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Abstract A mesh condition is developed for linear finite element approximations of
anisotropic diffusion–convection–reaction problems to satisfy a discrete maximum
principle. Loosely speaking, the condition requires that the mesh be simplicial and
O(‖b‖∞h +‖c‖∞h2)-nonobtuse when the dihedral angles are measured in the metric
specified by the inverse of the diffusion matrix, where h denotes the mesh size and
b and c are the coefficients of the convection and reaction terms. In two dimensions,
the condition can be replaced by a weaker mesh condition (an O(‖b‖∞h + ‖c‖∞h2)

perturbation of a generalized Delaunay condition). These results include many exist-
ing mesh conditions as special cases. Numerical results are presented to verify the
theoretical findings.
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516 C. Lu et al.

1 Introduction

We are concerned with the linear finite element (FEM) solution of the anisotropic
diffusion equation

− ∇ · (D ∇u) + b · ∇u + c u = f, in Ω (1)

subject to the Dirichlet boundary condition

u = g, on ∂Ω (2)

where Ω ⊂ R
d (d ≥ 1) is a connected polyhedron and D = D(x) ∈ R

d×d (the
diffusion matrix), b = b(x) ∈ R

d , c = c(x), f = f (x), and g = g(x) are given,
sufficiently smooth functions defined on Ω . We assume that for any x ∈ Ω, D(x) is
symmetric and strictly positive definite and functions b and c satisfy

c(x) − 1

2
∇ · b(x) ≥ 0, c(x) ≥ 0, ∀x ∈ Ω. (3)

It is known (e.g., see [8]) that the solution of the boundary value problem (BVP) (1)
and (2) satisfies the maximum principle.

The numerical solution of BVP (1) and (2) has attracted considerable attention
from scientists and engineers. The BVP is a prototype model for anisotropic dif-
fusion problems which arise in various fields such as plasma physics [10,11,28],
petroleum reservoir simulation [1,26], and image processing [27,32]. Moreover, it
has been amply demonstrated that a standard numerical method, such as a finite ele-
ment, a finite difference, or a finite volume method, does not necessarily satisfy a dis-
crete maximum principle (DMP) and may produce unphysical solutions that typically
contain spurious oscillations, undershoots, and overshoots. Furthermore, designing a
numerical scheme to preserve the maximum principle is an important research topic
in its own right. As a matter of fact, considerable work has been done in the past to
develop numerical schemes to satisfy DMP; e.g., see [2–4,6,16,17,19,21,29–31,33]
for isotropic diffusion problems (D = α(x)I with α(x) being a scalar function) and
[7,10,11,14,18,20,22–26,28] for anisotropic diffusion problems. In particular, it is
shown in [6] that the linear FEM satisfies DMP when the mesh is simplicial and satis-
fies the so-called non-obtuse angle condition which requires that the dihedral angles
of all mesh elements be non-obtuse. In two dimensions the condition can be replaced
by a weaker condition (the Delaunay condition) which requires that the sum of any
pair of angles opposite a common edge is less than or equal to π [30]. Similar results
have been obtained recently for anisotropic diffusion problems in [14,22].

It is pointed out that most of the existing work has been concerned with problems
without convection terms. For continuous problems, it is known (e.g., see [8]) that
convection terms have no effect on the satisfaction of the maximum principle by the
solution. However, the situation is different for discrete schemes. The main difficulty
comes from the fact that discrete convection terms typically do not vanish at an interior
maximum point and the entries of the corresponding matrix can be both positive and
negative. A few researchers have tried to address the issue for isotropic diffusion
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Diffusion–convection–reaction problems 517

problems. For example, Xu and Zikatanov [33] employ a special number treatment
for convection terms so that they have no effect on the DMP satisfaction by the discrete
solution. Burman and Ern [3] propose a nonlinear stabilized Galerkin approximation of
the Laplace operator which satisfies DMP on arbitrary meshes and for arbitrary space
dimension without resorting to the non-obtuse angle condition. They prove that the
result can extend to diffusion–convection–reaction problems with constant diffusion
coefficient when the mesh is locally quasi-uniform. More recently, Wang and Zhang
[31] study quasilinear isotropic diffusion–convection–reaction problems and show
that linear finite element approximations satisfy DMP when the mesh is O(‖b‖∞h +
‖c‖∞h2)-acute (i.e., the dihedral angles of all mesh elements are less than or equal to
π
2 −γ1‖b‖∞h −γ2‖c‖∞h2 for some positive constants γ1 and γ2). On the other hand,
no work has been done for anisotropic diffusion–convection–reaction problems.

The objective of this paper is to develop a mesh condition for linear finite element
approximations of anisotropic diffusion–convection–reaction problems (1) and (2) in
any dimension to satisfy a discrete maximum principle. We shall use the approach of
[22] to show the stiffness matrix associated with the linear finite element discretization
to be an M-matrix and have non-negative row sums, with the focus on the treatments
of the convection and reaction terms. We shall also investigate the two dimensional
case where a weaker sufficient condition can be developed.

