
Comput. Methods Appl. Mech. Engrg. 194 (2005) 4528–4543

www.elsevier.com/locate/cma
The discontinuous Galerkin method with Lax–Wendroff
type time discretizations

Jianxian Qiu a,1, Michael Dumbser b, Chi-Wang Shu c,*,2

a Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore
b Institut fuer Aero- und Gasdynamik, Pfaffenwaldring 21, 70550 Stuttgart, Germany

c Division of Applied Mathematics, Brown University, Box F, Providence, RI 02912, USA

Received 13 January 2004; received in revised form 25 October 2004; accepted 29 November 2004
Abstract

In this paper we develop a Lax–Wendroff time discretization procedure for the discontinuous Galerkin method

(LWDG) to solve hyperbolic conservation laws. This is an alternative method for time discretization to the popular

total variation diminishing (TVD) Runge–Kutta time discretizations. The LWDG is a one step, explicit, high order

finite element method. The limiter is performed once every time step. As a result, LWDG is more compact than

Runge–Kutta discontinuous Galerkin (RKDG) and the Lax–Wendroff time discretization procedure is more cost effec-

tive than the Runge–Kutta time discretizations for certain problems including two-dimensional Euler systems of com-

pressible gas dynamics when nonlinear limiters are applied.
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1. Introduction

In this paper, we study an alternative method for time discretization, namely the Lax–Wendroff type

time discretization [18], to the popular TVD Runge–Kutta time discretization in [30,8], for the discontin-

uous Galerkin methods in solving nonlinear hyperbolic conservation law systems
ut þr � f ðuÞ ¼ 0;

uðx; 0Þ ¼ u0ðxÞ:

�
ð1:1Þ
The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [24], in the

framework of neutron transport (steady state linear hyperbolic equations). A major development of the
DG method was carried out by Cockburn et al. in a series of papers [9,8,7,6,10], in which they established

a framework to easily solve nonlinear time dependent hyperbolic conservation laws (1.1) using explicit, non-

linearly stable high order Runge–Kutta time discretizations [30] and DG discretization in space with exact

or approximate Riemann solvers as interface fluxes and total variation bounded (TVB) limiter [27] to

achieve nonoscillatory properties for strong shocks. These schemes are termed RKDG methods.

In RKDG method, DG is a spatial discretization procedure, namely, it is a procedure to approximate

the spatial derivative terms in (1.1). The time derivative term there is discretized by explicit, nonlinearly sta-

ble high order Runge–Kutta time discretizations [30]. An alternative approach could be using a Lax–
Wendroff type time discretization procedure, which is also called the Taylor type referring to a Taylor

expansion in time or the Cauchy–Kowalewski type referring to the similar Cauchy–Kowalewski procedure

in partial differential equations (PDEs) [33]. This approach is based on the idea of the classical Lax–Wend-

roff scheme [18], and it relies on converting all the time derivatives in a temporal Taylor expansion into spa-

tial derivatives by repeatedly using the PDE and its differentiated versions. The spatial derivatives are then

discretized by, e.g. the DG approximations.

RKDG methods have the advantage of simplicity, both in concept and in coding. They also enjoy good

stability properties when the TVD type Runge–Kutta or multi-step methods are used [30,28]. Thus RKDG
methods are very popular in applications. To obtain provable nonlinear stability for scalar cases, a TVD

time discretization [30,28] is preferred. There is however an order barrier for TVD Runge–Kutta methods

with positive coefficients: they cannot be higher than fourth order accurate [25]. Even if we ignore the TVD

requirement for the time discretization, fifth and higher order Runge–Kutta methods need more stages than

the order of accuracy, hence the efficiency would be reduced for very high order time discretizations.

The second approach, the Lax–Wendroff type time discretization, which is also referred to as the Taylor–

Galerkin method for finite element methods, usually produces the same high order accuracy with a smaller

effective stencil than that of the first approach, and it uses more extensively the original PDE. However, the
formulation and coding of this procedure could be quite complicated, especially for multi-dimensional

systems.

