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a b s t r a c t

Ideal MHD equations arise in many applications such as astrophysical plasmas and space
physics, and they consist of a system of nonlinear hyperbolic conservation laws. The exact
density q and pressure p should be non-negative. Numerically, such positivity property is
not always satisfied by approximated solutions. One can encounter this when simulating
problems with low density, high Mach number, or much large magnetic energy compared
with internal energy. When this occurs, numerical instability may develop and the simu-
lation can break down. In this paper, we propose positivity-preserving discontinuous
Galerkin and central discontinuous Galerkin methods for solving ideal MHD equations
by following [X. Zhang, C.-W. Shu, Journal of Computational Physics 229 (2010) 8918–
8934]. In one dimension, the positivity-preserving property is established for both meth-
ods under a reasonable assumption. The performance of the proposed methods, in terms
of accuracy, stability and positivity-preserving property, is demonstrated through a set
of one and two dimensional numerical experiments. The proposed methods formally can
be of any order of accuracy.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we continue our investigation in developing highly accurate and robust numerical methods for ideal MHD
equations [13–15,25]. This system models many important problems in a wide range of applications such as astrophysical
plasmas and space physics, and it consists of a set of nonlinear hyperbolic conservation laws,
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with an additional divergence-free constraint
r � B ¼ 0: ð1:2Þ
Here q is the density, p is the hydrodynamic pressure, u ¼ ðux;uy;uzÞT is the velocity field, and B ¼ ðBx;By;BzÞT is the magnetic

field. The total energy E is given by E ¼ 1
2 qjuj2 þ 1

2 jBj
2 þ p

c�1 with c as the ratio of the specific heats. We use the superscript T

to denote the vector transpose. In addition, I is the identity matrix, r� is the divergence operator, we further denote the

momentum qu as m ¼ ðmx;my;mzÞT. Eqs. (1.1a), (1.1b), and (1.1d) are from the conservation of mass, momentum, and en-
ergy, and (1.1c) is the magnetic induction system. With compatible initial and boundary conditions, the divergence-free con-
straint (1.2) can be derived from the magnetic induction equations.

Besides the standard difficulty in simulating nonlinear hyperbolic equations, robust numerical algorithms for ideal MHD
equations often require the divergence-free constraint in (1.2) being properly imposed [7,10,21,3]. In [13–15,25], we pro-
posed and investigated strategies to obtain locally or globally divergence-free approximations for the magnetic field in dis-
continuous Galerkin (DG) and central DG framework. Besides the designed high order accuracy, these divergence-free
methods demonstrate much improved numerical stability than the base methods without any divergence-free treatment.
On the other hand, in the simulation of some examples including certain cloud–shock interaction problems, it is observed
that the appearance of negative pressure can also lead to numerical instability, and such instability may not be removed
by simply working with divergence-free schemes. In fact both density q and pressure p in exact solutions should be non-neg-
ative. Numerically, such positivity property is not always satisfied by approximated solutions, and this may cause the loss of
hyperbolicity of the system and lead to instability of the simulation. For instance, one can encounter this when simulating
problems with low density, high Mach number, or much large magnetic energy compared with internal energy. In this paper,
we are interested in developing high order DG and central DG methods for (1.1), (1.2) which preserve positivity of both den-
sity and pressure. More specifically, we propose positivity-preserving limiters with which the cell average of the DG or cen-
tral DG solution has positive density and pressure at discrete time tn as long as they are initially positive. It is in general
difficult to design positivity-preserving schemes which also satisfy the divergence-free constraint exactly. In this paper,
the positivity-preserving limiters are presented for standard DG and central DG methods defined in Sections 3.1 and 3.2
where the divergence constraint is not considered. We want to point out that by utilizing the intrinsic local nature of both
methods, one can also apply locally divergence-free approximations [13] straightforwardly in the present framework with-
out affecting the positivity-preserving property of the overall algorithm (see also Remark 3.1).

In the context of ideal MHD equations, a positivity-preserving limiter was designed and analyzed in [22] for a second or-
der finite volume method. The resulting scheme is conservative in one dimension, and it is nonconservative in higher dimen-
sions with a source term added to the magnetic induction equation and properly discretized in order to take into account the
normal jump in the magnetic field. Such modified magnetic induction equation allowing magnetic monopoles was also used
in [12] for a positive scheme combining both HLL and Roe methods. In [5], a hybrid strategy was proposed for the positivity
of pressure. It involves a linearized Riemann solver working directly with the entropy density equation instead of the total
energy Eq. (1.1d) in the absence of magnetosonic shocks, and a standard Riemann solver based on (1.1) elsewhere. The over-
all strategy relies on switches to indicate where each Riemann solver should be applied.

On the other hand, for compressible Euler equations (which are the same as ideal MHD equations when the magnetic field
is zero), an innovative positivity-preserving technique was recently introduced and analyzed by Zhang and Shu in [27] for
finite volume methods and DG methods with arbitrary order of accuracy. This technique can be regarded as generalization
of the maximum-principle-satisfying limiters for scalar conservation laws [26] and the positivity-preserving schemes for
compressible Euler equations in [17]. It starts with a first order positivity-preserving scheme as a building block, followed
by a necessary condition to ensure the positivity-preserving property of the methods of higher order accuracy. A simple local
limiter is then designed and analyzed to enforce the sufficient condition without destroying the accuracy and conservation of
the schemes. The limiter was first presented when the time discretization is forward Euler method, then high order accuracy
in time is achieved with the use of strong stability preserving (SSP) time discretizations which can be written as a convex
combination of forward Euler methods. In the present work, we apply the positivity-preserving technique of Zhang and
Shu to DG methods in solving ideal MHD system, and we also propose such technique to central DG methods. In one dimen-
sion, the positivity-preserving property of both the DG and central DG methods is established theoretically under a reason-
able assumption. In higher than one dimension, the numerically relevant Riemann problem allows nonzero divergence in the
magnetic field, therefore the numerical divergence often needs to be taken into account in devising positivity-preserving
schemes, see [22]. We here formally extend the proposed positivity-preserving limiters to two dimensions as in [27]. Though
without rigorous analysis, the performance of the methods in terms of accuracy, stability, and being positivity-preserving,
are successfully demonstrated through a set of one and two dimensional numerical experiments. Both DG and central DG
methods use piecewise smooth functions as approximations, and they have proved themselves to be a good candidate to
accurately and reliably simulate many linear and nonlinear problems including nonlinear conservations laws [8,16]. Com-
pared with DG methods, central DG methods evolve two copies of numerical solutions and do not use any numerical flux
(which is an approximate Riemann solver). This implies that one cannot rely on properly designed numerical Riemann
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solvers as in [5,22] to devise positivity-preserving central DG methods. In fact, the present work is the first to examine the
positivity preserving property in the central DG framework (see also the concluding remarks in Section 5). Even with the
difference between DG and central DG methods, one will see that the positivity-preserving limiters for both methods turn
out to be very similar. The methods are presented for one dimension and two dimensions on Cartesian meshes in this paper,
but there is no essential difficulty to extend them to three dimensions and triangular meshes [23].

For ideal MHD equations, part of the techniques developed by Zhang and Shu [27] was recently used in [1] to design self-
adjusting positivity-preserving high order finite volume WENO (weighted essentially non-oscillatory) schemes, with the
ADER time discretization [2] in the numerical experiments. Such time discretizations are different from SSP time discretiza-
tions, whose structure of being a convex combination of the first order Euler methods is an important component for the
methods in [27] (and the one-dimensional schemes in this paper) to achieve provable positivity-preserving property with
high order accuracy. To thoroughly understand the methods in [1], analysis different from the one in [27] would be needed.
In [24], a similar scaling procedure as in [27] was used to remove the negative pressure in numerically simulating the double
Mach reflection problem in compressible Euler equations using DG methods.

The remainder of the paper is organized as follows. Section 2 is devoted to one dimension. Here we establish the positiv-
ity-preserving property of the first order DG method with the Lax–Friedrichs flux and the first order central DG method. With
these building blocks, necessary conditions are given to obtain positivity-preserving higher order DG and central DG meth-
ods. Such conditions can be achieved through some positivity-preserving limiters. These methods are formally extended to
two dimensions in Section 3 on Cartesian meshes. In Section 4, numerical experiments are carried out to demonstrate the
accuracy, stability, and positivity-preserving properties of the methods in one and two dimensions. Concluding remarks
are made in Section 5.
2. One-dimensional case

In this section, we will propose and analyze positivity-preserving DG and central DG methods for one-dimensional ideal
MHD systems. For DG methods, the positivity-preserving technique is a direct generalization of the one in [27] for compress-
ible Euler equations which can be regarded as a special case of the ideal MHD system (1.1) with a zero magnetic field.

With U ¼ ðq;mT ;BT ; EÞT, one-dimensional ideal MHD system can be written as
@U
@t
þ @

@x
FðUÞ ¼ 0; ð2:3Þ
where
:
FðUÞ ¼ mx;
m2
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We define an admissible set G,
G ¼ fU : q > 0 and pðUÞ > 0g; ð2:4Þ
with pðUÞ ¼ ðc� 1ÞðE� 1
2
jmj2
q � 1

2 jBj
2Þ. One can verify that G is a convex set since pðUÞ is a concave function of U when q > 0.

In one dimension, the divergence-free condition r � B ¼ 0 in (1.2) is reduced to Bx ¼ constant. In this section, we
assume Bx ¼ B0x at t ¼ 0, with B0x being a given constant. The relevant admissible set is G ¼ GB0x ¼
fU : Bx ¼ B0x; q > 0 and pðUÞ > 0g. That is, the Bx component of all admissible states in G takes the same value B0x. Through-
out this section, G always means GB0x . In addition, we make the following assumption.

Assumption P. Consider the following one-dimensional Riemann problem for the ideal MHD system
@U
@t þ @

@x FðUÞ ¼ 0;

Uðx;0Þ ¼
Ul; x < 0;
Ur; x > 0:

�8><>: ð2:5Þ
where Bx ¼ B0x at t ¼ 0. We assume that Ul;Ur belonging to G implies that the exact solution Uðx; tÞ 2 G.
It is reasonable to make above assumption in order to design a positivity-preserving numerical method for the ideal MHD

system. We will not consider the more subtle case when vacuum (with q ¼ 0) may develop [20].