The paper is organized as follows. A linear finite element discretization for BVP (1)
and (2) is introduced in Sect. 2. In Sect. 3 geometric properties of the gradient of linear
basis functions are studied. A general mesh condition valid in any dimension and a
specific and weaker condition in two dimensions are developed in Sect. 4, followed
by numerical results in Sect. 5. Finally, Sect. 6 contains conclusions.

2 Linear finite element formulation

We consider the linear finite element solution of BVP (1) and (2). Assume that an
affine family of simplicial meshes {Th} is given for Ω . Let

Ug = {v ∈ H1(Ω) | v|∂Ω = g}.

Denote by U h
gh the linear finite element space associated with mesh Th , where gh

is a piecewise linear approximation to g on the boundary. A linear finite element
approximation uh ∈ U h

gh to BVP (1) and (2) is defined by

∫

Ω

(∇vh)T
D ∇uhdx +

∫

Ω

vh (b · ∇uh)dx +
∫

Ω

c uh vhdx

=
∫

Ω

f vhdx, ∀ vh ∈ U h
0 . (4)

The above equation can be rewritten as

123



518 C. Lu et al.

∑
K∈Th

|K | (∇vh)T
DK ∇uh +

∑
K∈Th

∫

K

vh (b · ∇uh)dx

+
∑

K∈Th

∫

K

c uh vhdx =
∑

K∈Th

∫

K

f vhdx, ∀ vh ∈ U h
0 (5)

where |K | is the volume of element K and DK is the integral average of D over K ,
viz.,

DK = 1

|K |
∫

K

D dx. (6)

Scheme (5) can be expressed in a matrix form. Denote the numbers of the elements,
vertices, and interior vertices of mesh Th by N , Nv , and Nvi , respectively. Assume
that the vertices are ordered in such a way that the first Nvi vertices are the interior
vertices. Then U h

0 and uh can be expressed as

U h
0 = span{φ1, . . . , φNvi }, (7)

uh =
Nvi∑
j=1

u jφ j +
Nv∑

j=Nvi +1

u jφ j , (8)

where φ j denotes the linear basis function associated with the j th vertex, a j . The
boundary condition (2) is approximated by

u j = g(a j ), j = Nvi + 1, . . . , Nv. (9)

Substituting (8) into (5), taking vh = φ j ( j = 1, . . . , Nvi ), and combining the resulting
equations with (9), we obtain the linear algebraic system

A u = f , (10)

where u=(u1, . . . , uNvi , uNvi +1, . . . , uNv )
T , f =( f1, . . . , fNvi , gNvi +1, . . . , gNv )

T ,

A =
[

A11 A12

0 I

]
, (11)
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Diffusion–convection–reaction problems 519

and I is the identity matrix of size (Nv − Nvi ). The entries of the stiffness matrix A
and the right-hand-side vector f are given by

ai j =
∑

K∈Th

|K |(∇φi )
T

DK ∇φ j +
∑

K∈Th

∫

K

φi (b · ∇φ j )dx

+
∑

K∈Th

∫

K

c φ j φi dx, i = 1, . . . , Nvi , j = 1, . . . , Nv, (12)

fi =
∑

K∈Th

∫

K

f φi dx, i = 1, . . . , Nvi . (13)

In the following sections we shall investigate under what condition on the mesh the
solution of (5) satisfies a maximum principle. A key to this investigation is to under-
stand geometric properties of the gradient of linear basis functions which are to be
described in the next section.

3 Geometric properties of the gradient of linear basis functions

Let K be an arbitrary simplex with vertices a1, a2, . . . , ad+1. Denote the face opposite
to vertex ai (i.e. the face not having ai as its vertex) by Si and its unit inward (pointing
to ai ) normal by ni . The distance (or height) from vertex ai to face Si is denoted by
hi . The result of the following lemma exists in literature; e.g., see [2,19,33].

Lemma 1 For any simplex K ∈ R
d , the gradient of linear basis function φi associated

any vertex ai (i = 1, . . . , d + 1) is given by

∇φi = ni

hi
. (14)

It is remarked that Brandts et al. [2] have obtained the same result using the so-called
q-vectors defined through the edge matrix of elements. Specifically, they show that
qi , a q-vector associated with face Si , is an inward normal to Si , has the length 1/hi ,
and is equal to ∇φi ; i.e.,

qi = 1

hi
ni = ∇φi , i = 1, . . . , d + 1. (15)

These q-vectors will be used frequently in the remaining of the paper.
The next property of gradient of linear basis functions is related to the diffusion

term in stiffness matrix (12) for the case DK = I . Denote the dihedral angle between
any two faces Si and S j (i 	= j) by αi j . It can be calculated as the supplement of the
angle between the inward normals to the faces, i.e.,

cos(αi j ) = −ni · n j = − qi · q j

‖qi‖ · ‖q j‖
, i 	= j. (16)
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Fig. 1 A sketch of unit inward
normals, dihedral angles, and
heights of element K

(In fact, (16) is often used as the definition of the dihedral angle.) A sketch of the
q-vectors, dihedral angles, and heights of an element are shown in Fig. 1.

