X, y;,), i=1,2,3,
to denote the barycenters of the neighboring triangles 4;, i = 1,2,3, as shown in Fig. 1.

We then have:

Xin, — Xby = 01 (Xb, — Xby) + 02 (Xby — Xby)s  Yimy — Yoy = 1 Vb, — Vo) + %2(Vb, — Vi) (2.10)
with nonnegative o, o, which depend only on (X, ,y,, ) and the geometry. We then define:

By (X Yo, +£) = U (X Y £) = U (8), (2.11)

AU(Xin,, Y, 1) = 01 (U (£) = U () + 021 (£) — g (£)). 2.12)

Using the TVB modified minmod function [23] defined as:
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Fig. 13. NACAO0012 airfoil. M, = 2, Re,, = 106 and o = 10°. Pressure distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter.
Left: second order (k = 1); right: k = 2. Circles: numerical solution of RKLDG with (H) WENO limiters; squares: numerical solution of [1] (k = 3).
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a if |a;] < M|4o],
m(a;,a;) = {smin(\al\, laz]) if s =sign(a;) = sign(ay) otherwise, (2.13)
0 otherwise
where M > 0 is the TVB constant whose choice is problem dependent, we can compute the quantity:
" = (U (Xmy, Yim, » £), VAU, s Y, 1)) (2.14)

with y > 1 (we take y = 1.5 in our numerical tests). If ™% # fi,(Xm, , ¥y, , t), 4o is marked as a “troubled cell” for further
reconstruction. This procedure is repeated for the other two edges of 4, as well. Since the WENO and HWENO reconstruc-
tions maintain high order accuracy in the troubled cells, it is less crucial to choose an accurate M. We present in Section 3
numerical tests obtained with different choices of M.

Remarks

(1) For the troubled cells, we reconstruct the algebraic polynomial solutions while retaining their cell averages. In other
words, we reconstruct the degrees of freedom ug)(t), I=1,...,K and retain only the cell average uf)o)(t).

(2) For the WENO type reconstructions, when some triangles merge in the stencils, we can always use the next layer of
triangles to overcome this drawback.

2.2. Description of WENO reconstruction as limiter for RKLDG

For the k = 1 case, we summarize the procedure to reconstruct the first order moments uf)”(t) and ugz’(t) in the troubled
cell 4y using the WENO reconstruction procedure. For the simplicity, we rewrite u()(t) to be u® if it will not cause confusion.
And we relabel the “troubled cell” and its neighboring cells shown in Fig. 2.

Step 2.1.1. We select the big stencil as S = {4y, A1, 43, 43, A11, 412, 421, 422, 431, 432 }. Then we construct polynomial P(x,y)
to approximate u by requiring that it has the same cell average as u on the target cell 4o, and matches the cell averages of u
on the other triangles in the set S\ {4y} in a least-square sense, see [13].
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Fig. 14. NACA0012 airfoil. M, = 0.85, Re,. = 2000 and o = 0°. Pressure distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO
limiter. Left: k = 1; right: k = 2.
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Step 2.1.2. We then construct nine linear polynomials g;(x,y), i =1,...,9, satisfying:

— [ qi(xy)dxdy =u. (2.15)
|4,] A )

For
i=1,¢=0,1,2; i=2,¢=0,2,3; i=3, ¢=0,3,1; i=4, ¢=0,1,11;
i=5 ¢=0,1,12; i=6, ¢=0,2,21; i=7, £{=0,2,22; i=8, ¢=0,3,31;
i=9 ¢=0,3,32.

Step 2.1.3. We find the combination coefficients, also called linear weights, denoted by yﬁ”, . ,yg), I =1,2, satisfying:
9

[ Pxyooyixdy =350 [ eyl xyardy, 1-1.2 (2.16)
4o i=1 4o

for the polynomial P(x,y) defined before. The linear weights are achieved by asking for:

min (Zg:(v,@”f), 1=1,2. (2.17)

i=1

By doing so, we can get the linear weights uniquely but cannot guarantee the positiveness. We use the method introduced
in [13,22] to overcome this difficulty.