2.1. Positivity-preserving DG schemes

To define DG methods, we start with a mesh fIigi of the computational domain X ¼ ðxmin; xmaxÞ, with Ii ¼ ðxi; xiþ1Þ. Without
loss of generality, the mesh is assumed to be uniform with a meshsize Dx. We further introduce a finite dimensional discrete
space
Uh ¼ fu ¼ ðu1; . . . ;u8ÞT : uljIi
2 PkðIiÞ;8l; ig;
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where PkðIiÞ consists of polynomials in Ii of degree at most k. Note that any function u in Uh is piecewise defined, and it is
discontinuous at grid points. We use u�i and uþi to denote the limit of u from the left and the right of xi, respectively, 8i. A
standard semi-discrete DG method for (2.3) is given as follows: look for Uh 2 Uh, such that 8u 2 Uh, and 8i,
Z

Ii

@Uh

@t
� udx�

Z
Ii

FðUhÞ �
@u
@x

dxþ hiþ1u�iþ1 � hiuþi ¼ 0: ð2:6Þ
The function h ¼ hðU�h ;U
þ
h Þ is a single-valued numerical flux which is consistent to F, namely hðU;UÞ ¼ FðUÞ. Such DG meth-

ods, like many other numerical methods, usually are not positivity-preserving. We want to propose a positivity-preserving
limiter, such that when it is applied to DG methods with a properly chosen numerical flux, the cell average of the DG solution
�Uh will belong to the admissible set G at each discrete time tn.

By following [27], to design positivity-preserving limiters for DG methods of arbitrary accuracy when explicit SSP time
discretizations are used (these are the time discretizations we consider in this work, and they can be written as a convex
combination of the first order forward Euler methods), one only needs to find a first order positivity-preserving DG method
with the forward Euler time discretization. For this, we start with k ¼ 0, apply the first order forward Euler time discretiza-
tion in (2.6), and get
Unþ1
i ¼ Un

i � k hðUn
i ;U

n
iþ1Þ � hðUn

i�1;U
n
i Þ

� �
: ð2:7Þ
Here k ¼ Dt
Dx ; Dt ¼ tnþ1 � tn is the time step, and Un

i approximates the cell average of the exact solution in Ii at time tn. In ac-
tual simulations Dt often depends on n. The first order scheme (2.7) with its numerical flux hð�; �Þ is called positivity-preserv-
ing, if one can imply Unþ1

j 2 G for all j as long as Un
j 2 G for all j. In next subsection, we will prove and numerically confirm

that with a simple Lax–Friedrichs flux, namely,
hðu�;uþÞ ¼ 1
2

Fðu�Þ þ FðuþÞ � axðuþ � u�Þð Þ; ð2:8Þ
where
ax ¼ jjðjuxj þ cx
f Þð�; tnÞjj1 ð2:9Þ
and cx
f is the fast speed of the system in x-direction [18], the first order DG method (2.7) is positivity-preserving under

Assumption P and a reasonable CFL condition.

2.1.1. Positivity-preserving property of the first order Lax–Friedrichs DG method

Lemma 2.1. Under Assumption P, the first order DG method with the Lax–Friedrichs numerical flux defined in (2.7)–(2.9) is
positivity-preserving under a CFL condition
kax 6 a0; ð2:10Þ
with a0 ¼ 1
2. That is, if Un

i 2 G;8i, then Unþ1
i 2 G;8i. In addition, the numerical Bx stays as constant.
Proof. With the numerical flux in (2.8), the fifth component Un
i does not change with respect to n, therefore the numerical Bx

stays as a constant. The proof for the positivity-preserving property follows Appendix in [17] which is for the compressible
Euler equation. We here provide more details of the analysis. Assume Un

i 2 G; 8i, we want to show that Unþ1
i , computed from

(2.7)–(2.9), is in G; 8i.

Step 1. First we consider an auxiliary Riemann problem
@V
@t þ @

@x ðFðVÞ þ axVÞ ¼ 0;

Vðx; tHÞ ¼
Un

i�1; x < xH;

Un
i ; x > xH;

(8>><>>: ð2:11Þ
with its solution denoted as V ¼ Vðx; t; xH; tH;U
n
i�1;U

n
i Þ; t P tH. Note that Uðx; tÞ ¼ Vðxþ xH þ axt; t þ tHÞ satisfies the Riemann

problem (2.5) with Ul ¼ Un
i�1 and Ur ¼ Un

i . Based on Assumption P;Uð�; tÞ 2 G, and therefore Vð�; t; xH; tH;U
n
i�1;U

n
i Þ 2 G; t P tH.

Similarly, if we replace ax with �ax in (2.11), the solution to this new problem will also belong to G.
Step 2. Next we consider
@U
@t þ @

@x ðFðUÞ þ axUÞ ¼ 0;
Uðx; tnÞ ¼ Un

i ; when x 2 Ii:

(
ð2:12Þ
It is easy to see that the eigenvalues of the Jacobian of FðUÞ þ axU are non-negative and no more than 2ax. Let tnþ1 ¼ tn þ Dt,
with Dt 6 Dx

2ax
. In the time interval ½tn; tnþ1�, the solution to (2.12) consists of many Riemann problems, with each stemming
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from x ¼ xi at t ¼ tn;8i (see Fig. 2.1). Moreover, these Riemann problems will not intersect each other and the exact solution
U is given by Uðx; tÞ ¼ Vðx; t; xi; tn;U

n
i�1;U

n
i Þ for x 2 Ii ¼ ðxi; xiþ1Þ and t 2 ½tn; tnþ1�, therefore Uðx; tÞ 2 G within this time interval.

If we further integrate Eq. (2.12) over the control volume Ii � ½tn; tnþ1�, then
~Ui :¼ 1
Dx

Z
Ii

Uðx; tnþ1Þdx ¼ 1
Dx

Z
Ii

Uðx; tnÞdx� 1
Dx

Z tnþ1

tn

ðFðUÞ þ axUÞðxiþ1; tÞ � ðFðUÞ þ axUÞðxi; tÞdt
� �

¼ Un
i � k FðUn

i Þ þ axUn
i � FðUn

i�1Þ � axUn
i�1

� �
: ð2:13Þ
Since G is a convex set, Uðx; tnþ1Þ 2 G implies ~Ui ¼ 1
Dx

R
Ii

Uðx; tnþ1Þdx 2 G. For the last equality (2.13), we use Uðxi; tÞ ¼ Un
i�1; 8i

for t 2 ðtn; tnþ1Þ and this is due to the self-similarity property of the solution to the Riemann problem. Similarly, if we replace
ax with �ax in (2.12), and consider
@U
@t þ @

@x ðFðUÞ � axUÞ ¼ 0;
Uðx; tnÞ ¼ Un

i ; when x 2 Ii;

(
ð2:14Þ
then ~~Ui 2 G, with
~~Ui :¼ Un
i � k FðUn

iþ1Þ � axUn
iþ1 � FðUn

i Þ þ axUn
i

� �
: ð2:15Þ
Step 3. Note that Unþ1
i ¼ ~Uiþ

~~Ui
2 ;8i indeed is the solution at t ¼ tnþ1 to the first order DG method with the Lax–Friedrichs

numerical flux defined in (2.7)–(2.9). With the convexity of the set G, we now conclude that Unþ1
i 2 G. h
Remark 2.2. In Lemma 2.1, the upper bound for the CFL condition is a0 ¼ 1=2. This is the same as that for the compressible
Euler equation in [17], and it ensures the local Riemann problems considered in the proof of Lemma 2.1 (see Step 2) will not
intersect each other. The result in [17] is further improved in [27] with a0 ¼ 1 through a purely algebraic proof by showing
Un

i�1 þ 1
ax

FðUn
i�1Þ and Un

iþ1 � 1
ax

FðUn
iþ1Þ belong to G. Unfortunately such improvement can not be made for the ideal MHD sys-

tem as numerical tests show that Un
i�1 þ 1

ax
FðUn

i�1Þ and Un
iþ1 � 1

ax
FðUn

iþ1Þmay not be in G. This is also implied by the numerical
experiments reported in Table 2.2. On the other hand, a0 larger than 1/2 can be used in actual simulations.

As the core result for developing high order positivity-preserving DG methods, Lemma 2.1 relies on Assumption P. Next
we will present a set of numerical experiments to validate this lemma. We start with three vectors Un

i�1;U
n
i and Un

iþ1 which
take random values. In particular ux;uy;uz;By and Bz are from Uð�c1; c1Þ;q is from Uð0; c2Þ, and p is from Uð0; c3Þ. The con-
stant component Bx is from Uð�c4; c4Þ. Here Uðc

H
; c

HH
Þ is the uniform distribution on ðc

H
; c

HH
Þ. We also vary the CFL number

kax within ½1=2;1�. For each set of parameters ci; i ¼ 1; . . . 4 and kax, we conduct 105 random experiments, compute Unþ1
i

from (2.7)–(2.9), and count the total number of occurrence of negative pressure, namely when pðUnþ1
i Þ < 0. The results in

Table 2.1 are collected when kax ¼ 1=2, and they confirm that the first order Lax–Friedrichs DG method (2.7)–(2.9) is posi-
tivity-preserving under the CFL condition 2.10 with kax ¼ ð6Þa0 ¼ 1=2. Numerical tests further indicate that this positivity-
preserving property holds for a larger CFL condition with a0 ¼ 9=10 (the numerical results are not included), yet not always
for a0 ¼ 1 as in [27] for the compressible Euler equations. This is illustrated by the results in Table 2.2 with kax ¼ 1. On the
other hand, when kax ¼ 1 negative pressure occurs very rarely (in less than 0.01% of all the experiments we have carried out),
and this partially explains the satisfactory performance of the positivity-preserving high order DG methods when kax ¼ 1 is
used in MHD simulations (see Section 4).

