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Abstract

A moving mesh finite difference method based on the moving mesh partial dif-
ferential equation is proposed for the numerical solution of the 2T model for
multi-material, non-equilibrium radiation diffusion equations. The model involves
nonlinear diffusion coefficients and its solutions stay positive for all time when they
are positive initially. Nonlinear diffusion and preservation of solution positivity pose
challenges in the numerical solution of the model. A coefficient-freezing predictor-
corrector method is used for nonlinear diffusion while a cutoff strategy with a positive
threshold is used to keep the solutions positive. Furthermore, a two-level moving
mesh strategy and a sparse matrix solver are used to improve the efficiency of the
computation. Numerical results for a selection of examples of multi-material non-
equilibrium radiation diffusion show that the method is capable of capturing the
profiles and local structures of Marshak waves with adequate mesh concentration.
The obtained numerical solutions are in good agreement with those in the existing
literature. Comparison studies are also made between uniform and adaptive moving
meshes and between one-level and two-level moving meshes.
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1 Introduction

Radiation transport in astrophysical phenomena and inertial confinement fusion can
often be modeled using a set of coupled diffusion equations when photon mean free
paths are much shorter than characteristic length scales. These equations are highly
nonlinear and exhibit multiple time and space scales [25]. Particularly, steep hot wave
fronts, called Marshak waves, typically form during radiation transport processes.
Energy density and material temperature near the steep fronts can vary dramatically
in a short distance. Such complex local structures make mesh adaptation an indis-
pensable tool for use to improve the efficiency in the numerical solution of radiation
diffusion equations because the number of mesh points can be prohibitively large
when a uniform mesh is used. Research of radiation diffusion has attracted con-
siderable attentions from engineers and scientists [2, 4, 17, 18, 25-29, 31-33, 35,
39-42].

In this work, we are interested in the non-equilibrium situation where the radiation
field is not in thermodynamics equilibrium with the material temperature. Marshak
[24] develops a time-dependent radiative transfer model, laying the groundwork
for the research area. Pomraning [30] obtains an analytic solution to a particu-
lar Marshak wave problem, which is analyzed more extensively by Su and Olson
[34]. Numerically, Mousseau et al. [26, 27] present a physics-based preconditioning
Newton-Krylov method involving Jacobian-free Newton-Krylov (JFNK), operator
splitting, and multigrid linear solvers and show that the method can capture the
Marshak wave of the thermal transport front properly. Kang [17] proposes a P1
nonconforming finite element method for non-equilibrium radiation transport prob-
lems. Olson [29] considers a hydrogen-like Saha ionization model for a simplified
but physically plausible heat capacity and uses several types of finite difference
(FD) schemes to approximate flux-limiting. Sheng et al. [35] construct a monotone
finite volume scheme for multi-material, non-equilibrium radiation diffusion equa-
tions and show numerically that their method is better than the standard nine-point
finite difference scheme and preserves the nonnegativity of energy density.

On the other hand, there exist only a few published studies that have employed
mesh adaptation for the numerical solution of radiation diffusion equations. For
example, Lapenta and Chacén [18] use a fully implicit moving mesh method to solve
a one-dimensional equilibrium radiation diffusion equation. They discretize both the
mesh and physical equations using finite volumes and solve the resulting equation
with a preconditioned inexact-Newton method. Their results show great improve-
ments in cost-effectiveness with mesh adaptation. Yang et al. [41] study a moving
mesh FD method based on the moving-mesh-partial-differential-equation (MMPDE)
strategy [9, 11] for equilibrium radiation diffusion equations and show that the
method capture Marshak waves accurately and efficiently. Pernice et al. [32] use
adaptive mesh refinement to solve three-dimensional non-equilibrium radiation dif-
fusion equations. They use implicit time integration for stiff multi-physics systems as
well as the JENK [15, 16, 26, 33] to solve the resulting nonlinear algebraic equations.
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They also use an optimal multilevel preconditioner to provide level-independent
solver convergence. Non-equilibrium radiation diffusion equations are challenging
to solve, but through the numerical results, they demonstrate their method can effi-
ciently capture the local structures of Marshak waves and can give convincing results
with good accuracy.

