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Abstract In this paper, a family of high order numerical methods are designed to solve the
Hamilton-Jacobi equation for the viscosity solution. In particular, the methods start with a
hyperbolic conservation law system closely related to the Hamilton-Jacobi equation. The
compact one-step one-stage Lax-Wendroff type time discretization is then applied together
with the local-structure-preserving discontinuous Galerkin spatial discretization. The result-
ing methods have lower computational complexity and memory usage on both structured
and unstructured meshes compared with some standard numerical methods, while they are
capable of capturing the viscosity solutions of Hamilton-Jacobi equations accurately and
reliably. A collection of numerical experiments is presented to illustrate the performance of
the methods.
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1 Introduction

We consider the Hamilton-Jacobi (HJ) equation{
φt + H(∇φ) = 0, in � × [0, T ],
φ(x,0) = φ0(x), in �,

(1.1)

with suitable boundary conditions and H(·) is the Hamiltonian. Such equations arise in var-
ious applications, such as optimal control, differential games, image processing and com-
puter vision. Viscosity solutions were introduced and studied [11, 12] to single out physi-
cally relevant solutions of (1.1), and these solutions are Lipschitz continuous but may have
discontinuous derivatives even for smooth initial and boundary conditions. The goal of this
paper is to develop a family of high order numerical methods to solve the HJ equation for
the viscosity solution accurately and reliably. In particular, we start with rewriting the HJ
equation (1.1) into a conservation law system for w = ∇φ,{

wt + ∇H(w) = 0, in � × [0, T ],
w(x, y,0) = ∇φ0(x, y), in �,

(1.2)

then the compact one-step one-stage Lax-Wendroff type time discretization is applied to-
gether with the local-structure-preserving discontinuous Galerkin spatial discretization. The
missing constant in φ is further recovered according to the original equation (1.1).

The Lax-Wendroff type time discretization, used here as an alternative to the widely
used one-step multi-stage Runge-Kutta methods when solving (1.1) or hyperbolic conserva-
tion laws, is a one-step one-stage and therefore compact and low-storage time discretization
procedure. Also called Taylor type or Cauchy-Kowalewski type time discretization in the
literature, this procedure is based on the classical Lax-Wendroff scheme [20], and it relies
on converting all (or partial, when approximations with certain accuracy are expected) time
derivatives in a temporal Taylor expansion of the solution into spatial derivatives by repeat-
edly using the underlying differential equation and its differentiated forms.

As a class of finite element methods with the distinct feature of using discontinuous
piecewise functions as approximations, discontinuous Galerkin (DG) methods are chosen
in this paper as the spatial discretization due to their many attractive properties, such as the
ease in handling complicated geometries and boundary conditions, the flexibility in using
various local approximating functions (polynomials, divergence-free functions, plane-wave
functions) [5, 15, 36] or approximations with different local accuracy, the local conservation
property when solving the conservation laws, and the compactness to achieve high order
accuracy and hence efficient parallel implementation. These properties also contribute to
the growing popularity of DG methods in many applications, e.g. [1, 7, 8, 32, 35].

When DG methods are applied to HJ equations, the difficulty comes from that such equa-
tions generally are not in the divergence form. This prevents one from using the standard
procedure to design DG methods for these equations. Our proposed methods are closely re-
lated to the pioneering work by Hu and Shu [16] which was later reinterpreted and simplified
in [23]. This work is based on the connection between the HJ equation and the conservation
law system, that is, the gradient w = ∇φ of the solution φ to the HJ equation satisfies (1.2),
a weakly hyperbolic conservation law system. The new feature of the system (1.2) is the
inter-dependence of the components of w when (1.1) is multi-dimensional in space, due to
the fact ∇ × w = ∇ × ∇φ = 0. In [23], locally curl-free polynomials are used to approxi-
mate w = ∇φ in the standard DG framework for the hyperbolic system, the missing constant
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in φ is then recovered according to the original equation (1.1). Such DG methods are one
example of the local-structure-preserving DG methods [5, 15, 23, 24, 36], designed for cer-
tain applications in order to result better cost efficiency. And this efficiency is achieved by
incorporating the a priori knowledge of the exact solutions into the choice of local approx-
imating functions in the DG formulations, largely due to the flexibility of DG methods in
using various local approximations especially when compared with the classical finite el-
ement methods. Other DG methods to directly solve HJ equations (1.1) for φ include the
one in [3], a method with the lowest computational complexity among all available DG
methods for HJ equations in multi-dimensional cases, with its performance for nonconvex
Hamiltonians H(·) yet to be investigated. Another one is the central DG method recently
developed in [22]. This work suggests a general procedure to design DG methods for prob-
lems in the non-divergence form, and the method relies on two sets of meshes and hence has
certain complexity when being implemented on non-rectangular meshes. Besides DG meth-
ods, other high order numerical methods for HJ equations include finite difference schemes
[18, 26–28, 31] which are simple to implement yet generally require structured meshes, and
the methods as in [21, 37] which use nodal based approximations on unstructured meshes
yet involve complicated reconstruction procedure to achieve high order accuracy.