2.1.2. Positivity-preserving DG methods with higher order accuracy
Once a first order positivity-preserving DG method (2.7) is identified with the first order forward Euler time discretiza-

tion, one can proceed exactly as in [27] to consider DG methods with general order of accuracy. Since SSP time discretiza-
tions are used in this work, we only need to consider the scheme satisfied by the cell average of the DG solution with the
forward Euler time discretization, given as
�Unþ1
i ¼ �Un

i � kðhðUn;�
iþ1;U

n;þ
iþ1Þ � hðUn;�

i ;Un;þ
i ÞÞ: ð2:16Þ
Here �Un
i is the cell average of the DG solution Uh on Ii at time tn. We also use Un

i ¼ Uðxi; tnÞ.
Fig. 2.1. Illustration for the problem defined in (2.12).



Table 2.1
To verify the positivity-preserving property of the first order Lax–Friedrichs DG method (2.7)–(2.9). ux ;uy; uz ;By;Bz is from Uð�c1; c1Þ;q is from Uð0; c2Þ; p is
from Uð0; c3Þ, and Bx is from Uð�c4; c4Þ. � = the total number of occurrence of negative pressure in 105 random experiments. The CFL condition is kax ¼ a0 ¼ 1=2.
Bx is continuous.

a0 c1 c2 c3 c4 � a0 c1 c2 c3 c4 �

1/2 10 10�4
10�4 1 0 1/2 10 100 1 10 0

1/2 10 10�4 10�4 10 0 1/2 10 100 1 100 0
1/2 10 10�4 10�4 100 0 1/2 100 10�4 10�4 1 0
1/2 10 10�4 1 1 0 1/2 100 10�4 10�4 10 0
1/2 10 10�4 1 10 0 1/2 100 10�4 10�4 100 0
1/2 10 10�4 1 100 0 1/2 100 10�4 1 1 0
1/2 10 1 10�4 1 0 1/2 100 10�4 1 10 0
1/2 10 1 10�4 10 0 1/2 100 10�4 1 100 0
1/2 10 1 10�4 100 0 1/2 100 1 10�4 1 0
1/2 10 1 1 1 0 1/2 100 1 10�4 10 0
1/2 10 1 1 10 0 1/2 100 1 10�4 100 0
1/2 10 1 1 100 0 1/2 100 1 10�4 1000 0
1/2 10 10 10�4 1 0 1/2 100 1 10�4 10000 0
1/2 10 10 10�4 10 0 1/2 100 1 10�4 10000 0
1/2 10 10 10�4 100 0 1/2 100 1 1 1 0
1/2 10 100 10�4 100 0 1/2 100 1 1 10 0
1/2 10 100 1 1 0 1/2 100 1 1 100 0

Table 2.2
To verify the positivity-preserving property of the first order Lax–Friedrichs DG method (2.7)–(2.9). ux ;uy; uz ;By;Bz is from Uð�c1; c1Þ;q is from Uð0; c2Þ; p is
from Uð0; c3Þ, and Bx is from Uð�c4; c4Þ. � = the total number of occurrence of negative pressure in 105 random experiments. The CFL condition is kax ¼ a0 ¼ 1. Bx

is continuous.

a0 c1 c2 c3 c4 � a0 c1 c2 c3 c4 �

1 10 10�4 10�4 1 0 1 100 10�4 10�4 1 0
1 10 10�4 10�4 10 0 1 100 10�4 10�4 10 0
1 10 10�4 10�4 100 0 1 100 10�4 10�4 100 0
1 10 10�4 1 1 0 1 100 10�4 1 1 0
1 10 10�4 1 10 0 1 100 10�4 1 10 0
1 10 10�4 1 100 0 1 100 10�4 1 100 0
1 10 1 10�4 1 0 1 100 1 10�4 1 0
1 10 1 10�4 10 0 1 100 1 10�4 10 0
1 10 1 10�4 100 0 1 100 1 10�4 100 0
1 10 10 10�4 100 <10 1 100 10 10�4 100 <10
1 10 100 10�4 100 <10 1 100 100 10�4 100 <10
1 10 1 1 1 0 1 100 1 1 1 0
1 10 1 1 10 0 1 100 1 1 10 0
1 10 1 1 100 0 1 100 1 1 100 0
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In order to provide a sufficient condition to ensure �Unþ1
i 2 G; 8i, let Ŝx

i ¼ fx̂
b
i ; b ¼ 1; . . . ;Ng be the Legendre Gauss–Lobatto

quadrature points in Ii, with the corresponding quadrature weights fx̂bgN
b¼1 on ½� 1

2 ;
1
2� satisfying

PN
b¼1x̂b ¼ 1 and x̂1 ¼ x̂N .

Since this quadrature is exact for the integral of polynomials of degree up to 2N � 3, we take N such that 2N � 3 P k.

Theorem 2.3. For the scheme (2.16), suppose �Un
i 2 G; 8i. If Uhðx; tnÞ 2 G for 8x 2 Ŝx

i ; 8i, then �Unþ1
i will belong to G;8i, under the

CFL condition
kax 6 a0x̂1: ð2:17Þ
Here a0 is the same as in Lemma 2.1.
The proof is the same as in [27]. With this sufficient condition, a positivity-preserving limiter can be defined and analyzed.

We will not include the details, but the limiter itself in Section 2.3. Though the Lax–Friedrichs numerical flux is considered in
this paper, one can work with other numerical fluxes as along as the first order scheme in (2.7) combined with these numer-
ical fluxes is positivity-preserving.

For conservative positivity-preserving DG method, the solution has the following property regarding stability.

Theorem 2.4. Assuming vanishing, reflective, or periodic boundary conditions, then the conservative positivity-preserving DG
method will satisfy
jjqnþ1
h jjL1ðXÞ ¼ jjq

n
hjjL1ðXÞ; jjEnþ1

h jjL1ðXÞ ¼ jjE
n
hjjL1ðXÞ: ð2:18Þ
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The proof can be obtained similarly as that for Theorem 2.3 in [23]. For most numerical methods solving the ideal MHD
system, it is not easy to obtain provable stability. The seemly simple stability result in Theorem 2.4 ensures the L1 stability of
two conservative variables, density and the total energy, and this explains why positivity-preserving limiters tend to play a
more important role to the robustness of conservative numerical methods in MHD simulations (see Section 4 and [12]). This
stability result also hold for higher dimensional DG methods in Section 3.
2.2. Positivity-preserving central DG schemes

To define central DG methods, we start with a mesh fIigi of the computational domain X ¼ ðxmin; xmaxÞ, with Ii ¼ ðxi; xiþ1Þ.
With xiþ1

2
¼ 1

2 ðxi þ xiþ1Þ and ID
i ¼ ðxi�1

2
; xiþ1

2
Þ, we can define a dual mesh fID

i gi for X. Without loss of generality, the mesh is as-
sumed to be uniform with a meshsize Dx. Associated to these meshes, we further introduce two finite dimensional discrete
spaces
Uh ¼ fu ¼ ðu1; . . . ;u8ÞT : uljIi
2 PkðIiÞ;8l; ig;

UD
h ¼ fu ¼ ðu1; . . . ; u8ÞT : uljID

i
2 PkðID

i Þ;8l; ig;
which include piecewise polynomials of degree at most k with respect to each mesh. The semi-discrete central DG method
for (2.3) is given as follows: look for Uh 2 Uh and UD

h 2 UD
h such that 8u 2 Uh; 8uD 2 UD

h , and 8i,
Z
Ii

@Uh

@t
� udx� 1

smax

Z
Ii

ðUD
h � UhÞ � udx�

Z
Ii

FðUD
h Þ �

@u
@x

dxþ FðUD
h Þiþ1u�iþ1 � FðUD

h Þiuþi ¼ 0; ð2:19aÞ

Z
ID
i

@UD
h

@t
� uD dx� 1

smax

Z
ID
i

ðUh � UD
h Þ � uD dx�

Z
ID
i

FðUhÞ �
@uD

@x
dxþ FðUhÞiþ1

2
uD;�

iþ1
2
� FðUhÞi�1

2
uD;þ

i�1
2
¼ 0: ð2:19bÞ
Here smax is the maximum time step allowed by the CFL condition. Both Uh and UD
h provide approximations to the exact solu-

tion U. Different from DG methods in Section 2.1, with the use of overlapping meshes, there is no numerical flux in central
DG methods.

For central DG methods in (2.19), we want to propose positivity-preserving limiters, with which the cell average of the
numerical solution on each mesh belongs to the admissible set G at each discrete time tn. To achieve this, we start with the
first order central DG method using the forward Euler time discretization, given as
Unþ1
i ¼ ð1� hÞUn

i þ h
UD;n

i þ UD;n
iþ1

2
� k FðUD;n

iþ1Þ � FðUD;n
i Þ

	 

; ð2:20aÞ

UD;nþ1
i ¼ ð1� hÞUD;n

i þ h
Un

i þ Un
i�1

2
� k FðUn

i Þ � FðUn
i�1Þ

� �
: ð2:20bÞ
Here k ¼ Dt
Dx, and Un

i (resp. UD;n
i ) approximates the cell average of the exact solution in Ii (resp. ID

i ) at time tn. h ¼ Dt
smax

and it can
be regarded as a parameter in ½0;1�. In real simulations h can depend on n. It turns out that to establish the positivity-pre-
serving property of the first order central DG method (2.20), it is sufficient to consider the case when h ¼ 1.

Lemma 2.5. Under Assumption P, the first order central DG method (2.20) with h ¼ 1 is positivity-preserving under a CFL
condition
kax 6 a0; ð2:21Þ
with a0 ¼ 1
2. That is, if Un

i ;U
D;n
i 2 G;8i, then Unþ1

i ;UD;nþ1
i 2 G;8i. Here ax is defined as
ax ¼maxðjjðjuxj þ cx
f Þð�; tnÞjj1; jjðjuD

x j þ cD;x
f Þð�; tnÞjj1Þ: ð2:22Þ
In addition, the numerical Bx stays as constant.
Proof. It is trivial to show that the numerical Bx stays as constant. Next assume Un
i ;U

D;n
i 2 G;8i, we want to show that Unþ1

i

and UD;nþ1
i , computed from (2.20) with h ¼ 1, are also in G;8i.