We first review briefly the Taylor–Galerkin methods in the literature. A high order Taylor–Galerkin

scheme to solve initial-boundary value problems for first order, linear hyperbolic systems was developed

by Safjan and Oden [26]. A predictor–corrector type and unconditionally stable higher order Taylor–Galer-

kin method scheme was presented by Youn and Park [38]. In Tabarrok and Su [32], a semi-implicit Taylor–

Galerkin finite element method was developed for solutions of incompressible flows with heat transfer. In

Colin and Rudgyard [12], the authors developed a third order low dissipation Taylor–Galerkin finite-ele-
ment scheme within an unstructured/hybrid parallel solver for unsteady large eddy simulation. In Luká-

cová-Medvid�ová and Warnecke [19], a Lax–Wendroff type second order evolution Galerkin method for

multi-dimensional hyperbolic systems was discussed. The references quoted above were all based on con-

tinuous finite element methods. In [2,3], Choe and Holsapple developed a Taylor–Galerkin method based

on discontinuous finite elements. Their method is a one-step, explicit finite element scheme, second order
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accurate in both time and space, and is developed for the computation of weak solutions of nonlinear

hyperbolic conservation laws in one dimension. Mixed finite element methodology is used to treat the sec-

ond derivative terms in the Lax–Wendroff procedure, which limits the method to second order accuracy to

avoid a global solver. More recently, Dumbser [13] developed the ADER (Arbitrary high order schemes

using DERivatives, see [34]) discontinuous Galerkin method for solving the linear aeroacoustics systems.
ADER methods also use the Lax–Wendroff procedure to convert time derivatives to spatial derivatives,

so the method in [13] is essentially the same as our method in this paper for the linear case. Dumbser

and Munz [14] are also extending the ADER discontinuous Galerkin method to the nonlinear case using

generalized Riemann solvers [36]. The Lax–Wendroff type time discretization was also used in high order

finite volume schemes [15,34,35] and finite difference schemes [20].

In this paper we explore the Lax–Wendroff type time discretization procedure for DG spatial discretiza-

tions up to third order (P2 case). Unlike in [2,3], we do not use a mixed finite element formulation to treat

the higher order derivatives, hence in principle our methodology can be easily generalized to arbitrary order
of accuracy. The resulting schemes, however, are more complex to formulate and to code than RKDG

methods using the TVD Runge–Kutta time discretizations, hence unless there is an advantage in CPU tim-

ing for the same accuracy, they will not be competitive. Fortunately, we demonstrate numerically that the

Lax–Wendroff time discretization procedure adopted in this paper is more cost effective and produces shar-

per discontinuity transition than RKDG methods for certain problems including two-dimensional Euler

systems of compressible gas dynamics, when nonlinear limiters are used. Of course, this procedure becomes

progressively more complicated with more complicated PDEs and/or higher order time accuracy, hence we

do not expect it to be always cost effective relative to the standard RKDG methods. The exact break-even
point depends on many factors, such as the specific PDE (how complicated the time derivatives can be rep-

resented by spatial derivatives via the PDE), the relative cost of the limiter to the core DG procedure, the

specific implementation including efficient cache usage, etc.

In this paper we do not address the important issue of time discretization for PDEs with diffusion terms

and/or with stiff source terms, which calls for hybrid explicit/implicit time discretization. There are good

Runge–Kutta methods to easily achieve this, see, e.g. [40]. The Lax–Wendroff procedure in this paper

can also be adapted for such purpose, through careful Taylor expansions.

The organization of this paper is as follows. In Section 2, we describe in detail the construction and
implementation of the high order DG method with a Lax–Wendroff type time discretization, for one

and two-dimensional scalar and system equation (1.1). In Section 3 we provide extensive numerical exam-

ples to demonstrate the behavior of the schemes and to perform a comparison with RKDG methods. Con-

cluding remarks are given in Section 4.
2. Construction and implementation of the scheme

In this section we describe in detail the construction and implementation of the discontinuous Galerkin

method with a Lax–Wendroff type time discretization, for one- and two-dimensional scalar and system con-

servation laws.

2.1. One-dimensional case

Consider the one-dimensional scalar conservation laws:
ut þ f ðuÞx ¼ 0;

uðx; 0Þ ¼ u0ðxÞ:

�
ð2:1Þ
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We denote the cells by I i ¼ ½xi�1
2
; xiþ1

2
�, the cell centers by xi ¼ 1

2
xi�1

2
þ xiþ1

2

� �
and the cell sizes by

Dxi ¼ xiþ1
2
� xi�1

2
. Let Dt be the time step, tn+1 = tn + Dt. By a temporal Taylor expansion we obtain
uðx; t þ DtÞ ¼ uðx; tÞ þ Dtut þ
Dt2

2
utt þ

Dt3

6
uttt þ � � � : ð2:2Þ
If we would like to obtain (k + 1)th order accuracy in time, we would need to approximate the first k + 1

time derivatives: ut; . . . ; o
ðkþ1Þu
otkþ1 . We will proceed up to third order in time in this paper, although the proce-

dure can be naturally extended to any higher orders.

