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Abstract In this paper we study a Lax-Wendroff-type time discretization procedure for
the finite difference weighted essentially non-oscillatory (WENO) schemes to solve one-
dimensional and two-dimensional shallow water equations with source terms. In order to
maintain genuinely high order accuracy and suit to problems with a rapidly varying bottom
topography we use WENO reconstruction not only to the flux but also to the source terms of
algebraical modified shallow water equations. Extensive simulations are performed, as a re-
sult, the WENO schemes with Lax-Wendroff-type time discretization can maintain nonoscil-
latory properties and more cost effective than that with Runge-Kutta time discretization.

Keywords Lax-Wendroff-type time discretization · Weighted essentially non-oscillatory
schemes · Shallow water equations · High order accuracy

1 Introduction

In this paper, the finite difference WENO (Weighted Essentially Non-oscillatory) schemes
with Lax-Wendroff-type time discretizations are used to simulate discontinuous flows of the
shallow water equations with source terms.
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WENO schemes were developed from essential non-oscillatory (ENO) scheme [7],
which share many advantages with and usually performed better than total variation di-
minishing (TVD) or total variation bounded (TVB) schemes, because they use an adaptive
stencil trying to obtain information from the smoothest regions. WENO schemes use a con-
vex combination of all candidate stencils instead of just one as in the original ENO, the
first WENO scheme was constructed in [10] for the third order finite volume version in one
space dimension, then the third and fifth order finite difference WENO schemes in multi-
space dimensions were constructed [8], higher order WENO finite difference schemes were
designed in [3]. WENO improves upon ENO in robustness, better smoothness of fluxes,
better steady convergence, better provable convergence properties, and more efficiency [14].
WENO is a procedure of spatial discretization; namely, it is a procedure to approximate the
spatial derivative terms. The WENO schemes are a very important class of high accuracy
numerical methods, they have been developed in recent years as a class of high order fi-
nite difference or finite volume methods for hyperbolic conservation laws [8, 10], they give
sharp, non-oscillatory discontinuity transitions and at the same time provide high order ac-
curate resolutions for the smooth part of the solution, and the WENO schemes are widely
used in the other application [1, 2, 17, 19]. Xing and Shu [16] designed high order finite dif-
ference WENO schemes with Runge-Kutta time discretization to shallow water equations
with non-flat bottom, extensive tests are performed to verify its high order accuracy, the
exact C-property, and good resolution for smooth and discontinuous solutions.

As we know, the performance of the shallow water equations without the source terms is
similar to that of the compressible Euler equations in aerodynamics. A lot of shock and dis-
continuity capture methods that are well developed in aerodynamics can be used to solve the
shallow water equations, including the cases with strong discontinuity. The straight forward
treatment of the source terms can not maintain the high order accuracy. Zhou et al. [18] used
the surface gradient method for the treatment of source term; Vukovic and Sopta [15] used
both WENO and ENO to the combination of the flux and source term; most of the works
did not keep same order accuracy for source terms with that for flux term.

For time-dependent problems, we need time accuracy as well. There are mainly two dif-
ferent approaches to approximate the time derivative [11]. One way is to use a high order
ODE solver, such as Runge-Kutta method or multilevel type. The approach have the advan-
tages of simplicity in concept and in coding, and it has good stability properties when the
TVD-type Runge-Kutta or multi-step methods are used, however, TVD Runge-Kutta meth-
ods with positive coefficients cannot be higher than the fourth order accuracy. Another way
is via the classical Lax-Wendroff procedure, which relies on converting all the time deriv-
atives in a temporal Taylor expansion into spatial derivatives, by using partial differential
equation (PDE), then discretizing the spatial derivatives, so it is also called the Taylor type.
The approach can produce the same high order accuracy with a smaller effective stencil
than that of the first way, and it uses more extensively the original PDE. However the for-
mulation and coding could be quite complicated, especially for multidimensional systems.
The Lax-Wendroff time discretization formula for finite volume is easier than that of the
finite difference spatial discretizations. Qiu and Shu [11] developed a Lax-Wendroff time
discretization procedure to solve Euler systems of compressible gas dynamics, which got
the interesting conclusion of exploring a balance between reduction of cost and maintaining
the non-oscillatory property by the scheme.

In this paper, the fifth order WENO finite difference schemes with the third order and the
fourth order Lax-Wendroff-type time discretization are used to solve the one-dimensional
and two-dimensional shallow water equations. We follow the ideas of Jiang and Shu about
the WENO schemes [8], Rogers et al. [13] and Xing and Shu [16] about the balance of the
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flux and the source terms of shallow water equations. This paper is organized as follows, in
Sect. 2, we describe the discretization of the shallow water equations. Numerical examples
are given to demonstrate the accuracy and the resolution of the constructed schemes in
Sect. 3. Concluding remarks are included in Sect. 4.

2 Description of Numerical Model and Numerical Method

2.1 The Governing Equations

The two-dimensional conservative unsteady shallow water equations are

Ut + F(U)x + G(U)y = S, (2.1)

with

U = [D,uD,vD]T , F (U) = [uD,u2D + gD2/2, uvD]T ,

G(U) = [vD,uvD,v2D + gD2/2]T ,

and the source terms

S = [0,−gDsox,−gDsoy]T , (2.2)

where D is the total water depth, u and v are the depth-averaged velocities in the x- and y-
directions, respectively, t is the time; g is the gravitational acceleration, sox and soy are the
bed slopes stresses, sox = ∂b/∂x, soy = ∂b/∂y, b is the bottom function. Other terms could
also be added into source terms in order to include effects such as friction on the bottom and
Coriolis terms.