Step 2.1.4. We compute the smoothness indicators, denote by g;, i =1,...,9, for the smaller stencils S;, i=1,...,9,
which measure how smooth the functions g;(x,y), i=1,...,9 are in the target cell 4o. The smaller these smoothness indi-
cators, the smoother the functions are in the target cell. We use the same recipe for the smoothness indicators as in [14]:

i -1 [ " ’
fi= D12l [ (et | dxdy, (2.18)
l = 1o \OX DYz
15 1.5
1 1
0.5 0.5
*000000s ?"‘O‘«uun
, 0880600000000y . 0800000000000y
o o
Q-05 Q05
-1 -1
15 -15
-2 -2
255~ ‘o‘lzs‘ ‘ 0?5 ‘ ‘0.‘75‘ 285 ‘o,lzs‘ ‘ ofs ‘ ‘o,|75‘
X/c X/C

15

1

0.5
©0000000000000000000e0 ?"""“oooouooom
0

o
O -05
d
-1
1.5
-2
T TR R osbv v 0
0.5 0.75 1 ~o 0.25 0.5 0.75 1
X/Cc X/C

Fig. 15. NACA0012 airfoil. M, = 0.5, Re,, = 5000 and o = 2°. Pressure distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with HWENO limiter.
Left: second order (k = 1); right: k = 2.
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where ¢ = (¢1,46,).
Step 2.1.5. We compute the non-linear weights based on the smoothness indicators:

U]

o i () Ve
ol = ol =—1 =12 (2.19)
L oyab LB

=1

Here ¢ is a small positive number to avoid the denominator to become zero. We take ¢ = 10~® in our computation.
The moments of the reconstructed polynomial are then given by:

u<’>t:— (x x,y)dxdy, 1=1,2. 2.20
o (t) dxdyz q )0 (x,y)dxdy (2.20)

For the k = 2 case, the procedure to reconstruct the first and second order moments u", v, ul’, u$¥ and u{’ in the
troubled cell 4, is analogous to that for the k = 1 case. The troubled cell and its neighboring cells are shown in Fig. 2.

Step 2.2.1. We select the blg stencil as T = {A()7 Al, Az, A3, A1q s A]z, A21, Azz, A3q s L|327 A]]z, A1 s AZ]Q, Ar21 s A3]2, A321 } Then
we construct polynomial Q(x,y) to approximate u by requiring that it has the same cell average as u on the target cell 4,
and matches the cell averages of u on the other triangles in the set T\ {4o} in a least-square sense.

Step 2.2.2. We construct quadratic polynomials g;(x,y), i =1,...,9, which satisfy the following conditions:

v q,(X y)dxdy = uf’ (2.21)

For
i=1, ¢=0,1,11,12,3,32; i=2, ¢1=0,1,11,12,2,21; i=3, £=0,2,21,22,1,12;
i=4, ¢=0,2,21,22,3,31; i=5, ¢=0,3,31,32,2,22; i=6, {=0,3,31,32,1,11;
i=7,¢=0,1,11,12,112,121; i=8, ¢=0,2,21,22,212,221;
i=9, 1=0,3,31,32,312,321.

15 15

1 1

L
w 05 q w 05 q
(&S] (8]
L 9 ®o¢
, paa Lt TYpsaae o “Bmiﬂoiw
ssesensssennmy T
05 ¢ 05 <
I R S B —_— g
0 0.05 05 075 1 0.05 075 1
X/C X/C
15 15
1 1
.
W 05 g o5 g
o o o
*%cense 9 Q'Cqb 3
0 ¢eveconesnsest?® o 6605 c0ssss0sest®
) sesasessasasnsssssmmy
05 e 05 <
L TR - T - TR - L g T - L | L TR - L g
0 0.25 05 075 1 0.05 075 1
X/C X/C

Fig. 16. NACA0012 airfoil. M, = 0.8, Re,, = 73 and o = 10°. Skin friction coefficient distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with
HWENO limiter. Left: k = 1; right: k = 2. Circles: numerical solution of RKLDG with (H) WENO limiters; squares: numerical solution of [1] (k = 3).
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The remaining steps 2.2.3, 2.2.4 and 2.2.5 are the same as those for the k = 1 case. Finally, the moments of the reconstructed
polynomial are given by:

9
0 1

—WZWEI)/A qi(x,y)vfo)(x,y)dxd% 1=1,2,3,4,5. (2.22)
A\l ’ i= v 40

2.3. Description of HWENO reconstruction as limiter for RKLDG

For the k = 1 case, we summarize the procedure to reconstruct the first order moments u{’ and u{’ in the troubled cell 4,
using the HWENO reconstruction procedure. The big stencil is shown in Fig. 2.

