
Journal of Scientific Computing (2022) 90:46
https://doi.org/10.1007/s10915-021-01732-4

A Quasi-Conservative Discontinuous Galerkin Method for
Multi-component Flows Using the Non-oscillatory Kinetic
Flux II: ALE Framework

Dongmi Luo1 · Shiyi Li1 ·Weizhang Huang2 · Jianxian Qiu3 · Yibing Chen1

Received: 16 January 2021 / Revised: 28 August 2021 / Accepted: 29 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
A high-order quasi-conservative discontinuous Galerkin (DG) method is proposed for the
numerical simulation of compressible multi-component flows. A distinct feature of the
method is a predictor-corrector strategy to define the grid velocity. A Lagrangian mesh
is first computed based on the flow velocity and then used as an initial mesh in a moving
meshmethod (the movingmesh partial differential equation orMMPDEmethod) to improve
its quality. The fluid dynamic equations are discretized in the direct arbitrary Lagrangian-
Eulerian framework using DG elements and the non-oscillatory kinetic flux while the species
equation is discretized using a quasi-conservative DG scheme to avoid numerical oscillations
near material interfaces. A selection of one- and two-dimensional examples are presented to
verify the convergence order and the constant-pressure-velocity preservation property of the
method. They also demonstrate that the incorporation of the Lagrangian meshing with the

The research is supported partly by National Natural Science Foundation of China (Grant Nos. 12101063,
11901044 and 12071392), Science Challenge Project (China), No. TZ2016002, National Key Project
(GJXM92579).

B Yibing Chen
chen_yibing@iapcm.ac.cn

Dongmi Luo
dongmiluo@stu.xmu.edu.cn

Shiyi Li
lishiyi14@tsinghua.org.cn

Weizhang Huang
whuang@ku.edu

Jianxian Qiu
jxqiu@xmu.edu.cn

1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

2 Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

3 School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and
High-Performance Scientific Computing, Xiamen University, Xiamen 361005, Fujian, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01732-4&domain=pdf
http://orcid.org/0000-0001-9916-2824

 46 Page 2 of 35 Journal of Scientific Computing (2022) 90:46

MMPDE moving mesh method works well to concentrate mesh points in regions of shocks
and material interfaces.

Keywords DG method · ALE method · Moving mesh method · Multi-component flows ·
Non-oscillatory kinetic flux

Mathematics Subject Classification 65M60 · 35L65 · 76T10

1 Introduction

The numerical simulation of compressible multi-component flows plays a significant role in
the computational fluid dynamics due to their application in a wide range of fields, including
inertial confinement fusion, combustion, and flame propagation in detonation. Those flows
contain rich physical features and structures such as shockwaves, contact waves, andmaterial
interfaces. How to resolve these structures accurately and efficiently presents a challenge in
the numerical simulation of compressible multi-component flows.

There exist two types of frameworks to describe fluid motion, i.e., the Eulerian framework
and the Lagrangian framework. In the former framework, the mesh is fixed, which makes
methods based on the framework suitable for problems with large deformations. But contact
discontinuities are smeared typically in the Eulerian framework. On the other hand, methods
based on the Lagrangian framework or called Lagrangian methods (e.g., see [11,12,40]),
where the mesh moves with the fluid, are more suitable for flows with contact discontinuities.
Unfortunately, the corresponding computation can easily fail due to mesh distortion caused
by large flow deformations. To overcome this problem, an arbitrary Lagrangian-Eulerian
(ALE) method was first proposed by Hirt et al. [21] where the grid velocity can be chosen
independently from the local flow velocity and therefore the mesh points can be moved
to maintain the mesh quality. Roughly speaking, ALE methods can be split into two major
groups, indirectALEmethods (e.g., see [32,39]) and directALEmethods (e.g., see [5,31,49]).
An indirect ALE method typically includes three steps, i.e., the Lagrangian, rezoning, and
remapping steps. In the Lagrangian step, the physical variables and the mesh are updated
at the same time and the mesh update is based on the flow velocity. The mesh quality is
improved using a remeshing strategy in the rezoning step. Finally, the physical solutions are
projected from the old mesh to the new one in the remapping step. In a direct ALE method,
the mesh movement is taken into account directly in the discretization of the governing
equations and the remapping step is avoided. More high-order methods have been developed
with the direct ALE approach since it avoids the remapping step and the need for high-order
conservative remapping schemes. For example, a high-order moving mesh kinetic scheme
has been proposed [58] for compressible flows on unstructured meshes based on the direct
ALE approach.Moreover, a new class of high-order ALE one-step finite volume schemes has
been developed in [5] for two- and three-dimensional hyperbolic partial differential equations
(PDEs).

Discontinuous Galerkin (DG) methods have been incorporated into the ALE framework;
e.g, see [19,31,36,42–44,49,60]. DG methods, first applied to neutron transport equations
[48] and later extended to general nonlinear systems of hyperbolic conservation laws in a
series of papers by Cockburn and Shu and coworkers [13–16], have been successfully used
for multi-material flows [10,20,38,45,46,50,56,61]. They are known to be high-order and
compact and can readily be combined with various mesh adaptation strategies. Examples

123

Journal of Scientific Computing (2022) 90:46 Page 3 of 35 46

of DG-ALE methods for compressible multiphase flows include that by Pandare et al. [43]
where the HLLC numerical flux is employed but a constant or a linearly varying grid velocity
is assumed in the computation. Recently, an ALE Runge-Kutta DGmethod was proposed by
Zhao et al. [60] for multi-material flows where a conservative equation related to a γ -model
is coupled with the system of fluid equations and the grid velocity is obtained by a variational
approach.

In the last four decades a variety of r -adaptive or (adaptive) moving mesh methods
have been developed in the context of the numerical solution of general PDEs; e.g., see
the books/review articles [3,4,6,26,55] and references therein. Moving mesh methods share
many common features with ALE methods and in particular, their rezoning version and
quasi-Lagrangian version can be compared directly with indirect and direct ALE methods,
respectively; see discussion in [26]. The main difference between moving mesh methods and
ALE methods lies in how adaptive meshes are generated. As mentioned earlier, an adaptive
mesh is obtained in ALE methods through the flow velocity (Lagrangian meshing) and a
remeshing strategy. This approach has the advantage that mesh points (viewed as fluid par-
ticles) are naturally moved to and concentrated in regions of shocks and contact/material
interfaces. Its main disadvantage is that a Lagrangian mesh can often be distorted and even
tangling and thus cannot be used directly in the numerical solution of PDEs. This is also the
reason why a remeshing strategy must be used to effectively improve the quality of the mesh
while maintaining a level of mesh concentration in the Lagrangian mesh. On the other hand,
an adaptive mesh is generated in moving mesh methods by either integrating a set of moving
mesh equations or minimizing a meshing functional. This approach has the advantage that it
generally generates a mesh of good quality. The mesh adaptation in this approach is typically
associated with an error estimate instead of the flow velocity, which can be viewed as a
drawback of the approach when applied to the computational fluid dynamics.

The objective of the current work is to study a high-order DG-ALE method for multi-
component flows by incorporating the Lagrangian meshing with a moving mesh method.
The incorporation is realized with a predictor-corrector strategy, i.e., a Lagrangian mesh
is first computed and then used as an initial mesh for a moving mesh method to improve
mesh quality. We use the moving mesh PDE (MMPDE) method [24–26,37] for this purpose.
The MMPDE method moves a mesh through a set of ordinary differential equations (cf.
(3.7)) while concentrating points according to a user-supplied metric tensor that provides
the magnitude and directional information to control the size, shape, and orientation of
mesh elements throughout the physical domain. With a proper choice of the metric tensor,
the MMPDE method is expected to maintain a similar level of point concentration as in the
Lagrangianmeshwhile improving themesh quality.Moreover, it has been shown analytically
and numerically in [23] that a formulation of the MMPDE method, at semi-discrete or fully
discrete level, leads to a non-singular (tangling-free) mesh for any domain in any dimension
when the metric tensor is bounded and the initial mesh is non-singular. This provides a
justification on the use of the MMPDE method to improve the quality of the Lagrangian
mesh. With the incorporation of the Lagrangian meshing and the MMPDE method, we hope
that the proposed DG-ALE method can have the advantages of both methods and is able to
track rapid changes in the flow field including shocks and material interfaces. It is noted
that this computation of the grid velocity is different from those in [43,60]. (The mesh is
assumed to move at a constant or a linearly varying mesh velocity in [43] while the grid
velocity is obtained by a variational approach in [60].) We adopt the non-oscillatory kinetic
(NOK) flux [8,35,38] for the DG discretization of the Euler equations since it provides more
physical information of the flow (than other numerical fluxes such as the commonly used
Lax-Friedrich flux) and avoids the need to construct any Riemann solver. Moreover, we

123

 46 Page 4 of 35 Journal of Scientific Computing (2022) 90:46

use a quasi-conservative DG discretization [1] for the species equation to avoid numerical
oscillations near material interfaces.

So far there exist many DG-ALE works for single material but only a few for multi-
component flows. For example, Pandare et al. [43] proposed a DG-ALE method for
compressible multiphase flows. However, a constant or linearly varying grid velocity was
assumed in the computation and the physical field was not taken into consideration. Thus,
the method cannot track shocks exactly. Recently, an ALE Runge-Kutta DG method was
developed by Zhao et al. [60] for multi-material flows. Since it does not take a Lagrange step,
the method may have difficulty to track material interfaces. The method presented in this
work overcomes these drawbacks by employing a predictor-corrector approach to compute
the mesh velocity and taking the advantages of both Lagrangian and moving mesh methods.
It can keep good quality of the mesh while tracking discontinuities including shocks and
material interfaces in the flow field. Moreover, the method is high-order and non-oscillatory
at shocks and interfaces.

The organization of the paper is as follows. The DG method for conservative systems in
the ALE framework and the discretization of the species equation are described in Sect. 2.
In Sect. 3, the computation of the grid velocity and the MMPDE moving mesh method are
discussed. One- and two-dimensional numerical examples are presented to demonstrate the
accuracy and the mesh adaptation capability of the proposed DG-ALE method in Sect. 4.
Conclusions are drawn in Sect. 5.