In order for the proposed methods to converge to the viscosity solutions, nonlinear lim-
iters are necessary as in [2, 16, 22] especially for some examples with the nonconvex Hamil-
tonian. In this paper, we adopt the WENO limiter strategies developed in [30, 38]. Such
limiting procedures, based on the WENO reconstruction used in high order finite volume
methods [17, 19, 25, 37], are very robust, and they can simultaneously achieve the uniform
high order accuracy in numerical solutions and the reliable transition around non-smooth
features such as shocks or around sharp gradient structures.

Compared with using the standard piecewise polynomial functions in DG methods, ad-
vantages in using the locally curl-free approximations to solve HJ equations include the
reduction of the computational cost and memory usage, as well as a more natural frame-
work for analysis. One can refer to [23] for more discussions. Though it is generally more
involved to formulate and to code DG methods with the Lax-Wendroff type time dis-
cretization (LWDG) [13, 14, 29] compared with DG methods using the Runge-Kutta time-
discretization (RKDG) [4, 6–9], the LWDG method is more compact and requires lower
storage. It is demonstrated in [29] that the LWDG method is more cost effective and pro-
duces sharper discontinuity transition than the RKDG method for certain problems including
two-dimensional Euler systems of compressible gas dynamics. Moreover, nonlinear limiters,
if used, only need to be applied once during each time step in LWDG methods yet they need
to be applied for each inner stage during one Runge-Kutta time step in RKDG methods. This
leads to additional cost reduction in computation. The overall cost efficiency of the proposed
methods is illustrated through the two dimensional Riemann problem in Sect. 3.2.

The rest of this paper is organized as follows. In Sect. 2, we formulate the local-structure-
preserving DG methods with the Lax-Wendroff type time discretization for HJ equations,
and some implementation details are also discussed. In Sect. 3, a collection of numerical
examples is presented to demonstrate the performance of the proposed methods. The con-
cluding remarks are given in Sect. 4.

2 Description of the Numerical Method

In this section, we present the formulation and some implementation details of a family of
local-structure-preserving discontinuous Galerkin methods with the Lax-Wendroff type time
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discretization for the two dimensional Hamilton-Jacobi (HJ) equation (1.1). The methods
can be similarly formulated for higher dimensional cases.

2.1 Lax-Wendroff Type Time Discretization

Similar as in [16], we first rewrite the HJ equation (1.1) into a weakly hyperbolic conser-
vation law system (1.2) for w = (w1,w2) = ∇φ. Based on the idea of the classical Lax-
Wendroff scheme [20], the Lax-Wendroff type time discretization for (1.2) starts with a
temporal Taylor expansion of wi , i = 1,2,

wi(x, y, t + �t) = wi(x, y, t) + �t(wi)t + �t2

2
(wi)tt + �t3

6
(wi)ttt + · · · , (2.1)

here �t is the time step. The time derivatives in (2.1) are then converted into spatial deriv-
atives by repeatedly using the equation system (1.2) and its differentiated versions. In order
to achieve kth order accuracy in time, one only needs to work with the first k time deriva-

tives in (2.1), namely, ∂wi

∂t
, . . . ,

∂kwi

∂tk
, i = 1,2. In this paper, we will proceed up to third order

accuracy in time, although the procedure described here can be naturally extended to higher
order accuracy.

By using the governing equation system (1.2) and its differentiated forms, and with the

notations Hi(w1,w2) = ∂H(w1,w2)

∂wi
, Hij (w1,w2) = ∂2H(w1,w2)

∂wi∂wj
, i, j = 1,2, one gets

(w1)t = −(H(w1,w2))x = −H1(w1,w2)(w1)x − H2(w1,w2)(w2)x,

(w2)t = −(H(w1,w2))y = −H1(w1,w2)(w1)y − H2(w1,w2)(w2)y,

(w1)tt = −(H(w1,w2))tx = −(H1(w1,w2)(w1)t + H2(w1,w2)(w2)t )x

= −(H11(w1,w2)(w1)x + H12(w1,w2)(w2)x)(w1)t − H1(w1,w2)(w1)xt

− (H12(w1,w2)(w1)x + H22(w1,w2)(w2)x)(w2)t − H2(w1,w2)(w2)xt ,

(w2)tt = −(H(w1,w2))ty = −(H1(w1,w2)(w1)t + H2(w1,w2)(w2)t )y

= −(H11(w1,w2)(w1)y + H12(w1,w2)(w2)y)(w1)t − H1(w1,w2)(w1)yt

− (H12(w1,w2)(w1)y + H22(w1,w2)(w2)y)(w2)t − H2(w1,w2)(w2)yt ,

(w1)xt = −(H1(w1,w2)(w1)x + H2(w1,w2)(w2)x)x

= −(H11(w1,w2)(w1)x
2 + 2H12(w1,w2)(w1)x(w2)x + H22(w1,w2)(w2)x

2)

− H1(w1,w2)(w1)xx − H2(w1,w2)(w2)xx,

(w1)yt = −(H1(w1,w2)(w1)x + H2(w1,w2)(w2)x)y

= −(H11(w1,w2)(w1)x(w1)y + H12(w1,w2)((w1)x(w2)y + (w1)y(w2)x)

+ H22(w1,w2)(w2)x(w2)y) − H1(w1,w2)(w1)xy − H2(w1,w2)(w2)xy,

(w2)xt = −(H(w1,w2))yx = (w1)yt ,

(w2)yt = −(H1(w1,w2)(w1)y + H2(w1,w2)(w2)y)y

= −(H11(w1,w2)(w1)y
2 + 2H12(w1,w2)(w1)y(w2)y + H22(w1,w2)(w2)y

2)

− H1(w1,w2)(w1)yy − H2(w1,w2)(w2)yy.
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(w1)ttt = −(H(w1,w2))xtt = −Gx, (w2)ttt = −(H(w1,w2))ytt = −Gy,

with

G = (H(w1,w2))tt

= H11(w1,w2)(w1)t
2 + 2H12(w1,w2)(w1)t (w2)t + H22(w1,w2)(w2)t

2

+ H1(w1,w2)(w1)tt + H2(w1,w2)(w2)tt .