The temporal derivative terms in (2.2) canbe replacedwith the spatial onesusing the governing equation (2.1):
ut ¼ �f ðuÞx ¼ �f 0ðuÞux;

utt ¼ �ðf 0ðuÞutÞx ¼ �f 00ðuÞuxut � f 0ðuÞuxt;

uxt ¼ �f 00ðuÞðuxÞ2 � f 0ðuÞuxx;

uttt ¼ �ðf 00ðuÞðutÞ2 þ f 0ðuÞuttÞx:

Then we can rewrite the approximation to (2.2) up to third order as:
uðx; t þ DtÞ ¼ uðx; tÞ � DtF x: ð2:3Þ

with F ¼ f þ Dt

2
f 0ðuÞut þ Dt2

6
ðf 00ðuÞðutÞ2 þ f 0ðuÞuttÞ. The standard discontinuous Galerkin method is then

used to discretize Fx in (2.3), described in detail below.
The DG solution as well as the test function space is given by V k

h ¼ fp : pjI i 2 PkðI iÞg, where Pk(Ii) is the

space of polynomials of degree 6 k on the cell Ii. We adopt a local orthogonal basis over Ii,

fvðiÞl ðxÞ; l ¼ 0; 1; . . . ; kg, namely the scaled Legendre polynomials
vðiÞ0 ðxÞ ¼ 1; vðiÞ1 ðxÞ ¼ x� xi
Dxi

; vðiÞ2 ðxÞ ¼ x� xi
Dxi

� �2

� 1

12
; . . . :
Other basis functions can be used as well, without changing the numerical method, since the finite element

DG method depends only on the choice of space V k
h, not on the choice of its basis functions.

The numerical solution uh(x, t) in the space V k
h can be written as:
uhðx; tÞ ¼
Xk
l¼0

uðlÞi ðtÞvðiÞl ðxÞ; for x 2 I i; ð2:4Þ
and the degrees of freedom uðlÞi ðtÞ are the moments defined by
uðlÞi ðtÞ ¼ 1

al

Z
I i

uhðx; tÞvðiÞl ðxÞdx; l ¼ 0; 1; . . . ; k;
where al ¼
R
I i
ðvðiÞl ðxÞÞ2 dx are the normalization constants since the basis is not orthonormal. In order to

determine the approximate solution, we evolve the degrees of freedom uðlÞi :
uðlÞi ðtnþ1Þ ¼ uðlÞi ðtnÞ þ 1

al
�
Z
I i

F
d

dx
vðiÞl ðxÞdxþ F̂ iþ1=2v

ðiÞ
l ðxiþ1=2Þ � F̂ i�1=2v

ðiÞ
l ðxi�1=2Þ

� �
¼ 0; l ¼ 0; 1; . . . ; k;

ð2:5Þ

where F̂ iþ1=2 is a numerical flux which depends on the values of the numerical solution uh and its spatial

derivatives at the cell interface xi+1/2, both from the left and from the right. This numerical flux is related
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to the so-called generalized Riemann solvers [36]. In this paper, we use the following simple Lax–Friedrichs

flux
F̂ iþ1=2 ¼ 1
2
F �

iþ1=2 þ F þ
iþ1=2 � aðuþiþ1=2 � u�iþ1=2Þ

� �
;

where u�iþ1=2 and F �
iþ1=2 are the left and right limits of the discontinuous solution uh and the flux F at the cell

interface xi+1/2, and a = maxujf 0(u)j. For the system case, the maximum is taken for the eigenvalues of the
Jacobian f 0(u). The integral term in (2.5) can be computed either exactly or by a suitable numerical quad-

rature accurate to at least O(Dxk+l+2). In this paper we use two and three point Gaussian quadratures for

k = 1 and k = 2 respectively.

An important component of DG methods for solving conservation laws (1.1) with strong shocks in the

solutions is a nonlinear limiter, which is applied to control spurious oscillations. Although many limiters

exist in the literature, e.g. [9,8,7,6,10,1,4], they tend to degenerate accuracy when mistakenly used in smooth

regions of the solution. In [21–23], we initialized a study of using weighted essentially nonoscillatory

(WENO) and Hermite WENO (HWENO) methodology as limiters for RKDG methods. The idea is to first
identify ‘‘troubled cells’’, namely those cells where limiting might be needed, then to abandon all moments

in those cells except the cell averages and reconstruct those moments from the information of neighboring

cells using a WENO or HWENO methodology. This technique works quite well in our one and two-dimen-

sional test problems [21–23]. In this paper we adopt the WENO limiter developed in [21] for k = 1 and

HWENO limiter in [22,23] for k = 2 to maintain the compactness of the DG method. The limiting proce-

dure is performed in every inner Runge–Kutta stage for the RKDG method. Thus, when we use the third

order TVD Runge–Kutta time discretization [30], the limiting procedure is performed three times for one

time step; but we only need to perform the limiting procedure once per time step for the one step LWDG
methods. This actually accounts for a major saving of computational cost of the LWDG methods over the

RKDG methods.