2 A DG-ALEMethod for Multi-component Flows

2.1 The Govorning Equations

In this work we consider the 4-equation model for a compressible multi-component flow in
the dimensionless form {

Wt + ∇ · F(W) = 0,
∂Y
∂t +U ∂Y

∂x + V ∂Y
∂ y = 0,

(2.1)

where

W =

⎛
⎜⎜⎝

ρ

ρU
ρV
E

⎞
⎟⎟⎠ , F(W) =

⎛
⎜⎜⎝

ρU , ρV
ρU 2 + P, ρUV

ρUV , ρV 2 + P
U (E + P), V (E + P)

⎞
⎟⎟⎠ ,

ρ is the density, P is the pressure, U = (U , V) is the flow velocity, E = ρe+ 1
2ρ(U 2 + V 2)

is the total energy, ρe is the internal energy, and Y is the volume fraction. We consider the
stiffened gas equation of state (EOS)

ρe = P + γ B

γ − 1
, (2.2)

where γ is the ratio of specific heats and B is a prescribed pressure-like constant. In this
work we consider a two-component flow and assume that the material parameters for fluid 1
and fluid 2 are γ1, B1 and γ2, B2, respectively. The material parameters for mixing cells are

123

Journal of Scientific Computing (2022) 90:46 Page 5 of 35 46

computed as (e.g., see [53])

1

γ − 1
= Y

γ1 − 1
+ 1 − Y

γ2 − 1
, (2.3)

γ B

γ − 1
= Yγ1B1

γ1 − 1
+ (1 − Y)γ2B2

γ2 − 1
. (2.4)

Finally, the mixing sound speed is computed as

c =
√

γ (P + B)

ρ
.

2.2 DG Discretization of the Fluid Dynamic Equations onMovingMeshes

We now consider the DG discretization of the first four equations in (2.1) on a moving
triangular mesh with an arbitrary but given grid velocity. (See Sect. 3 for the determination
of the grid velocity.) The resulting scheme reduces to the Eulerian and Lagrangian forms
when the grid velocity is taken to be zero and the flow velocity, respectively.

For the moment we assume that a moving triangular mesh Th for the domain Ω is given
at time instants

0 = t0 < t1 < · · · < tn < tn+1 < · · · ≤ T .

The appearances are denoted by T n
h , n = 0, 1, · · · . Since they belong to the same mesh,

they have the same number of elements (N) and vertices (Nv) and the same connectivity,
and differ only in the location of the vertices. Denote the coordinates of the vertex of T n

h by
xnj , j = 1, 2, · · · , Nv . For any t ∈ [tn, tn+1], the coordinates and velocities of the vertices
of the mesh Th(t) are defined as

x j (t) = t − tn
Δtn

xn+1
j + tn+1 − t

Δtn
xnj , j = 1, 2, · · · , Nv (2.5)

ẋ j (t) = xn+1
j − xnj

Δtn
, j = 1, 2, · · · , Nv (2.6)

where Δtn = tn+1 − tn . Then the DG finite element space is defined as

V k
h =

{
p(x, t) : p|K ∈ Pk(K),∀K ∈ Th(t)

}
,

where Pk(K) is the set of polynomials defined on K of degree no more than k. The semi-
discrete DG approximation of (2.1) is to find Wh(·, t) ∈ V k

h , t ∈ (0, T] such that∫
K

∂Wh

∂t
ψdxdy +

∫
∂K

F · nψds −
∫
K
F · ∇ψdxdy = 0, ∀ψ ∈ Pk(K), ∀K ∈ Th(t)

(2.7)

where n = (nx , ny) is the outward unit normal vector of the triangular boundary ∂K . It is
not difficult to show [30] that

∂ψ(x, t)

∂t
= −∇ψ(x, t) · Ẋ(x, t), ∀ψ ∈ Pk(K)

123

 46 Page 6 of 35 Journal of Scientific Computing (2022) 90:46

where Ẋ(x, t) is the piecewise linear interpolant of the nodal velocities. From this and the
Reynolds transport theorem, we have

d

dt

∫
K
Whψdxdy =

∫
K

∂(Whψ)

∂t
dxdy +

∫
∂K

Wh Ẋ · nψds

=
∫
K

∂Wh

∂t
ψdxdy +

∫
K

∂ψ

∂t
Whdxdy +

∫
∂K

Wh Ẋ · nψds

=
∫
K

∂Wh

∂t
ψdxdy −

∫
K
Wh Ẋ · ∇ψdxdy +

∫
∂K

Wh Ẋ · nψds,

which yields∫
K

∂Wh

∂t
ψdxdy = d

dt

∫
K
Whψdxdy +

∫
K
Wh Ẋ · ∇ψdxdy −

∫
∂K

Wh Ẋ · nψds.

Inserting this to (2.7) yields

d

dt

∫
K
Whψdxdy +

∫
∂K

H(Wh)ψds −
∫
K
H1(Wh)dxdy = 0, (2.8)

where

H(Wh) = (F(Wh) − Wh Ẋ) · n =

⎛
⎜⎜⎝

ρ(U − Ẋ) · n
ρU (U − Ẋ) · n + Pnx
ρV (U − Ẋ) · n + Pny
E(U − Ẋ) · n + PU · n

⎞
⎟⎟⎠ ,

H1(Wh) = (F(Wh) − Wh Ẋ) · ∇ψ =

⎛
⎜⎜⎝

ρ(U − Ẋ) · ∇ψ

ρU (U − Ẋ) · ∇ψ + Pψx

ρV (U − Ẋ) · ∇ψ + Pψy

E(U − Ẋ) · ∇ψ + PU · ∇ψ

⎞
⎟⎟⎠ .

Recall that these expressions reduce to the Eulerian form when Ẋ = 0 and the Lagrangian
form when Ẋ = U.

Applying a Gaussian quadrature rule to the second and third terms, we get∫
∂K

H(Wh)ψds ≈
∑
e

∑
Ge

H(Wh(xGe))ψ(xGe)wGe |e|,
∫
K
H1(Wh)dxdy ≈

∑
G

H1(Wh(xG))wG |K |,

where e denotes an edge of the element K , |K | is the volume of K , |e| is the length of e, xG
and xGe denote the Gauss points on K and e, respectively, and the summations

∑
e,

∑
G , and∑

Ge
are taken over the edges of ∂K , Gauss points on K , and Gauss points on e, respectively.

Replacing the flux H by a numerical flux Ĥ , we obtain

d

dt

∫
K
Whψdxdy +

∑
e

∑
Ge

Ĥψ(xintGe
)wGe |e| −

∑
G

H1(Wh(xG))wG |K | = 0,

. ∀K ∈ Th, ψ ∈ V k
h . (2.9)

Generally speaking, a numerical flux has the form Ĥ = Ĥ(Wh(xintG),Wh(xextG)), where
Wh(xintG) and Wh(xextG) are defined as the values of Wh at x = xG from the interior and
exterior of K , respectively.

123

Journal of Scientific Computing (2022) 90:46 Page 7 of 35 46

In this work, we use the non-oscillatory kinetic (NOK) flux [8,9,38] that is a generaliza-
tion of the gas kinetic scheme (GKS) [57] that avoids the need to construct Riemann solvers
for the numerical solution of hyperbolic PDEs. Different from traditional Godunov-type
methods, GKS is based on the Boltzmann equation and describes the flux function of the
governing equations by particle collision of the transport process. Once the particle distri-
bution function on a cell interface is obtained, the numerical flux can be calculated directly.
The GKS has been successfully applied to multi-component flows [57]. Combined with a
full conservative scheme, the GKS can work well when the difference between two species is
small although oscillationsmay occur near material interfaces. Chen and Jiang [9] proposed a
quasi-conservative scheme (called the non-oscillatory kinetic scheme or NOK) to overcome
the problem and further extended it to more general material problems in [8].

The NOK flux is defined using the local coordinates. Denote

Ũ = (U − Ẋ) · n, Ṽ = (U − Ẋ) · s, Ẽ = ρe + 1

2
ρ(Ũ 2 + Ṽ 2),

where s = (−ny, nx). Notice that Ũ and Ṽ are the components of the vector U − Ẋ along
the normal and tangential directions of an edge e, respectively. Denoting Ẋ = (Ug, Vg), we
have

U = Ug + Ũnx − Ṽ ny, V = Vg + Ũny + Ṽ nx ,

U 2 + V 2 = (U 2
g + V 2

g) + 2(Ugnx + Vgny)Ũ + 2(Vgnx −Ugny)Ṽ + Ũ 2 + Ṽ 2,

E = Ẽ + 1

2
ρ(U 2

g + V 2
g) + ρ(Ugnx + Vgny)Ũ + ρ(Vgnx −Ugny)Ṽ .

Introducing the new variable

ξ =

⎛
⎜⎜⎝

ξ1
ξ2
ξ3
ξ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ρŨ
ρŨ 2 + P

ρŨ Ṽ
Ũ (Ẽ + P)

⎞
⎟⎟⎠ , (2.10)

we can rewrite the flux along e as

Ĥ(Wh) =

⎛
⎜⎜⎝

ξ1
Ugξ1 + nxξ2 − nyξ3
Vgξ1 + nyξ2 + nxξ3

1
2 (U

2
g + V 2

g)ξ1 + (Ugnx + Vgny)ξ2 + (Vgnx −Ugny)ξ3 + ξ4

⎞
⎟⎟⎠ .

This implies that Ĥ(Wh) can be computed on any edge e if we can compute the variable ξ

on the edge. Moreover, recalling that Ũ and Ṽ are the components of the vector U − Ẋ along
the normal and tangential directions, we know that Ũ has a jump whereas Ṽ is continuous
across the edge. Thus, the computation of ξ on e relies essentially on the computation of Ũ
on e, which is a one-dimensional problem.