We write the shallow water equations in quasi-linear form as follows

Ut + A(U)Ux + B(U)Uy = S, (2.3)

where

A(U) = ∂F

∂U
=

⎛
⎝

0 1 0
c2 − u2 2u 0
−uv v u

⎞
⎠ , B(U) = ∂G

∂U
=

⎛
⎝

0 0 1
−uv v u

c2 − v2 0 2v

⎞
⎠ ,

and c = √
gD is the propagation speed of the shallow water wave. The eigenvalues of Jaco-

bians A and B are

λ(A) = u − c,u,u + c, λ(B) = v − c, v, v + c,

respectively. The corresponding left and right eigenvectors of Jacobian A and B are given
as follows:

RA =
⎛
⎝

1 0 1
u − c 0 u + c

v 1 v

⎞
⎠ , LA =

⎛
⎝

u+c
2c

− 1
2c

0
−v 0 1

− u−c
2c

1
2c

0

⎞
⎠ , (2.4)

RB =
⎛
⎝

1 0 1
u 1 u

v − c 0 v + c

⎞
⎠ , LB =

⎛
⎝

v+c
2c

0 − 1
2c−u 1 0

− v−c
2c

0 1
2c

⎞
⎠ . (2.5)
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2.2 Description of the Fifth Order Finite Difference WENO Schemes

We solve the spacial derivative of shallow water equations using the finite difference for-
mulation. In this section, we give a short overview for one-dimensional scalar hyperbolic
conservation law as (2.6),

ut + f (u)x = 0. (2.6)

The two-dimensional cases procedure in a dimension-by-dimension fashion, for more de-
tails, we refer to [8].

Denote Ii = [xi− 1
2
, xi+ 1

2
] be the ith cell, centered on xi , we assume that the grid points

are uniform with �x = xi+1 − xi . For a finite difference scheme, we evolve the point value
ui at mesh points xi in time. The spacial derivative f (u)x is approximated by a conservative
flux difference

f (u)x |xi
≈ 1

�x
(f̂i+ 1

2
− f̂i− 1

2
).

For a (2r − 1)th order WENO scheme, the numerical flux f̂ is computed through r neigh-
boring point values f ± by f̂ = f̂ + + f̂ −. We use Lax-Friedrichs splitting as

f ±(u) = 1

2
(f (u) ± αu),

where α is taken as α = maxu |f ′(u)|.
Let fi = f +(ui). For example, fifth order WENO scheme (r = 3), the 3 numerical fluxes

are given by

f̂
+(0)

i+ 1
2

= 1

3
fi + 5

6
fi+1 − 1

6
fi+2,

f̂
+(1)

i+ 1
2

= −1

6
fi−1 + 5

6
fi + 1

3
fi+1,

f̂
+(2)

i+ 1
2

= 1

3
fi−2 − 7

6
fi−1 + 11

6
fi.

The next is to compute the smoothness indicators and the nonlinear weights. The
(2r − 1)th order WENO flux is a convex combination of all these r numerical fluxes

f̂ +
i+ 1

2
=

r−1∑
m=0

ωmf̂
+(m)

i+ 1
2

.

The nonliner weights ωm are defined in the following way:

ωm = αm∑r−1
s=0 αs

, αs = ds

(ε + βs)2
,

here ds are the linear weights which yield (2r − 1)th order accuracy, βs are the so-called
“smoothness indicators”, which measure the smoothness of the polynomials. ε is a small
positive constant used to avoid the denominator to become zero and is typically taken as
10−6. For the fifth order WENO scheme, the linear weights ds are given by

d0 = 3

10
, d1 = 3

5
, d2 = 1

10
,
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and the smoothness indicators βs are given by

β0 = 13

12
(fi − 2fi+1 + fi+2)

2 + 1

4
(3fi − 4fi+1 + fi+2)

2,

β1 = 13

12
(fi−1 − 2fi + fi+1)

2 + 1

4
(fi−1 − fi+1)

2,

β2 = 13

12
(fi−2 − 2fi−1 + fi)

2 + 1

4
(fi−2 − 4fi−1 + 3fi)

2.

The reconstruction of f̂ −
i+ 1

2
is mirror symmetry to that of f̂ +

i+ 1
2
. For the shallow water

equations, we use the local characteristic decomposition, which is more robust than a com-
ponent by component. The right eigenvectors and the left eigenvectors of the Jacobian A

and B and Roe’s average are needed for the local characteristic decomposition.

2.3 Balance of the Flux and the Source Terms

Here we adopt the ideas of Rogers et al. [13] about the balance of the flux and the source
terms, they presented an algebraic technique for balancing the flux gradients and the source
terms. The numerical imbalance is eradicated by reformulating the governing matrix hy-
perbolic system of conservation laws in terms of deviations away from an unforced but
separately specified equilibrium state. Thus, balancing is achieved by the incorporation of
this extra physical information and bypasses conventional numerical treatments of the im-
balance.

The vector of conserved variables U is given by

U = Ueq + Ũ , (2.7)

where Ũ is the deviation of U from the equilibrium or still water value such that ∂Ueq/∂t =
0. Actually, for still water values, the shallow water convenient properties ζ = u = v = 0,
and

Ueq = [h,0,0]T , Ũ = U − Ueq = [ζ,uD,vD]T ,

in which ζ is the free surface elevation above the still level h + b, ζ is still water height,
D = ζ + h is the total water depth. The shallow water equations are transformed to

∂Ũ

∂t
+ ∂[F(U) − F(Ueq)]

∂x
+ ∂[G(U) − G(Ueq)]

∂y
= S − ∂(F (Ueq))

∂x
− ∂(G(Ueq))

∂y
, (2.8)

Ũt + F̃ (U)x + G̃(U)y = S̃, (2.9)

with

Ũ = [ζ,uD,vD]T , F̃ = [uD,u2D + g(ζ 2 + 2hζ)/2, uvD]T ,

G̃ = [vD,uvD,v2D + g(ζ 2 + 2hζ)/2]T ,

S̃ = [0,−gζsox,−gζsoy]T . (2.10)
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Fig. 1 The describe of definition
of variate

We can see that the Jacobian matrixes Ã(U) and B̃(U) of (2.9) are same as A(U) and B(U)

of (2.1), and the discretization of (2.9) is similar to that of (2.1).
The approach taken in the paper for some examples chosen are to use the still water level

as the datum h. It is perfectly reasonable to choose a fixed horizontal datum elsewhere as in
Fig. 1, and derive the balanced hyperbolic equations using a stage-discharge approach. We
denote the modified equations as usual still with

Ut + F(U)x + G(U)y = S, (2.11)

with

U = [ζ,uD,vD]T , F (U) = [uD,u2D + g(ζ 2 + 2hζ)/2, uvD]T ,

G(U) = [vD,uvD,v2D + g(ζ 2 + 2hζ)/2]T , S = [0,−gζsox,−gζsoy]T .