The objective of this work is to study a moving mesh FD solution of two-
dimensional non-equilibrium radiation diffusion systems. The method is based on the
MMPDE moving mesh approach [9, 11], which belongs to a type of mesh adaptation
method—dynamic mesh adaptation or r-adaptive methods (e.g., see recent works
[6, 22, 23, 37, 38, 43]). The MMPDE is used to adaptively move the mesh around
evolving features of the physical solution and is defined as the gradient flow equation
of a meshing functional based on mesh equidistribution and alignment. The shape,
size, and orientation of mesh elements are controlled through a monitor function
[8] defined through the Hessian of the energy density. A similar moving mesh FD
method has been developed in [41] for equilibrium radiation diffusion equations, and
the current work can be considered as a generalization of [41]. However, this gener-
alization is non-trival. Unlike [41], we now need to deal with a system of two coupled
equations for the energy density and material temperature. The diffusion coefficients
depend on both the energy density and material temperature and it is more sensitive
to treat diffusion numerically. Moreover, the system is stiffer, making it more diffi-
cult to integrate in time (with smaller time steps) and more expensive to solve overall.
Furthermore, it is more delicate to preserve the solution positivity. Like [41], we use
here the cutoff strategy to maintain the positivity in the computed solutions. It has
been shown in [21] that the strategy retains the accuracy and convergence order of
FD approximation for parabolic PDEs. It has been found in [41] that the strategy with
a threshold zero (meaning that the computed solutions are kept to be nonnegative)
works for equilibrium radiation diffusion equations. For the current situation, on the
other hand, we have found that a positive threshold is needed and an empirical choice
depending on the mesh size seems to work well for problems we have tested. Numer-
ical results for a selection of examples are presented. They show that the method is
capable of capturing the profiles and local structures of Marshak waves with adequate
mesh concentration. The obtained numerical solutions are in good agreement with
those of [17, 35]. Comparison studies are also made between uniform and adaptive
moving meshes and between one-level and two-level moving meshes.

The outline of the paper is as follows. The physical model and governing equa-
tions are described in Section!2. The moving mesh FD method and the treatments of
nonlinearity as well as the cutoff strategy are discussed in Section 3. In Section 4,
numerical results obtained for a selection of examples of multi-material, multiple
spot concentration scenarios. Finally, conclusions are drawn in Section 5.

2 The 2T model for non-equilibrium radiation diffusion
Under the assumption of an optically thick medium (short mean free path of photons)

a first-principle statement of radiation transport reduces to the radiation diffusion
limit. A particular idealized dimensionless form of the governing system, known as
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the 2T model, consists of two equations, the radiation diffusion (gray approximation)
equation and material energy balance equation, that is,

9 _V . (D,VE) = 0,(T* - E),
I B 4 2.1
8L —V (D VT) = —0,(T* — E),
where
o ! Di=«T? 2.2)
oy = —, = =K . .
T T 3e,+ LivE]

Here, E represents the photon energy, T is the material temperature, o, is the opacity,
k is the material conductivity, and z is the atomic mass number. Notice that a limiting
term |V E|/E is added to the diffusion coefficient D, to avoid a possible unphysical
behavior that a flux of energy moves faster than the speed of light in regions of strong
gradient where a simple diffusion theory can fail. Moreover, we use the form of the
material (plasma) conduction diffusion coefficient D; from Spitzer and Harm [36]
and take k = 0.01 in our computation. Furthermore, compared to the equilibrium
case, the nonlinear source terms on the right-hand sides of the equations do not vanish
in general, reflecting the transfer of energy between the radiation field and material
temperature. Additional nonlinearities come from the particular form of diffusion
coefficients, which are functions of £ and T .

We consider (2.1) in two dimensions on the unit square domain, see Fig. 1.
Homogenous Neumann boundary conditions are used for boundary segments y = 0

0.8 Zout

0.6

y B¢1 Zin BC3

0.4

0.2

nes
0 T T bC2Z

02 04 06 08 1

X
Fig. 1 The physical domain with a middle inset (1/3,2/3) x (1/3,2/3). The value of z is Z;, and

Zouw inside and outside the inset, respectively. BC1 and BC2 are the inflow and outflow boundaries,
respectively, while BC3 and BC4 are perfectly insulated
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and y = 1 and inflow and outflow boundary conditions are employed on x = 0 and
x = 1, respectively. More specifically, we have

9E —0, 2L -0, ony=0ory=1

hg ”
oL _ onx=0orx =1
P aE 2.3)
‘—11 — @g = 1, onx =0
iE+t 55 =0, onx = 1.
The initial conditions are
E(x,y,0) = (1 —tanh(10x))(1 — 107+ 1075, (x, y) € Q 2.4)

T(x,y,0) = E(x, y,0)1, (x,y) € Q.

Essentially, E(x, y, 0) is equal to 107> everywhere except on the boundary x = 0
where it is 1. A narrow transition between 10~ and 1 is used to avoid a potentially
difficult initial start in numerical computation. (Slightly different initial and boundary
conditions are used in the third example in Section 4.)

3 The moving mesh FD method

In this section, we describe the moving mesh FD method for solving the initial-
boundary value problem (IBVP) (2.1), (2.3), and (2.4). We discretize this problem in
space using central finite differences and in time using a Singly Diagonally Implicit
Runge-Kutta scheme (SDIRK) [3]. We also discuss linearization of the equations,
preservation of solution positivity, and adaptive mesh movement.