In the NOK flux, ξ is computed as

ξ = ηξ K + (1 − η)ξ E ,

where ξ E and ξ K are the equilibrium and non-equilibrium parts to be defined below and
η ∈ [0, 1] is a relaxation parameter to determine the speed that a system evolves into an
equilibrium state and be a function of local flow variables. For instance, η is defined in [34]

123

 46 Page 8 of 35 Journal of Scientific Computing (2022) 90:46

as a function of the flow jump around the cell interface, i.e.,

η = 1 − exp

[
−C

|P+ − P−|
P+ + P−

]
,

where C is a problem-dependent positive constant ranging from 103 to 105. The parameter
η should be set close to one for challenging problems such as those involving strong shocks.

The non-equilibrium part is

ξ K = ξ+
L + ξ−

R ,

where the subscripts L and R denote the values of the corresponding variable from the interior
and exterior of K , respectively, and

ξ+
L = 〈u1〉+

⎛
⎜⎜⎝

ρ

ρŨ
ρṼ
Ẽ

⎞
⎟⎟⎠

L

+

⎛
⎜⎜⎝

0
PL 〈u0〉+

0
1
2 PL 〈u1〉+ + 1

2 PLŨL 〈u0〉+

⎞
⎟⎟⎠ , (2.11)

ξ−
R = 〈u1〉−

⎛
⎜⎜⎝

ρ

ρŨ
ρṼ
Ẽ

⎞
⎟⎟⎠

R

+

⎛
⎜⎜⎝

0
PR〈u0〉−

0
1
2 PR〈u1〉− + 1

2 PRŨR〈u0〉−

⎞
⎟⎟⎠ , (2.12)

λ = min

{
1

c2L
,
1

c2R

}
, (2.13)

〈u0〉+ = 1

2
erfc(−√

λŨL), 〈u0〉− = 1

2
erfc(

√
λŨR), (2.14)

〈u1〉+ = ŨL 〈u0〉+ + 1

2

e−λŨ2
L√

πλ
, 〈u1〉− = ŨR〈u0〉− − 1

2

e−λŨ2
R√

πλ
, (2.15)

c is the sound speed, erfc(·) is the complementary error function, and 〈·〉 represents an average
over the Maxwell-Boltzmann distribution.

In order to avoid oscillations of the pressure and velocity near a contact discontinuity,
the equilibrium part should satisfy the consistent condition [8,9]. The primitive variables are
computed by ⎛

⎜⎜⎜⎜⎜⎝

ρ̄
¯̃U
¯̃V
P̄
Ȳ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ρL < u0 >+ +ρR < u0 >−
< u1 >+ + < u1 >−

ṼL < u0 >+ +ṼR < u0 >−
PL < u0 >+ +PR < u0 >−
YL < u0 >+ +YR < u0 >−

⎞
⎟⎟⎟⎟⎠ . (2.16)

Then we take

ξ E =

⎛
⎜⎜⎜⎜⎝

ρ̄
¯̃U

ρ̄
¯̃U 2 + P̄

ρ̄
¯̃U ¯̃V

¯̃U (
¯̃E + P̄)

⎞
⎟⎟⎟⎟⎠ , (2.17)

and ¯̃E is determined by EOS. The reader is referred to [8] for the derivation of these formulas.

123

Journal of Scientific Computing (2022) 90:46 Page 9 of 35 46

The traditional BGK scheme takes different values of λL = 1
c2L

and λR = 1
c2R

for the

interior and exterior of K , which is known (e.g., see [8,9]) to introduce oscillations in velocity
and pressure. On the other hand, the same value of λ, (2.13), is used for both the interior
and exterior of K in the above NOK formula. This treatment is known [8] to overcome the
oscillatory issue.

Finally we remark that the scheme (2.9) involves the grid velocity Ẋ = (Ug, Vg) which is
defined as the piecewise linear interpolant of the nodal grid velocity. The latter is computed
as the change rate of the location of vertices between the old and newmeshesT n

h andT n+1
h ;

cf. (2.6). The generation of the new mesh will be discussed in Sect. 3.

2.3 DG-ALE for Species Equation

In this subsection we consider the DG discretization of the species equation in (2.1). Numer-
ical experiments show that a direct DG discretization of the equation can lead to oscillations
in the pressure and velocity near material interfaces. The analysis by Abgrall [1] shows that
those oscillations can be prevented if the scheme preserves constant velocity and constant
pressure. We follow the procedure of Abgrall [1] and develop such a DG discretization of
the species equation on a moving mesh in the following.

To start with, we assume that the velocity and the pressure are constant, i.e., U = U0 =
(U0, V0) and P = P0. Denote Ũ0 = U0 − Ẋ . We can rewrite H(Wh) and H1(Wh) as

H(Wh) =

⎛
⎜⎜⎝

ρŨ0 · n
ρU0Ũ0 · n + P0nx
ρV0Ũ0 · n + P0ny
EŨ0 · n + P0U0 · n

⎞
⎟⎟⎠ , H1(Wh) =

⎛
⎜⎜⎝

ρŨ0 · ∇ψ

ρU0Ũ0 · ∇ψ + P0ψx

ρV0Ũ0 · ∇ψ + P0ψy

EŨ0 · ∇ψ + P0U0 · ∇ψ

⎞
⎟⎟⎠ . (2.18)

Then, the continuity equation in (2.8) becomes

d

dt

∫
K

ρψdxdy = −
∫

∂K
ρŨ0 · nψds +

∫
K

ρŨ0 · ∇ψdxdy. (2.19)

Similarly, the momentum equations read as

d

dt

∫
K

ρUψdxdy = −
∫

∂K
(ρU0Ũ0 · n + P0nx)ψds +

∫
K
(ρU0Ũ0 · ∇ψ + P0ψx)dxdy,

d

dt

∫
K

ρVψdxdy = −
∫

∂K
(ρV0Ũ0 · n + P0ny)ψds +

∫
K
(ρV0Ũ0 · ∇ψ + P0ψy)dxdy.

From the divergence theorem, we have
∫
K P0∇ψdxdy = ∫

∂K P0ψnds. Inserting this into
the above equations, we get

d

dt

∫
K

ρUψdxdy = −
∫

∂K
ρU0Ũ0 · nψds +

∫
K

ρU0Ũ0 · ∇ψdxdy,

d

dt

∫
K

ρVψdxdy = −
∫

∂K
ρV0Ũ0 · nψds +

∫
K

ρV0Ũ0 · ∇ψdxdy.

Comparing these with (2.19), we have

d

dt

∫
K

ρUψdxdy = U0
d

dt

∫
K

ρψdxdy,
d

dt

∫
K

ρVψdxdy = V0
d

dt

∫
K

ρψdxdy.

(2.20)

123

 46 Page 10 of 35 Journal of Scientific Computing (2022) 90:46

From the Reynolds transport theorem, we have

d

dt

∫
K

ρUψdxdy =
∫
K
U

∂(ρψ)

∂t
dxdy +

∫
K

∂U

∂t
ρψdxdy +

∫
∂K

Uρψn · Ẋds

=
∫
K
U0

∂(ρψ)

∂t
dxdy +

∫
K

∂U

∂t
ρψdxdy +

∫
∂K

U0ρψn · Ẋds

= U0
d

dt

∫
K

ρψdxdy +
∫
K

∂U

∂t
ρψdxdy.

Similarly, we have

d

dt

∫
K

ρVψdxdy = V0
d

dt

∫
K

ρψdxdy +
∫
K

∂V

∂t
ρψdxdy.

Combining the above results with (2.20), we get∫
K

ρ
∂U

∂t
ψdxdy = 0,

∫
K

ρ
∂V

∂t
ψdxdy = 0,

which, from the arbitrariness of ψ and the positivity of ρ, implies ∂U
∂t = 0 and ∂V

∂t = 0.
Thus, the scheme (2.8) preserves constant velocity solutions.

We now consider the preservation of constant pressure. The energy equation in (2.8)
becomes

d

dt

∫
K
Eψdxdy = −

∫
∂K

(EŨ0 · n + P0U0 · n)ψds +
∫
K
(EŨ0 · ∇ψ + P0U0 · ∇ψ)dxdy,

which can be simplified into

d

dt

∫
K
Eψdxdy = −

∫
∂K

EŨ0 · nψds +
∫
K
EŨ0 · ∇ψdxdy. (2.21)

Let κ = 1
γ−1 andχ = γ B

γ−1 . Thenwe can rewrite the equation of state (2.2) into ρe = κP+χ .

From the definition of E , we have E = κP + χ + 1
2ρ(U 2 + V 2). Inserting this into (2.21),

we get

d

dt

∫
K

κPψdxdy + d

dt

∫
K

χψdxdy + d

dt

∫
K

1

2
ρ(U 2 + V 2)ψdxdy

= −
∫

∂K
κPŨ0 · nψds +

∫
K

κPŨ0 · ∇ψdxdy

−
∫

∂K
χŨ0 · nψds +

∫
K

χŨ0 · ∇ψdxdy

−
∫

∂K

1

2
ρ(U 2 + V 2)Ũ0 · nψds +

∫
K

1

2
ρ(U 2 + V 2)Ũ0 · ∇ψdxdy.

Using the assumption thatU = U0, V = V0, and P = P0, the fact that ∂U
∂t = 0 and ∂V

∂t = 0,
and the equation (2.19), we can derive from the above equation that∫

K
κ

∂P

∂t
ψdxdy = 0, or

∂P

∂t
= 0,

123

Journal of Scientific Computing (2022) 90:46 Page 11 of 35 46

provided that

d

dt

∫
K

κψdxdy = −
∫

∂K
κŨ0 · nψds +

∫
K

κŨ0 · ∇ψdxdy, (2.22)

d

dt

∫
K

χψdxdy = −
∫

∂K
χŨ0 · nψds +

∫
K

χŨ0 · ∇ψdxdy. (2.23)

In other words, the scheme (2.8) also preserves constant pressure if the above two conditions
are satisfied.