Now one can replace the time derivatives of wi with its spatial derivatives according to the
formulas derived above, and approximate (2.1) and therefore (1.2) with

{
w1(x, y, t + �t) = w1(x, y, t) − �t Hx,

w2(x, y, t + �t) = w2(x, y, t) − �t Hy .
(2.2)

In particular, (2.2) provides a second order approximation when

H = H + �t

2
(H1(w1,w2)(w1)t + H2(w1,w2)(w2)t ) (2.3)

and a third order approximation when

H = H + �t

2
(H1(w1,w2)(w1)t + H2(w1,w2)(w2)t ) + �t2

6
G. (2.4)

Next, local-structure-preserving discontinuous Galerkin methods will be formulated to dis-
cretize Hx and Hy in (2.2).

2.2 Local-Structure-Preserving Discontinuous Galerkin Spatial Discretization

Let Th = {K} denote a regular triangulation of the computational domain �, with the ele-
ment K being a triangle, a rectangle or a more general polygon, and the edge of K as e.
And h = maxK∈Th

diam(K). Let Vh denote a finite dimensional discrete space consisting
of piecewise smooth functions with respect to Th, which will be specified later. The dis-
continuous Galerkin (DG) discretization for (2.2) is defined as follows: find wn+1

h (x, y) =
(wn+1

1,h (x, y),wn+1
2,h (x, y)) ∈ Vh, such that ∀ v = (v1, v2) ∈ Vh, ∀ K ∈ Th,

∫
K

wn+1
1,h v1dxdy =

∫
K

wn
1,hv1dxdy + �tn

(∫
K

H(wn
1,h,w

n
2,h)(v1)xdxdy

−
∑
e⊂∂K

∫
e

Ĥ1,e,K(wn
1,h,w

n
2,h)v1ds

)
(2.5)

and ∫
K

wn+1
2,h v2dxdy =

∫
K

wn
2,hv2dxdy + �tn

(∫
K

H(wn
1,h,w

n
2,h)(v2)ydxdy

−
∑
e⊂∂K

∫
e

Ĥ2,e,K(wn
1,h,w

n
2,h)v2ds

)
(2.6)
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for n = 0,1,2, . . . . In (2.5)–(2.6), wn
h approximates the solution of (2.1) (and therefore (1.2))

at tn, and �tn = tn+1 − tn. The function Ĥi,e,K (i = 1,2) is a consistent and conservative
numerical flux [16], and it is related to the so-called generalized Riemann solvers [34] and
depends on the numerical solution wh and its spatial derivatives from both sides of the
element interface e ⊂ K . In this paper, the following Lax-Friedrichs flux is used for i = 1,2,

Ĥi,e,K(w1,w2) = 1

2

(
H(w−

1 ,w−
2 ) + H(w+

1 ,w+
2 )

)
ni − αi

2
(w+

i − w−
i ).

Here n = (n1, n2) is the unit outward normal of K along its edge e = K ∩K ′, with w− = w|K
and w+ = w|K ′ . And αi = maxw1,w2 |Hi(w1,w2)|, with the maximum taken in the computa-
tional domain for i = 1,2. In addition, with Ĥe,K = (Ĥ1,e,K, Ĥ2,e,K), the DG discretization
(2.5)–(2.6) can be rewritten more compactly: find wn+1

h ∈ Vh, such that ∀v ∈ Vh, ∀K ∈ Th,

∫
K

wn+1
h · vdxdy =

∫
K

wn
h · vdxdy + �tn

(∫
K

H(wn
h)∇ · vdxdy

−
∑
e⊂∂K

∫
e

Ĥe,K(wn
h) · vds

)
. (2.7)

And w0
h ∈ Vh can be initialized through the L2 projection, namely,∫

K

w0
h · vdxdy =

∫
K

∇φ0 · vdxdy, ∀v ∈ Vh,∀K ∈ Th. (2.8)

To finalize the DG method with the Lax-Wendroff type time discretization defined in
(2.7), (2.8), and (2.3) (or (2.4)), one would need to specify the discrete space Vh. By follow-
ing [23], we take

Vh = Vk
h = {(v1, v2) : v|K = ∇φ, φ ∈ P k(K),∀K ∈ Th}. (2.9)

Note the function v ∈ Vh satisfies ∇ × v = 0 on each K ∈ Th, a property of the exact solu-
tion w of (1.2) due to the relation ∇ × w = ∇ × ∇φ = 0. With such a choice, the method
described above is termed as the local-structure-preserving DG (LSP-DG) method with the
Lax-Wendroff type time discretization. Similar LSP-DG methods were also investigated in
[5, 15, 24, 36], with the objective to develop DG methods with better cost efficiency when
solving certain differential equations. Such efficiency is achieved by incorporating the a pri-
ori knowledge of the exact solutions into the choice of local approximating functions in
the DG formulations, largely due to the flexibility of DG methods in using various local
approximations especially when compared with the classical finite element methods. Some
advantages in using this locally curl-free discrete space Vk

h as (2.9) compared with using the
standard piecewise polynomial space in DG methods include the reduction of the computa-
tional cost and memory usage, as well as a more natural framework for analysis. One can
refer to [23] for more details.