The result of the following lemma is also known in literature; e.g., see [2,9,14].

Lemma 2 For any simplex K ∈ R
d , we have

|K |(∇φi )
T ∇φ j = − |K |

hi h j
cos(αi j ), i 	= j. (17)

It reduces to

|K |(∇φi )
T ∇φ j = −1

2
cot(αi j ), i 	= j (18)

in two dimensions.

Proof Equation (17) follows from Lemma 1 and (16).
In two dimensions, K is a triangle. Consider the case with i = 1 and j = 2. From

Fig. 1, we have

|K | = h1

2
‖a2 − a3‖ = h1h2

2 sin(α12)
.

Combining this result and (17) gives (18). 
�
We now study the diffusion term |K |(∇φi )

T
DK ∇φ j for general symmetric and posi-

tive definite matrix DK using Lemma 2. Define

G K (x) = D
− 1

2
K x : K → K̃ , (19)

where K̃ = G(K ). Obviously, K̃ is also a simplex in R
d . For any vertex ai , we

denote the corresponding vertex, face, height, and q-vector of K̃ by ãi , S̃i , h̃i , and q̃i ,
respectively. We have

⎧⎪⎨
⎪⎩

ãi = D
− 1

2
K ai , S̃i = D

− 1
2

K Si , |K̃ | = det(DK )− 1
2 |K |,

q̃i = D

1
2
K qi , h̃i = ‖qi‖−1

DK
,

(20)
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where ‖ · ‖DK denotes the distance measured in the metric DK . The derivations of the
first three relations are trivial. To derive the last two, we first notice that

φi (x) = φi

(
D

1
2
K x̃

)
= φ̃i (̃x).

Then from (15) we have

q̃i = ∇̃φ̃i = D

1
2
K ∇φi = D

1
2
K qi ,

which gives the second last relation in (20). The last relation is obtained by taking the
norm of the above equation.

To obtain the relation between hi and h̃i , we rewrite the last relation in (20) as

h̃i = 1√
(qi )

T DK qi

,

from which we obtain

hi√
λmax (DK )

≤ h̃i ≤ hi√
λmin(DK )

, (21)

where λmax (DK ) and λmin(DK ) denote the maximum and minimum eigenvalues of
DK , respectively.

Denote the dihedral angle between faces S̃i and S̃ j by αi j,D−1
K

. Since S̃i = D
− 1

2
K Si

and S̃ j = D
− 1

2
K S j , it can also be viewed as the dihedral angle between Si and S j mea-

sured in the metric D
−1
K . Moreover, from (16) we see that the angle can be calculated

by

cos
(
αi j,D−1

K

)
= − q̃i · q̃ j

‖̃qi‖ · ‖̃q j‖
= − qT

i DK q j

‖qi‖DK ‖q j‖DK

. (22)

We now go back to the quantity |K |(∇φi )
T
DK ∇φ j . Notice that

|K |(∇φi )
T
DK ∇φ j = det(DK )

1
2 |K̃ |(̃qi )

T q̃ j .

Applying Lemma 2 to K̃ and using relations (20), we have the following lemma.

Lemma 3 For any simplex K ∈ R
d and any symmetric and positive definite matrix

DK , we have

|K |(∇φi )
T
DK ∇φ j = −|K̃ | det(DK )

1
2

h̃i h̃ j
cos

(
αi j,D−1

K

)
, i 	= j. (23)
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It reduces to

|K |(∇φi )
T
DK ∇φ j = −det(DK )

1
2

2
cot

(
αi j,D−1

K

)
, i 	= j (24)

in two dimensions.

4 Mesh conditions for DMP satisfaction

In this section we study the mesh conditions under which the linear finite element
scheme (5) satisfies DMP. The main conclusions are given in Theorems 1 and 2.

Theorem 1 If the mesh satisfies

hK
i

λmin(DK )
· ‖b‖∞,K

(d + 1)
+ hK

i hK
j

λmin(DK )
· ‖c‖∞,K

(d + 1)(d + 2)
≤ cos

(
αi j,D−1

K

)
,

i, j = 1, . . . , d + 1, i 	= j, ∀ K ∈ Th (25)

where ‖b‖∞,K = maxx∈K ‖b(x)‖, ‖c‖∞,K = maxx∈K c(x), and hK
i ’s and αi j,D−1

K
’s

are the heights and dihedral angles of element K , respectively, then the linear finite
element scheme (5) for BVP (1) and (2) satisfies DMP.

Proof Following [22] we prove this theorem by showing that stiffness matrix A defined
in (11) and (12) has non-negative row sums and is an M-matrix.1 From Stoyan [29,
Theorem 1], this implies that scheme (5) satisfies DMP.