Consider
@U
@t þ @

@x FðUÞ ¼ 0;
Uðx; tnÞ ¼ Un

i ; when x 2 Ii:

(
ð2:23Þ
Note the eigenvalues of the Jacobian of FðUÞ are within ½�ax; ax�. Let tnþ1 ¼ tn þ Dt, with Dt 6 Dx
2ax

. In the time interval ½tn; tnþ1�,
the solution to (2.23) consists of many Riemann problems, with each stemming from x ¼ xi at t ¼ tn; 8i. Moreover, these Rie-
mann problems will not intersect each other, therefore the exact solution Uðx; tÞ 2 G for t 2 ½tn; tnþ1� due to Assumption P. If
we further integrate Eq. (2.23) over the control volume ID

i � ½tn; tnþ1�, then
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~Ui :¼ 1
Dx

Z
ID
i

Uðx; tnþ1Þdx ¼ 1
Dx

Z
ID
i

Uðx; tnÞdx� 1
Dx

Z tnþ1

tn

ðFðUðxiþ1
2
; tÞÞ � FðUðxi�1

2
; tÞÞÞdt

� �
¼ Un

i þ Un
i�1

2
� k FðUn

i Þ � FðUn
i�1Þ

� �
: ð2:24Þ
Since G is a convex set, Uðx; tnþ1Þ 2 G implies ~Ui ¼ 1
Dx

R
ID
i

Uðx; tnþ1Þdx 2 G. For the last equality (2.24), we use Uðxi�1
2
; tÞ ¼ Un

i�1

and Uðxiþ1
2
; tÞ ¼ Un

i for t 2 ðtn; tnþ1Þ and this is due to the self-similarity property of the solution to the Riemann problem. Now
note that ~Ui is exactly UD;nþ1

i , which is computed from (2.20b) with h ¼ 1 and therefore also belongs to G as long as the CFL
condition kax 6

1
2 holds. Similarly, one can prove that Unþ1

i is in G under the same CFL condition. h

With Lemma 2.5, we are now ready for the general central DG methods (including the first order case). Since SSP time
discretizations are used in this work, we only need to consider the scheme satisfied by the cell average of the central DG
solution with the forward Euler time discretization, given as
�Unþ1
i ¼ ð1� hÞ�Un

i þ
h
Dx

Z
Ii

UD;n
h dx� k FðUD;n

iþ1Þ � FðUD;n
i Þ

	 

; ð2:25aÞ

�UD;nþ1
i ¼ ð1� hÞ�UD;n

i þ
h
Dx

Z
ID
i

Un
h dx� k FðUn

iþ1
2
Þ � FðUn

i�1
2
Þ

	 

; ð2:25bÞ
Here �Un
i (resp. �UD;n

i ) is the cell average of Uh on Ii (resp. UD
h on ID

i ) at time tn. We also use Un
i�1

2
¼ Uhðxi�1

2
; tnÞ and

UD;n
i ¼ UD

h ðxi; tnÞ; 8i.
In order to provide a sufficient condition to ensure �Unþ1

i ; �UD;nþ1
i 2 G;8i, let Ŝ1;x

i ¼ fx̂
1;b
i ; b ¼ 1; . . . ;Ng and

Ŝ2;x
i ¼ fx̂

2;b
i ; b ¼ 1; . . . ;Ng be the Legendre Gauss–Lobatto quadrature points on ½xi; xiþ1=2� and ½xiþ1=2; xiþ1�, respectively. The cor-

responding quadrature rule is exact for the integral of polynomials of degree up to 2N � 3. We choose N such that
2N � 3 P k. Let x̂b; b ¼ 1; . . . N be the Legendre Gauss–Lobatto quadrature weights for the interval ½� 1

2 ;
1
2�. Note thatPN

b¼1x̂b ¼ 1; x̂1 ¼ x̂N . And xi ¼ x̂1;1
i ¼ x̂2;N

i�1; xiþ1
2
¼ x̂1;N

i ¼ x̂2;1
i ; 8i.

Theorem 2.6. For the scheme (2.25), suppose �Un
i ;

�UD;n
i 2 G;8i. If Uhðx; tnÞ;UD

h ðx; tnÞ 2 G for 8x 2 Ŝl;x
i ;8i and l ¼ 1;2, then �Unþ1

i and
�UD;nþ1

i will belong to G;8i, under the CFL condition
kax 6 ha0x̂1: ð2:26Þ
Here a0 is the same as in Lemma 2.5.
Proof. Using the Legendre Gauss–Lobatto quadrature rule, we have
1
Dx

Z
Ii

UD;n
h dx ¼ 1

2

XN

b¼1

x̂bUD
1;b þ

XN

b¼1

x̂bUD
2;b

 !
;

where UD
l;b ¼ UD;n

h ðx̂
l;b
i Þ; l ¼ 1;2. Now
�Unþ1
i ¼ ð1� hÞ�Un

i þ
h
Dx

Z
Ii

UD;n
h dx� k FðUD;n

iþ1Þ � FðUD;n
i Þ

	 

; ð2:27Þ

¼ ð1� hÞ�Un
i þ

h
2

XN

b¼1

x̂bUD
1;b þ

XN

b¼1

x̂bUD
2;b

 !
� k FðUD;n

iþ1Þ � FðUD;n
i Þ

	 

ð2:28Þ

¼ ð1� hÞ�Un
i þ

h
2

XN

b¼2

x̂bUD
1;b þ

XN�1

b¼1

x̂bUD
2;b

 !
þ hx̂1

~Ui ð2:29Þ
with ~Ui ¼
UD;n

i
þUD;n

iþ1
2 � k

hx̂1
FðUD;n

iþ1Þ � FðUD;n
i Þ

	 

. We here use x̂1 ¼ x̂N; UD

1;1 ¼ UD;n
i , and UD

2;N ¼ UD;n
iþ1. From Lemma 2.5, we know

~Ui 2 G as long as k
hx̂1

ax 6 a0, namely kax 6 ha0x̂1. Note that �Unþ1
i is a convex combination of �Un

i ; UD
1;b with

b ¼ 2; . . . ;N; UD
2;b with b ¼ 1; . . . ;N � 1 and ~Ui, which all belong to the convex admissible set G, therefore �Unþ1

i 2 G; 8i. Sim-
ilarly, one can show �UD;nþ1

i 2 G; 8i. h

For positivity-preserving central DG method, the solution has the following property regarding L1 stability of density and
total energy. The proof can be obtained similarly as that for Theorem 2.3 in [23].

Theorem 2.7. Assuming vanishing, reflective, or periodic boundary conditions, then the positivity-preserving central DG method
will satisfy
jjqnþ1
h jjL1ðXÞ þ jjq

D;nþ1
h jjL1ðXÞ ¼ jjq

n
hjjL1ðXÞ þ jjq

D;n
h jjL1ðXÞ;

jjEnþ1
h jjL1ðXÞ þ jjE

D;nþ1
h jjL1ðXÞ ¼ jjE

n
hjjL1ðXÞ þ jjE

D;n
h jjL1ðXÞ:
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Compared with DG methods, there are twice as many quadrature points used in Theorem 2.6 for central DG methods.
Unlike DG methods, the CFL condition to ensure the positivity-preserving property of central DG methods also depends
on the value of h which cannot be zero. Such dependence on h is expected, as when the first order central DG method
(2.20) is applied to a scalar conservation law ut þ f ðuÞx ¼ 0, it can be verified algebraically that,
k max jf 0ðuÞj 6 ha0; with a0 ¼
1
2

and 0 < h < 1
is the sufficient and necessary condition for (2.20) to be a monotone scheme, which is known to satisfy the strict maximum
principle. Furthermore, the fact that central DG methods does not involve any numerical flux implies that one can not work
with various first order positivity-preserving building blocks as in the DG framework by applying different numerical fluxes.

2.3. Positivity-preserving limiters

With the developments in Sections 2.1 and 2.2, in this section we present a positivity-preserving limiter based on the
work in [27] for compressible Euler equations and its recent improvement in [23] for reactive Euler equations.

For DG method, let K represent a mesh element Ii with any point as x, let SK represent the set of relevant quadrature
points in K, namely SK ¼ Ŝx

i . Given the DG solution polynomial UK ¼ ðq;mT ;BT ; EÞT in K at time tn, with the cell average
�UK ¼ ð�q; �mT ; �BT ; �EÞT belongs to the admissible set G, we will define a positivity-preserving limiter to modify UK into ~UK , such
that ~UK not only keeps the accuracy and local conservation property of UK ([27]), but also satisfies the positivity property,
namely ~UKðxÞ 2 G for any x 2 SK . With this ~UK used in the DG method (2.6), the cell average of the solution at tnþ1 will be
in G with the forward Euler method time discretization under the CFL condition kax 6 a0x̂1.

Following [27,23], the positivity-preserving limiter for DG method is given as follows. With the forward Euler time dis-
cretization, on each mesh element K,

1. We first enforce the positivity of density, by modifying q into q̂ ¼ ĝKðq� �qÞ þ �q, with ĝK ¼minx2SK f1; jð�q� �Þ=
ð�q� qðxÞÞjg. Here � is a small number such that minK �qK > �. In practice, we take � ¼ 10�13.

2. Next we enforce the positivity of pressure. Define bUK ¼ ðq̂;mT ;BT ; EÞT. For any x 2 SK , if pðbUKðxÞÞP 0 we set gx ¼ 1;
otherwise
gx ¼
pð�UKÞ

pð�UKÞ � pðbUKÞ
: ð2:30Þ
We now define ~UK ¼ gKðÛK � �UKÞ þ �UK , with gK ¼ minx2SK gx.