Though it is generally more involved to formulate and to code DG methods with the Lax-
Wendroff type time discretization (LWDG) [13, 14, 29] compared with DG methods using
the Runge-Kutta time-discretization (RKDG) [4, 6–9], the LWDG method is more compact
and requires lower storage. To implement the LSP-DG method with the Lax-Wendroff type
time discretization defined by (2.7)–(2.9) and (2.3) (or (2.4)), when the mesh Th consists of
rectangular elements, a local orthogonal basis can be adopted for Vk

h over each element. For
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example, for a rectangular element K ∈ Th with the center (x0, y0) and the size �x × �y,
the basis functions of Vk

h|K can be

for k = 1: ϕK
0 = (1,0), ϕK

1 = (0,1),

for k = 2: add ϕK
2 = (ξ,0), ϕK

3 = (0, η), ϕK
4 = (λη, ξ),

for k = 3: add ϕK
5 =

(
ξ 2 − 1

12
,0

)
, ϕK

6 =
(

2λξη, ξ 2 − 1

12

)
,

ϕK
7 =

(
0, η2 − 1

12

)
, ϕK

8 =
(

η2 − 1

12
,

2

λ
ξη

)
.

Here ξ = x−x0
�x

, η = y−y0
�y

, and λ = �y

�x
. Once the local basis functions are chosen, the numer-

ical solution wn
h to (2.6) restricted to K can be expressed as

wn
h(x, y) =

Lk∑
l=0

ω
n,(l)
K ϕK

l (x, y), for (x, y) ∈ K, (2.10)

where Lk = k(k+3)

2 is the dimension of Vk
h|K . And the degrees of freedom ω

n,(l)
K are the

moments defined by

ω
n,(l)
K = 1

al

∫
K

wn
h · ϕK

l dxdy, l = 0,1, . . . ,Lk,

with the normalization constant al = ∫
K

|ϕK
l (x, y)|2dxdy. Now ω

n,(l)
K for K ∈ Th, l =

0,1, . . . ,Lk can be evolved based on (2.7)–(2.8) as follows,

ω
n+1,(l)
K = ω

n,(l)
K + �tn

al

(∫
K

H(wn
h)∇ · ϕK

l dxdy

−
∑
e⊂∂K

∫
e

Ĥe,K(wn
h) · ϕK

l ds

)
, n = 0,1, . . . ,

ω
0,(l)
K = 1

al

∫
K

∇φ0 · ϕK
l dxdy.

With these {ωn,(l)
K }K,l,n, one obtains wh ∈ Vh which approximates the solution w of (1.2) and

therefore ∇φ for the HJ equation (1.1). The strategies to recover the missing constant in φ

proposed in [16] are based on Runge-Kutta time discretizations. In this paper, we adopt a
similar recovering strategy based on the Lax-Wendroff procedure. Denote qK as the center
of an element K (or the barycenter for general elements), we can update φ(qK, t + �t)

according to the Taylor expansion

φ(qK, t + �t) = φ(qK, t) + �tφt (qK, t) + �t2

2
φtt (qK, t) + �t3

6
φttt (qK, t) + · · · ,

where time derivatives are obtained from the spatial derivatives by repeatedly using the
governing equations (1.1) and (1.2). This gives the approximation to φ at qK

φ(qK, tn+1) = φ(qK, tn) − �tnH(wn
h(qK)), (2.11)
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with the second and the third order accuracy when H is defined in (2.3) and (2.4), respec-
tively. In practice, this procedure only needs to be applied to a few elements, e.g., the corner
elements, during the time evolution in the simulation. And the missing constant of φ at an
arbitrary location q = (x, y) can be recovered through integration

φh(q,T ) = φh(qK,T ) +
∫ qK

q

wN
1,hdx + wN

2,hdy (2.12)

at the final time step T = tN .
When the mesh Th also consists of other shapes of elements such as triangles, the follow-

ing local basis functions are used for Vk
h over K :

k = 1: ϕ0 = (1,0), ϕ1 = (0,1),

k = 2: add ϕ2 = (ξ,0), ϕ3 = (0, η), ϕ4 = (η, ξ),

k = 3: add ϕ5 = (ξ 2,0), ϕ6 = (2ξη, ξ 2), ϕ7 = (0, η2), ϕ8 = (η2,2ξη).

Here ξ = x−x0√|K| , η = y−y0√|K| , and (x0, y0) and |K| are the barycenter (or other suitable reference
points) and the area of K respectively. Note such basis functions, though simple, are not
orthogonal, and a local mass matrix of the dimension Lk × Lk needs to be inverted in each
element K ∈ Th. Fortunately these small matrices only need to be computed once and they
can be stored for later use during the time evolution. For Vk

h with higher k, the orthogonal
basis is preferred for better numerical performance.