The scheme reduces to the original WENO scheme describe in the previous section when
the bottom is flat. In order to keep the high order accuracy of the WENO scheme for shallow
water equations with source terms (2.11), inspired by Xing and Shu [16], we treat source
terms as follows. For two-dimensional shallow water equations, b is the bottom function,
we split the space derivative to x and y in source terms into two parts respectively as

S =
⎛
⎝

0
−gζsox

−gζsoy

⎞
⎠ = −1

2
gζ

⎛
⎝

0
b

0

⎞
⎠

x

− 1

2
gζ

⎛
⎝

0
b

0

⎞
⎠

x

− 1

2
gζ

⎛
⎝

0
0
b

⎞
⎠

y

− 1

2
gζ

⎛
⎝

0
0
b

⎞
⎠

y

, (2.12)

and perform the same WENO procedure to approximate the derivative, namely, we use the
local characteristic decomposition and the same nonlinear weights to the vector [0, b,0]T
in x-direction and [0,0, b]T in y-direction to approximate the derivative in source terms, in
other words, one half of the derivative in source term is approximated by the operator ob-
tained from the computation of f + as described in Sect. 2.2, and the other half is computed
by the operator obtained from the computation of f − with biased stencils, so the approxi-
mation to source terms is also a fifth order accuracy, and the method is suit to problems with
discontinuous bottom topography or the nonexistence derivative of bottom function.

2.4 Description of the Lax-Wendroff-type Discretization Procedure

In this section, we describe in detail the construction of Lax-Wendroff-type time discretiza-
tion with WENO finite difference schemes for two-dimensional shallow water equations
(2.11) [11].
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Denote �t be the time step, tn+1 = tn + �t , we let Un
i,j be the approximation of the

point values U(xi, yj , t
n). For simplicity, we denote the r th order time derivative of U ,

namely ∂rU
∂tr

, by U(r). We also use U ′, U ′′ and U ′′′ to denote the first, second and the third
time derivatives of U , use S ′, S ′′ and S ′′′ to denote the first, second and the third time
derivatives of S, and the same to ζ . In Lax-Wendroff-type time discretization procedure for
the shallow water equations, the time derivatives are replaced by the spatial derivatives using
the PDE [11], by a temporal Taylor expansion we obtain

U(x,y, t + �t) = U(x,y, t) + �tU ′ + �t2

2
U ′′ + �t3

6
U ′′′ + �t4

24
U(4) + · · · , (2.13)

if we would like to obtain kth order accuracy in time, we would need to approximate the
first k time derivatives. We will proceed up to the third and the fourth order in time and fifth
order in space in this paper.

First, we describe the reconstruction of the first time derivative U ′ = −F(U)x −
G(U)y +S. In finite difference scheme for U ′

i,j = −F(Ui,j )x −G(Ui,j )y +Si,j , the flux vec-
tor −F(Ui,j )x −G(Ui,j )y is obtained by the regular fifth order WENO finite difference pro-
cedure as described in Sect. 2.2, the two derivative in source terms Si,j = −gζi,j ([0, b,0]Tx +
[0,0, b]Ty )i,j is computed by WENO reconstruction as described in Sect. 2.3, ζi,j is the point
values of ζ at point (xi, yj , t

n).
“Exact C-property” means that the scheme is “exact” when applied to the stationary

case D + b = constant and uD = 0, vD = 0, in other words, in the Lax-Wendroff-type
time discretization with WENO schemes, U ′ = U ′′ = U ′′′ = · · · = 0 in (2.13) for any still
water station. We can use the similar method of Xing and Shu [16] to prove that the upper
procedure to U ′ with WENO scheme satisfy the exact C-property and maintain the high
order accuracy.

The reconstruction of the second time derivative U ′′ = −(F ′(U)U ′)x − (G′(U)U ′)y +S ′
is obtained as follow. Notice that, we will need only a one order lower flux approximation
than that of the first time derivative U ′, because of the extra �t factor in (2.13). Let Pi,j =
F ′(Ui,j )U

′
i,j , Qi,j = G′(Ui,j )U

′
i,j , where Ui,j and U ′

i,j are the point values of U and U ′ at
the point (xi, yj , t

n) computed above, and

F ′(U) = A(U) =
⎛
⎝

0 1 0
c2 − u2 2u 0
−uv v u

⎞
⎠ , G′(U) = B(U) =

⎛
⎝

0 0 1
−uv v u

c2 − v2 0 2v

⎞
⎠ .

(2.14)
We use the following the fourth order central difference approximation to get the fifth order
approximation in space:

U ′′
i,j ≈ − 1

12�x
(Pi−2,j − 8Pi−1,j + 8Pi+1,j − Pi+2,j ) − 1

12�y
(Qi,j−2 − 8Qi,j−1

+ 8Qi,j+1 − Qi,j+2) + S ′
i,j . (2.15)

We assume the bottom topography is unchanged, the space derivative [0, bx, by]Ti,j in source
terms S ′

i,j = −gζ ′
i,j [0, bx, by]Ti,j is computed by WENO reconstruction, which have been

computed in the first time derivative U ′; ζ ′
i,j , which is time derivative of ζ , is the point

values of ζ ′ at point (xi, yj , t
n) computed above.