It is easy to see q̂ is positive. For pressure, with pðUÞ being concave (when q > 0) and based on a similar argument as in
[23], one has
pð~UKÞ ¼ pðgKðÛK � �UKÞ þ �UKÞ ¼ pðgKðÛKÞ þ ð1� gKÞ�UKÞP gK pðÛKÞ þ ð1� gKÞpð�UKÞ; ðqðÛKÞ > 0;qð�UkÞ
> 0; Jensens inequalityÞ ð2:31Þ
For any x 2 SK , if pðÛKðxÞÞP 0, there is pð~UKðxÞÞP 0 according to (2.31). If instead pðÛKðxÞÞ < 0, then pðÛKðxÞÞ � pð�UKÞ < 0, if
we further use gx defined in (2.30), there will be
pð~UKðxÞÞP gK pðÛKðxÞÞ þ ð1� gKÞpð�UKÞ ¼ gKðpðÛKðxÞÞ � pð�UKÞÞ þ pð�UKÞP gxðpðÛKðxÞÞ � pð�UKÞÞ þ pð�UKÞ ¼ 0:
For central DG method, given the central DG solution polynomials Uh and UD
h at time tn, with the cell averages in the set G,

we will give a positivity-preserving limiter which modify Uh and UD
h into ~Uh and ~UD

h such that they will satisfy the sufficient
condition in Theorem 2.6, while maintaining accuracy and local conservation. In fact, this limiter is almost the same as above
for DG methods, as long as it is applied to Uh and UD

h separately and the notations K and SK are re-defined as follows: On the
primal mesh, let K represent a mesh element Ii. Let SK represent the set of relevant quadrature points in K, namely
SK ¼ Ŝ1;x

i [ Ŝ2;x
i . On the dual mesh, let K represent a mesh element ID

i . Let SK represent the set of relevant quadrature points
in K, namely SK ¼ Ŝ1;x

i [ Ŝ2;x
i�1. The numerical solution on K is denoted as UK . One can see that the total number quadrature

points involved in the positivity-preserving limiter for central DG methods is twice (2d with d being the spatial dimension)
of that of standard DG methods.

For SSP time discretizations, the limiter will be used after each stage for multi-stage methods or in each step for multi-
step methods.

Remark 2.8. Though the positivity-preserving limiter improves the stability of the numerical methods, it is insufficient to
ensure the stability of the overall algorithm, for which we still need to apply nonlinear limiters ([27]). In our simulations, the
minmod TVB limiter is applied right before the positivity-preserving limiter.



264 Y. Cheng et al. / Journal of Computational Physics 238 (2013) 255–280
Remark 2.9. When enforcing the positivity of the pressure in the second step, we follow the improved technique proposed
in [23] for its simplicity and robustness. Alternatively, one can use the procedure in Section 2.2 of [27] which will reply on
finding the roots of a cubic polynomial at each relevant quadrature point. Our numerical experiments show that this more
involved procedure is less robust, as indicated in [23].

3. Two-dimensional case

In two dimensions when all unknown functions depend on spatial variables x and y, Eqs. (1.1a)–(1.1d) can be written as
@U
@t
þ @

@x
F1ðUÞ þ

@

@y
F2ðUÞ ¼ 0; ð3:32Þ
where F1 is the same as F in one dimension and
F2ðUÞ ¼ my;
mxmy

q
�ByBx;

m2
y

q
þpþ1

2
jBj2�B2

y ;
mymz

q
�ByBz;

myBx�mxBy

q
;0;

myBz�mzBy

q
;
1
q

my Eþpþ1
2
jBj2

� �
�Bym �B

� � !T

:

In [27] when the compressible Euler system is considered, positivity-preserving limiters for higher spatial dimensions on
Cartesian meshes can be devised as long as a first order positivity-preserving DG method is available in one spatial dimen-
sion. However for the ideal MHD system, the situation is different due to the nonzero numerical divergence in two dimen-
sions. This implies that the numerically relevant Riemann problems are not the same for one and higher spatial dimensions.
The one-dimensional Riemann problem starts with the initial data where Bx is constant throughout the domain, while for
higher than one dimension, the numerically relevant Riemann problem allows a nonzero divergence of B hence a nontrivial
jump in the normal component of B. On the Cartesian mesh, this implies Bx (resp. By) is not necessary to be continuous in x-
direction (resp. y-direction). For such Riemann problem, one can not make an assumption similar to Assumption P, therefore
can not establish the positivity-preserving property of the first order DG or central DG method as in Lemmas 2.1 and 2.5. On
the other hand, if the first order building block is positivity-preserving, then necessary conditions similar to Theorems 2.3
and 2.6 can be established for high order DG and central DG methods to ensure the cell averages of their solutions belong
to G. This motivates us to still state the ‘‘necessary conditions’’ and provide the ‘‘positivity-preserving’’ limiters. One should
be aware that these necessary conditions hence the limiters are given formally without any rigorous proof. Their actual per-
formance in terms of stability and effectiveness in preserving positivity will be illustrated by numerical experiments in
Section 4.
3.1. DG methods

To define the DG methods, we start with a mesh fIijgi;j for the computational domain X ¼ ðxmin; xmaxÞ � ðymin; ymaxÞ, with
Iij ¼ Ii � Jj ¼ ðxi; xiþ1Þ � ðyj; yjþ1Þ. Without loss of generality, the mesh is assumed to be uniform with mesh sizes Dx and Dy.
We further define a finite dimensional space
Uh ¼ fu ¼ ðu1;u2; . . . ;u8ÞT : uljIij
2 PkðIijÞ;8l; i; jg: ð3:33Þ
Now the standard semi-discrete DG methods for (3.32) can be given as follows: look for Uh 2 Uh, such that 8u 2 Uh, and
8i; j,
 Z

Iij

@Uh

@t
� udxdy�

Z
Iij

F1ðUhÞ �
@u
@x
þ F2ðUhÞ �

@u
@y

� �
dxdyþ

Z
Jj

ðh1u�Þjx¼xiþ1
� ðh1uþÞjx¼xi

dyþ
Z

Ii

ðh2u�Þjy¼yjþ1

� ðh2uþÞjy¼yj
dx ¼ 0: ð3:34Þ
Here, h1ð�; �Þ (resp. h2ð�; �Þ) is the numerical flux in y-direction (resp. x-direction) mesh interfaces. The integrals in (3.34) (ex-
cept the first one) are further approximated by quadratures with sufficient accuracy [8]. For the numerical flux, the simple
Lax–Friedrichs flux
h1ðu�;uþÞ ¼
1
2

F1ðu�Þ þ F1ðuþÞ � axðuþ � u�Þð Þ; ð3:35aÞ

h2ðu�;uþÞ ¼
1
2

F2ðu�Þ þ F2ðuþÞ � ayðuþ � u�Þ
� �

; ð3:35bÞ
is used, where ax ¼ jjðjuxj þ cx
f Þð�; �; tÞjj1 and ay ¼ jjðjuyj þ cy

f Þð�; �; tÞjj1 with cx
f and cy

f being the fast speed in x and y directions,
respectively.
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With the forward Euler method as the time discretization, the cell average of the DG solution, �Un
ij satisfies
Table A
To verif
Uð0; c3Þ
disconti

a0

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
�Unþ1
ij ¼ �Un

ij þ
Dt

DxDy

Z
Jj

h1

�����
x¼xiþ1

x¼xi

dyþ
Z

Ii

h2

����y¼yjþ1

y¼yj

dx

0@ 1A ð3:36Þ
In order to state the ‘‘sufficient condition’’ for �Unþ1
ij to belong to G (defined in 2.4), let Ŝx

i ¼ fx̂
b
i ; b ¼ 1; . . . ;Ng and

Ŝy
j ¼ fŷ

b
j ; b ¼ 1; . . . ;Ng be the Legendre Gauss–Lobatto quadrature points on Ii and Jj, respectively, with the corresponding

quadrature weights fx̂bgN
b¼1 on ½� 1

2 ;
1
2� satisfying

PN
b¼1x̂b ¼ 1 and x̂1 ¼ x̂N . We take N such that 2N � 3 P k. Let

Sx
i ¼ fxa

i ; : a ¼ 1; . . . ; Lg and Sy
j ¼ fya

j ; : a ¼ 1; . . . ; Lg be the Gaussian quadrature points on Ii and Jj, respectively. L is chosen
such that the Gaussian quadrature is exact for the integral of single variable polynomials of degree 2kþ 1. Define
Si;j ¼ ðSx
i � Ŝy

j Þ [ ðŜ
x
i � Sy

j Þ:
’’Sufficient condition’’ for DG methods in two dimensions. For the scheme (3.36), given �Un
ij in G;8i; j. If Uhðx; y; tnÞ 2 G for

8ðx; yÞ 2 Si;j;8i; j, and if the integrals on the mesh interfaces in (3.34) (and therefore (3.36)) are approximated by Gauss quadrature
with Sx

i or Sy
j given above, then under the CFL condition
kxax þ kyay 6 a0x̂1; ð3:37Þ

�Unþ1

ij will belong to G;8i; j. Here a0 is some constant.
Based on [27], in order to rigorously prove these sufficient conditions, one can try to show that the first order DG method

with the Lax–Friedrichs numerical flux in (2.7)–(2.9) is positivity-preserving under some CFL condition when Bx is piecewise
constant. Though one can not make Assumption P with discontinuity in Bx, we carry out some numerical experiments in
Appendix A as in Section 2.1.1 to seek some numerical evidence. Our results in Tables A.7 and A.8 demonstrate numerically
that the first order DG method with the Lax–Friedrichs numerical flux is positivity-preserving under the CFL condition (2.10)
with a ¼ 1

2.