Step 2.3.1. We select the big stencil as S = {4, 41, 42, 43}. Then we construct polynomial P(x,y) to approximate u by
requiring that it has the same cell average as u©® on the target cell 4o, and matches the cell averages of u®, u® or u® on
the other triangles in the set S\ {4o} in a least square sense.

Step 2.3.2. We then construct six linear polynomials g;(x,y), i =1,...,6, satisfying:

\j_nl /A qi(x,y)dxdy = u”, (2.23)

fy, (@ ()273/))2dxdy ,, SNy dedy =, (2.24)

I, gy Jy, WP ey = 225)
For

i=1,¢=0,1,2; i=2,¢=0,2,3; i=3, (=0,3,1; i=4, £=0,4=1, 4,=1,
i=5 (=0, 6,=2,¢4=2; i=6, (=0, (4t=3, {, =3.
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Fig. 17. NACA0012 airfoil. M, = 2, Re,, = 106 and o = 10°. Skin friction coefficient distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with
HWENO limiter. Left: k = 1; right: k = 2. Circles: numerical solution of RKLDG with (H) WENO limiters; squares: numerical solution of [1] (k = 3).
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Step 2.3.3. We find the combination coefficients, also called linear weights, denoted by yﬁ’% . ,yg”, 1=1,2, satisfying:
6
Poey)of” (xy)dedy =S 9 [ qiix o yidxdy, 1=1.2 (2.26)
i=1 4o

The linear weights are achieved by asking for:

min <§6:(V§“)2>, 1=1,2. (2.27)

i=1

Step 2.3.4. We compute the smoothness indicators, denote by 8;, i = 1,...,6, for the smaller stencils S;, i=1,...,6. We
use the same recipe for the smoothness indicators as in [14]:

k ) 9 2
_ o [ (9o
Bi="" |4l /A 0 (Wl gy Qixy) | dxdy, (2.28)

e=1

where ¢ = (¢1,6,).
Step 2.3.5. We compute the non-linear weights based on the smoothness indicators:

20 0)
ol = 6‘“: o Ve 1=1,2. (2.29)
S G)g’) &+ B0
=1

)
u () =——(G——g—— Z 6(x.y)v” (x,y)dxdy, [=1,2. (2.30)
fAO( ( ) dxdy £ 40
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Fig. 18. NACAO0012 airfoil. M. = 0.85, Re.. = 2000 and o = 0°. Skin friction coefficient distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with
HWENO limiter. Left: k = 1; right: k = 2.
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For the k = 2 case, the procedure to reconstruct the first and second order moments u{", u'?
troubled cell 4y is analogous to that for the k = 1 case. The big stencil is shown in Fig. 2.

Step 2.4.1. We select the big stencil as S = {4o, 41, 42, A3, 411, A12, 421, A22, 431, A32 }. Then we construct polynomial Q (x,y)
to approximate u by requiring that it has the same cell average as u® on the target cell 4, and matches the cell averages of
u©@  u® or u® on the other triangles in the set S\ {4,} in a least square sense.

,u ulY and uf in the

Step 2.4.2. We can then construct quadratic polynomials g;(x,y), i=1,...,9, which satisfy the following conditions:
‘j—ﬂ' [ i yaxdy =uf?. (2.31)
S (;y))z iy, o ydndy < (2.32)

! 4 y) 2 (% y)dxdy = u?. (2.33)

[ (5 (x.y))dxdy Ja,
ly
For
i=1, ¢=0,1,11,12,3,32; i=2, ¢=0,1,11,12,2,21; i=3, £=0,2,21,22,1,12;
i=4, £=0,2,21,22,3,31; i=5, ¢=0,3,31,32,2,22; i=6, ¢=0,3,31,32,1,11;
i=7,6=0,1,11,12, 4=1, 4, =1; i=8, £=0,2,21,22, =2, £, = 2;
i=9, £=0,3,31,32, 4, =3, 4, =3.