In order for the proposed methods to reliably capture the viscosity solution, nonlinear
limiters are necessary especially when the Hamiltonian H is nonconvex. Such phenomena
was also observed in [2, 16, 22]. In this paper, we adopt the WENO limiter strategies de-
veloped in [30] for rectangular meshes and in [38] for triangular meshes. Such limiting pro-
cedures are based on the WENO reconstruction used in high order finite volume methods
[17, 19, 25, 37]. And when they are applied to an element K ∈ Th which is identified as
a troubled cell, all moments of the numerical solutions in this element will be abandoned
except the cell average. The abandoned moments will be reconstructed based on the cell
averages of the solution in neighboring elements using the WENO methodology. Not like
some limiters which may degenerate the accuracy especially of high order schemes when
mistakenly used in the smooth region of the solution [4, 7, 9, 22], WENO limiters are very
robust, and they can simultaneously achieve the uniform high order accuracy in numerical
solutions and the reliable transition around non-smooth features such as shocks or around
sharp gradient structures. In our numerical experiments, WENO methods are applied to re-
construct the polynomial of wn

h, in which the degree of reconstructed polynomial in each
small stencil is the same as that of wn

h to maintain the order of accuracy of the DG schemes.
We use the optimal linear weights to get higher order reconstructions for rectangular meshes,
that is we use the third and fifth order WENO reconstructions for P 2 and P 3 cases, respec-
tively. For triangular meshes a fixed set of average linear weights is used in each small
stencil for the ease of implementation, that is we use the second and third order WENO type
reconstructions for P 2 and P 3 cases, respectively. Though the magnitude of error by this
implementation will be a little bigger than those by the implementation with optimal linear
weights, the orders of accuracy of the underlying DG methods are maintained by both the
implementations. Such implementation strategy also saves computational cost as we do not
compute the more complex optimal linear weights, and the negative linear weights can be
avoided as well. Note that nonlinear limiters, if used, only need to be applied once during
each time step in LWDG methods yet they need to be applied for each inner stage during
one Runge-Kutta time step in RKDG methods. This leads to additional cost reduction in
computation.
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Fig. 1 An unstructured
triangular mesh with the
characteristic meshsize h = 1/2

3 Numerical Results

In this section, a collection of two-dimensional numerical experiments is presented to il-
lustrate the high order accuracy and the reliability of the proposed methods when solving
the viscosity solutions of the Hamilton-Jacobi equations. Both uniform rectangular meshes
and unstructured triangular meshes are used in the computation. An example of the trian-
gular meshes with the characteristic meshsize h = 1/2 is given in Fig. 1. WENO limiters
are applied to all examples, though they are not needed for smooth examples and for some
nonsmooth examples. In order to decide whether limiters are needed in each mesh element
during the simulation, the TVB limiters with the constant M = 0.01 [6, 9, 33] are used as
the troubled cell indicator. We want to remark that a good choice of the TVB constant M is
problem dependent for the reliability and cost efficiency of the limiting procedures. Gener-
ally, if M is chosen too large, some cells with spurious oscillation may not be recognized.
If M is chosen too small, some good cells will be identified as troubled cells. In this case,
the implementation of WENO limiters on these cells will introduce extra computational cost
without degenerating the accuracy of the methods.

3.1 Accuracy Tests

In this section, the accuracy of the proposed methods will be examined.

Example 3.1 Consider the Burgers equation

φt + (φx + φy + 1)2

2
= 0 (3.1)

with the initial condition φ0(x, y) = − cos(π(x + y)/2) and the 4-periodic boundary con-
dition. This example involves a convex Hamiltonian. The computation is first carried out
on the uniform rectangular meshes. When t = 0.5/π2, the solution is still smooth, and the
errors and numerical orders of accuracy of the proposed methods are shown in Table 1. The
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Table 1 Burgers equation. L1 and L∞ errors and numerical orders of accuracy on uniform rectangular
meshes with Nx × Ny cells, t = 0.5/π2

Nx × Ny With the WENO limiter Without the limiter

L1 error order L∞ error order L1 error order L∞ error order

P 2 10 × 10 2.46E−02 9.12E−02 1.30E−02 5.99E−02

20 × 20 4.73E−03 2.38 2.18E−02 2.07 2.74E−03 2.25 1.44E−02 2.06

40 × 40 8.84E−04 2.42 5.26E−03 2.05 6.24E−04 2.14 2.64E−03 2.44

80 × 80 1.68E−04 2.40 1.09E−03 2.27 1.50E−04 2.06 5.17E−04 2.35

160 × 160 3.82E−05 2.14 1.67E−04 2.71 3.63E−05 2.04 1.20E−04 2.11

P 3 10 × 10 1.01E−02 3.64E−02 3.13E−03 9.39E−03

20 × 20 3.65E−04 4.79 1.29E−03 4.81 3.62E−04 3.12 1.17E−03 3.01

40 × 40 7.24E−05 2.33 2.15E−04 2.59 6.98E−05 2.37 2.11E−04 2.47

80 × 80 1.18E−05 2.62 3.47E−05 2.63 1.17E−05 2.57 3.41E−05 2.63

160 × 160 1.71E−06 2.79 4.76E−06 2.86 1.70E−06 2.78 4.76E−06 2.84

Table 2 Burgers equation. L1 and L∞ errors and numerical orders of accuracy on unstructured triangular
meshes with the characteristic meshsize h, t = 0.5/π2