3.2. Central DG methods

To define central DG methods, besides the mesh fIijgi;j and the discrete space Uh as introduced for DG methods, one also

needs a dual mesh fID
ijgi;j and its associated discrete space UD

h on it. That is, with xiþ1
2
¼ 1

2 ðxi þ xiþ1Þ; yjþ1
2
¼ 1

2 ðyj þ yjþ1Þ, we define

ID
ij ¼ ID

i � JD
j ¼ xi�1

2
; xiþ1

2

	 

� yj�1

2
; yjþ1

2

	 

, and
UD
h ¼ fu ¼ ðu1;u2; . . . ;u8ÞT : uljID

ij
2 PkðID

ij Þ;8l; i; jg: ð3:38Þ
The semi-discrete central DG methods for (3.32) can be given as follows: look for Uh 2 Uh;U
D
h 2 UD

h , such that
8u 2 Uh;8uD 2 UD

h , and 8i; j,
Z
Iij

@Uh

@t
� udxdy� 1

smax

Z
Iij

ðUD
h � UhÞdxdy�

Z
Iij

F1ðUD
h Þ �

@u
@x
þ F2ðUD

h Þ �
@u
@y

� �
dxdyþ

Z
Jj

ðF1ðUD
h Þu�Þjx¼xiþ1

� ðF1ðUD
h ÞuþÞjx¼xi

dyþ
Z

Ii

ðF2ðUD
h Þu�Þjy¼yjþ1

� ðF2ðUD
h ÞuþÞjy¼yj

dx ¼ 0;
.7
y the positivity-preserving property of the first order Lax-Fredrichs DG method (2.7)–(2.9). ux ;uy; uz ;By;Bz is from Uð�c1 ; c1Þ;q is from Uð0; c2Þ; p is from
, and Bx is from Uð�c4 ; c4Þ. � = the total number of occurrence of negative pressure in 105 random experiments. The CFL number is kxax ¼ a0 ¼ 1=2; Bx is
nuous.

c1 c2 c3 c4 � a0 c1 c2 c3 c4 �

10 10�4 10�4 1 0 1/2 100 10�4 10�4 1 0
10 10�4 10�4 10 0 1/2 100 10�4 10�4 10 0
10 10�4 10�4 100 0 1/2 100 10�4 10�4 100 0
10 10�4 1 1 0 1/2 100 10�4 1 1 0
10 10�4 1 10 0 1/2 100 10�4 1 10 0
10 10�4 1 100 0 1/2 100 10�4 1 100 0
10 1 10�4 1 0 1/2 100 1 10�4 1 0
10 1 10�4 10 0 1/2 100 1 10�4 10 0
10 1 10�4 100 0 1/2 100 1 10�4 100 0
10 1 1 1 0 1/2 100 1 1 1 0
10 1 1 10 0 1/2 100 1 1 10 0
10 1 1 100 0 1/2 100 1 1 100 0
100 1 10�4 1000 0 1/2 100 100 10�4 10,000 0
100 100 10�4 1000 0 1/2 100 100 10�4 100,000 0



Table A.8
To verify the positivity-preserving property of the first order Lax-Fredrichs DG method (2.7)–(2.9). ux ;uy;uz; By;Bz is from Uð�c1 ; c1Þ;q is from Uð0; c2Þ; p is from
Uð0; c3Þ, and Bx is from Uð�c4 ; c4Þ. � = the total number of occurrence of negative pressure in 105 random experiments. The CFL number is kxax ¼ a0 > 1=2;Bx is
discontinuous.

a0 c1 c2 c3 c4 � a0 c1 c2 c3 c4 �

3/5 10 1 10�4 100 0 3/5 100 1 10�4 100 0
3/5 10 10 10�4 100 0 3/5 100 100 10�4 100 0
3/5 10 1 1 100 0 3/5 100 1 1 100 0
4/5 10 1 10�4 100 <10 4/5 100 1 1 10 0
4/5 10 10 10�4 100 <10 4/5 100 1 1 100 <10
1 10 10�4 1 1 0 1 100 10�4 1 1 0
1 10 10�4 1 10 0 1 100 10�4 1 10 0
1 10 10�4 1 100 <100 1 100 10�4 1 100 0
1 10 1 10�4 1 <10 1 100 1 10�4 1 0
1 10 10 10�4 1 <100 1 100 10 10�4 1 0
1 10 100 10�4 1 <100 1 100 100 10�4 1 0
1 10 1 1 1 <10 1 100 1 1 1 0
1 10 1 1 10 <500 1 100 1 1 10 <10
1 10 1 1 100 <2000 1 100 1 1 100 <500
1 10 10�4 10�4 1 0 1 100 1 10�4 10 <10
1 10 10�4 10�4 10 <10 1 100 10 10�4 10 <30
1 10 10�4 10�4 100 <100 1 100 100 10�4 10 <50
1 10 1 10�4 10 <500 1 100 10 10�4 100 <300
1 10 1 10�4 100 <2000 1 100 100 10�4 100 <300
1 10 10 10�4 10 <500 1 100 10 1 1 0
1 10 10 10�4 100 <2000 1 100 100 1 1 0
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dx ¼ 0: ð3:39Þ
With the forward Euler method as the time discretization, the cell average of the central DG method, �Un
ij;

�UD;n
ij satisfies
�Unþ1
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Here h ¼ Dt
smax

, which can be treated as a parameter in ð0;1�.
In order to state the ‘‘sufficient condition’’ for �Unþ1

ij ; �UD;nþ1
ij from (3.40) belongs to G, let Ŝ1;x

i ¼ fx̂
1;b
i ; : b ¼ 1; . . . ;Ng and

Ŝ2;x
i ¼ fx̂

2;b
i ; : b ¼ 1; . . . ;Ng denote the Legendre Gauss–Lobatto quadrature points on ½xi; xiþ1=2� and ½xiþ1=2; xiþ1�, respectively,

Ŝ1;y
j ¼ fŷ

1;b
j ; : b ¼ 1; . . . ;Ng and Ŝ2;y

j ¼ fŷ
2;b
j ; : b ¼ 1; . . . ;Ng denote the Legendre Gauss–Lobatto quadrature points on

½yj; yjþ1=2� and ½yjþ1=2; yjþ1�, respectively. The corresponding quadrature weights on ½� 1
2 ;

1
2� are x̂b; b ¼ 1; . . . ;N, and N is chosen

such that 2N � 3 P k. In addition, let S1;x
i ¼ fx

1;a
i ; : a ¼ 1; . . . ; Lg and S2;x

i ¼ fx
2;a
i ; : a ¼ 1; . . . ; Lg denote the Gaussian quadra-

ture points on ½xi; xiþ1=2� and ½xiþ1=2; xiþ1�, respectively, S1;y
j ¼ fy

1;a
j ; : a ¼ 1; . . . ; Lg and S2;y

j ¼ fy
2;a
j ; : a ¼ 1; . . . ; Lg denote the

Gaussian quadrature points on ½yj; yjþ1=2� and ½yjþ1=2; yjþ1�, respectively. The corresponding quadrature weights on ½� 1
2 ;

1
2�

are xa;a ¼ 1; . . . ; L, and L is chosen such that the Gaussian quadrature is exact for the integral of single variable polynomials
of degree 2kþ 1. Define
Sl;m
i;j ¼ ðS

l;x
i � Ŝm;y

j Þ [ ðŜ
l;x
i � Sm;y

j Þ
with l;m ¼ 1; 2.
‘‘Sufficient condition’’ for central DG methods in two dimensions. For the scheme (3.40), given �Un

ij and �UD;n
ij in G;8i; j . If

Uhðx; y; tnÞ;UD
h ðx; y; tnÞ 2 G for 8ðx; yÞ 2 Sl;m

i;j ;8i; j and l;m ¼ 1;2, and if integrals on the mesh interfaces in (3.39) are approximated
by
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for any i; j, then under the CFL condition
kxax þ kyay 6 ha0x̂1; ð3:41Þ

�Wnþ1

ij and �WD;nþ1
ij will belong to G;8i; j. Here a0 is some constant.

In both the current and previous sections, there is a un-specified constant a0 in the sufficient conditions for both DG and
central DG methods. We use a0 ¼ 1 for DG methods and a0 ¼ 1=2 for central DG methods in the numerical tests. In [27], a
sufficient condition stated exactly as in Section 3.1 was established for DG methods applied to the compressible Euler sys-
tem, which can be regarded as a special case of the ideal MHD system with a zero magnetic field. For the compressible Euler
system, one can rigorously establish a sufficient condition as in Section 3.2 for central DG methods. We will omit the proof
with the focus of the current paper.

3.3. ‘‘Positivity-preserving’’ limiter

Given the DG solution polynomial Uh at time tn, with the cell averages in the admissible set G, we will give a positivity-
preserving limiter which modify Uh into ~Uh such that it will satisfy the sufficient condition given in Section 3.2 for DG meth-
ods. In fact, this limiter is almost the same as in Section 2.3 for DG methods in one dimension, as along as K and SK are re-
defined as follows: K represent a mesh element Iij with any point as x, let SK represent the set of relevant quadrature points in
K; SK ¼ Sij. The numerical solution on K is denoted as UK .

Given the central DG solution polynomials Uh and UD
h at time tn, with the cell averages in the admissible set G, we will give

a positivity-preserving limiter which modify Uh and UD
h into ~Uh and ~UD

h such that they will satisfy the sufficient condition
given in Section 3.2 for central DG methods. In fact, this limiter is almost the same as in Section 2.3 for DG methods in
one dimension, as long as it is applied to Uh and UD

h separately and the notations K and SK are re-defined as follows: On
the primal mesh, let K represent a mesh element Iij. Let SK represent the set of relevant quadrature points in K, namely
SK ¼ [2

l;m¼1Sl;m
i;j . On the dual mesh, let K represent a mesh element ID

ij . Let SK represent the set of relevant quadrature points
in K, namely SK ¼ S1;1

i;j [ S1;2
i;j�1 [ S2;1

i�1;j [ S2;2
i�1;j�1. The numerical solution on K is denoted as UK .

Remark 3.1. In this paper, the positivity-preserving limiters are presented for standard DG and central DG methods. These
methods use standard polynomial spaces, and the divergence-free condition on the magnetic field in (1.2) is not imposed
(except for the example in Section 4.3). On the other hand, the proposed positivity preserving limiter involves an element
wise convex combination of the numerical solution and its cell average. If the numerical magnetic field has zero divergence
within one cell element, then after the limiter, it is still divergence-free in this element. Therefore one can apply locally
divergence-free approximations [13] straightforwardly in the current framework for both DG and central DG methods
without affecting the positivity-preserving property of the overall algorithm.
4. Numerical examples

In this section, numerical experiments are presented to demonstrate the performance of the proposed positivity-preserv-
ing DG and central DG methods. We start with two one-dimensional examples, namely, the high Mach shear flow and the
torsional Alfvén wave pulse with periodic boundary conditions. Then our methods are tested through four two-dimensional
problems including the Orzag-Tang example with the periodic boundary conditions, and the blast problem and two exam-
ples on cloud–shock interaction with outgoing boundary conditions. All the examples reported here experience negative
pressure when a base scheme, namely a DG method or central DG method, is applied without the positivity-preserving lim-
iter (PPL). With the PPL, both methods successfully remove negative pressure for all these examples. (See Remark 4.2 for
other examples we tested.) In the simulations, uniform meshes are used, and the time step Dt is dynamically determined by
Dt ¼ a0x̂1
ax
Dx

� � ðone dimensionÞ or Dt ¼ a0x̂1

ax
Dxþ

ay

Dy

	 
 ðtwo dimensionsÞ
for DG methods, and
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Dt ¼ ha0x̂1
ax
Dx

� � ðone dimensionÞ or Dt ¼ ha0x̂1

ax
Dxþ

ay

Dy

	 
 ðtwo dimensionsÞ
for central DG methods. Following [27] we take x̂1 ¼ 1=6 in the second (k ¼ 1) and the third order (k ¼ 2) methods. Even
though the analysis suggests a0 ¼ 1=2, we use a0 ¼ 1 for DG methods and have not observed any negative density or pres-
sure in our experiments. Note that larger a0 means larger time steps. For central DG methods, we still work with a0 ¼ 1=2
with h ¼ 1. The time discretization is the third order total variation diminishing (TVD) Runge–Kutta method. As mentioned
in [27,23], there is a theoretical complication regarding the CFL condition for a Runge–Kutta time discretization since it is
nontrivial to estimate ax or ay accurately for all inner stages based on the numerical solution only at time tn. A simple tech-
nique was suggested in [27,23] by multiplying ax and ay with a factor when a preliminary calculation suggests negative den-
sity or pressure at time tnþ1. Fortunately, we haven’t encountered such situation throughout the numerical experiments.
Though all examples are tested with both P1 and P2 approximations, except for the high Mach shear flow example, we only
present the P2 results on the primal mesh.