(1) We first show that matrix A has non-negative row sums. Notice that we only need to
show that the first Nvi row sums are non-negative. Using the fact

∑Nv

j=1 φ j (x) = 1
and the assumption c ≥ 0 (cf. (3)), from (12) we have, for i = 1, . . . , Nvi ,

Nv∑
j=1

ai j =
∑

K∈Th

|K | (∇φi )
T

DK ∇
⎛
⎝ Nv∑

j=1

φ j

⎞
⎠

+
∑

K∈Th

∫

K

φi

⎛
⎝b · ∇

⎛
⎝ Nv∑

j=1

φ j

⎞
⎠

⎞
⎠ dx

+
∑

K∈Th

∫

K

c φi

⎛
⎝ Nv∑

j=1

φ j

⎞
⎠ dx

1 Matrix A is called an M-matrix if it is a Z-matrix (see (27) and (28) below) and satisfies A−1 ≥ 0 (i.e.,
all entries of its inverse are nonnegative).
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=
∑

K∈Th

∫

K

c φi dx

≥ 0. (26)

(2) Next, we show that A is a Z-matrix; i.e.,

ai j ≤ 0, ∀ i 	= j, i = 1, . . . , Nvi , j = 1, . . . , Nv (27)

aii ≥ 0, i = 1, . . . , Nvi . (28)

Recall from Ciarlet [5, Page 201] that

∫

K∈ωi

φi dx = |K |
d + 1

,

∫

K∈ωi ∩ω j

φiφ j dx = |K |
(d + 1)(d + 2)

, (29)

where ωi and ω j are the element patches associated with vertices ai and a j ,
respectively. We have

ai j =
∑

K∈ωi ∩ω j

⎛
⎝|K | (∇φi )

T
DK ∇φ j +

∫

K

φi (b · ∇φ j )dx +
∫

K

c φi φ j dx

⎞
⎠ ( f rom(12))

≤
∑

K∈ωi ∩ω j

⎛
⎝|K | (∇φi )

T
DK ∇φ j + 1

hK
j

∫

K

φi |b · nK
j |dx +

∫

K

cφi φ j dx

⎞
⎠ (Lemma 1)

≤
∑

K∈ωi ∩ω j

(
|K | (∇φi )

T
DK ∇φ j + |K | ‖b‖∞,K

hK
j (d + 1)

+ |K | ‖c‖∞,K

(d + 1)(d + 2)

)
( f rom(29))

=
∑

K∈ωi ∩ω j

(
− |K |

h̃K
i h̃K

j

cos(αi j,D−1
K

) + |K | ‖b‖∞,K

hK
j (d + 1)

+ |K | ‖c‖∞,K

(d + 1)(d + 2)

)
(Lemma 3)

=
∑

K∈ωi ∩ω j

|K |
h̃K

i h̃K
j

(
− cos(αi j,D−1

K
) + h̃K

i h̃K
j ‖b‖∞,K

hK
j (d + 1)

+ h̃K
i h̃K

j ‖c‖∞,K

(d + 1)(d + 2)

)

≤
∑

K∈ωi ∩ω j

|K |
h̃K

i h̃K
j

(
− cos(αi j,D−1

K
) + hK

i ‖b‖∞,K

λmin(DK )(d + 1)

+ hK
i hK

j ‖c‖∞,K

λmin(DK )(d + 1)(d + 2)

)
( f rom(21)).

Combining this with (25) implies (27).
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On the other hand, for i = 1, . . . , Nvi ,

aii =
∑

K∈Th

|K | (∇φi )
T

DK ∇φi +
∫

Ω

φi (b · ∇φi )dx +
∫

Ω

c φ2
i dx ( f rom(12))

≥
∫

Ω

φi (b · ∇φi )dx +
∫

Ω

c φ2
i dx

=
∫

Ω

(c − 1

2
∇ · b)φ2

i dx (Gauss’divergencethm).

The assumption (3) implies that aii ≥ 0. Thus, the stiffness matrix A is a Z-matrix.
(3) We now show that A11, the northwest block of matrix A, is an M-matrix. This is

done by showing A11 is positive definite. For any vector v = (v1, v2, . . . , vNvi )
T ,

we define vh = ∑Nvi
i=1 viφi ∈ U0. Notice that ∇vh is constant on K . As in the

proof for aii ≥ 0, from (12) we have

vT A11v =
∑

K∈Th

|K | (∇vh)T
DK ∇vh +

∫

Ω

vh (b · ∇vh)dx +
∫

Ω

c (vh)2dx

≥
∑

K∈Th

|K | (∇vh)T
DK ∇vh +

∫

Ω

(
c − 1

2
∇ · b

)
(vh)2dx ≥ 0.

Moreover, from the above inequality, vT A11v = 0 implies vh = constant, which
in turn implies vh = 0 due to the fact that vh ∈ U0. From these, we know that
A11 is positive definite. Since A11 is a Z-matrix, so it is an M-matrix.