h With the WENO limiter Without the limiter

L1 error order L∞ error order L1 error order L∞ error order

P 2 1/2 3.95E−02 1.72E−01 7.31E−03 4.29E−02

1/4 1.04E−02 1.93 4.27E−02 2.01 1.45E−03 2.34 9.69E−03 2.15

1/8 2.16E−03 2.27 1.13E−02 1.92 2.80E−04 2.37 1.67E−03 2.54

1/16 4.00E−04 2.43 1.75E−03 2.68 5.71E−05 2.30 3.72E−04 2.16

1/32 8.20E−05 2.29 3.77E−04 2.22 1.35E−05 2.08 9.05E−05 2.04

P 3 1/2 6.36E−03 3.94E−02 6.31E−04 4.56E−03

1/4 3.48E−04 4.19 3.28E−03 3.59 6.54E−05 3.27 7.07E−04 2.69

1/8 2.40E−05 3.86 1.78E−04 4.20 6.57E−06 3.32 6.65E−05 3.41

1/16 1.74E−06 3.78 1.92E−05 3.22 8.14E−07 3.01 7.36E−06 3.18

1/32 1.28E−07 3.76 2.23E−06 3.10 9.53E−08 3.09 7.60E−07 3.28

results confirm the designed accuracy of the schemes, namely, the method is kth order ac-
curate when Vh = Vk

h in (2.9) and the first k time derivatives in (2.1) are used. The L1 and
L∞ errors are computed by using a (6 × 6)-point Gaussian quadrature formula in each cell.
Though the limiter strategy is not needed for this smooth example, we still report the nu-
merical results with the limiter procedure turned on, and these results show that the WENO
limiter keeps the designed order of accuracy uniformly.

Next, the computation is done on unstructured triangular meshes. The errors and nu-
merical orders of accuracy of the proposed methods are reported in Table 2. The L1 and L∞
errors are computed by a 7-point Gaussian quadrature formula in each cell. Similar accuracy
pattern is observed as in the cases with rectangular meshes.
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Table 3 The example of φt − cos(φx + φy + 1) = 0. L1 and L∞ errors and numerical orders of accuracy
on uniform rectangular meshes with Nx × Ny cells, t = 0.5/π2

Nx × Ny With the WENO limiter Without the limiter

L1 error order L∞ error order L1 error order L∞ error order

P 2 10 × 10 1.33E−02 6.34E−02 1.05E−02 4.74E−02

20 × 20 2.42E−03 2.46 9.57E−03 2.73 2.17E−03 2.27 9.55E−03 2.31

40 × 40 5.57E−04 2.12 2.14E−03 2.16 5.26E−04 2.05 2.14E−03 2.16

80 × 80 1.32E−04 2.07 4.66E−04 2.20 1.29E−04 2.02 4.61E−04 2.21

160 × 160 3.20E−05 2.05 1.18E−04 1.98 3.19E−05 2.02 1.16E−04 1.99

P 3 10 × 10 1.73E−02 4.79E−02 1.47E−02 2.25E−02

20 × 20 9.54E−04 4.18 2.26E−03 4.41 1.49E−03 3.31 3.12E−03 2.85

40 × 40 2.09E−04 2.19 4.21E−04 2.42 2.24E−04 2.73 4.43E−04 2.81

80 × 80 2.75E−05 2.93 5.65E−05 2.90 2.82E−05 2.99 5.73E−05 2.95

160 × 160 4.30E−06 2.68 8.42E−06 2.75 4.34E−06 2.70 8.49E−06 2.76

Table 4 The example of φt − cos(φx + φy + 1) = 0. L1 and L∞ errors and numerical orders of accuracy
on unstructured triangular meshes with the characteristic meshsize h, t = 0.5/π2

h With the WENO limiter Without the limiter

L1 error order L∞ error order L1 error order L∞ error order

P 2 1/2 3.04E−02 1.03E−01 8.45E−03 3.15E−02

1/4 6.81E−03 2.16 2.44E−02 2.08 1.45E−03 2.54 7.38E−03 2.09

1/8 1.46E−03 2.22 5.30E−03 2.20 2.50E−04 2.54 1.49E−03 2.31

1/16 3.06E−04 2.25 1.44E−03 1.88 4.44E−05 2.50 3.67E−04 2.02

1/32 7.03E−05 2.12 2.84E−04 2.34 1.20E−05 1.89 8.16E−05 2.17

P 3 1/2 6.29E−03 3.97E−02 8.54E−04 8.18E−03

1/4 3.08E−04 4.35 4.21E−03 3.24 1.01E−04 3.08 1.56E−03 2.39

1/8 2.04E−05 3.92 2.36E−04 4.16 1.41E−05 2.84 1.60E−04 3.29

1/16 2.00E−06 3.35 1.31E−05 4.17 2.05E−06 2.78 1.27E−05 3.65

1/32 2.31E−07 3.11 2.35E−06 2.48 2.55E−07 3.01 1.54E−06 3.05

Example 3.2 Consider

φt − cos(φx + φy + 1) = 0 (3.2)