Notice that this approximation is conservative; namely, it can be written as a flux differ-
ence form. It seems that a more costly WENO approximation is not needed here to control
spurious oscillations, presumably because this term is multiplied by an extra �t anyway.
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In order to explain the procedure of U ′′ satisfy the exact property, we firstly consider the
situation when approximation is used to U ′′ without central difference. When computing
U ′′ at (xi, yj ), F ′(U) in Pi,j , which is the Jacobian A(U) at (xi, yj ), is fixed. Therefore, C-
property still holds to Pi,j , with U ′

i,j is proved to have the attribute in the first time derivative
above. The same theory suit to Qi,j . The fourth order central difference as (2.15) is a linear
operator, and the coefficients are constant, so the theory will go through. For the still water
station, the effect of S ′

i,j towards the approximation of U ′′ is zero because of the fact that
ζ = constant. So we can prove that the WENO-LW scheme maintains exactly C-property
to U ′′.

The reconstruction of the third time derivative

U ′′′ = −(
F ′(U)U ′′ + F ′′(U)(U ′)2

)
x
− (

G′(U)U ′′ + G′′(U)(U ′)2
)
y
+ S ′′,

is obtained as follows. Let

Pi,j = F ′(Ui,j )U
′′
i,j + F ′′(Ui,j )(U

′
i,j )

2, Qi,j = G′(Ui,j )U
′′
i,j + G′′(Ui,j )(U

′
i,j )

2,

in which

F ′′(U) = A′(U)

=
⎛
⎝

0 0 0 0 0 0 0 0 0
g + 2u2/D −2u/D 0 −2u/D 2/D 0 0 0 0

2uv/D −v/D −u/D −v/D 0 1/D −u/D 1/D 0

⎞
⎠ ,

(2.16)

G′′(U) = B ′(U)

=
⎛
⎝

0 0 0 0 0 0 0 0 0
2uv/D −v/D −u/D −v/D 0 1/D −u/D 1/D 0

g + 2v2/D 0 −2v/D 0 0 0 −2v/D 0 2/D

⎞
⎠ .

(2.17)

If we denote F ′′(U) = (F1,F2,F3), where F1,F2,F2 are the three 3 × 3 matrixes as above,
F ′′(U)(U ′)2 = (F1U

′,F2U
′,F3U

′)U ′, which also is a 3 × 1 vector.
Because of the extra �t2, we need only the third order flux approximation to get the fifth

order approximation of U ′′′, we would like to use the same differences as above in space
which are all of even order

U ′′′
i,j ≈ − 1

12�x
(Pi−2,j − 8Pi−1,j + 8Pi+1,j − Pi+2,j ) − 1

12�y
(Qi,j−2 − 8Qi,j−1

+ 8Qi,j+1 − Qi,j+2) + S ′′
i,j . (2.18)

The space derivative [0, bx, by]Ti,j in source terms S ′′
i,j = −gζ ′′

i,j [0, bx, by]Ti,j use the com-
puted value as above; ζ ′′

i,j , which is the second time derivative of ζ , is the point values of ζ ′′
at point (xi, yj , t

n) computed above.
The reconstruction of the fourth time derivative

U(4) = −(F ′(U)U ′′′ + 3F ′′(U)U ′U ′′ + F ′′′(U)(U ′)3)x − (G′(U)U ′′′ + 3G′′(U)U ′U ′′

+ G′′′(U)(U ′)3)y + S ′′′,
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is obtained in a similar fashion. Let

Pi,j = F ′(Ui,j )U
′′′
i,j + 3F ′′(Ui,j )U

′
i,jU

′′
i,j + F ′′′(Ui,j )(U

′
i,j )

3,

Qi,j = G′(Ui,j )U
′′′
i,j + 3G′′(Ui,j )U

′
i,jU

′′
i,j + G′′′(Ui,j )(U

′
i,j )

3,

where

F ′′′(U) = A′′(U) = (A1,A2,A3), G′′′(U) = B ′′(U) = (B1,B2,B3),

with

A1(U) =
⎛
⎝

0 0 0 0 0 0 0 0 0
−6u2/D2 4u/D2 0 4u/D2 −2/D2 0 0 0 0
−6uv/D2 2v/D2 2u/D2 2v/D2 0 −1/D2 2u/D2 −1/D2 0

⎞
⎠ ,

(2.19)

A2(U) =
⎛
⎝

0 0 0 0 0 0 0 0 0
4u/D2 −2/D2 0 −2/D2 0 0 0 0 0
2v/D2 0 −1/D2 0 0 0 −1/D2 0 0

⎞
⎠ , (2.20)

A3(U) =
⎛
⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2u/D2 −1/D2 0 −1/D2 0 0 0 0 0

⎞
⎠ , (2.21)

B1(U) =
⎛
⎝

0 0 0 0 0 0 0 0 0
−6uv/D2 2v/D2 2u/D2 2v/D2 0 −1/D2 2u/D2 −1/D2 0
−6v2/D2 0 4v/D2 0 0 0 4v/D2 0 −2/D2

⎞
⎠ ,

(2.22)

B2(U) =
⎛
⎝

0 0 0 0 0 0 0 0 0
2v/D2 0 −1/D2 0 0 0 −1/D2 0 0

0 0 0 0 0 0 0 0 0

⎞
⎠ , (2.23)

B3(U) =
⎛
⎝

0 0 0 0 0 0 0 0 0
2u/D2 −1/D2 0 −1/D2 0 0 0 0 0
4v/D2 0 −2/D2 0 0 0 −2/D2 0 0

⎞
⎠ . (2.24)

In order to get a fifth order scheme, we need to use only the second order central differ-
ence approximation to flux in U(4) at the point (xi, yj , t

n), because the extra �t3 factor. We
use the following second order approximation:

U
(4)
i,j ≈ − 1

2�x
(Pi+1,j − Pi−1,j ) − 1

2�y
(Qi+1,j − Qi−1,j ) + S ′′′

i,j , (2.25)

which is again a conservative approximation. The space derivative [0, bx, by]Ti,j in source
terms S ′′′

i,j = −gζ ′′′
i,j [0, bx, by]Ti,j is computed in same fashion as above; ζ ′′′

i,j , which is the
third time derivative of ζ , is the point values of ζ ′′′ at point (xi, yj , t

n) computed above.
If we require higher order accuracy in time, this procedure can be continued in a similar

fashion. The exact C-property can be proved to U ′′′,U(4), . . . using the similar idea in U ′′.
So the WENO-LW scheme maintain the exact C-property.
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In the following we denote the schemes with (2r − 1)th order WENO scheme in space
and kth order Lax-Wendroff-type method in time as WENO(2r − 1)-LWk. We will concen-
trate attention on WENO5-LW3 and WENO5-LW4. As a comparison by the third and the
fourth order Runge-Kutta methods with WENO schemes as WENO5-RK3 and WENO5-
RK4.

3 Numerical Results

In this section, we perform numerical experiments to test the performance of the finite differ-
ence WENO5-LW schemes developed in the previous section for shallow water equations,
and compare them with the finite difference WENO5-RK schemes, addressing on the impor-
tant issue of CPU time and relevant efficiency, both one-dimensional and two-dimensional
shallow water equations are studied.

For CPU time comparison, all the computations are performed on a personal computer,
Core (TM) 2 Duo CPU P8600 @ 2.4 GHz with 4 GB ram. In our numerical experiments, the
gravitation constant is taken as 9.812 m/s2. The biggest CFL numbers for WENO5-LW and
WENO5-RK are about 0.51 and 1, respectively, which are obtained from standard Fourier
analysis of WENO scheme with linear weights for scalar linear equation. We use 0.4 for
WENO5-LW and 0.8 for WENO-RK in this paper, which are about 80% of the biggest
numbers. The small positive constant in the WENO weight formula is taken as ε = 10−6,
except for the special test. Uniform meshes are used.

Example 3.1 Test for the exact C-property. In this test case [12, 16], the bottom is defined
with

b(x) = 5 exp

(
−2

5
(x − 5)2

)
x ∈ [0,10].

The initial water height is defined as D(x) = 10 − b(x), and the initial velocity is defined as
zero. The surface should remain flat. The terminal time is taken as t = 0.5 s.

We take the still level h as h = 10 − b(x). In Tables 1, 2, L1 and L∞ are errors of
water height D and the discharge Du for WENO5-LW3 and WENO5-LW4 respectively. The
results obviously confirm the theoretical result of the proposition basically. The accuracy is
good.

Example 3.2 An one-dimensional accuracy test over a sinusoidal hump [4, 10]. In order to
get fifth order in accuracy test with smooth solution for WENO5-LWk scheme, we do not

Table 1 L1 and L∞ errors for the accuracy for the stationary solution, WENO5-LW3 and WENO5-RK3
using N space points

N WENO5-LW3 WENO5-RK3

D Du D Du

L1 L∞ L1 L∞ L1 L∞ L1 L∞

500 3.28E−15 7.11E−15 1.86E−14 6.00E−14 8.67E−16 3.55E−15 6.14E−15 2.04E−14

200 9.68E−16 7.11E−15 1.29E−14 4.23E−14 6.66E−16 1.78E−15 9.38E−15 2.13E−14

20 1.87E−15 5.33E−15 1.50E−14 4.94E−14 4.09E−15 1.42E−14 3.82E−14 1.31E−13
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use the regular adaptive time step �tn = CFL · �x

maxi (|un
i
|+√

gDn
i
)

for one-dimensional shallow

water equations, but �tn = CFL · (�x)
5
k

maxi (|un
i
|+√

gDn
i
)
.

To check the order accuracy of the schemes for a smooth solution of one-dimensional
shallow water equations, we use the same test as Xing and Shu [16]. In the domain [0,1],
the bottom topography

b(x) = sin2(2πx),

the initial data are given by:

D(x,0) = 5 + ecos(2πx),

(Du)(x,0) = sin(cos(2πx)).

We take the still water height h as h = 5 − b(x). We compute up to time t = 0.1 s when
there is no shocks in the solution, with a 2-periodic boundary conditions. The reference
solution is computed with the same scheme and 25600 points, since the exact solution is
unknown.

In Table 3, the L∞ numerical errors and orders of accuracy by WENO5-LW4 of water
depth D and the discharge Du are displayed, N is the number of points. For comparison,
L∞ numerical errors and orders of accuracy by WENO5-RK4 schemes are also shown in

Table 2 L1 and L∞ errors for the accuracy for the stationary solution, WENO5-LW4 and WENO5-RK4
using N space points

N WENO5-LW4 WENO5-RK4

D Du D Du

L1 L∞ L1 L∞ L1 L∞ L1 L∞

500 1.46E−15 7.11E−15 1.15E−14 5.06E−14 4.62E−17 1.78E−15 4.10E−15 2.25E−14

200 1.01E−15 5.33E−15 1.12E−14 4.62E−14 6.22E−17 1.78E−15 3.13E−15 1.23E−14

20 1.78E−15 5.33E−15 1.64E−14 4.87E−14 3.91E−15 1.24E−14 3.36E−14 1.23E−13

Table 3 L∞ errors and numerical orders of accuracy for the one-dimensional order test, WENO5-LW4 and
WENO5-RK4 using N space points