(4) Finally, we show matrix A is an M-matrix by showing the inverse of A is positive.
From (11), the inverse of A is given by

A−1 =
[

A−1
11 −A−1

11 A12
0 I

]
. (30)

Using the fact that A−1
11 ≥ 0 and A12 ≤ 0, then A−1 ≥ 0, which, together with the

fact that A is a Z-matrix, implies that A is an M-matrix. 
�
Remark 1 Loosely speaking, (25) requires

cos
(
αi j,D−1

K

)
≥ O(h‖b‖∞) + O(h2‖c‖∞) (31)

or

0 < αi j,D−1
K

≤ π

2
− O(h‖b‖∞) − O(h2‖c‖∞) (32)

for all dihedral angles, where h = maxK∈Th hK is the maximum element size. In other
words, if the mesh is O(h)-acute in the metric D

−1 for the case b 	≡ 0 or O(h2)-acute
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in the metric D
−1 for the case b ≡ 0 and c 	≡ 0, then the linear finite element solution

of (1) and (2) satisfies a DMP. 
�
Remark 2 When no convection and reaction terms are involved, condition (25) reduces
to the nonobtuse angle condition of [6] and the anisotropic nonobtuse angle condi-
tion of [22] for isotropic and anisotropic diffusion problems, respectively. Moreover,
the condition is consistent with the DMP conditions obtained by Brandts et al. [2]
and Wang and Zhang [31] for isotropic diffusion–reaction or diffusion–convection–
reaction problems. Thus, (25) can be viewed as a generalization of those existing
results to anisotropic diffusion–convection–reaction problems.

Remark 3 Condition (25) can be rewritten into a more friendly form to mesh genera-
tion. Indeed, combining (22) with (25) we have

hK
i

λmin(DK )
· ‖b‖∞,K

(d + 1)
+ hK

i hK
j

λmin(DK )
· ‖c‖∞,K

(d + 1)(d + 2)

≤ − qT
i DK q j√

qT
i DK qi

√
qT

j DK q j

. (33)

Denote the reference element and its q-vectors by K̂ and q̂i (i = 1, . . . , d + 1),
respectively. Let FK and F ′

K be the affine mapping from K̂ to K and its Jacobian
matrix. As for (20), it is not difficult to show that

qi = (F ′
K )−1q̂i , i = 1, . . . , d + 1.

Inserting this into (33) leads to

hK
i

λmin(DK )
· ‖b‖∞,K

(d + 1)
+ hK

i hK
j

λmin(DK )
· ‖c‖∞,K

(d + 1)(d + 2)

≤ − q̂T
i (F ′

K )−T
DK (F ′

K )−1q̂ j

(q̂T
i (F ′

K )−T DK (F ′
K )−1q̂i )

1
2 (q̂T

j (F ′
K )−T DK (F ′

K )−1q̂ j )
1
2

. (34)

We now consider so-called M-uniform meshes for a given tensor M = M(x) which
is assumed to be a symmetric and positive definite d × d matrix for any x ∈ Ω =
Ω ∪∂Ω . These meshes are approximately uniform in the metric specified by M . They
are defined (e.g., see [13,15]) as meshes satisfying

(F ′
K )−T M−1

K (F ′
K )−1 =

(σh

N

)− 2
d

I, ∀K ∈ Th (35)

where

MK = 1

|K |
∫

K

M(x)dx, σh =
∑

K

|K | √
det(MK ),

123



526 C. Lu et al.

and det(MK ) is the determinant of MK . M-uniform meshes (or more practically,
almost M-uniform meshes) can be generated using a variety of techniques including
blue refinement, directional refinement, Delaunay-type triangulation, front advancing,
bubble packing, local refinement and modification, and variational mesh generation;
see references in [22].

When the metric tensor is chosen as MK = D
−1
K or, more generally,

MK = θK D
−1
K , (36)

where θK is a scalar, piecewise constant function, the corresponding M-uniform
meshes will be referred to as D

−1-uniform meshes. For those meshes, (35) becomes

(F ′
K )−T

DK (F ′
K )−1 = θK

(σh

N

)− 2
d

I, ∀K ∈ Th .

Inserting this into (34), we get

hK
i

λmin(DK )
· ‖b‖∞,K

(d + 1)
+ hK

i hK
j

λmin(DK )
· ‖c‖∞,K

(d + 1)(d + 2)
≤ cos(α̂i j ),

where α̂i j is a dihedral angle of K̂ . If the reference element K̂ is chosen as a regular
d-dimensional simplex, we have cos(α̂i j ) = 1/d, and the above inequality becomes

hK
i

λmin(DK )
· ‖b‖∞,K

(d + 1)
+ hK

i hK
j

λmin(DK )
· ‖c‖∞,K

(d + 1)(d + 2)
≤ 1

d
. (37)

This inequality holds if the maximum element size satisfies

h‖b‖∞ + 1

d + 2
h2‖c‖∞ ≤ d + 1

d
min

x∈Ω∪∂Ω
λmin(D(x)). (38)

It should be emphasized that (38) is generally too conservative to be useful in practical
computation. However, it does show that when the reference element is chosen as a
regular d-dimensional simplex, a sufficiently fine (with h satisfying (38)), D−1-uniform
mesh satisfies the condition (25). In other words, a mesh satisfying (25) can be obtained
by refining a D