In the presence of strong shocks, it is known that nonlinear limiters are required to control oscillations in numerical
methods hence to enhance the stability of high order DG or central DG methods when simulating hyperbolic problems.
We here employ the total variation bounded (TVB) minmod slope limiter, which is implemented in local characteristic fields
[8,18], right before the PPL, with the associated parameter M ¼ 10. Different values of M may influence the results for each
individual example, and this will not be explored in this paper.

Remark 4.1. In [23], the PPL itself can stabilize high order DG schemes when simulating some very demanding examples in
gaseous detonations without the TVB limiter. For DG methods, we observe that the TVB limiter must be used to stabilize the
simulation, while for central DG methods, the PPL itself is sufficient for the stability of P1 approximation yet not for the P2 case.
Remark 4.2. We also tested widely-used MHD examples including the Brio–Wu shock tube example and the Low plasma b
shock tube example [22] in one dimension, and the rotor problem [14,15] in two dimensions. No negative density or pressure
is observed when the base DG and central DG methods are applied.
4.1. The high Mach shear flow

In this subsection, we consider an advected shear flow problem with high Mach number ([22]) to investigate the effec-
tiveness and accuracy of the positivity-preserving schemes. The initial conditions are given on the domain ½0;1� as
Table 4.3
Performance of DG or central DG schemes with respect to A. PP is for positivity-preserving. W means the scheme
works and F means the scheme fails. NNP implies that no negative pressure is produced, while NP implies that there
is negative pressure.

0 < A < As As 6 A < Ap Ap 6 A < eA A P eA
Base schemes W/NNP W/NP F F
PP schemes W/NNP W/NNP W/NNP F

Table 4.4
Values of Ap and As for DG schemes.

Mesh P1 P2

100 As ¼ 15 Ap ¼ 20 As ¼ 38 Ap ¼ 64
200 As ¼ 29 Ap ¼ 36 As ¼ 92 Ap ¼ 150

.5
s for P2 approximation of uy for the high Mach shear flow example on ½0;1� at t ¼ 0:02. Error�: L2 errors by the base methods; error��: L2 errors by the
ty-preserving methods.

h As Error� Error�� As Error� Error��

DG Central DG

15 1.9743E�01 1.9756E�01 15 1.5716E�01 1.5716E�01
29 2.7412E�01 2.7664E�01 28 2.7316E�01 2.7329E�01
58 3.3037E�01 3.3037E�01 61 3.3823E�01 3.3823E�01

115 1.0693E�01 1.0693E�01 132 2.2689E�01 2.2694E�01
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ðq;ux;uy;uz;Bx;By; Bz; pÞ ¼ ð1;50;Aðsinð2pxÞ þ 0:15 sinð2pxÞÞ;0;0;0;0;1=cÞ
with periodic boundary conditions and c ¼ 5=3. Here, A > 0 is a free parameter, and one can adjust its value to demonstrate
the effect of positivity-preserving limiter in the simulations. It is observed that for any given mesh, there exist two critical
values for A, denoted as As and Ap. As is the smallest value for which the negative pressure appears for a base method, and no
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0 0.05 0.1 0.15
.15

1.2

.25

1.3

.35

1.4

.45

1.5

.55

1.6 x 10−14

0 0.05 0.1 0.15
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2 x 10−14

. Evolution of relative error (vertical line) of L1 norms of density (left) and the total energy (right) versus time. Positivity-preserving central DG
s.

.6
s and orders for uy of the high Mach shear flow example by positivity-preserving DG methods on [0, 1] at t ¼ 0:02.

L2 error Order L2 error Order L2 error Order L2 error Order

DG Central DG

P1 P2 P1 P2

2.60E�01 – 2.78E�01 – 2.63E�01 – 2.58E�01 –
6.88E�02 1.92 3.60E�02 2.95 7.96E�02 1.73 3.59E�02 2.85
1.03E�02 2.94 4.43E�03 3.02 1.24E�02 2.68 4.53E�03 2.99
1.33E�03 2.95 5.49E�04 3.01 1.61E�03 2.94 5.48E�04 3.05
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negative pressure is produced as A < As. Ap is the smallest value for which the base numerical scheme fails while the corre-
sponding positivity-preserving scheme continues to work. The positivity-preserving schemes eventually break down for
some eA larger than Ap. We want to point out that negative pressure does not necessarily mean the failure of a numerical
method. In Table 4.3, we summarize the performance of numerical methods with respect to the values of A. Numerical tests
further show that Ap > As for both DG and central DG schemes on meshes N ¼ 100; 200; 400 and 800, and this indicates that
the positivity-preserving limiters stabilize the numerical simulation. As an example, we present values of As and Ap for DG
schemes in Table 4.4 which also shows that As and Ap are dependent of meshsizes.

Next, we investigate the ability of positivity-preserving limiter to maintain the accuracy. We have tested various values of
A 2 ½As;ApÞ on each mesh, and observe that the numerical errors with and without using the positivity-preserving limiter are
comparable. This can be seen from Table 4.5, where L2 errors are reported for P2 approximations of uy obtained by positivity-
preserving DG and central DG methods as A ¼ As.

Finally, we fix the value of A, namely, A ¼ 29 for P1 and A ¼ 92 for P2, and examine the accuracy order of the proposed
methods. In Table 4.6, L2 errors and orders are presented for uy at t ¼ 0:02, and they confirm the optimal (or better than opti-
mal as in P1 case) order of accuracy of the positivity-preserving DG and central DG methods. In all experiments reported for
this example, the TVB limiter is not applied.

4.2. The torsional Alfvén wave pulse

Next we consider the propagation of a torsional Alfvén wave pulse ([5]) which is initialized as
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with a pulse around the center of the computational domain ½�0:5;0:5�. Here / ¼ p
8 ðtanhð0:25þx

d Þ þ 1Þðtanhð0:25�x
d Þ þ 1Þ with

d ¼ 0:005. The boundary conditions are periodic and c ¼ 5=3. In this example, the initial pressure is very small, which is less
than ten-thousandth of the total energy. In addition to the presence of a strong torsional Alfvén wave discontinuity in the
solution, it is easy for most numerical schemes to produce negative pressure.

The simulation is carried out on a uniform mesh with N ¼ 800. We start with validating the L1 stability result for density q
and the total energy E of the positivity-preserving schemes (see Theorems 2.4 and 2.7). This in fact also corresponds to the
conservation of q and E over the domain X due to the positivity of their cell average. In Figs. 4.2 and 4.3, we plot the time
evolution of the relative error of jjqð�; tÞjjL1ðXÞ and jjEð�; tÞjjL1ðXÞ obtained by positivity-preserving DG and central DG methods.
Both the L1 norms of q and E remain constant with respect to t up to machine precision.

In Figs. 4.4 and 4.5, we further present the total energy and pressure from positivity-preserving schemes at t ¼ 0:156, by
then the pulse has traveled through the domain twice. Note that there are two pulses in the solution, and the successful sim-
ulation should properly preserve the shape of these features. The magnitude of the pulses in the total energy of DG solutions
is larger than that of central DG methods. By taking into account the conservation, away from the pulses, the magnitude of
the total energy is smaller in DG solutions. Though pressure is still much smaller than the total energy, it remains positive (in
fact throughout the simulation). One can also observe the increase in pressure. In particular, in smooth region, pressure
grows to about one hundredth of the total energy in DG solutions, while in central DG solutions, pressure is about one thou-
sandth of the total energy.

In Figs. 4.6 and 4.7, we plot uy;uz;By;Bz of the positivity-preserving DG and central DG solutions, respectively. The solu-
tions contain two discontinuities (at the location of the pulses in the total energy), and both are captured stably. In uy and uz,
bumps can seen around one discontinuity. Similar feature is observed in [5] and it is described as shocklets and explained by
the insufficiency of numerical Riemann solvers. The much smaller bump in Fig. 4.7 implies that central DG methods better
capture the discontinuity for this example.

Finally we illustrate the effectiveness of the positivity-preserving limiter in eliminating negative pressure during the sim-
ulation. In Fig. 4.8, we plot the time evolution of the total number of elements with negative pressure when the base DG
methods without the PPL are used. The nonzero number indicates that the PPL is activated in the simulation. For this exam-
ple, the central DG methods without the PPL will blow up around t ¼ 0:04.
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Fig. 4.6. uy (top left), uz (top right), By (bottom left), and Bz (bottom right) of the torsional Alfvén wave pulse on an 800 mesh at t ¼ 0:156. Positivity-
preserving DG methods.
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4.3. The Orszag–Tang vortex problem

In this subsection, we consider the Orszag–Tang vortex problem which is a widely used test example in MHD simulations.
The initial conditions are taken as in [13–15]
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q ¼ c2; ux ¼ � sin y; uy ¼ sin x; uz ¼ 0;
Bx ¼ � sin y; By ¼ sin 2x; Bz ¼ 0; p ¼ c;
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with c ¼ 5=3. The computational domain is ½0;2p� � ½0;2p� with the periodic boundary conditions. The solution involves for-
mation and interaction of multiple shocks as the nonlinear system evolves. We plot the density q at t ¼ 2 computed by pos-
itivity-preserving DG and central DG methods on a 192� 192 mesh in Fig. 4.9 which is comparable with that in [13–15].