N WENO5-LW4 WENO5-RK4

D Du D Du

L∞ error order L∞ error order L∞ error order L∞ error order

25 7.165E−2 6.060E−1 7.038E−2 6.257E−1

50 1.672E−2 2.10 1.612E−1 1.91 1.744E−2 2.01 1.685E−1 1.89

100 4.140E−3 2.01 3.516E−2 2.20 4.323E−3 2.01 3.664E−2 2.20

200 4.943E−4 3.07 4.566E−3 2.95 5.149E−4 3.07 4.745E−3 2.95

400 2.771E−5 4.16 2.455E−4 4.22 2.885E−5 4.16 2.555E−4 4.22

800 9.966E−7 4.80 8.496E−6 4.86 1.034E−6 4.80 8.786E−6 4.86

1600 3.196E−8 4.97 2.705E−7 4.97 3.256E−8 4.99 2.763E−7 4.99
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Table 4 L1 errors and numerical orders of accuracy for the one-dimensional order test, WENO5-LW4 and
WENO5-RK4 using N space points

N WENO5-LW4 WENO5-RK4

D Du D Du

L1 error order L1 error order L1 error order L1 error order

25 1.511E−2 1.202E−1 1.458E−2 1.180E−1

50 2.071E−3 2.87 2.168E−2 2.47 2.093E−3 2.80 2.220E−2 2.41

100 3.150E−4 2.72 2.827E−3 2.94 3.287E−4 2.67 2.936E−3 2.92

200 2.207E−5 3.84 1.935E−4 3.87 2.308E−5 3.83 2.022E−4 3.86

400 8.982E−7 4.62 7.768E−6 4.64 9.350E−7 4.63 8.085E−6 4.64

800 3.108E−8 4.85 2.674E−7 4.86 3.207E−8 4.87 2.759E−7 4.87

1600 1.021E−9 4.93 8.809E−9 4.92 1.040E−9 4.95 8.968E−9 4.94

Fig. 2 L∞ errors and CPU time for the one-dimensional order test. Left: water depth. Right: discharge

Table 3. The L1 numerical errors and orders of accuracy by WENO5-LW4 and WENO5-
RK4 are shown in Table 4. We can see that fifth order accuracy are almost achieved for
the finite difference both WENO5-LW4 and WENO5-RK4 schemes, they produce similar
numerical errors and orders of accuracy. WENO5-LW3 and WENO5-RK3 also get fifth
order and nearly numerical errors, we do not list the data to save space.

In Fig. 2, we give the L∞ numerical errors and cost CPU time for D and Du when cell
numbers are ‘50, 100, 200, 400, 800, 1600’, and Log scale for numerical errors, we can
see that the line of WENO5-LW4 always at the bottom of the line of WENO5-RK4, which
means to get the same numerical error, WENO5-RK4 cost more CPU time.

Example 3.3 Dam break on a flat bed. The dam-break problem is the most common test to
evaluate the performance of shock capturing schemes in shallow flows, such as [12]. The
bottom is flat b(x) = 0 and the initial conditions are taken as:

D(x,0) =
{

D1 x < 0
D2 x ≥ 0

, (Du)(x,0) = 0. (3.1)

We take the computational domain as [−1,1], D1 = 1 m and D2 = 0.1 m. The simulation is
performed up to time t = 0.1 s.
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Fig. 3 Dam break on a flat bed by WENO5-LW3 and WENO5-RK3. Left: water depth. Right: discharge

Fig. 4 Dam break on a flat bed by WENO5-LW4 and WENO5-RK4. Left: surface level. Right: discharge

The water depth D and the discharge Du using the WENO5-LW3 and WENO5-RK3
schemes on a mesh with 200 points and exact solution are plotted in Fig. 3, and in Fig. 4 is
by the WENO5-LW4 and WENO5-RK4 schemes, which show very good agreement with
the exact solution [5], and no spurious oscillations occurred. We run 200 times as the CPU
time for every program, the CPU time is 3.95 s for WENO5-LW3, 4.49 s for WENO5-RK3
schemes, and 4.39 s for WENO5-LW4, 5.82 s for WENO-RK4 schemes. We can see that
the cost CPU time of WENO5-RK is about 14% more than that of WENO5-LW for this test.

Example 3.4 A small perturbation of steady-state water. This is a classical example to show
the capability of the proposed scheme for the perturbation of the stationary state [16]. In the
domain [0,2], the bottom topography is given by the function

b(x) =
{

0.25(cos(10π(x − 1.5)) + 1) 1.4 ≤ x ≤ 1.6
0 otherwise

,
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Fig. 5 Big pulse for the small perturbation of steady-state water by WENO5-LW3, WENO5-RK3,
WENO5-LW4, WENO5-RK4. Left: surface level. Right: discharge

the initial data are given by:

D(x,0) =
{

1 − b(x) + β 1.1 ≤ x ≤ 1.2
1 − b(x) otherwise

, (Du)(x,0) = 0.

Here the pulse β = 0.2 (big pulse) or β = 0.001 (small pulse). For small pulse problem,
we take ε = 10−12 in the weight formulas for WENO schemes. Figures 5 and 6 displays
the left and right-going waves for big pulse and small pulse separately. We can clearly see
that there are no spurious numerical oscillations simulated by both WENO5-LW scheme
and WENO5-RK scheme, and the results is comparable on resolution. We run 200 times for
every program as the CPU time, to the big pulse problem, the CPU cost for WENO5-LW3
schemes is 4.20 s, while for WENO5-RK3 schemes is 7.44 s; for WENO5-LW4 schemes is
4.57 s, while for WENO5-RK4 schemes is 9.86 s. We can see that WENO5-RK cost about
twice times of that of WENO5-LW scheme for this test.

Example 3.5 Steady discontinuous flow over a parabolic hump. The purpose of the test is to
study the convergence in time towards steady flows on non-flat bed involving trans-critical



J Sci Comput (2011) 47: 281–302 295

Fig. 6 Small pulse for the small perturbation of steady-state water by WENO5-LW3, WENO5-RK3,
WENO5-LW4, WENO5-RK4. Left: surface level. Right: discharge

and sub-critical flows; it is widely used to test numerical schemes for the shallow water
equations, such as [4, 10].