The remaining steps are the same as those for the k = 1 case. Finally, the moments of the reconstructed polynomial are
given by:

9
Ot)=— S [ qxyr®xy)dedy, 1=12345 (234)
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Fig. 19. NACAO0012 airfoil. M, = 0.5, Re,, = 5000 and o = 2°. Skin friction coefficient distribution. Top: RKLDG with WENO limiter; bottom: RKLDG with
HWENO limiter. Left: k = 1; right: k = 2.
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3. Numerical results

In this section we provide numerical results to demonstrate the performance of the WENO and HWENO reconstructions
limiters for the RKLDG methods on unstructured meshes described in Section 2.

We first test the accuracy of the schemes in two dimensional problems. And we assume unstructured mesh I',, which has
boundary triangle size h and then divided each triangle into four equally smaller triangles and denote associated unstructured
mesh as F,i,, which has boundary triangle size & Then we use two different measurements of resolution and convergence:

(1) The problem has exact solution u(x,y, t). The error at each point of the target cell is el = u"(x;,y;, t) — u(xi,y;, t). The L'
and L™ convergence errors in the computational field are defined as: [[e"|,; = 43N, |e?| and |~ = max;<in|e!'|. And
the numerical order of accuracy are given by:

h
rp =log, Heth , (3.1)
llezl
h
e =log, (1), 32)
lle]];

We use this measurement in Example 3.1.
(2) The problem has not exact solution u(x,y, t) and we now use the asymptotic convergence error estimation (see [25])
and define er! = u"(x;,y;,t) — u3(x;,y;,t). The L' and L™ convergence errors in the computational field are defined as:
el = L3, ler!| and |ler"||,~ = max;<iyler!|. And the numerical order of accuracy are given by:

er’
1 = log, u , (3.3)
llerz|[,

h
1~ = log, —Herh”” . (3.4)
llerz|
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Fig. 20. NACAO0012 airfoil. M, = 0.8, Re,, = 73 and « = 10°. Reduction of density residual as a function of the number of iterations. Top: RKLDG with
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We use this measurement in Example 3.2.

Example 3.1. We solve the following linear scalar convection diffusion equation in two dimensions:

2a 2a
ut+ux+uy=ﬁuxx+ﬁuyy (3.5)

with the initial condition u(x,y, 0) = sin(0.57(x + y)) and periodic boundary conditions in both directions. The exact solution
isu(x,y,t) = e *sin(0.5m(x +y — 2t)). We choose a = 0.01 and compute the solution up to t = 1. For this test case, the coars-
est mesh we use is shown in Fig. 3. The errors and numerical orders of accuracy for the RKLDG method with the WENO and
HWENQO limiters comparing with the original RKLDG method without limiters are shown in Tables 1 and 2. In order to magnify
the possible effect of the WENO and HWENO limiters on accuracy, we have deliberately chosen a small TVB constant M = 0.01
so that many cells are identified as “troubled cells”. We can see that the WENO and HWENO limiters keep the designed order
of accuracy, however the magnitude of the errors are larger than that of the original RKLDG method on the same mesh.

Example 3.2. We solve the 2D Navier-Stokes equations:

p pu pv 0
g pu ﬁ pu +p 2 puv - i 2 2y + AUy + vy)
at| pv | "ox| puv ay| pr*+p | Re.|ox W(vx + Uy)
P
E uE+p) UE+P) Uty + A + 03)) + DRy + Uy) + i 2D
0
9 H(vx + Uy)
oy 2y + iUy + vy) =0 (3.6)
UU(Ox + Uy) + D2UDy + (U + vy)) + 5255 %)
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Fig. 21. NACA0012 airfoil. M, = 2, Re,. = 106 and o = 10°. Reduction of density residual as a function of the number of iterations. Top: RKLDG with WENO
limiter; bottom: RKLDG with HWENO limiter. Left: k = 1; right: k = 2.
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in which p is the density, u is the x-direction velocity, v is the y-direction velocity, E is the total energy,
p=(y—1)(E-1p?+v?)) is the pressure, y = 1.4, Re,. = 1000, 2=-2/3, 6 =1, pt=1 and Pr = 0.72. The initial condi-
tions are: p(x,y,0) =1+ 0.2sin(n(x +y)), u(x,y,0) =0.5, v(x,y,0) =0.5, p(x,y,0) = 1. Periodic boundary conditions are
applied in both directions. We compute the solution up to t = 2. For this test case, the coarsest mesh we use is shown in
Fig. 4. The errors and numerical orders of accuracy of the density for the RKLDG method with the WENO and HWENO limiters
comparing with the original RKLDG method without limiters are shown in Tables 3 and 4.