As observed in [13], different schemes, including the same variational formulations with various solution spaces may be-
have differently for this example in terms of their ability to keep the simulation from breaking down. One explanation
provided in [13] is the numerical divergence error. During the course of the study in [14,15] and the present work, we come
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Fig. 4.9. Density q in Orszag–Tang vortex problem at t ¼ 2 on a 192 � 192 mesh. Left: positivity-preserving DG methods; right: positivity-preserving
central DG methods.
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to understand that negative pressure can also contribute to instability for this example. We test this example on a 192� 192
mesh by using four schemes, namely, the (base) DG methods, locally divergence-free DG methods [13], positivity-preserving
DG methods, and locally divergence-free positivity-preserving DG methods. Here the locally divergence-free positivity-
preserving DG methods refer to the locally divergence-free DG methods in [13] to which the positivity-preserving limiter
proposed in this paper is applied. With the DG methods, negative pressure starts to appear around t ¼ 3:2 and the code
blows up around t ¼ 3:6; with the locally divergence-free DG methods, the computation breaks down around t ¼ 4:4 with
negative pressure being observed initially around t ¼ 3:7; the negative pressure starts to appear around t ¼ 4:4 and the
simulation stops around t ¼ 4:5 for positivity-preserving DG methods; finally, with the locally divergence-free positivity-
preserving DG methods, we can simulate this example stably up to t ¼ 10 (the maximum time we run, and the simulation
can still go on) and there is no negative pressure in the computation. These tests show that the locally divergence-free
positivity-preserving DG methods is the most robust scheme for this example, as it reduces the instability due to both
the divergence error and negative pressure.

4.4. The blast problem

The blast wave problem was first introduced in [6], and the solution involves strong magnetosonic shocks. We employ the
same initial condition as in [6], that is ðq;ux;uy; uz;Bx;By;BzÞ ¼ ð1;0; 0;0;100=

ffiffiffiffiffiffiffi
4p
p

;0;0Þ, with the pressure given as
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p ¼
1000 if r 6 R;
0:1 if r > R;

�

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and R ¼ 0:1. With this setup, the fluid in the region outside the initial pressure pulse has a very small

plasma b ¼ p
ðB2

xþB2
y Þ=2
¼ 2:513E� 04

� �
. The simulation is implemented in the domain ½�0:5;0:5� � ½�0:5;0:5� with the

200� 200 mesh. Outgoing boundary conditions are used, and c ¼ 1:4. All results reported below are obtained when the
TVB minmod limiter is implemented in the local characteristic fields. Such implementation of the limiter turns out to be
insufficient for the stability of the exactly divergence-free central DG methods in [14,15] due to the presence of negative
pressure. Instead, a componentwise TVB minmod limiter is used in [14,15] and works stably throughout the simulation.

In Fig. 4.10, we present the magnetic pressure B2
x þ B2

y at t ¼ 0:01 from the positivity-preserving DG (left) and positivity-
preserving central DG methods (right). As pointed out in [6,14,15], this is a stringent problem to solve. In fact, for many com-
monly used numerical methods for hyperbolic conservations without being designed as positivity-preserving, negative pres-
sure often appears near the shock front, where the jump in pressure is large and numerical oscillation can make pressure
drop below zero. This is well demonstrated by the contour plots of numerical pressure by our positivity-preserving schemes
in Fig. 4.11, where negative pressure is eliminated successfully in the whole domain especially around the shock front. In
Fig. 4.12, we further take a closer look at the solution slices of pressure at y ¼ 0 on a 400 � 400 mesh computed by the base
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central DG method, the positivity-preserving DG method and the positivity-preserving central DG method. It is clear that
negative pressure appears near the shock front (x ¼ 0:325) for the base central DG method, yet it is removed with the
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Fig. 4.17. Gray-scaled images for P2 DG approximations of the second cloud–shock interaction problem on the 400 � 400 mesh at t ¼ 0:06. Top left: q; top
right: Bx; bottom left: By; bottom right: p.
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use of the positivity-preserving limiter. In addition, the numerical pressure by positivity-preserving DG method is sharper
around the discontinuity.

4.5. The cloud–shock interaction

In this section, we consider two examples of cloud–shock interaction which involve strong MHD shocks interacting with a
dense cloud.

For the first cloud–shock interaction example [14], we define three sets of data for ðq;ux;uy;uz;Bx;By; Bz; pÞ as
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its surrounding, and the pressure in the post-shock region is about hundreds times of that in the pre-shock region. When
t 2 ð0;0:35Þ, negative pressure is observed in the simulation of the base DG and central DG methods. In fact, negative pres-
sure also appears in the globally divergence-free central DG methods [14,15] and the locally divergence-free DG methods
[13]. (After t ¼ 0:35, the shock front propagates out of the computational domain, there is no longer negative pressure.)

With the positivity-preserving limiters, there is no negative pressure observed in DG and central DG simulations during
t 2 ð0;0:35Þ. Fig. 4.13 (positivity-preserving DG methods) and Fig. 4.14 (positivity-preserving central DG methods) also show
the gray-scale images of the solution on a 600� 300 mesh. The results are for density q, the magnetic field component Bx and
By, and the pressure p at t ¼ 0:3, when quite much feature has developed in the solution. To further illustrate the conver-
gence and positivity-preserving property of the methods, we present in Fig. 4.15 (positivity-preserving DG methods) and
Fig. 4.16 (positivity-preserving central DG methods) the solution slices of density q and pressure p at y ¼ 0:6 on
400� 200 and 600� 300 meshes. The convergence of the proposed methods is observed, with the pressure perfectly pre-
served to be positive around the shock front.

For the second cloud–shock interaction example [9], we define three sets of data for ðq;ux;uy;uz;Bx;By;Bz; pÞ as
U1 ¼ ð3:86859;0;0; 0;0; 0;7:73718;�7:73718;167:345Þ;
U2 ¼ ð1;�11:2536;0; 0;0;2;2;1Þ; U3 ¼ ð10;�112:536;0;0;0;2;2;1Þ:
The computational domain ½0;1� � ½0;1� is divided into three regions: the post-shock region X1 ¼ fðx; yÞ : 0 6 x 6 0:6;

0 6 y 6 1g, the pre-shock region X2 ¼ fðx; yÞ : 0:6 < x 6 1; 0 6 y 6 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:8Þ2 þ ðy� 0:5Þ2

q
P 0:15g, and the cloud region

X3 ¼ fðx; yÞ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:8Þ2 þ ðy� 0:5Þ2

q
< 0:15g. The solutions in X1;X2 and X3 are initialized as U1;U2, and U3 respectively.

Outgoing boundary conditions are used, and c ¼ 5=3. Note that the cloud taking up the region X3 is ten times denser than
its surrounding. Although the pressure in the post-shock region is also about hundreds times of that in the pre-shock region,
the initial discontinuity in pressure is much stronger compared with the first cloud–shock problem. In fact, our globally
divergence-free schemes in [14,15] fail to simulate this example due to the negative pressure. With positivity-preserving
limiters, our proposed methods solve this problem stably.

Fig. 4.17 (positivity-preserving DG methods) and Fig. 4.18 (positivity-preserving central DG methods) show the gray-scale
images on a 400 � 400 mesh for density q, the magnetic field component Bx and By, and the pressure p at t ¼ 0:06. No neg-
ative pressure is observed. We also present in Fig. 4.19 (positivity-preserving DG methods) and Fig. 4.20 (positivity-preserv-
ing central DG methods) the solution slices of density q and pressure p at y ¼ 0:5 computed on 200� 200 and 400 � 400
meshes. The convergence of the proposed methods is observed, while the pressure stays positive around the shock front.
5. Concluding remarks

In this paper, high order positivity-preserving DG and central DG schemes are proposed for ideal MHD equations in one
and two dimensions on Cartesian meshes. These methods can be extended to general meshes, or to MHD systems with dif-
ferent equations of states. Within the DG setting, one can further take advantage of the advances in the design of various
one- or multi-dimensional Riemann solvers for MHD equations [19,11,4], to obtain other first order (hopefully provable) pos-
itivity preserving schemes in one or multiple dimensions, which can serve as building blocks for positivity preserving meth-
ods with high order accuracy. In the framework of central DG methods, one can follow the sequence of work by Zhang and
Shu to develop maximum-principle-satisfying limiters for scalar conservation laws [26] and the positivity-preserving
schemes for compressible Euler equations [27]. Some tools which can be used to analyze these methods can be seen in
Section 2.2.
Appendix A. To examine positivity-preserving property of the first order Lax–Friedrichs DG method in the presence of
discontinuous Bx

As in Section 2.1.1, we here carry out some numerical experiments to examine whether the first order DG method with
the Lax–Friedrichs flux in (2.7)–(2.9) is positivity-preserving when Bx is discontinuous. We start with three vectors Un

i�1;U
n
i

and Un
iþ1 which take random values. In particular ux;uy;uz;By and Bz are from Uð�c1; c1Þ;q is from Uð0; c2Þ; p is from

Uð0; c3Þ, and Bx is from Uð�c4; c4Þ. Here Uðc
H
; c

HH
Þ is the uniform distribution on ðc

H
; c

HH
Þ. We also vary the CFL number

kax within ½1=2;1�. For each set of parameters ci; i ¼ 1; . . . 4 and kax, we conduct 105 random experiments, compute Unþ1
i from

(2.7)–(2.9), and count the total number of occurrence of negative pressure, namely when pðUnþ1
i Þ < 0. The results in Table A.7

are collected when kax ¼ 1=2, and they show that the first order Lax–Friedrichs DG method (2.7)–(2.9) is positivity-preserv-
ing under the CFL condition 2.10 with kax ¼ ð6Þa0 ¼ 1=2. Numerical tests further indicate that this positivity-preserving
property holds for a larger CFL condition such as a0 ¼ 3=5 yet not for very large a0, see Table A.8. Note that in our experi-
ments Bx can have very large jump which may not necessarily be encountered in reasonable numerical simulations for
the MHD system.
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