For systems of conservation laws (2.1), u(x, t) = (u1(x, t), . . . ,um(x, t))T is a vector and

f(u) = (f1(u1,. . .,um), . . . , f m(u1, . . . ,um))T is a vector function of u. As before, the time derivatives in (2.2)

are replaced by the spatial derivatives using the PDE. The DG discretization is then performed on each

component. In order to achieve better qualities at the price of more complicated and costly computations,

we use a local characteristic field decomposition in the limiting procedure. For the details of such local char-

acteristic field decompositions, we refer to [29]. The limiter and the WENO and HWENO reconstructions
within the limiters are all performed under local characteristic projections. We note that the second and

higher order time derivatives, when converted to spatial derivatives as before, involve expressions like

f 0(u) which is a matrix (the Jacobian), f 00(u) which is a 3D ‘‘matrix’’ (tensor), etc., which could become very

complicated. The symbolic manipulator Maple� [16] is used to avoid mistakes. The code is also quite long

and messy compared with codes using Runge–Kutta time discretizations. However, we will see in the next

section that one can save CPU time by this approach for certain problems.

2.2. Two-dimensional cases

Consider the two-dimensional conservation laws:
ut þ f ðuÞx þ gðuÞy ¼ 0;

uðx; y; 0Þ ¼ u0ðx; yÞ:

�
ð2:6Þ
By a temporal Taylor expansion we obtain
uðx; y; t þ DtÞ ¼ uðx; y; tÞ þ Dtut þ
Dt2

2
utt þ

Dt3

6
uttt þ � � � :
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For example, for third order accuracy in time we would need to reconstruct three time derivatives: ut, utt,

uttt.

We again use the PDE (2.6) to replace time derivatives by spatial derivatives.
ut ¼ �f ðuÞx � gðuÞy ¼ �f 0ðuÞux � g0ðuÞuy ;

utt ¼ �ðf 0ðuÞutÞx � ðg0ðuÞutÞy ¼ �ðf 00ðuÞuxut þ f 0ðuÞuxt þ g00ðuÞuyut þ g0ðuÞuytÞ;

uxt ¼ �ðf 00ðuÞðuxÞ2 þ f 0ðuÞuxx þ g00ðuÞuxuy þ g0ðuÞuxyÞ;

uyt ¼ �ðf 00ðuÞuyux þ f 0ðuÞuxy þ g00ðuÞðuyÞ2 þ g0ðuÞuyyÞ;

uttt ¼ �ðf 00ðuÞðutÞ2 þ f 0ðuÞuttÞx � ðg00ðuÞðutÞ2 þ g0ðuÞuttÞy :
Then we rewrite the approximation to (2.6) up to third order as:
uðx; t þ DtÞ ¼ uðx; tÞ � DtðF x þ GyÞ; ð2:7Þ

with
F ¼ f þ Dt
2
f 0ðuÞut þ

Dt2

6
ðf 00ðuÞðutÞ2 þ f 0ðuÞuttÞ;

G ¼ g þ Dt
2
g0ðuÞut þ

Dt2

6
ðg00ðuÞðutÞ2 þ g0ðuÞuttÞ:
The standard discontinuous Galerkin method is then used to discretize Fx and Gy in (2.7).

For systems of conservation laws (2.6), the time derivatives are replaced by the spatial derivatives using

the PDE. The DG discretization is then performed on each component. Again the limiter and the WENO,

HWENO reconstructions are all performed under local characteristic projections. To avoid mistakes, we

again use the symbolic manipulator Maple� [16] to obtain the complicated time derivative terms for the
system case.
3. Numerical results

In this section we present the results of our numerical experiments for the LWDG schemes, LWDG2 for

P1 and LWDG3 for P2, developed in the previous section, and compare them with RKDG schemes,

RKDG2 for P1 with second order Runge–Kutta method and RKDG3 for P2 with third order Runge–
Kutta method in [5–11].

We have used both uniform and nonuniform meshes in the numerical experiments, obtaining similar re-

sults. We will only show results with uniform meshes to save space.