with the initial condition φ0(x, y) = − cos(π(x + y)/2) and the 4-periodic boundary con-
dition. This example involves a nonconvex Hamiltonian. The computation is first carried
out on the uniform rectangular meshes. When t = 0.5/π2, the solution is still smooth, and
the errors and numerical orders of accuracy of the proposed methods are shown in Table 3.
The L1 and L∞ errors are computed by using a (6 × 6)-point Gaussian quadrature formula
in each cell. The results confirm the designed accuracy of the proposed methods. Next, we
use unstructured triangular meshes. The errors and numerical orders of accuracy are shown
in Table 4. A 7-point Gaussian quadrature formula is used to compute the L1 and L∞ errors.
The expected orders of accuracy are obtained. WENO limiter procedures again are turned
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Fig. 2 Burgers equation. The numerical solution at t = 1.5/π2 on the unstructured triangular mesh with
h = 1/16. P 2 (left) and P 3 (right)

Fig. 3 The example of φt − cos(φx +φy +1) = 0. The numerical solution at t = 1.5/π2 on the unstructured
triangular mesh with h = 1/16. P 2 (left) and P 3 (right)

on for this example to demonstrate the non-degeneracy in the accuracy of the proposed high
order methods when such limiting strategies are applied.

3.2 Examples with Discontinuous Derivatives

In this subsection, we further examine the performance of the proposed methods when ap-
plied to examples with discontinuous derivatives. The computation is done with both P 2 and
P 3 approximations. That is, Vh = Vk

h and the first k time derivatives in (2.1) are used with
k = 2 and k = 3 respectively. In addition, once a mesh element is indicated as a troubled
cell, the WENO limiter strategy will be applied in this element. Though the computation
is done for both uniform rectangular meshes and unstructured triangular meshes for Exam-
ples 3.3–3.7, there is no visible difference in the plots, and therefore only the solutions on
triangular meshes are reported in this paper.

Example 3.3 Consider the Burgers equation (3.1) with the same initial and boundary con-
ditions as in Example 3.1. At t = 1.5/π2, the solution has developed discontinuous deriva-
tives. The numerical solutions on the unstructured triangular mesh with h = 1/8 are shown
in Fig. 2. The solution is well resolved for this example. We remark that the proposed method
without limiter can also produce non-oscillatory reliable results for this example, and such
limiter is more crucial for the cases with some nonconvex Hamiltonians, e.g. Example 3.5.

Example 3.4 Consider the example of (3.2) with the same initial and boundary condition as
in Example 3.2. We report the results at t = 1.5/π2 when the discontinuous derivative has
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Fig. 4 Two dimensional Riemann problem. The numerical solution at t = 1 on the unstructured triangular
mesh with h = 1/20. P 2 (left) and P 3 (right)

Fig. 5 Two dimensional Riemann problem. The numerical solution without limiter at t = 1 on the unstruc-
tured triangular mesh with h = 1/20. P 2 (left) and P 3 (right)

developed in the solution. The numerical solutions on the unstructured triangular mesh with
h = 1/8 are shown in Fig. 3. Both P 2 and P 3 results approximate the viscosity solution very
well. And the proposed methods without the limiter procedure also produce non-oscillatory
reliable results for this example.

Example 3.5 Consider a two dimensional Riemann problem

{
φt + sin(φx + φy) = 0, −1 < x,y < 1,

φ(x, y,0) = π(|y| − |x|), (3.3)

with a nonconvex Hamiltonian and the outflow boundary condition. The results at t = 1 on
the unstructured triangular mesh with h = 1/20 are reported in Fig. 4.

Similar to what was observed in [16, 22], without the limiter procedure, the numerical
solutions of the proposed methods do not converge to the viscosity solution for this example,
see Fig. 5. In fact, the rarefaction wave is missing and the numerical solution has serious os-
cillations. On the other hand, the reliable WENO limiter strategies ensure the non-oscillatory
results and the convergence of the methods to the correct viscosity solution.

Finally, we want to use this example to compare the computation efficiency of our pro-
posed LW-LSP-DG method and the RKDG method in [16]. In Table 5, the CPU time is
reported for these two methods on rectangular meshes. To ensure the linear stability, the
CFL number for the proposed method is taken to be 2/3 of that for the RKDG method, see
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Table 5 The CPU time (in seconds) of the proposed LW-LSP-DG method and the RKDG method in [16] to
compute a two-dimensional Riemann problem

Methods LW-LSP-DG RKDG in [16]

P 2 P 3 P 2 P 3

M 0.01 100 0.01 100 0.01 100 0.01 100

40 × 40 3.42 2.17 21.76 9.81 3.85 2.20 43.15 15.35

80 × 80 24.18 15.95 158.98 72.68 27.53 16.59 307.92 114.95

Table 6 The percentage of troubled cells subject to WENO limiters for the proposed LW-LSP-DG method
and the RKDG method in [16] for a two-dimensional Riemann problem

Methods LW-LSP-DG RKDG in [16]