We notice from (2.3) and (2.4) that both κ and χ are linear functions of Y . Thus, (2.22)
and (2.23) can be satisfied if the following equation for Y holds,

d

dt

∫
K
Yhψdxdy = −

∫
∂K

YhŨ0 · nψds +
∫
K
YhŨ0 · ∇ψdxdy. (2.24)

It is not difficult to see that the above equation is actually a DG discretization of the equation

Yt + (UY)x + (VY)y = 0.

Since the species equation (cf. (2.1)) can be written as

Yt +UYx + VYy = Yt + (UY)x + (VY)y − YUx − YVy = 0,

we obtain a DG discretization for the species equation as

d

dt

∫
K
Yhψdxdy = −

∫
∂K

Yh(U − Ẋ) · nψds +
∫
K
Yh(U − Ẋ) · ∇ψdxdy

+ Yh(xb)
(∫

∂K
U · nψds −

∫
K

U · ∇ψdxdy

)
, ∀K ∈ Th, ψ ∈ V k

h

(2.25)

where xb is the barycenter of the element K . Noticing that the above equation reduces to
(2.24) for a solution with constant velocity and constant pressure, we know that (2.25), along
with (2.8) (or (2.9)), preserves constant velocity and constant pressure. Moreover, (2.25) is
only quasi-conservative since the last term is non-conservative.

The preservation of constant velocity and pressure by the DG-ALE scheme implies its
preservation of a uniform flow or some geometric identities. The later is commonly called the
geometric conservation law(s) (GCL) [33]. Satisfaction of GCL is considered as an important
property for moving mesh methods [33]. By design, the above described DG-ALE scheme
satisfies GCL.

2.4 Temporal Discretization and Limiting

Finally, the semi-discrete schemes (2.9) and (2.25) are discretized in time. Here, we use an
explicit, the third order TVD Runge-Kutta scheme [51]. Casting (2.9) and (2.25) in the form

d(MUh)

dt
= Lh(Uh, t),

whereM is themassmatrix.Noticing that themeshmotion of themethod is part of Lagrangian
solution, we use the same temporal discretization to update the physical solution, the mesh
coordinates, and other geometrical quantities such as the cell volume and the edge length.
The scheme reads as

123

 46 Page 12 of 35 Journal of Scientific Computing (2022) 90:46

Stage 1

x(1)
j = xnj + Δtn Ẋ j ,

M(1)U(1)
h = MnUn

h + Δtn Lh(Un
h, tn). (2.26)

Stage 2

x(2)
j = 3

4
xnj + 1

4
(x(1)

j + Δtn Ẋ j),

M(2)U(2)
h = 3

4
MnUn

h + 1

4
(M(1)U(1)

h + Δtn Lh(U
(1)
h , tn + Δtn)). (2.27)

Stage 3

xn+1
j = 1

3
xnj + 2

3
(x(2)

j + Δtn Ẋ j),

Mn+1Un+1
h = 1

3
MnUn

h + 2

3

(
M(2)U(2)

h + Δtn Lh(U
(2)
h , tn + 1

2
Δtn)

)
. (2.28)

We need to use a nonlinear limiter to control spurious oscillations in the numerical solution
when strong shocks are present. The process typically contains identification of troubled cells
and modification of the DG approximations on those cells. Here, we employ the minmod-
type TVB limiter [13–16,37,47] to detect troubled cells and use the multi-resolution WENO
limiter developed in [62,63] for the limiting process. Moreover, we implement this limiting
process to the primitive variables component-wisely to keep the pressure non-oscillatory.
Since the process is the same for schemes on a fixed mesh, we omit the detail here and refer
the reader to [38].

The application of the forward Euler scheme to the continuity equation (2.19) gives(∫
K

ρψdxdy

)n+1

=
∫
K

ρψdxdy − Δt
∫

∂K
ρŨ0 · nψds + Δt

∫
K

ρŨ0 · ∇ψdxdy,

(2.29)

where the superscripts are omitted. Similarly, for the momentum equations we have(∫
K

ρUψdxdy

)n+1

=
∫
K

ρU0ψdxdy − Δt
∫

∂K
(ρU0Ũ0 · n + P0nx)ψds

+ Δt
∫
K
(ρU0Ũ0 · ∇ψ + P0ψx)dxdy,(∫

K
ρVψdxdy

)n+1

=
∫
K

ρV0ψdxdy − Δt
∫

∂K
(ρV0Ũ0 · n + P0ny)ψds

+ Δt
∫
K
(ρV0Ũ0 · ∇ψ + P0ψy)dxdy.

Thus, we get (∫
K

ρUψdxdy

)n+1

= U0

(∫
K

ρψdxdy

)n+1

, (2.30)

(∫
K

ρVψdxdy

)n+1

= V0

(∫
K

ρψdxdy

)n+1

. (2.31)

123

Journal of Scientific Computing (2022) 90:46 Page 13 of 35 46

From the arbitrariness of ψ and the positivity of ρ, we have Un+1 = U0 and V n+1 = V0.
Similarly, we get Pn+1 = P0. Therefore, we have the following remarks.

Remark 1 When the forward Euler scheme is employed for the time discretization, then the
DG-ALE scheme preserves constant velocity and constant pressure.

Remark 2 When an explicit third-order TVD Runge-Kutta scheme is employed for the time
discretization, theDG-ALE scheme preserves constant velocity and constant pressure. This is
because an explicit third-order Runge-Kutta scheme can be expressed as a linear combination
of the forward Euler scheme.

Remark 3 the DG-ALE scheme with an explicit third-order TVD Runge-Kutta scheme pre-
serves a uniform flow and thus satisfies the GCL.

3 The Computation of the Grid Velocity

We consider the computation of the grid velocity in this section. To take the advantages of
both the Lagrangian meshing and the moving mesh method, we employ a predictor-corrector
strategy to define the grid velocity.More specifically,wefirst compute theLagrangian velocity
and obtain a Lagrangianmesh (cf. Sect. 3.1). Thenwe use theMMPDEmethod [24–26,37] to
improve the quality of the Lagrangian mesh. The MMPDE method is described in Sect. 3.2.

3.1 The LagrangianMeshing

There are many possible ways to determine the vertex velocity. Here, we adopt a simple yet
robust least-squares algorithm [2,7]. The first step of the algorithm is to find the flow velocity
U∗
e for each edge e. This has been done in [2,7] by solving a Riemann problem in the normal

direction of the edge. Here we propose to use the idea of the NOK flux (cf. Sect. 2.2) to
compute U∗

e . Specifically, from (2.15) and (2.14) (and taking Ẋ = 0) we compute U∗
e as

U∗
e = 〈u1〉+ + 〈u1〉−, (3.1)

where

〈u1〉+ = (UL · n)〈u0〉+ + 1

2

e−λ(UL ·n)2

√
πλ

, 〈u1〉− = (UR · n)〈u0〉− − 1

2

e−λ(UR ·n)2

√
πλ

,

(3.2)

〈u0〉+ = 1

2
erfc(−√

λ(UL · n)), 〈u0〉− = 1

2
erfc(

√
λ(UR · n)), (3.3)

λ = min{ 1
c2L

, 1
c2R

}, c is the sound speed, and UR and UL denote the values of U from the

positive-n side and the negative-n side of e, respectively. Note that the velocityU∗
e is defined

at the midpoint of the edge.
The second step is to obtain the velocity at each vertex using the least squares method.

Specifically, for a given vertex j , we would like the normal projection of the vertex velocity
on any of the connecting edges to be equal to the corresponding Riemann velocity, viz.,

Ẋ L
j · nei = U∗

ei , i = 1, 2, · · · , n j

123

 46 Page 14 of 35 Journal of Scientific Computing (2022) 90:46

where n j denotes the number of the edges connected to the vertex j . The system can be
overdetermined or underdetermined and thus we solve it by minimizing a weighted sum of
the squares of the residuals with respect to Ẋ L

j ,∑
i

αei (Ẋ
L
j · nei −U∗

ei)
2,

where αei is a weight taken as the mean of the density on each side of the edge in our compu-
tation. Having computed the Lagrangian velocity for all vertices (with proper modifications
for boundary vertices so that they stay on the domain), we can obtain the Lagrangian mesh
T n+1,L
h by updating the location of the vertices as

xL
j = xnj + Δtn · Ẋ L

j , j = 1, ..., Nv.

3.2 TheMMPDEMovingMeshMethod

Generally speaking, a Lagrangian mesh can be severely distorted and thus cannot be used
directly for the numerical solution of PDEs. In this subsection we describe the MMPDE
method that is employed to improve the quality of Lagrangian meshes.

To start with, we assume a reference computational mesh T̂c = {ξ̂ξξ j }Nv

j=1 has been chosen,
which is a deformation of the physical mesh and is fixed for the whole computation. Usually
we should choose it to be as uniform as possible and can take it as the initial physical mesh.
We also need to use the computational mesh Tc = {ξξξ j }Nv

j=1, which is also a deformation of
the physical mesh and will be used as an intermediate variable.

The MMPDE method views any nonuniform mesh as a uniform one in some metric
specified by a metric tensor M = M(x) that is a symmetric and positive definite matrix for
each x and uniformly positive definite on Ω . Such a uniform mesh Th in M satisfies the
so-called equidistribution and alignment conditions [27]

|K |√det(MK) = σh |Kc|
|Ωc| , ∀K ∈ Th (3.4)

1

d
tr((F ′

K)−1
M

−1
K (F ′

K)−T) = det((F ′
K)−1

M
−1
K (F ′

K)−T)
1
d , ∀K ∈ Th (3.5)

where d is the dimension of the spatial domain (d = 1 for one dimension and d = 2 for two
dimensions), Kc is the element in Tc corresponding to K , FK is the affine mapping from Kc

to K and F ′
K is its Jacobian matrix, MK is the average of M over K , tr(·) and det(·) denote

the trace and determinant of a matrix, respectively, and

|Ωc| =
∑

Kc∈T c

|Kc|, σh =
∑
K∈Th

|K |det(MK)
1
2 .