−1-uniform mesh. 
�

It is known that the acute or nonobtuse angle condition can be replaced by the
weaker, so-called Delaunay condition in two dimensions for a linear finite element
solution to satisfy a DMP; e.g., see Strang and Fix [30] for the anisotropic diffusion
case and Huang [14] for the anisotropic diffusion case. In the current situation with
convection and reaction terms, a similar weaker condition can also be obtained in two
dimensions. The argument is almost the same as that of Theorem 1 except that Step
(2) of the proof needs to be fine-tuned. Let ei j be the edge connecting vertices ai and
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a j (i = 1, . . . , Nvi , j = 1, . . . , N , i 	= j). Denote the two elements sharing ei, j by
K and K ′. From Step (2), we have

ai j ≤ |K |(∇φi |K )T
DK ∇φ j |K + |K | ‖b‖∞,K

hK
j (d + 1)

+ |K | ‖c‖∞,K

(d + 1)(d + 2)

+ |K ′|(∇φi |K ′)T
DK ′∇φ j |K ′ + |K ′| ‖b‖∞,K ′

hK ′
j (d + 1)

+ |K ′| ‖c‖∞,K ′

(d + 1)(d + 2)

= −det(DK )
1
2

2
cot

(
αi j,D−1

K

)
− det(DK ′)

1
2

2
cot

(
αi j,D−1

K ′

)

+|K | ‖b‖∞,K

hK
j (d + 1)

+ |K | ‖c‖∞,K

(d + 1)(d + 2)
+ |K ′| ‖b‖∞,K ′

hK ′
j (d + 1)

+ |K ′| ‖c‖∞,K ′

(d + 1)(d + 2)
, (Lemma 3)

where αi j,D−1
K

and αi j,D−1
K ′ are the angles of K and K ′, respectively, that face the

common edge ei j . From this we can conclude that the linear finite element solution in
2D satisfies a DMP if the mesh satisfies

|K | ‖b‖∞,K

hK
j (d + 1)

+ |K | ‖c‖∞,K

(d + 1)(d + 2)
+ |K ′| ‖b‖∞,K ′

hK ′
j (d + 1)

+ |K ′| ‖c‖∞,K ′

(d + 1)(d + 2)

≤ det(DK )
1
2

2
cot

(
αi j,D−1

K

)
+ det(DK ′)

1
2

2
cot

(
αi j,D−1

K ′

)
(39)

for all internal edges. Following [14], we can rewrite the above inequality as

0 <
1

2

[
αi j,D−1

K
+ αi j,D−1

K ′ + arccot

(√
det(DK ′)

det(DK )
cot(αi j,D−1

K ′ ) − 2 C(K , K ′, j)√
det(DK )

)

+ arccot

(√
det(DK )

det(DK ′)
cot(αi j,D−1

K
) − 2 C(K , K ′, j)√

det(DK ′)

)]
≤ π, (40)

where

C(K , K ′, j) = |K | ‖b‖∞,K

hK
j (d + 1)

+ |K | ‖c‖∞,K

(d + 1)(d + 2)
+ |K ′| ‖b‖∞,K ′

hK ′
j (d + 1)

+ |K ′| ‖c‖∞,K ′

(d + 1)(d + 2)
. (41)

The following theorem summarizes the above analysis.

Theorem 2 If (40) holds for all internal edges of the simplicial mesh Th, then the
linear finite element scheme (5) for BVP (1) and (2) in two dimensions satisfies DMP.
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Loosely speaking, (40) can be written as

0 <
1

2

[
αi j,D−1

K
+ αi j,D−1

K ′ + arccot

(√
det(DK ′)

det(DK )
cot(αi j,D−1

K ′ )

)

+ arccot

(√
det(DK )

det(DK ′)
cot(αi j,D−1

K
)

) ]

≤ π − O(h‖b‖∞) − O(h2‖c‖∞). (42)

Remark 4 For the case where D = I, b = 0, and c = 0, it is easy to see that (42)
reduces to the Delaunay condition: αi j,K +αi j,K ′ ≤ π . Moreover, for the case without
convection and reaction terms, (42) gives the Delaunay-type mesh condition obtained
by Huang [14] for two dimensional anisotropic diffusion problems. 
�

5 Numerical examples

In this section we present numerical results obtained for four 2D examples to verify
the mesh condition (25) and (42). In all but Example 4, the convection vector b is taken
as a constant vector with equal, positive x and y components, i.e., b = ‖b‖∞(1, 1)T .

Example 1 The first example is in the form of (1) and (2), and the coefficients are
given as

c = 0, f = 0, g(x, 0) = g(16, y) = 0,

g(0, y) =
{

0.5y, for 0 ≤ y < 2

1, for 2 ≤ y ≤ 16

g(x, 16) =
{

1, for 0 ≤ x ≤ 14

8 − 0.5x, for 14 < x ≤ 16.

For this example, the diffusion matrix is taken as the identity matrix, i.e., D = I . This
is an isotropic homogeneous diffusion problem. Note that the example satisfies the
maximum principle and its solution stays between 0 and 1.

An acute-type mesh is used in the computation. Such a mesh is obtained by parti-
tioning each square element of a uniform mesh into eight triangles with acute angles;
see Fig. 2. The maximum angle of the mesh is 0.49π and thus condition (25) holds
when the mesh size is sufficiently small.