The bottom elevation is described by the following function:

b(x) =
{

0.2 − 0.05(x − 10)2 8 ≤ x ≤ 12
0 otherwise

, (3.2)

where x ∈ [0,25]. The initial conditions are taken as:

D(x,0) = 0.5 − b(x), (Du)(x,0) = 0. (3.3)

Different steady solutions can be computed involving fully sub-critical and smooth trans-
critical flow and trans-critical flow with a shock. We simulate the problem until time t =
200 s with three boundary conditions on mesh with 200 points. We take still water depth
h = 0.5 − b(x).
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Fig. 7 The discharge of trans-critical flow without a shock. Left: results by WENO5-LW3 and WENO5-RK3.
Right: results by WENO5-LW4 and WENO5-RK4

(a) Trans-critical flow without a shock.
Upstream: The discharge Du = 1.53 m3/s is imposed. Downstream: The water height

D = 0.66 m is imposed when the flow is sub-critical. This is a transition from sub-critical
to trans-critical.

The computed results of surface level D + b by the WENO5-LW schemes and WENO5-
RK schemes are similar and comparable to the analysis, we do not show them to save
space. In Fig. 7, the computed discharge Du by WENO5-LW3 schemes are plotted against
that by WENO5-RK3 schemes and the exact solutions, we also plot the results of Du by
WENO5-LW4 and WENO5-RK4 schemes in Fig. 7. We run 20 times for every program as
the CPU time, the CPU cost for WENO5-LW3 schemes is 51.13 s, while for WENO5-RK3
schemes is 93.73 s; for WENO5-LW4 schemes is 58.91 s, while for WENO5-RK4 schemes
is 125.10 s. We can see that WENO5-RK cost about twice times of that of WENO5-LW
scheme for this test.

(b) Trans-critical flow with a shock.
Upstream: The discharge Du = 0.18 m3/s is imposed. Downstream: The water height

D = 0.33 m is imposed. In this case, a stationary shock can appear on the surface.
The discharge Du computed by WENO5-LW3 and WENO5-RK3 are plotted in Fig. 8,

and also the numerical solutions obtained by WENO5-LW4 scheme and WENO4-RK4
schemes. We run 20 times for every program as the CPU time, the CPU cost for WENO5-
LW3 schemes is 29.48 s, while for WENO5-RK3 schemes is 44.65 s; for WENO5-LW4
schemes is 33.28 s, while for WENO5-RK4 schemes is 59.45 s. We can see that WENO5-
RK cost more than one and a half times of that of WENO5-LW scheme for this test.

(c) Sub-critical flow with a shock.
Upstream: The discharge Du = 4.42 m3/s is imposed. Downstream: The water height

D = 2 m is imposed. The imposed conditions and the bottom elevation cause the purely
sub-critical flow over the whole domain.

The comparison of the discharge Du using the WENO5-LW3 scheme and WENO5-
RK3 schemes, WENO5-LW4 and WENO5-RK4 schemes are shown in Fig. 9. From all
these results, we can see that the results using the WENO5-LW scheme are similar to these
by WENO5-RK schemes, which show almost non-oscillatory results in good agreement
with the analytical solution [6]. The discharges are almost accurately computed, only few
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Fig. 8 The discharge of trans-critical flow without a shock. Left: results by WENO5-LW3 and WENO5-RK3.
Right: results by WENO5-LW4 and WENO5-RK4

Fig. 9 The discharge of trans-critical flow without a shock. Left: results by WENO5-LW3 and WENO5-RK3.
Right: results by WENO5-LW4 and WENO5-RK4

numerical point-values of flow discharge do not agree well with the analytical solution, but
these points are located at the shock position.

We run 20 times for every program as the CPU time, the CPU cost for WENO5-LW3
schemes is 64.07 s, while for WENO5-RK3 schemes is 96.88 s; for WENO5-LW4 schemes
is 71.64 s, while for WENO5-RK4 schemes is 129.32 s. We can see that WENO5-RK cost
more than one and a half times of that of WENO5-LW scheme for this test.

Example 3.6 Dam breaking problem over a rectangular bump. To check the performance of
shallow flows for problems over a discontinuous or big change of gradient bottom topog-
raphy, we use the test as in [15, 16]. On the domain [0,1500], the bottom topography are
given by

b(x) =
{

8 |x − 750| ≤ 1500/8
0 otherwise

,
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Fig. 10 Dam breaking problem over a rectangular bump. The numerical results of surface level by
WENO5-LW3 and WENO5-RK3 schemes with 500 grid points. Left: at time t = 15 s. Right: at time t = 60 s

Fig. 11 Dam breaking problem over a rectangular bump. The numerical results of surface level by
WENO5-LW4 and WENO5-RK4 schemes with 500 grid points. Left: at time t = 15 s. Right: at time t = 60 s

the initial data are given by:

D(x,0) =
{

20 − b(x) x ≤ 750
15 − b(x) otherwise

, (Du)(x,0) = 0.

In this test, we take still water height h = 15−b(x). We compute up to t = 15 s and t = 60 s
separately. For the ending time t = 15 s, the results is similar to that of a dam break on a flat
bed, because the flow have not propagate out of the rectangle. For the ending time t = 60 s,
the water height D(x) is discontinuous at the discontinuous points of bottom topography,
while the surface level is smooth there. The numerical results by WENO5-LW3 schemes
against with WENO5-RK3 schemes with 500 points and reference results with 5000 points
are shown in Fig. 10, in Fig. 11 is results by WENO5-LW4 and WENO5-RK4 schemes.