The equidistribution condition (3.4) requires that all of the elements have the same size. It
determines the size of elements through the metric tensorM: |K | is smaller when det(MK) is
larger and vice versa. On the other hand, the alignment condition (3.5) requires that element
K , measured in the metric MK , be similar to Kc. It determines the shape and orientation of
K through the combination ofMK and the shape and orientation of Kc. In the case where Kc

is equilateral, the shape and orientation of K is then determined completely byMK (through
its eigenvalues and eigen-directions).

123

Journal of Scientific Computing (2022) 90:46 Page 15 of 35 46

The objective of the MMPDE method is to generate a mesh satisfying the above two
conditions as closely as possible. This is done by minimizing the energy function

Ih(Th,Tc) =
∑
K∈Th

|K |√det(MK)(tr((F ′
K)−1

M
−1
K (F ′

K)−T))
3d
4

+ d
3d
4

∑
K∈Th

|K |√det(MK)

(|Kc|
|K |√det(MK)

) 3
2

, (3.6)

which is a Riemann sum of a continuous functional [28] based on equidistribution and
alignment for variational mesh adaptation. Here we use the ξ -formulation where Th is taken
as a currently available physical mesh (denoted by T̃h , its choice will be discussed later) and
Ih(T̃h,Tc) is minimized with respect to {ξξξ j }. The minimization is realized by solving the
gradient system (i.e., the mesh equation)

dξξξ j

dt
= −det(M(x j))

1
4

τ

(
∂ Ih
∂ξξξ j

)T

, j = 1, 2, · · · , Nv (3.7)

where ∂ Ih
∂ξξξ j

is considered as a row vector and τ > 0 is a parameter used to adjust the response

time of mesh movement to changes in M. The analytical formula for ∂ Ih
∂ξξξ j

can be found in
[22].

The mesh equation (3.7) (with proper modifications for boundary vertices) can be inte-
grated from tn to tn+1, starting with the reference computational mesh T̂c as an initial mesh,
to obtain a new computational mesh T n+1

c . This new mesh forms a correspondence Ψh with
the physical mesh T̃h having the property x̃ j = Ψh(ξξξ

n+1
j), j = 1, 2, · · · , Nv . The new

physical mesh T n+1
h is then defined as xn+1

j = Ψh(ξ̂ξξ j), j = 1, 2, · · · , Nv , which can be
computed using linear interpolation.

In the context of the MMPDE method, it is common to take T̃h as the physical mesh
at the current step, i.e., T̃h = T n

h . In our current situation, however, we choose T̃h =
T n+1,L
h to take the advantages of the Lagrangian mesh T n+1,L

h . In this setting, the MMPDE
method plays a role of improving the quality of the Lagrangian mesh. It has been shown
in [23] analytically and numerically that the x-formulation of the MMPDE method, where
Ih(Th, T̂c) (with Tc = T̂c) is minimized by solving its gradient system with respect to
{x j }, produces non-singular (tangling-free) meshes when the metric tensor is bounded and
the initial mesh is non-singular. Although the ξ -formulation (that we use in this work) is
different from the x-formulation, they are numerical approximations to the same continuous
optimization problem and thus we can expect the ξ -formulation also leads to non-singular
meshes especially when the mesh is sufficiently fine. Indeed, our experience shows that the
ξ -formulation is as robust as the x-formulation in terms of generating non-singular meshes.
Moreover, with a proper metric tensor (see its definition below), the MMPDE method can
be expected to concentrate mesh points near regions of shocks and material interfaces. Thus,
we hope that the use of the MMPDE method to improve quality of the Lagrangian mesh will
not (at least not significantly) move points away from shocks and material interfaces. In this
sense, the MMPDE maintains a level of mesh concentration of the Lagrangian mesh.

Having obtained the new physical mesh T n+1
h , we can compute the nodal grid velocity

using (2.6) and then Ẋ = (Ug, Vg) as the piecewise linear interpolant of the nodal grid
velocity.

A key to the success for the MMPDE moving mesh method is the selection of a proper
metric tension M that provides the information needed to control the size, shape and orien-

123

 46 Page 16 of 35 Journal of Scientific Computing (2022) 90:46

tation of the mesh elements throughout the domain. In this work, we employ a metric tensor
that is known to be optimal for the L2 norm of linear interpolation error [29] and has been
used for conservation laws in [37], i.e.,

M = det(I + |H(unh)|)−
1

d+4 (I + |H(unh)|), (3.8)

where u denotes a physical variable, I is the d × d identity matrix, H(unh) is a recovered
Hessian from the numerical solution unh , and |H(unh)| = Qdiag(|λ1|, · · · , |λd |)QT with
Qdiag(λ1, · · · , λd)QT being the eigen-decomposition of H(unh). The Hessian is recovered
using the quadratic least squares fitting [59]. For a smoothermesh, a low-pass-filter smoothing
algorithm [26] is applied to the metric tensor several sweeps every time it is computed.

For multi-component flows, we take u to be the quantity

S = 1 + β1

(
ρ

‖ρ‖∞

)2

+ β2

(
P

‖P‖∞

)2

+ β3

(
Y

‖Y‖∞

)2

, (3.9)

where βi , i = 1, 2, 3 are positive parameters and ‖ · ‖∞ is the maximum norm. In the
computation of the metric tensors, the nodal values of ρ, P , and Y are needed. They are
calculated as the volume average of the cell average of these variables in the neighboring
cells of each vertex.

4 Numerical Examples

In this section we present numerical results obtained with the DG-ALE method described
in the previous sections for a selection of one- and two-dimensional examples. Recall that
the method has been described in two dimensions. Its implementation in one dimension is
similar. The CFL number in time step selection is set to be 0.3 for P1 elements, 0.15 for P2

elements. The parameter τ in (3.7) is taken as 0.1 for accuracy test problems, 10−3 and 10−4

for one- and two-dimensional systems with discontinuities, respectively. The parameter βi ’s
in (3.9) are taken as 1.0, 1.0, and 0 for all the computations unless otherwise stated. The
results obtained with the DG-ALE method will be marked as “ALEMM" in figures.

4.1 One-dimensional Examples

Example 1 To verify the convergence order of the new method, we first consider a sine wave
composed of two components with γ1 = 1.4, γ2 = 1.9, B1 = 1, and B2 = 0. The initial
condition is given by

ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, P(x, 0) = 1, Y (x, 0) = 0.5 + 0.5 sin(πx).

A periodic boundary condition is used. We take the computational domain as (0, 2) and
compute the solution up to t = 0.5.

The error of the density is listed in Table 1, which shows the second-order convergence
for P1 elements and the third-order convergence for P2 elements for the DG-ALE method.

Example 2 To demonstrate the non-oscillatory property for the pressure and velocity fields,
in this example we consider the interface only problem with the initial condition

(ρ, v, P, γ, B) =
{

(1, 1, 1, 1.4, 1), x ≤ 0

(0.125, 1, 1, 1.9, 0), x > 0.

123

Journal of Scientific Computing (2022) 90:46 Page 17 of 35 46

Table 1 Example 1: The solution error in the density at t = 0.5

k N 40 80 160 320 640 1280

1 L1 1.128e-4 2.826e-5 7.150e-6 1.818e-6 4.615e-7 1.166e-7

Order 1.997 1.983 1.975 1.978 1.985

L2 1.443e-4 3.636e-5 9.296e-6 2.388e-6 6.111e-7 1.552e-7

Order 1.989 1.968 1.961 1.966 1.977

L∞ 4.521e-4 1.125e-4 2.925e-5 7.592e-6 1.938e-6 4.889e-7

Order 2.006 1.944 1.946 1.970 1.987

2 L1 9.595e-6 1.225e-6 1.498e-7 1.801e-8 2.168e-9 2.640e-10

Order 2.969 3.032 3.056 3.054 3.038

L2 1.380e-5 1.784e-6 2.175e-7 2.579e-8 3.049e-9 3.656e-10

Order 2.951 3.036 3.076 3.080 3.060

L∞ 5.748e-5 7.204e-6 9.491e-7 1.167e-7 1.347e-8 1.524e-9

Order 2.996 2.924 3.023 3.115 3.144

The computational domain is taken as (-5,5) and the inflow/outflow boundary conditions are
employed at the ends.

The numerical results obtained with N = 100 at T = 2 are plotted in Fig. 1. The figure
shows that the DG-ALE method preserves the constant velocity and pressure and appears to
be free of oscillations near the material interface. Moreover, the results show that the method
is able to concentrate mesh points in the regions of the material interface, which is a strong
indication that the incorporation of the Lagrangian meshing with the MMPDE moving mesh
method works well. Furthermore, the close-up of the density at the interface demonstrates
that P2-DG gives more accurate results than P1-DG.

To show the method’s preservation of the constant velocity and pressure, the absolute
errors of the velocity and pressure are plotted in Fig. 2, where one can observe that all the
errors are close to the machine zero.

Example 3 To test the numerical viscosity of the method, the Shu-Osher problem, which was
first introduced for a single material in [52], is considered for two components [35] in this
example (where each of γ and B takes two different values on the domain). This problem
contains both shocks and complex smooth region structures. We solve the Euler equations
with a moving shock interacting with a sine wave in density. The initial data is

(ρ, v, P, γ, B) =
{

(3.857143, 2.629369, 31
3 , 1.4, 1), x ≤ −4

(1 + 0.2 sin(5x), 0, 1, 1.9, 0), x > −4.

The inflow and outflow boundary conditions are employed at the ends. The physical domain
is taken as (-5, 5).

The computed density obtained with N = 150 at t = 1.8 is plotted in Fig. 3 where the
reference solution is obtained by the second-order DG method with 2000 uniform points.
The figure shows that both the shocks and the complex structures in the smooth regions are
resolved well by the DG-ALE schemewhile P2-DG is more accurate than P1-DG. Themesh
trajectories Fig. 3 also show that the mesh points are concentrated near the moving shocks
and smooth region structures for all time in the time range of the computation.