We first remark on the important issue of CPU time of LWDG and RKDG methods. In general the

LWDG methods have smaller CPU costs for the same mesh and same order of accuracy in our implemen-

tation for one and two-dimensional test cases, when the nonlinear limiters are applied, even though the

CFL number of LWDG methods is smaller than that of RKDG methods for linear stability. The linear

stability limit for RKDG2 is 0.333 and for LWDG2 it is 0.223. For the third order case, this linear stability
limit is 0.209 for RKDG3 and it is 0.127 for LWDG3. Similar to that for the RKDG method [11], the CFL

limits for the LWDG method are obtained by standard von Neumann analysis with a numerical eigenvalue

solver. In our numerical experiments, the CFL numbers are taken as 0.2 and 0.12 for LWDG2 and

LWDG3, and as 0.3 and 0.18 for RKDG2 and RKDG3, respectively. In Table 1, we provide a CPU time



Table 1

CPU time (s) for the LWDG and RKDG methods to compute the double Mach reflection problem in Example 3.8 for the two meshes

of 120 · 30 and 240 · 60 cells

Schemes LWDG RKDG

k = 1 k = 2 k = 1 k = 2

M 0.01 100 0.01 100 0.01 100 0.01 100

120 · 30 95.59 77.44 740.96 569.54 131.18 86.20 1071.05 708.64

240 · 60 789.10 676.51 5925.01 4860.05 920.28 737.04 8361.42 6061.02
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comparison between LWDG and RKDG methods for the two-dimensional Euler equations, double Mach

reflection test case in Example 3.8. The constant M in the table is the TVB constant in the limiter, see

[27,21–23] for details. The computation is performed on a Compaq Digital personal workstation, 600au

alpha-599 MHz with 256 MB RAM. We can see that in general the RKDG methods cost about 20–30%

more in CPU time than the LWDG methods for this problem, even though the CFL number for the

RKDG method used in the computation is 1.5 times of those for LWDG methods because of the limitation

on linear stability. We remark that for linear problems, both LWDG and RKDG can be implemented by

efficient local matrix–vector multiplications with pre-computed local matrices and vectors containing the
coefficients of the solution when represented by local basis functions in the stencil of the scheme (see,

e.g. [39]), hence the per time stage cost of LWDG and RKDG is the same for such linear cases, thus LWDG

is more efficient than RKDG for such linear cases because LWDG is a one step method, see, e.g. [13].

3.1. Accuracy tests

We first test the accuracy of the schemes on linear scalar problems, nonlinear scalar problems and non-

linear systems. We only show the results of two-dimensional nonlinear scalar and one and two-dimensional
nonlinear system problems to save space. We define the standard L1 and L1 error norms by sampling the

errors at 40 equally spaced points inside each cell in each direction, emulating the L1 and L1 norms of the

error function which is defined everywhere.

Example 3.1. We solve the following nonlinear system of Euler equations
ut þ f ðuÞx ¼ 0; ð3:1Þ

with
u ¼ ðq; qv;EÞT; f ðuÞ ¼ ðqv; qv2 þ p; vðE þ pÞÞT:

Here q is the density, v is the velocity, E is the total energy, p is the pressure, which is related to the total

energy by E ¼ p
c�1

þ 1
2
qv2 with c = 1.4. For the expression of the Jacobian f 0(u) for this example we refer to

[15]. A similar (but longer) expression exists for the second derivative f 00(u). The initial condition is set to be
q(x, 0) = 1 + 0.2sin(px), v(x, 0) = 1, p(x, 0) = 1, with a 2-periodic boundary condition. The exact solution is

q(x, t) = 1 + 0.2sin(p(x � t)), v(x, t) = 1, p(x, t) = 1. We compute the solution up to t = 2. The errors and

numerical orders of accuracy of the density q for the LWDG scheme in comparison with the results of

the RKDG scheme are shown in Table 2. We can see that both schemes achieve their designed orders of

accuracy with comparable errors for the same mesh.

Example 3.2. We solve the following nonlinear scalar Burgers equation in two dimensions:
ut þ
u2