Figure 3 shows the contours of the linear finite element solutions obtained for N =
9,800 and N = 20,000. (N is the number of elements.) There are no undershoot nor
overshoot for N = 20,000 whereas both undershoots and overshoots occur for the case
with N = 9800. In Fig. 4a, −umin is shown as functions of the number of elements
N . From the figure one can see that −umin decreases as the mesh is refined and
the decrease rate is about quadratic initially and then exponential near N = 10,000.
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Fig. 2 A typical mesh (N =
200) used for Example 1
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Fig. 3 Contours of the linear finite element solutions for Example 1
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Fig. 4 The undershoot, −umin , is plotted as a function of the number of elements N in (a) and as a function
of ||b||∞ in (b) for Example 1
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Moreover, −umin becomes zero (more precisely, at the level of roundoff error) after
around N = 17,000. This is consistent with Theorem 1 which states that there are no
undershoot nor overshoot when the mesh size is sufficiently small.

To further verify Theorem 1, we fix the number of elements at N = 3,200 and
let ||b||∞ vary. Quantity −umin is plotted in Fig. 4b as a function of ||b||∞. From
the figure, we can see that there is no undershoot until ||b||∞ ≈ 4. Then −umin

increases exponentially until ||b||∞ ≈ 20 where the increase rate is about linear as
||b||∞ increases.

Finally, it is pointed out that a similar behavior can be observed for the overshoot.
The results are omitted here to save space. 
�
Example 2 In the second example, BVP (1) and (2) with all the coefficients being the
same with Example 1 except the diffusion matrix is used. The diffusion matrix is taken
as

D(x, y) =
(

500.5 499.5

499.5 500.5

)
.

This matrix represents a homogeneous but highly anisotropic diffusion process. A
mesh with right triangle elements (see Fig. 5) is used for this example. Such a mesh is
obtained by dividing each square element of a uniform mesh into two right triangular
elements. Although each element of the mesh is a right triangle (in the Euclidean
sense), the maximum angle is 0.49π when measured in metric D

−1. Thus, the mesh
is of acute-type in the metric and condition (25) can be satisfied if the mesh size is
sufficiently small.

Contours of linear finite element solutions are shown in Fig. 6 while the undershoot
is plotted as functions of N and ‖b‖∞ in Fig. 7. From these results we can observe
a similar behavior of the undershoot and overshoot as in Example 1, i.e., they occur
only for relatively coarse meshes or relatively large ‖b‖∞. The behavior is consistent
with Theorem 1. 
�

Fig. 5 A typical mesh (N =
200) used for Example 2 (with
anisotropic D)
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(a) (b)

Fig. 6 Contours of linear finite element solutions for Example 2

(a)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 100  1000  10000

-u
_m

in

N: numbers of elements

slope = - 2

 1e-14

 1

(b)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 10  100  1000

-u
_m

in

||b||_infinity

slope =  1

Fig. 7 The undershoot, −umin , is plotted as a function of the number of elements N in (a) and as a function
of ||b||∞ in (b) for Example 2

Example 3 In this example, the same BVP (1) and (2) with Example 1 except the
diffusion matrix is used for this example. The diffusion matrix is taken as

D(x, y) =
(

50 12

12 50

)
.

This diffusion matrix has a weaker anisotropy than that in the previous example.
The mesh used for Example 1 (see Fig. 2) is also used for this example. Recall that

the mesh is acute in the Euclidean sense. When measured in metric D
−1, however, the

maximum angle of the mesh is 0.55π and the maximum sum of any pair of angles
opposite a common edge is 0.97π . Thus, the mesh will satisfy (42) but not (25) when
its size is sufficiently small.

Contours of numerical solutions are shown in Fig. 8 while the undershoot is plotted
as functions of N and ‖b‖∞ in Fig. 9. A similar behavior of the undershoot and
overshoot can be observed as for the two previous examples.
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(a) (b)

Fig. 8 Contours of linear finite element solutions for Example 3

(a)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100  1000  10000

-u
_m

in

N: numbers of elements

slope = - 2

(b)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100  1000

-u
_m

in

||b||_infinity

slope =  1

Fig. 9 The undershoot, −umin , is plotted as a function of the number of elements N in (a) and as a function
of ||b||∞ in (b) for Example 3

In particular, for N ≥ 4,000 there is no undershoot or overshoot in the numerical
solutions for the case with b = [200, 200]T . This example shows that condition (42)
is weaker than condition (25). 
�

Example 4 In the last example, we consider BVP (1) and (2) on domain Ω =
[0, 1]2\[ 4

9 , 5
9 ]2 with

{
b = [5000(0.5 − y), 5000(x − 0.5)]T , c = 100, f = 0,

g = 0 on ∂Ωout, g = 2 on ∂Ωin,
(43)

where ∂Ωout and ∂Ωin are the outer and inner boundaries of Ω , respectively. The
diffusion matrix is taken as

D(x, y) =
(

cos α − sin α

sin α cos α

)(
1000 0

0 1

)(
cos α sin α

− sin α cos α

)
,
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where α = π sin(x) cos(y). This diffusion matrix is anisotropic and heterogeneous.
The BVP satisfies the maximum principle and its solution stays between 0 and 2.