123

 46 Page 18 of 35 Journal of Scientific Computing (2022) 90:46

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 Example 2 The DG-ALE method with N = 100

123

Journal of Scientific Computing (2022) 90:46 Page 19 of 35 46

x

er
ro

r

-4 -2 0 2 4

2E-12

4E-12

6E-12

8E-12

1E-11

1.2E-11

P1,ALEMM
P2,ALEMM

(a) error of velocity

x

er
ro

r

-4 -2 0 2 4

2E-12

4E-12

6E-12

P1,ALEMM
P2,ALEMM

(b) error of pressure

x

t

-4 -2 0 2 4
0

0.5

1

1.5

(c) Mesh trajactories with P 1 elements

x

t

-4 -2 0 2 4
0

0.5

1

1.5

(d) Mesh trajactories with P 2 elements

Fig. 2 Example 2 The DG-ALE method with N = 100

Example 4 In this example the gas-liquid shock tube test with a strong shock wave is con-
sidered. This test is challenging since the shock and the material interface are close to each
other and the pressure ratio is excessively high. The initial condition is

(ρ, v, P, γ, B) =
{

(103, 0, 109, 4.4, 6 × 108), x ≤ 0.5

(50, 0, 105, 1.4, 0), x > 0.5

and the computational domain is (-0.2, 1). The inflow and outflow boundary conditions are
employed at the ends. The final time is t = 0.0002. For this problem, an analytical solution
is available [17].

The numerical results with N = 2000 are plotted in Fig. 4. One can see that both the
shock and the material interface are resolved by the scheme. Moreover, P2-DG produces
more accurate solutions than P1-DG.

For comparison purpose, in Figs. 5, 6 and 7 plots are shown the results of the current
scheme against thosewith the pure LagrangianDGmethod (marked by “LAG"), anALEwith
Winslow smoothing (marked using “ALEWIN")where theWinslowmethod is used to smooth
and improve the Lagrangian mesh, and the moving mesh DG method (marked by “MM")
which basically is the DG-ALE method without using the Lagrangian mesh, respectively.
From these figures, we can see that the current DG-ALE method gives more accurate results
than ALEWIN, MM, and LAG. Once again, this demonstrates that the incorporation of the

123

 46 Page 20 of 35 Journal of Scientific Computing (2022) 90:46

x

rh
o

-4 -2 0 2 4

1

1.5

2

2.5

3

3.5

4 ’exact’
P1,ALEMM
P2,ALEMM

(a) Density

x

rh
o

0.5 1 1.5 2 2.5 3

1.5

2

2.5

3

3.5

4

4.5

5

’exact’
P1,ALEMM
P2,ALEMM

(b) Close view of (a)

x

g
am

m
a

-4 -2 0 2 4
1.4

1.5

1.6

1.7

1.8

1.9

’exact’
P1,ALEMM
P2,ALEMM

(c) γ

x

g
am

m
a

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

1.4

1.5

1.6

1.7

1.8

1.9

’exact’
P1,ALEMM
P2,ALEMM

(d) Close view of (c)

x

B

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

’exact’
P1,ALEMM
P2,ALEMM

(e) B

x

B

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

’exact’
P1,ALEMM
P2,ALEMM

(f) Close view of (e)

x

t

-4 -2 0 2 4

0.5

1

1.5

(g) Mesh trajactories with P 1 elements

x

t

-4 -2 0 2 4

0.5

1

1.5

(h)Mesh trajactories with P 2 elements

Fig. 3 Example 3 The DG-ALE method with N = 150

123

Journal of Scientific Computing (2022) 90:46 Page 21 of 35 46

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000 exact
P1,ALEMM
P2,ALEMM

(a) Density

x

rh
o

0.59 0.595 0.6 0.605 0.61 0.615 0.62

200

400

600

800

exact
P1,ALEMM
P2,ALEMM

(b) Close view of (a)

x

g
am

m
a

-0.2 0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

3.5

4

exact
P1,ALEMM
P2,ALEMM

(c) γ

x

g
am

m
a

0.594 0.595 0.596 0.597 0.598

1.5

2

2.5

3

3.5

4

exact
P1,ALEMM
P2,ALEMM

(d) Close view of (c)

x

B

-0.2 0 0.2 0.4 0.6 0.8 1
0

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08 exact
P1,ALEMM
P2,ALEMM

(e) B

x

B

0.5945 0.595 0.5955 0.596 0.5965 0.597 0.5975 0.598

0

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08
exact
P1,ALEMM
P2,ALEMM

(f) Close view of (e)

x

t

-0.2 0 0.2 0.4 0.6 0.8 1

5E-05

0.0001

0.00015

(g) Mesh trajactories with P 1 elements

x

t

-0.2 0 0.2 0.4 0.6 0.8 1

5E-05

0.0001

0.00015

(h) Mesh trajactories with P 2 elements

Fig. 4 Example 4 The DG-ALE method with N = 2000

123

 46 Page 22 of 35 Journal of Scientific Computing (2022) 90:46

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000 exact
P1,ALEMM
P1,ALEWIN

(a) Density, P 1-DG
x

rh
o

0.59 0.595 0.6 0.605 0.61 0.615 0.62

200

400

600

800

exact
P1,ALEMM
P1,ALEWIN

(b) Close view of (a)

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000 exact
P2,ALEMM
P2,ALEWIN

(c) Density, P 2-DG
x

rh
o

0.59 0.595 0.6 0.605 0.61 0.615 0.62

200

400

600

800

exact
P2,ALEMM
P2,ALEWIN

(d) Close view of (c)

Fig. 5 Example 4 The DG-ALEmethod with moving mesh is compared with DG-ALEwithWinslow smooth-
ing. N = 2000

Lagrangian meshing with the MMPDE moving mesh method used in the current DG-ALE
method works really well to concentrate mesh points in regions of shocks and material
interfaces. Moreover, the solutions obtained with LAG are oscillatory at the discontinuities.

The solutions obtained for a longer time are shown in Fig. 8.

4.2 Two-dimensional Examples

For two-dimensional examples, an initial triangular mesh is obtained by dividing any rect-
angular element into four triangular elements; see Fig. 9 for an example. A moving mesh
associated with a mesh in Fig. 9 will be denoted by N = 10 × 10 × 4.
Example 5 To verify the convergence order of the DG-ALE method in two dimensions, we
consider a sine-wave problem and choose the parameters γ1 = 1.4, γ2 = 1.9, B1 = 1,
B2 = 0. The initial condition is given by

ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), U (x, y, 0) = 1, V (x, y, 0) = 1,

P(x, y, 0) = 1, Y (x, y, 0) = 0.5 + 0.5 sin(π(x + y)).

123

Journal of Scientific Computing (2022) 90:46 Page 23 of 35 46

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000 exact
P1,ALEMM
P1,LAG

(a) Density, P 1-DG
x

rh
o

0.59 0.595 0.6 0.605 0.61 0.615 0.62

200

400

600

800

exact
P1,ALEMM
P1,LAG

(b) Close view of (a)

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000 exact
P2,ALEMM
P2,LAG

(c) Density, P 2-DG
x

rh
o

0.59 0.595 0.6 0.605 0.61 0.615 0.62

200

400

600

800

exact
P2,ALEMM
P2,LAG

(d) Close view of (c)

Fig. 6 Example 4 The DG-ALE method with moving mesh is compared with the Lagrangian DG method.
N = 2000

Periodic boundary conditions are used in both directions. We take the computational domain
as (0, 2) × (0, 2).

We compute the solution up to t = 1. The error in the density is listed in Table 2, which
shows the second-order convergence for P1 elements and the third-order convergence for
P2 elements for the DG-ALE method.

Example 6 We test a 2D interface only problem with the initial condition

(ρ, μ, ν, P, γ, B) =
{

(2, 1, 1, 1, 4.4, 1), (x − 0.2)2 + (y − 0.2)2 ≤ 0.01

(1, 1, 1, 1, 1.4, 0), (x − 0.2)2 + (y − 0.2)2 > 0.01.

For this example, nonreflecting boundary conditions are used for the top and bottomboundary
and inflow and outflow boundary conditions are used for the left and right boundary. The
computational domain is taken as (0, 1) × (0, 1) and the numerical computation is stopped
at t = 0.3.

The results obtained with N = 100 × 100 × 4 are plotted in Fig. 10. One can observe
that the quasi-conservative DG-ALE method can preserve the constant pressure and velocity
and seems to be free of oscillations near the material interfaces. The density along the line

123

 46 Page 24 of 35 Journal of Scientific Computing (2022) 90:46

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000 exact
P1,ALEMM
P1,MM

(a)Density, P 1-DG
x

rh
o

0.59 0.595 0.6 0.605 0.61 0.615 0.62

200

400

600

800

exact
P1,ALEMM
P1,MM

(b) Close view of (a)

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000 exact
P2,ALEMM
P2,MM

(c) Density, P 2-DG
x

rh
o

0.59 0.595 0.6 0.605 0.61 0.615 0.62

200

400

600

800

exact
P2,ALEMM
P2,MM

(d) Close view of (c)

Fig. 7 Example 4 The DG-ALE method with moving mesh is compared with the moving mesh DG method
(i.e., the DG-ALE method without using the Lagrangian mesh). N = 2000

y = 0.5 and the final adaptive meshes for both P1-DG and P2-DG are plotted in Fig. 11. It
is clear that the mesh points are concentrated near the material interface and the results with
P2-DG have better resolution than the ones with P1-DG.

The absolute errors of the velocity and pressure are plotted in Fig. 12, in which one can
observe that all the errors are machine zeros.

Example 7 We consider an air shock impacting on a helium bubble [46]. The domain of this
problem is (−3, 4) × (−3, 3) and the initial condition is

(ρ,U , V , P, γ, B) =

⎧⎪⎨
⎪⎩

(0.138, 0, 0, 1, 5
3 , 0), x2 + y2 ≤ 1

(1.3764, 0.394, 0, 1.5698, 1.4, 0), x < −1.2

(1, 0, 0, 1, 1.4, 0), x ≥ −1.2 and x2 + y2 > 1.

Reflective boundary conditions are used for the top and bottom boundary and inflow and
outflow boundary conditions are adopted for the left and right boundary. The final time is
t = 4. The parameters βi ’s in (3.9) are all taken as 1 in this example.