2

� �
x

þ u2

2

� �
y

¼ 0; ð3:2Þ



Table 2

Euler equations

N LWDG RKDG

L1 error Order L1 error Order L1 error Order L1 error Order

P1 10 2.72E�03 6.46E�03 2.32E�03 7.49E�03

20 6.25E�04 2.12 2.04E�03 1.67 4.90E�04 2.24 2.07E�03 1.85

40 1.52E�04 2.04 5.58E�04 1.87 1.16E�04 2.08 5.46E�04 1.93

80 3.75E�05 2.02 1.45E�04 1.94 2.85E�05 2.03 1.40E�04 1.97

160 9.32E�06 2.01 3.69E�05 1.97 7.08E�06 2.01 3.53E�05 1.98

320 2.33E�06 2.00 9.31E�06 1.99 1.76E�06 2.00 8.89E�06 1.99

P2 10 6.11E�04 1.50E�03 2.78E�03 4.51E�03

20 5.48E�05 3.48 2.23E�04 2.75 1.05E�04 4.73 4.46E�04 3.34

40 4.67E�06 3.55 2.06E�05 3.43 2.31E�05 2.18 4.51E�05 3.31

80 4.69E�07 3.32 1.82E�06 3.51 3.27E�06 2.82 5.36E�06 3.07

160 5.32E�08 3.14 2.28E�07 2.99 4.21E�07 2.96 6.97E�07 2.94

320 6.45E�09 3.04 2.86E�08 3.00 5.30E�08 2.99 9.87E�08 2.82

q(x,0) = 1 + 0.2sin(px), v(x, 0) = 1, p(x,0) = 1. LWDG comparing with RKDG. Local Lax–Friedrichs flux, using N equally spaced

cells. t = 2. L1 and L1 errors of the density q.

J. Qiu et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4528–4543 4535
with the initial condition uðx; y; 0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ and a 4-periodic boundary condition in both

directions. When t = 0.5/p the solution is still smooth. The errors and numerical orders of accuracy for the

LWDG scheme in comparison with the results of the RKDG scheme are shown in Table 3. We can see again

that both schemes achieve their designed orders of accuracy with comparable errors for the same mesh.

Example 3.3. We solve the following nonlinear system of Euler equations
Table

Burger

P1

P2

Initial

Friedri
nt þ f ðnÞx þ gðnÞy ¼ 0; ð3:3Þ
with
n ¼ ðq; qu; qv;EÞT; f ðnÞ ¼ ðqu;qu2 þ p; quv; uðE þ pÞÞT; gðnÞ ¼ ðqv; quv; qv2 þ p; vðE þ pÞÞT:

Here q is the density, (u,v) is the velocity, E is the total energy, p is the pressure, which is related to the total

energy by E ¼ p
c�1

þ 1
2
qðu2 þ v2Þ with c = 1.4. For the expression of the Jacobians f 0(u) and g00(u), we refer to

[15]. Similar (but longer) expressions exist for the second derivatives f00(u) and g00(u). The initial condition is
3

s equation ut + (u2/2)x + (u2/2)y = 0

N · N LWDG RKDG

L1 error Order L1 error Order L1 error Order L1 error Order

10 · 10 7.19E�02 5.37E�01 6.42E�02 6.66E�01

20 · 20 1.52E�02 2.25 1.99E�01 1.44 1.54E�02 2.06 2.47E�01 1.43

40 · 40 3.66E�03 2.05 6.73E�02 1.56 3.04E�03 2.34 4.33E�02 2.51

80 · 80 5.69E�04 2.69 9.13E�03 2.88 5.90E�04 2.37 9.16E�03 2.24

160 · 160 1.32E�04 2.10 2.33E�03 1.97 1.42E�04 2.05 2.41E�03 1.93

10 · 10 2.99E�02 4.96E�01 2.98E�02 5.03E�01

20 · 20 1.66E�03 4.17 4.01E�02 3.63 1.81E�03 4.04 4.09E�02 3.62

40 · 40 1.73E�04 3.26 5.82E�03 2.78 1.73E�04 3.38 6.04E�03 2.76

80 · 80 2.09E�05 3.05 9.51E�04 2.61 2.07E�05 3.06 1.00E�03 2.59

160 · 160 2.52E�06 3.05 1.30E�04 2.87 2.49E�06 3.06 1.38E�04 2.87

condition u(x,y, 0) = 0.5 + sin(p(x + y)/2) and periodic boundary conditions. LWDG comparing with RKDG. Local Lax–

chs flux, t = 0.5/p. L1 and L1 errors. Uniform meshes with N · N cells.
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set to be q(x,y, 0) = 1 + 0.2sin(p(x + y)), u(x,y, 0) = 0.7, v(x,y, 0) = 0.3, p(x,y, 0) = 1, with a 2-periodic

boundary condition. The exact solution is q(x,y, t) = 1 + 0.2sin(p(x + y � (u + v)t)), u = 0.7, v = 0.3,

p = 1. We compute the solution up to t = 2. The errors and numerical orders of accuracy of the density

q for the LWDG scheme in comparison with the results of the RKDG scheme are shown in Table 4.

We can see that both schemes achieve their designed orders of accuracy with comparable errors for the
same mesh.
3.2. Test cases with shocks

We now test the performance of the LWDG method for problems containing shocks. We have also com-

puted many more problems such as the two-dimensional forward facing step problem, but will not present

all the results to save space. We only plot cell averages of the solution in the graphs.
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Fig. 1. The Buckley–Leverett problem: t = 0.4, N = 80 cells. Here and below only the cell averages are plotted. Left: k = 1; Right:

k = 2.