We use two sets of D
−1-uniform meshes (cf. Remark 3) for this example. The first

set (referred to as MDMP meshes) is M-uniform meshes with M defined in (36) and
θK = 1. Notice that this set of meshes is completely determined by the diffusion matrix
D. The other set of meshes (referred to as MDMP+adap meshes) is M-uniform meshes
with M defined in the form (36) and θK determined by minimizing an interpolation
error estimate. M has the expression [22, equation (55)] as

MK =
(

1 + 1

αh
BK

) 1
2 √

det(DK ) D
−1
K , (44)

where

BK = det(DK )−
1
2 ‖D

−1
K || · 1

|K |
∫

K

‖ DK |H(u)| ‖2dx,

αh =
(

1

|Ω|
∑

K

|K |√BK

)2

,

‖ · ‖ is the l2 matrix norm, |H(u)| = √
H(u)2, and H(u) denotes the Hessian of

the exact solution u. In the computation, the integral is calculated with a Gaussian
quadrature rule and the Hessian is replaced by approximations obtained with a Hessian
recovery technique [22] which employs piecewise quadratic polynomials fitting in
least-squares sense to nodal values of the currently available computed solution.

An iterative procedure is used for solving this example. It involves three basic steps,
solving the BVP on the current mesh, computing the metric tensor, and generating a
new mesh. In our computation, each run is stopped after 10 iterations. We have found
that there is very little improvement in the computed solution after 10 iterations. A
new mesh is generated using the computer code BAMG (bidimensional anisotropic
mesh generator) developed by Hecht [12] based on Delaunay-type triangulation. The
code allows the user to supply his/her own metric tensor defined on a background
mesh.

Two typical MDMP and MDMP+adap meshes for this example are shown in Fig. 10.
The quantity −umin is plotted as a function of the number of mesh elements in Fig. 11.
One can see that undershoots occur for relatively coarser meshes but not for fine
meshes. This is consistent with Remark 3 which shows that sufficiently fine D

−1-
uniform meshes satisfy the mesh condition (25). It should be pointed out that the
maximum element size of the finest mesh for the considered range of N in Fig. 13 is
h ≈ 0.058, which is much larger than h = 0.0003 required by (38) for the current
example. This indicates that (38) is quite conservative in estimating h for a mesh
satisfying condition (25). From Fig. 13, one may also notice that MDMP+adap meshes
lead to larger undershoots than MDMP meshes. Figure 12 shows that the former has a
larger maximum element size than the latter. There are no clear explanations why this
should happen. We recall that MDMP meshes are completely determined by D whereas
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Fig. 10 Two typical a MDMP and b MDMP+adap meshes obtained for Example 4
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Fig. 11 The undershoot, −umin , is plotted as a function of the number of elements N for a MDMP and
b MDMP+adap meshes for Example 4

MDMP+adap meshes are determined by D in element shape and by minimization of
interpolation error in element size. These two sets of meshes serve different purposes
and it seems that it can go either way.

Finally, contours of linear finite element solutions are shown in Figs. 13 and 14.
Once again, one can see that for both sets of meshes, undershoots occur for a relatively
coarse mesh and vanish for a finer mesh. 
�

6 Conclusions

In the previous sections we have developed a mesh condition (25) under which the
linear finite element solution defined in (5) for the general anisotropic diffusion prob-
lem (1) and (2) involving convection and reaction terms to satisfy a discrete maximum
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Fig. 12 The maximum element size is plotted as a function of the number of elements for both MDMP and
MDMP+adap meshes for Example 4

(a) (b)

Fig. 13 Contours of linear finite element solutions obtained with MDMP meshes for Example 4

(a) (b)

Fig. 14 Contours of linear finite element solutions obtained with MDMP+adap meshes for Example 4

principle. Loosely speaking, the condition requires that the dihedral angles of all ele-
ments of the mesh be O(‖b‖∞h + ‖c‖∞h2) − acute when they are measured in the
metric specific by the inverse of the coefficient matrix, where b and c are the coeffi-
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cients of the convection and reaction terms, respectively. Moreover, we have shown
that in two dimensions a weaker condition, (40) or (42)—an O(‖b‖∞h + ‖c‖∞h2)

perturbation of the generalized Delaunay condition developed in [14], is sufficient for
the linear finite element solution to satisfy a discrete maximum principle. Finally, it
is worth pointing out that many existing mesh conditions such as those developed in
Ciarlet and Raviart [6] (for isotropic diffusion without convection terms), Strang and
Fix [30] (for 2D isotropic diffusion without convection terms), Wang and Zhang [31]
(for isotropic diffusion with convection and reaction terms), Li and Huang [22] (for
anisotropic diffusion without convection and reaction terms), and Huang [14] (for 2D
anisotropic diffusion without convection and reaction terms) are special cases of mesh
condition (25) or (40).
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