123

Journal of Scientific Computing (2022) 90:46 Page 25 of 35 46

x

rh
o

-0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

exact
P1,ALEMM
P2,ALEMM

(a)Density

x

rh
o

0.64 0.645 0.65 0.655 0.66 0.665 0.67 0.675 0.68
0

200

400

600

800

exact
P1,ALEMM
P2,ALEMM

(b)Close view of (a)

x

g
am

m
a

-0.2 0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

3.5

4

exact
P1,ALEMM
P2,ALEMM

(c)γ

x

g
am

m
a

0.6425 0.643 0.6435 0.644 0.6445 0.645 0.6455 0.646

1.5

2

2.5

3

3.5

4

4.5

exact
P1,ALEMM
P2,ALEMM

(d)Close view of (c)

x

B

-0.2 0 0.2 0.4 0.6 0.8 1
0

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08

exact
P1,ALEMM
P2,ALEMM

(e)B

x

B

0.641 0.642 0.643 0.644 0.645 0.646 0.647

0

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08

exact
P1,ALEMM
P2,ALEMM

(f) Close view of (e)

x

t

-0.2 0 0.2 0.4 0.6 0.8 1

5E-05

0.0001

0.00015

0.0002

0.00025

x

t

-0.2 0 0.2 0.4 0.6 0.8 1

5E-05

0.0001

0.00015

0.0002

0.00025

(g) Mesh trajactories with P 1 elements (h) Mesh trajactories with P 2 elements

Fig. 8 Example 4 The DG-ALE method with N = 2000

123

 46 Page 26 of 35 Journal of Scientific Computing (2022) 90:46

Fig. 9 An initial triangular mesh
used in two dimensional
computation. A moving mesh
associated with this mesh is
denoted by N = 10 × 10 × 4

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Table 2 Example 5: The error in the density at t = 1

k N 4 × 4 × 4 8 × 8 × 4 16 × 16 × 4 32 × 32 × 4 64 × 64 × 4 128 × 128 × 4

1 L1 1.498e-2 3.159e-3 7.358e-4 1.767e-4 4.454e-5 1.140e-5

Order 2.245 2.102 2.058 1.988 1.966

L2 1.959e-2 4.149e-3 9.762e-4 2.325e-4 5.966e-5 1.553e-5

Order 2.239 2.088 2.070 1.962 1.942

L∞ 5.348e-2 1.540e-2 3.419e-3 8.166e-4 2.135e-4 5.421e-5

Order 1.796 2.171 2.066 1.936 1.977

2 L1 2.057e-3 3.360e-4 5.516e-5 1.112e-5 1.685e-6 1.876e-7

Order 2.614 2.607 2.311 2.722 3.168

L2 2.709e-3 4.020e-4 6.957e-5 1.511e-5 2.468e-6 2.938e-7

Order 2.752 2.531 2.203 2.614 3.070

L∞ 8.688e-3 1.102e-3 2.707e-4 7.037e-5 1.163e-5 1.491e-6

Order 2.980 2.025 1.944 2.597 2.963

We plot contours of the density and the adaptive mesh of N = 70 × 60 × 4 at t = 0.5,
1, 2, and 4 in Figs. 13 and 14. One can see that the mesh points are concentrated at the
material interface, an indication that the combination of the Lagrangian meshing and the
MMPDE moving mesh method works well. Moreover, P2-DG produces sharper contours of
the density near the material interface than P1-DG.

Example 8 To demonstrate the performance of the current DG-ALE method with high pres-
sure ratio in two dimensions, we consider a model underwater explosion problem [38,54].
In this test, the computation domain is taken as (−2, 2) × (−1.5, 1). Initially, the horizontal
air-water interface is located at the y = 0 and the center of a circular gas bubble with the
radius 0.12 in the water is located at (0,−0.3). Above the air-water interface, the fluid is a

123

Journal of Scientific Computing (2022) 90:46 Page 27 of 35 46

Fig. 10 Example 6. From top row to bottom row: density, velocity in the x-direction, velocity in the y-direction,
and pressure. Left column: P1-DG; Right column: P2-DG. N = 100 × 100 × 4

123

 46 Page 28 of 35 Journal of Scientific Computing (2022) 90:46

x

rh
o

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

exact
P1
P2

(a) The density along the line y = 0.5
x

rh
o

0.595 0.6 0.605

1

1.2

1.4

1.6

1.8

2

exact
P1
P2

(b) Zoom of (a)

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) Mesh, P 1-DG

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) Mesh, P 2-DG

Fig. 11 Example 6. The density along y = 0.5 and the final meshes of N = 100 × 100 × 4

perfect gas at the standard atmospheric condition and below the air-water interface in region
outside the gas bubble the fluid is water. Thus the initial condition is

(ρ,U , V , P, γ, B) =

⎧⎪⎨
⎪⎩

(1.225, 0, 0, 101325, 1.4, 0), y > 0

(1250, 0, 0, 109, 1.4, 0), x2 + (y + 0.3)2 ≤ 0.122 and y ≤ 0

(1000, 0, 0, 101325, 4.4, 6 × 108), otherwise.

A reflecting boundary condition is employed on the bottom of the domain and non-reflecting
boundary conditions are used for the remaining boundary. The parameters βi ’s in (3.9) are
all taken as 1 in this example.

At the beginning of the process, both the gas and water are in a stationary position. Due
to the pressure difference between the fluids, the bubble begins to break and this results in a
circularly outward-going shock wave in water, an inward-going rarefaction wave in gas, and
an interface lying in between those waves that separates the gas and the water. Soon after,
the shock wave is diffracted through the nearby air-water surface, causing the subsequent
deformation of the interface topology from a circle to an oval-like shape.

The contours of the density and the adaptive mesh of N = 120 × 75 × 4 are plotted at
t = 0.2, 0.4, 0.8, and 1.2 in Figs. 15 and 16. Once again, the mesh points are concentrated

123

Journal of Scientific Computing (2022) 90:46 Page 29 of 35 46

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

u
x

-0.4

-0.2

0

0.2

0.4

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

u
x

-0.4

-0.2

0

0.2

0.4

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

u
y

-0.4

-0.2

0

0.2

0.4

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

u
y

-0.4

-0.2

0

0.2

0.4

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

P

-0.4

-0.2

0

0.2

0.4

X

0

0.2

0.4

0.6

0.8

1

Y

0

0.2

0.4

0.6

0.8

1

P

-0.4

-0.2

0

0.2

0.4

Fig. 12 Example 6. From top row to bottom row: the deviations of x- and y-components of the velocity and
the pressure. Left column: P1-DG; Right column: P2-DG. N = 100 × 100 × 4

correctly near the material interface and shocks and P2-DG appears to give higher resolution
than P1-DG.

5 Conclusions

A quasi-conservative DG-ALE method for multi-component flows has been proposed in the
previous sections. The non-oscillatory kinetic flux is adopted to compute the numerical flux,
which avoids the need to construct a Riemann solver. Themain difference between the current

123

 46 Page 30 of 35 Journal of Scientific Computing (2022) 90:46

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

Fig. 13 Example 7 Density contours at t = 0.5, 1, 2, and 4 (from top to bottom). Left column: P1-DG; Right
column: P2-DG. N = 70 × 60 × 4

123

Journal of Scientific Computing (2022) 90:46 Page 31 of 35 46

Fig. 14 Example 7 The adaptive moving mesh of N = 70 × 60 × 4 at time t = 0.5, 1, 2, and 4 (from top to
bottom). Left column: P1-DG; Right column: P2-DG

123

 46 Page 32 of 35 Journal of Scientific Computing (2022) 90:46

Fig. 15 Example 8 Contours of the density at t = 0.2, 0.4, 0.8, and 1.2 ms (from top to bottom). Left column:
P1-DG; Right column: P2-DG. N = 120 × 75 × 4

method and otherDG-ALEmethods is thatwe use here a predictor-corrector strategy to define
the grid velocity, i.e., a Lagrangian step is used to predict the newmesh and then theMMPDE
moving mesh method is employed to improve the quality of the Lagrangian mesh. In this
way, the method can take the advantages of both the Lagrangian meshing and the MMPDE
moving mesh method and keep good quality of the mesh while tracking discontinuities such
as shocks and material interfaces in the flow field. The quasi-conservative DG method [38]
is adopted to solve the extended Euler equations of compressible multi-component flows
on moving meshes. Numerical results in one and two dimensions have demonstrated the
high-order accuracy of the method for smooth problems and its ability to capture shocks
and material interfaces. Particularly the results demonstrate that the incorporation of the
Lagrangian meshing with the MMPDE moving mesh method works well to concentrate
mesh points in regions of shocks and material interfaces. In the future, we plan to extend the
method to compressible multi-component flows with more general equations of state such
as the Mie-Grüneisen equation of state.

123

Journal of Scientific Computing (2022) 90:46 Page 33 of 35 46

Fig. 16 Example 8 The adaptive moving mesh of N = 120× 75× 4 at t = 0.2, 0.4, 0.8, and 1.2 (from top to
bottom). Left column: P1-DG; Right column: P2-DG

References

1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: A quasi conser-
vative approach. J. Comput. Phys. 125, 150–160 (1996)

2. Addessio, F. L., Carroll, D. E., Dukowicz, J. K., Harlow, F. H., Johnson, J. N., Kashiwa, B. A., Maltrud,
M. E., Ruppel, H.: CAVEAT: A computer code for fluid dynamics problems with large distortion and
internal slip, Los Alamos National Laboratory LA-10613-MSREVISED, (1990)

3. Baines, M.J.: Moving Finite Elements. Oxford University Press, Oxford (1994)
4. Baines, M.J., Hubbard, M.E., Jimack, P.K.: Velocity-based moving mesh methods for nonlinear partial

differential equations. Comm. Comput. Phys. 10, 509–576 (2011)
5. Boscheri, W.: High order direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume schemes for hyper-

bolic systems on unstructured meshes. Arch. Comput. Methods Eng. 24, 751–801 (2017)
6. Budd, C.J., Huang, W., Russell, R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241 (2009)
7. Chen, Y.: A study of GKS method for multi-component flows (in Chinese), Ph.D thesis, Beijing, China

Academy of Engineering Physics (2010)
8. Chen, Y., Jiang, S.: A non-oscillatory kinetic scheme for multi-component flows with the equation of

state for a stiffened gas. J. Comput. Math. 29, 661–683 (2011)
9. Chen, Y., Jiang, S.: Modified kinetic flux vector splitting schemes for compressible flows. J. Comput.