We now test the performance of the RKLDG method with the WENO and HWENO limiters for problems containing
shocks. In general, the results are comparable when M is chosen adequately. The RKLDG method with the WENO and
HWENO limiters produce much better results than those with the original minmod TVB limiter. From now on,ov;lze solve the

Navier-Stokes equations (3.6) for the real simulations, set ¢ = \/JM,, and the coefficient of viscosity y = (%) )

Example 3.3. We first solve the laminar flow on the adiabatic flat plate characterized by a free-stream Mach number
M, = 0.4, Re,, = 5000 and o« = 0°. The mesh used in the computation is shown in Fig. 5, 6000 elements obtained from
the triangulation of a structured meshes. The size of the elements adjacent to the wall in the x-direction equals
Ax/L = 0.0125, in the y-direction the minimum Ay/L = 0.0001. In Tables 5 and 6 we document the percentage of cells
declared to be “troubled cells” for different orders of accuracy and different TVB constant M in the minmod limiter to identify
troubled cells. The velocities normally to the plate are shown in Fig. 6.

Example 3.4. We consider transonic flow past a single NACA0012 airfoil configuration with three different initial conditions.
Case 1: M., =0.8, Re,, =73 and a = 10°; case 2: M, =2, Re,, =106 and o = 10°; case 3: M, = 0.85, Re,, = 2000 and
o = 0°; case 4: M, = 0.5, Re,, = 5000 and o = 2°. The computational domain is [-50, 50] x [—50, 50]. The mesh used in the
computation is shown in Fig. 7, consisting of 12,800 elements with the maximum diameter of the circumcircle being
34.976 and the minimum diameter being 0.011 near the airfoil. The different order RKLDG schemes with the WENO and HWE-
NO limiters and the TVB constant M = 1, M = 10 and M = 100 are used in the numerical experiments. In Table 7, we docu-
ment the percentage of cells declared to be “troubled cells” for different orders of accuracy and different TVB constant M in the
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Fig. 22. NACA0012 airfoil. M., = 0.85, Re,, = 2000 and o = 0°. Reduction of density residual as a function of the number of iterations. Top: RKLDG with
WENO limiter; bottom: RKLDG with HWENO limiter. Left: k = 1; right: k = 2.
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Fig. 23. NACA0012 airfoil. M, = 0.5, Re,, = 5000 and o = 2°. Reduction of density residual as a function of the number of iterations. Top: RKLDG with
WENO limiter; bottom: RKLDG with HWENO limiter. Left: k = 1; right: k = 2.

minmod limiter to identify troubled cells. We can see that only a small percentage of cells are declared as “troubled cells” for
large M. In Table 8, we give the lift, drag and moment of force coefficients subject to the WENO and HWENO limiters. Mach
number, pressure distribution and skin friction coefficient distribution are shown in Figs. 8-18, respectively, and only figures
for TVB constant M = 100 are shown to save space. We can see that the third order schemes have better resolutions than the
second order ones. Finally, the reduction of density residual as a function of the number of iterations are shown in Figs. 19-23.
For Test Case 1 and 2, we plot the pressure distribution and skin friction coefficient distribution by the second and the third
order RKLDG methods with WENO and HWENO limiter against numerical solution of [1] with the forth order (k = 3). We can
see that the results of RKLDG methods with WENO and HWENO limiter and method in [1] are similar.

4. Concluding remarks

We have developed limiters for the RKLDG methods solving compressible Navier-Stokes equations using finite volume
high order WENO and HWENO reconstructions on unstructured meshes. The ideas are to first identify troubled cells subject
to the WENO and HWENO limitings, using a TVB minmod-type limiter, then reconstruct the algebraic polynomial solution
inside the troubled cells by the WENO and HWENO reconstructions using the cell averages or derivative cell averages of
neighboring cells, while maintaining the original cell averages of the troubled cells. Numerical results are provided to show
that the methods are stable, accurate, and robust in maintaining accuracy.
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