Table 4

Euler equations

N · N LWDG RKDG

L1 error Order L1 error Order L1 error Order L1 error Order

P1 10 · 10 2.59E�02 7.55E�02 3.48E�02 7.34E�02

20 · 20 8.76E�03 1.56 3.58E�02 1.08 6.89E�03 2.34 2.74E�02 1.42

40 · 40 1.96E�03 2.16 1.06E�02 1.76 1.21E�03 2.51 7.36E�03 1.89

80 · 80 1.65E�04 3.57 1.41E�03 2.91 2.33E�04 2.37 2.02E�03 1.87

160 · 160 2.34E�05 2.82 2.87E�04 2.29 5.19E�05 2.17 6.45E�04 1.65

P2 10 · 10 2.12E�03 7.42E�03 5.44E�03 1.39E�02

20 · 20 2.45E�04 3.12 9.98E�04 2.89 3.14E�04 4.11 1.22E�03 3.51

40 · 40 2.44E�05 3.33 1.30E�04 2.94 2.66E�05 3.56 1.29E�04 3.24

80 · 80 2.43E�06 3.33 1.72E�05 2.92 2.35E�06 3.50 1.71E�05 2.92

160 · 160 3.16E�07 2.94 2.09E�06 3.04 2.19E�07 3.43 2.17E�06 2.97

Initial condition q(x,y, 0) = 1 + 0.2sin(p(x + y)), u(x,y,0) = 0.7, v(x,y, 0) = 0.3, p(x,y, 0) = 1 and periodic boundary conditions. LWDG

comparing with RKDG. Local Lax–Friedrichs flux, t = 2.0. L1 and L1 errors for the density q. Uniform meshes with N · N cells.
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Example 3.4. We solve the nonlinear nonconvex scalar Buckley–Leverett problem
D
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Fig. 3.
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Fig
ut þ
4u2

4u2 þ ð1� uÞ2

 !
x

¼ 0; ð3:4Þ
with the initial data u = 1 when � 1
2
6 x 6 0 and u = 0 elsewhere. The solution is computed up to t = 0.4.

The exact solution is a shock–rarefaction–contact discontinuity mixture. We remark that some high order

schemes may fail to converge to the correct entropy solution for this problem. In Fig. 1, the solutions of

LWDG comparing with RKDG using N = 80 cells are shown. We can see schemes of all orders give good
nonoscillatory resolutions to the correct entropy solution for this problem.
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The shock density wave interaction problem: t = 1.8; LWDG together with RKDG; 200 cells; TVB constant M = 300; density.

= 1; Right: k = 2.
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. 2. Lax problem: t = 1.3; LWDG together with RKDG; 200 cells; TVB constant M = 1; density. Left: k = 1; Right: k = 2.
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Example 3.5. We solve the one-dimensional nonlinear system of Euler equation (3.1). We use the following

Riemann initial condition for the Lax problem:
Fig. 5.

k = 2.

F

ðq; v; pÞ ¼ ð0:445; 0:698; 3:528Þ for x 6 0; ðq; v; pÞ ¼ ð0:5; 0; 0:571Þ for x > 0:
The computed density q is plotted at t = 1.3 against the exact solution. In Fig. 2, the solutions of LWDG

together with RKDG using N = 200 cells with TVB constant M = 1 in the minmod limiter are shown. We

can see that the resolution of the contact discontinuity by LWDG is slightly better than (for the k = 1 case)

or comparable with (for the k = 2 case) that by RKDG.

Example 3.6. A higher order scheme would show its advantage when the solution contains both shocks

and complex smooth region structures. A typical example for this is the problem of shock interaction with

entropy waves [31]. We solve the Euler equation (3.1) with a moving Mach = 3 shock interacting with sine
waves in the density, i.e. initially
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The blast wave problem: t = 0.038; LWDG together with RKDG; 400 cells; TVB constantM = 300; density. Left: k = 1; Right:
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ig. 4. Details of the oscillatory portion of the solution between x = 0.5 and x = 2.5 for Fig. 3. Left: k = 1; Right: k = 2.
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Fig. 6. Detail of solution between x = 0.5 and x = 2.5 for Fig. 5. Left: k = 1; Right: k = 2.
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Fig. 7. Double Mach reflection problem: second order (k = 1) LWDG (top) and RKDG (bottom) with WENO limiters; 1920 · 480

cells; TVB constant M = 100; 30 equally spaced density contours from 1.5 to 22.7.
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ðq; v; pÞ ¼ ð3:857143; 2:629369; 10:333333Þ for x < �4;