Phys. 228, 3582–3604 (2009)
10. Cheng, J., Zhang, F., Liu, T.G.: A discontinuous Galerkin method for the simulation of compressible

gas-gas and gas-water two-medium flows. J. Comput. Phys. 403, 109059 (2020)

123

 46 Page 34 of 35 Journal of Scientific Computing (2022) 90:46

11. Cheng, J., Shu, C.-W.: A high order ENO conservative Lagrangian type scheme for the compressible
Euler equations. J. Comput. Phys. 227, 1567–1596 (2007)

12. Cheng, J., Shu, C.-W.: Positivity-preserving Lagrangian scheme for multi-material compressible flow. J.
Comput. Phys. 257, 143–168 (2014)

13. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws IV: The multidimensional case. Math. Comp. 54, 545–581 (1990)

14. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

15. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws II: General framework. Math. Comp. 52, 411–435 (1989)

16. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V:
Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

17. del Razo, M.J., Leveque, R.J.: Numerical methods for interface coupling of compressible and almost
incompressible media. SIAM J. Sci. Comput. 39, B486–B507 (2017)

18. Farhat, C., Geuzaine, P., Granndmont, C.: The discrete geometric conservation law and the nonlinear
stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys. 174,
669–694 (2001)

19. Fu, P., Schnücke, G., Xia, Y.: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conser-
vation laws on moving simplex meshes. Math. Comp. 88, 2221–2255 (2019)

20. Henry de Frahan, M. T., Varadan, S., Johnsen, E.: A new limiting procedure for discontinuous Galerkin
methods applied to compressible multiphase flows with shocks and interfaces, J. Comput. Phys. 280,
489-509 (2015)

21. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow
speed. J. Comput. Phys. 14, 227–253 (1974)

22. Huang, W., Kamenski, L.: A geometric discretization and a simple implementation for variational mesh
generation and adaptation. J. Comput. Phys. 301, 322–337 (2015)

23. Huang, W., Kamenski, L.: On the mesh nonsingularity of the moving mesh PDE method. Math. Comput.
87, 1887–1911 (2018)

24. Huang, W., Ren, Y., Russell, R.D.: Moving mesh methods based on moving mesh partial differential
equations. J. Comput. Phys. 113, 279–290 (1994)

25. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDEs) based upon
the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730 (1994)

26. Huang, W., Russell, R.D.: Adaptive moving mesh methods. Springer-Verlag, New York (2011)
27. Huang, W.: Mathematical principles of anisotropic mesh adaptation. Comm. Comput. Phys. 1, 276–310

(2006)
28. Huang, W.: Variational mesh adaptation: isotropy and equidistribution. J. Comput. Phys. 174, 903–924

(2001)
29. Huang, W.: Variational mesh adaptation II: error estimates and monitor functions. J. Comput. Phys. 184,

619–648 (2003)
30. Jimack, P., Wathen, A.: Temporal derivatives in the finite-element method on continuously deforming

grids. SIAM J. Numer. Anal. 28, 990–1003 (1991)
31. Klingenberg, C., Schnücke, G., Xia, Y.: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method

for conservation laws: analysis and application in one dimension. Math. Comp. 86, 1203–1232 (2017)
32. Kucharik, M., Shashkov, M.J.: One-step hybrid remapping algorithm for multi-material arbitrary

Lagrangian-Eulerian methods. J. Comput. Phys. 231, 2851–2864 (2012)
33. Lesoinne, M., Farhat, C.: Geometric conservation laws for flow problems with moving boundaries and

deformable meshes, and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Engrg.
134, 71–90 (1996)

34. Liu, H., Xu, K.: A Runge-Kutta discontinuous Galerkin method for viscous flow equations. J. Comput.
Phys. 224, 1223–1242 (2007)

35. Liu, N., Xu, X., Chen, Y.: High-order spectral volume scheme for multi-component flows using non-
oscillatory kinetic flux. Comput. Fluids 152, 120–133 (2017)

36. Lomtev, I., Kirby, R.M., Karniadakis, G.E.: A discontinuous Galerkin ALE method for compressible
viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999)

37. Luo, D., Huang, W., Qiu, J.X.: A quasi-Lagrangian moving mesh discontinuous Galerkin method for
hyperbolic conservation laws. J. Comput. Phys. 396, 544–578 (2019)

38. Luo, D., Qiu, J.X., Zhu, J., Chen, Y.: A quasi-conservative discontinuous Galerkin method for multi-
component flows using the non-oscillatory kinetic flux. J. Sci. Comput. 87, 1–32 (2021)

39. Maire, P.H., Breil, J., Galera, S.: A cell-centered arbitrary Lagrangian-Eulerian (ALE) method. Int. J.
Numer. Meth. Fluids 56, 1161–1166 (2008)

123

Journal of Scientific Computing (2022) 90:46 Page 35 of 35 46

40. Maire, P.H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional
compressible flow problems. SIAM J. Sci. Comput. 29, 1781–1824 (2007)

41. Miller, K., Miller, R.N.: Moving finite elements I. SIAM J. Numer. Anal. 18, 1019–1032 (1981)
42. Nguyen, V.T.: An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for simulations of flows

over variable geometries. J. Fluids Struct. 26, 312–329 (2010)
43. Pandare, A. K., Wang, C., Luo, H.: An arbitrary Lagrangian-Eulerian reconstructed discontinuous

Galerkin method for compressible multiphase flows, 46th AIAA Fluid Dynamics Conference (2016)
44. Persson, P.O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier-Stokes equations on

deformable domains. Comput. Methods Appl. Mech. Eng. 198, 1585–1595 (2009)
45. Qiu, J.X., Liu, T.G., Khoo, B.C.: Runge-Kutta discontinuous Galerkin methods for compressible two-

medium flow simulations: one-dimensional case. J. Comput. Phys. 222, 353–373 (2007)
46. Qiu, J.X., Liu, T.G., Khoo, B.C.: Simulations of compressible two-medium flow by Runge-Kutta discon-

tinuous Galerkin methods with the ghost fluid method. Comm. Comput. Phys. 3, 479–504 (2008)
47. Qiu, J.X., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci.

Comput. 26, 907–929 (2005)
48. Reed, W. H., Hill, T. R.: Triangular mesh methods for neutron transport equation, Los Alamos Scientific

Laboratory Report LA-UR-73-479 (1973)
49. Ren, X., Xu, K., Shyy, W.: A multi-dimensional high-order DG-ALE method based on gas-kinetic theory

with application to oscillating bodies. J. Comput. Phys. 316, 700–720 (2016)
50. Saleem,M.R., Ali, I., Qamar, S.: Application of discontinuousGalerkinmethod for solving a compressible

five-equation two-phase flow model. Results Phys. 8, 379–390 (2018)
51. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084

(1988)
52. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes

II. J. Comput. Phys. 83, 32–78 (1989)
53. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J.

Comput. Phys. 142, 208–242 (1998)
54. Shyue, K.M.: A wave-propagation based volume tracking method for compressible multicomponent flow

in two space dimensions. J. Comput. Phys. 215, 219–244 (2006)
55. Tang, T.: Moving mesh methods for computational fluid dynamics flow and transport, Recent Advances

in Adaptive Computation (Hangzhou, 2004), Volume 383 of AMS Contemporary Mathematics, pages
141-173. Amer. Math. Soc., Providence, RI, (2005)

56. Wang, C.-W., Shu, C.-W.: An interface treating technique for compressible multi-medium flow with
Runge-Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010)

57. Xu, K.: BGK-based scheme for multicomponent flow calculations. J. Comput. Phys. 134, 122–133 (1997)
58. Xu, X., Ni, G., Jiang, S.: A high-order moving mesh kinetic scheme based on WENO reconstruction for

compressible flows on unstructured meshes. J. Sci. Comput. 57, 278–299 (2013)
59. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM

J. Sci. Comput. 26, 1192–1213 (2005)
60. Zhao, X., Yu, X., Qiu, M., Qing, F., Zou, S.: An arbitrary Lagrangian-Eulerian RKDG method for multi-

material flows on adaptive unstructured meshes. Comput. Fluids 207, 104589 (2020)
61. Zhu, J., Qiu, J.X., Liu, T.G., Khoo, B.C.: High-order RKDG methods with WENO type limiters and

conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations.
Appl. Numer. Math. 61, 554–580 (2011)

62. Zhu, J., Qiu, J.X., Shu, C.-W.: High-order Runge-Kutta discontinuous Galerkin methods with a new type
of multi-resolution WENO limiters. J. Comput. Phys. 404, 109105 (2020)

63. Zhu, J., Shu, C.-W., Qiu, J.X.: High-order Runge-Kutta discontinuous Galerkin methods with a new type
of multi-resolution WENO limiters on triangular meshes. Appl. Numer. Math. 153, 519–539 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	A Quasi-Conservative Discontinuous Galerkin Method for Multi-component Flows Using the Non-oscillatory Kinetic Flux II: ALE Framework
	Abstract
	1 Introduction
	2 A DG-ALE Method for Multi-component Flows
	2.1 The Govorning Equations
	2.2 DG Discretization of the Fluid Dynamic Equations on Moving Meshes
	2.3 DG-ALE for Species Equation
	2.4 Temporal Discretization and Limiting

	3 The Computation of the Grid Velocity
	3.1 The Lagrangian Meshing
	3.2 The MMPDE Moving Mesh Method

	4 Numerical Examples
	4.1 One-dimensional Examples
	4.2 Two-dimensional Examples

	5 Conclusions
	References