We run 20 times as the CPU costs for the ending time t = 60 s, the cost CPU time is
6.18 s for WENO5-LW4, 7.33 s for WENO-RK4 schemes.
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Table 5 An two-dimensional
accuracy test. L∞ errors and
numerical orders of accuracy by
the WENO5-LW4 scheme

N D Du Dv

L∞ error order L∞ error order L∞ error order

25×25 1.052E−1 1.541E−1 9.326E−1

50×50 2.749E−2 1.94 2.374E−2 2.70 2.203E−1 2.08

100×100 4.404E−3 2.64 3.094E−3 2.94 3.780E−2 2.54

200×200 2.957E−4 3.90 1.843E−4 4.07 2.178E−3 4.12

400×400 1.248E−5 4.57 7.197E−6 4.68 9.294E−5 4.55

Table 6 An two-dimensional
accuracy test. L1 errors and
numerical orders of accuracy by
the WENO5-LW4 scheme

N D Du Dv

L1 error order L1 error order L1 error order

25×25 1.167E−2 3.946E−2 9.393E−2

50×50 1.459E−3 3.00 2.767E−3 3.83 1.270E−2 2.89

100×100 1.084E−4 3.75 1.581E−4 4.13 9.195E−4 3.79

200×200 4.845E−6 4.48 6.786E−6 4.54 4.009E−5 4.52

400×400 1.825E−7 4.73 3.116E−7 4.44 1.477E−6 4.76

Example 3.7 An two-dimensional accuracy test. To check the numerical order of accuracy
for two-dimensional shallow water equations we use the same test as Xing and Shu [16]. On
the unit square [0,1] × [0,1], we choose the bottom topography

b(x, y) = sin(2πx) + cos(2πy),

the initial data are given by:

D(x,y,0) = 10 + esin(2πx) cos(2πy),

(Du)(x, y,0) = sin(cos(2πx)) sin(2πy),

(Dv)(x, y,0) = cos(2πx) cos(sin(2πy)).

We take the still water height h as h = 10 − b(x, y). The time step is modified as one-
dimensional case in order to get fifth numerical order. We compute up to time t = 0.05
when there is no shocks in the solution, with 4-periodic boundary conditions. The reference
solution is computed with the same scheme and 1600 points in x-direction and y-direction
separately, since the exact solution is unknown.

In Table 5 and Table 6, the L∞ and L1 errors and accuracy order of water depth D, the
discharge Du and Dv by WENO5-LW4 scheme are displayed, N is cell number. For com-
parison, we also give the L∞ and L1 numerical error and orders by WENO5-RK4 scheme in
Table 7 and Table 8. We can see that the numerical errors and orders of accuracy are similar
by the WENO5-LW4 and WENO5-RK4 schemes, both schemes almost reach the designed
the fifth orders.

Example 3.8 A small perturbation of steady-state water. This is a classical example to show
the capability of the proposed scheme for the perturbation of the stationary state for two-
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Table 7 An two-dimensional
accuracy test. L∞ errors and
numerical orders of accuracy by
the WENO5-RK4 scheme

N D Du Dv

L∞ error order L∞ error order L∞ error order

25×25 9.597E−2 1.446E−1 1.014E−0

50×50 2.507E−2 1.94 2.261E−2 2.68 2.764E−1 1.88

100×100 4.139E−3 2.60 2.692E−3 3.07 4.201E−2 2.72

200×200 3.435E−4 3.59 1.906E−4 3.82 3.229E−3 3.70

400×400 1.959E−5 4.13 1.106E−5 4.11 1.769E−4 4.19

Table 8 An two-dimensional
accuracy test. L1 errors and
numerical orders of accuracy by
the WENO5-RK4 scheme

N D Du Dv

L1 error order L1 error order L1 error order

25×25 1.190E−2 3.730E−2 9.962E−2

50×50 1.428E−3 3.06 2.789E−3 3.74 1.339E−2 2.90

100×100 1.022E−4 3.80 1.554E−4 4.17 9.545E−4 3.81

200×200 5.212E−6 4.29 7.308E−6 4.41 4.803E−5 4.31

400×400 2.628E−7 4.31 3.905E−7 4.23 2.387E−6 4.33

Fig. 12 A small perturbation of steady-state water. The contours of the surface level at time 0.12 s (top left),
0.24 s (top right), 0.36 s (bottom left), 0.48 s (bottom right), 30 uniformly spaced contour lines

dimensional shallow water flows [9, 13]. The bottom topography is given by the function

b(x, y) = 0.8 exp(−5(x − 0.9)2 − 50(y − 0.5)2), x, y ∈ [0,2] × [0,1].

The surface is initially given by

D(x,y) =
{

1 − b(x, y) + 0.01 0.05 ≤ x ≤ 0.15
1 − b(x, y) otherwise

, u(x, y,0) = v(x, y,0) = 0.
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The absorbing extrapolation boundary conditions of left and right boundary are used, and
the reflection boundary condition is used for up and down solid wall boundary.

We take the still water height h as h = 1 − b(x, y). Figure 12 displays the right-going
disturbance as it propagates the hump on a mesh of 200 × 100 cells, the contours of the
surface level D + b are presented at different time. The results are agreement with other
scholar’s results and indicate that the scheme can resolve the complex small features of the
flow very well. On the same mesh, to the different ending time 0.12 s, 0.24 s, 0.36 s, 0.48 s,
the cost CPU time for WENO5-LW4 is 4.59 s, 9.22 s, 13.79 s, 18.39 s separately, while for
WENO5-RK4 is 5.37 s,10.61 s, 15.93 s, 21.28 s. So the cost CPU time for WENO5-RK4 is
about 15% more than that of WENO5-LW4.

4 Concluding Remarks

In this paper, we simulate one-dimensional and two-dimensional shallow water equations
with source terms by high resolution finite difference WENO schemes and Lax-Wendroff-
type time discretizations. We compare the numerical results by the schemes with that by
finite difference WENO schemes using Runge-Kutta time discretizations addressing on CPU
time and relevant efficiency. The numerical results show that the WENO5-LW schemes can
simulate the current flow accurately and catch the stronger discontinuous in water wave, and
the WENO5-LW schemes have smaller CPU costs for the same order of accuracy than that
with Runge-Kutta time discretization.
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