P 2 P 3 P 2 P 3

M 0.01 100 0.01 100 0.01 100 0.01 100

40 × 40 63.82 5.59 68.91 9.71 63.80 5.84 65.17 7.67

80 × 80 55.32 4.87 61.67 7.34 55.17 4.94 57.42 5.96

[29]. The time step �t is determined by

�t = CFL · min(dx, dy)

maxi=1,2(maxw1,w2 |Hi(w1,w2)|)
with the maximum taken in the computational domain. In our implementation, the CFL
number is chosen to be 0.12 and 0.05 for P 2 and P 3 approximations in the LW-LSP-DG
methods, and 0.18 and 0.075 for P 2 and P 3 approximations in the RKDG methods. The
simulation is performed on a computer with Intel(R) Core(TM)2 Duo CPU P8700 and 3
GB RAM. It is observed that the LW-LSP-DG methods show better computational effi-
ciency than the RKDG methods, especially when the high order polynomial approximation
is adopted, even though the CFL number for the RKDG methods is 1.5 times of that for
LW-LSP-DG methods. This observation is consistent with the facts that the locally curl-
free polynomial space has lower dimension and the WENO limiter only needs to be applied
once during each time step. In Table 6, we further document the percentages of troubled
cells for both methods, which are computed based on the averaging over time. One can see
that the larger TVB constant M renders a smaller percentage of troubled cells, and this will
reduce the computational cost of the methods when the limiter is involved. In this example,
reasonably good numerical results are produced for both M = 0.01 and M = 100.

Example 3.6 Consider the following example from optimal control,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φt + sin(y)φx + (sinx + sign(φy))φy

− 1

2
sin2 y − (1 − cosx) = 0, −π < x,y < π,

φ(x, y,0) = 0,

(3.4)

with the periodic condition, see [27]. And the Hamiltonian is nonsmooth. In Figs. 6 and 7,
we report the numerical results approximating the solution φ and the optimal control
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Fig. 6 The optimal control problem. The numerical solution at t = 1 on the unstructured triangular mesh
with h = π/32. P 2 (left) and P 3 (right)

Fig. 7 The optimal control problem. The computed optimal control ω = sign(φy) at t = 1 on the unstruc-
tured triangular mesh with h = π/32. P 2 (left) and P 3 (right)

ω = sign(φy) on the unstructured triangular mesh with h = π/32. Note the proposed method
computes w = ∇φ, and this is very desirable for those problems in which the most interest-
ing information is contained in the first derivative of φ, as in this optimal control example.

Example 3.7 Consider the following problem involving a propagating surface [26]⎧⎪⎨
⎪⎩

φt − (1 − εK)
√

φ2
x + φ2

y + 1 = 0, 0 < x,y < 1,

φ(x, y,0) = 1 − 1

4
(cos(2πx) − 1)(cos(2πy) − 1),

(3.5)

where K is the mean curvature defined by

K = −φxx(1 + φ2
y) − 2φxyφxφy + φyy(1 + φ2

x)

(1 + φ2
x + φ2

y)
3
2

,

and ε is a small constant. The boundary condition is periodic. The local discontinuous
Galerkin (LDG) method is adopted to deal with the second derivative terms [10, 16]. This is
done in the similar framework as the proposed methods, and the details are not included here
for brevity. The numerical solutions for ε = 0 (pure convection) and for ε = 0.1 are plotted
in Fig. 8 and Fig. 9 respectively when an unstructured triangular mesh with h = 1/40 is
used. The surfaces at t = 0 for ε = 0 and for ε = 0.1, and at t = 0.1 for ε = 0.1, are shifted
downward in order to show the detail of the solution at later times.
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Fig. 8 Propagating surface. The numerical solution on the unstructured triangular mesh with h = 1/40,
ε = 0. P 2 (left) and P 3 (right)

Fig. 9 Propagating surface. The numerical solution on the unstructured triangular mesh with h = 1/40,
ε = 0.1. P 2 (left) and P 3 (right)

Example 3.8 We consider the same equation of a propagating surface as in Example 3.7 with
the initial condition φ0(x, y) = sin( π

x2+y2 ), yet defined in a unit disk {(x, y) : x2 + y2 < 1}.
A Neumann-type boundary condition ∇φ = 0 is applied. It is difficult to use rectangular
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Fig. 10 Propagating surface on a disk. The numerical solution on the unstructured triangular mesh, ε = 0.
P 2 (left) and P 3 (right)

Fig. 11 Propagating surface on a disk. The numerical solution on the unstructured triangular mesh, ε = 0.1.
P 2 (left) and P 3 (right)
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meshes for this problem. We adopt an unstructured triangular mesh instead, which consists
of 4216 triangles and 2184 nodes. We plot the results of ε = 0 (pure convection) and ε = 0.1
by the proposed method in Figs. 10–11. And the surfaces at t = 0 for ε = 0 and for ε = 0.1,
and at t = 0.3 for ε = 0.1, are shifted downward in order to show the detail of the solution
at later times.

4 Concluding Remarks

In this paper, a family of high order numerical methods are designed to solve the Hamilton-
Jacobi equation for the viscosity solution. The methods combine the compact one-step
one-stage Lax-Wendroff type time discretization, local-structure-preserving discontinuous
Galerkin spatial discretization and the robust WENO limiter strategy. Though on unstruc-
tured triangular meshes the WENO limiter strategy still relies on relatively complicated re-
construction procedures to achieve high order accuracy, such reconstructions are used only
for a small percentage of mesh elements which are identified as troubled cells. Therefore
the proposed methods overall involve lower computational complexity and storage usage
for both structured and unstructured meshes, while they are capable of capturing the viscos-
ity solutions of Hamilton-Jacobi equations accurately and reliably.
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