ðq; v; pÞ ¼ ð1þ e sinð5xÞ; 0; 1Þ for x P �4:
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Here we take e = 0.2. The computed density q is plotted at t = 1.8 against the reference ‘‘exact’’ solution,

which is a converged solution computed by the fifth order finite difference WENO scheme [17] with

2000 grid points. In Fig. 3, we plot the densities by LWDG and RKDG with WENO limiters using

N = 200 cells for the TVB constant M = 300, and in Fig. 4, we show an enlarged view of the oscillatory

portion of the solution between x = 0.5 and x = 2.5. We can see that LWDG has slightly better resolution
than RKDG for the same mesh and same limiter. It seems to be generally true that LWDG often has

slightly better resolution than RKDG for the same mesh and same limiter, probably due to the fact that

the former is a one-step method using the limiter only once per time step.

Example 3.7. We consider the interaction of blast waves of Euler equation (3.1) with the initial condition:
Fig. 8.

cells; T
ðq; v; pÞ ¼ ð1; 0; 1000Þ for 0 6 x < 0:1;

ðq; v; pÞ ¼ ð1; 0; 0:01Þ for 0:1 6 x < 0:9;

ðq; v; pÞ ¼ ð1; 0; 100Þ for 0:9 6 x:
A reflecting boundary condition is applied to both ends, which in the discontinuous Galerkin framework

means that a mirror symmetric polynomial is prescribed in the ghost cell outside the boundary point. See
[37,15]. The computed density q is plotted at t = 0.038 against the reference ‘‘exact’’ solution, which is a

converged solution computed by the fifth order finite difference WENO scheme [17] with 2000 grid points.

In Fig. 5, we plot the densities by LWDG and RKDG with WENO limiters using N = 400 cells for the TVB
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Double Mach reflection problem: Third order (k = 2) LWDG (top) and RKDG (bottom) with WENO limiters; 1920 · 480

VB constant M = 100; 30 equally spaced density contours from 1.5 to 22.7.
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constant M = 300, we also show an enlarged view of the solution between x = 0.63 and x = 0.83 in Fig. 6.

We can again see that LWDG has a slightly better resolution than (for the k = 1 case) or is comparable with

(for the k = 2 case) RKDG for the same mesh and the same limiter.

Example 3.8 (Double Mach reflection). This problem is originally from [37]. The computational domain
for this problem is [0,4] · [0,1]. The reflecting wall lies at the bottom, starting from x ¼ 1

6
. Initially a right-

moving Mach 10 shock is positioned at x ¼ 1
6
, y = 0 and makes a 60� angle with the x-axis. For the bottom

boundary, the exact post-shock condition is imposed for the part from x = 0 to x ¼ 1
6
and a reflective bound-

ary condition is used for the rest. At the top boundary, the flow values are set to describe the exact motion

of a Mach 10 shock. We compute the solution up to t = 0.2. Two different uniform meshes, with 960 · 240

and 1920 · 480 cells, and two different orders of accuracy for the LWDG and RKDG using WENO lim-

iters with the TVB constant M = 100, from k = 1 to k = 2 (second to third order), are used in the numerical

experiments. To save space, we show only the simulation results on the most refined mesh with 1920 · 480
cells in Figs. 7 and 8, and the ‘‘zoomed-in’’ figures around the double Mach stem to show more details in

Fig. 9. All the figures are showing 30 equally spaced density contours from 1.5 to 22.7. For this problem the

resolutions of LWDG and RKDG are comparable for the same order of accuracy and the same mesh.
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Fig. 9. Double Mach reflection problem: 1920 · 480 cells; TVB constantM = 100; 30 equally spaced density contours from 1.5 to 22.7.

Zoomed-in region to show more details. Top: second order (k = 1); bottom: third order (k = 2). Left: LWDG; Right: RKDG.
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4. Concluding remarks

We have developed a Lax–Wendroff time discretization procedure for the discontinuous Galerkin

method to solve hyperbolic conservation laws. This is an alternative method for time discretization to

the popular TVD Runge–Kutta time discretization in RKDG methods. The LWDG is a one step explicit
high order finite element method. The nonlinear limiter for controlling spurious oscillations is performed

once per time step. The method relies on converting all the time derivatives in a temporal Taylor expansion

into spatial derivatives by repeatedly using the PDE and its differentiated versions. The spatial derivatives

are then discretized by the DG approximations. As a result, LWDG is more compact than RKDG and the

Lax–Wendroff time discretization procedure is more cost effective than the Runge–Kutta time discretiza-

tions, when the nonlinear limiters are used, for certain problems including two-dimensional Euler systems

of compressible gas dynamics.
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