3.1 FD discretization on moving meshes

We denote a curvilinear moving mesh for 2 by
(xm,n(t)a ym,n(t))7 m=1,..M, n=1,..,N 3.1

where M and N are positive integers. The generation of such an adaptive moving
mesh will be described in §3.4. For the moment, we consider (3.1) as the image of
a fixed rectangular mesh under a known coordinate transformation x = x(&, n, 1),

y=y(&,n,1),ie,

xm‘n(t)zx(%'ma Ny 1), Ym,n(t)zy(Snzy M,t), m=1,.,M, n=1.,N
(3.2)

where the reference mesh is taken as
En,) =((m—DAE,(n—1An), m=1,.,. M, n=1,.,N 3.3)

and A§ = 1/(M — 1) and An = 1/(N — 1). The boundary correspondence between
the reference and physical domains is given by

xO0,m =0, x(1,mn=1, y&,0=0, y¢&1)=1 3.4
We let

EE n0)=ExEn 0, yE 00,0,  TEn ) =T&En0,yE n )0
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The discretization of the 2T model on the moving mesh (3.1) consists of two steps,
its transformation from (x, y) to (&, n) and discretization on the rectangular reference
mesh. First, using the coordinate transformation, we can transform (2.1) (e.g., see
[11, §3.1.4]) into the reference domain as

—b()- VE = 5159 - (Dr(E. DY AOVE) + T ()0, (T4 - E), s
T, —b(r)-VT = ﬁ% (DT(T)A(t)VT) — (o, (f4 _ E) ,
where
. 2
J(t) = xgyy —xpye, V= [E]
an
bt = — [ Yoke = X } A= [ XAy e +)’S)’n):|
J(@0) [ =vexe +xev | J(6) [=Gexy +yeyy)  xF+ 37

Similarly, the boundary condition (2.3) can be transformed into

%%_{_égg_o oné =0oré =1 3.6)
(L ) s =0 |
{8+ ak (14 + 24) =0 e =

where we have used the fact that x, =0on& =0and§ =1land ys =0onn =0
andnp = 1.

The discretization of (3.5) and (3.6) on the rectangular reference mesh (3.3) using
central finite differences is straightforward. To save space, we omit the detail of the
derivation and formulation of the FD approximation here and refer the reader to [11,
§3.2]. The FD approximation of (3.5) can be expressed as

B (1) - V= ,,m s Vi (DREn T ANOVAER ) + Do (T} = En)

ﬂ = by (1) - T = 5% (Dr @AV OVAT:) = J o (T} = En),
(3.7
where Ej, and Tj, denote the FD approximations of E(é ,n,t) and f"(E, n,t) on the
mesh (3.3), respectively.

3.2 Linearization and predictor-corrector approximation

Recall that the 2T model (3.7) has nonlinear diffusion coefficients. Integration of
nonlinear radiation diffusion equations have been studied extensively in the past (
e.g., see[13, 14,20, 28, 31, 33]). Generally speaking, there are three types of methods
for treating nonlinear diffusion terms [20]: the Beaming-Warming method, lagged
diffusion, and predictor-corrector method. For the Beaming-Warming method, the
diffusion coefficient is expanded up to linear term of E and T at the pervious time
step and it is a second-order approximation to the diffusion equations. For lagged
diffusion, the diffusion coefficient is simply calculated with the energy and material
temperature at the pervious time step and it is only a first-order approximation. The
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predictor-corrector method uses the lagged diffusion as the predictor while adding a
corrector step so it gives a second-order approximation.

In this paper, we use the predictor-corrector method for solving non-equilibrium
systems since it is comparable to the Beam-Warming method in terms of accuracy
and stability and to lagged diffusion in terms of simplicity and efficiency. With the
method, the linearized equation of (3.7) reads as

B — i) - VuEn = 75V - (DLCEL T AWDVAED,)
+In0a (T) = En),  tn <1 <ty

o py(t) - VyT) = ﬁ% - (DT(Th*)Ah(t)@hTh> (3.8)
—Jn(t)o, (T}? - Eh) y In <T =t

Ep(ty) = E;ll

Ty(tn) = Ty

where Ej and T;' are the approximations of the energy density and temperature at
t = t,. During the prediction stage, E; and T, are taken as the energy density and
material temperature at t = t,, i.e., E; = E} and T;" = T}'. This stage is the same as
the lagged diffusion method. The solution obtained in this stage at ¢t = #, is used
as E; and T, during the correction stage. In both stages, the linear equation (3.8)
is integrated with a two-stage SDIRK scheme [3]. The resulting linear systems are
solved by the unsymmetric multifrontal sparse LU factorization package UMFPACK

[5].
3.3 Preservation of solution positivity and cutoff

It is known that the solutions of IBVP (2.1), (2.3), and (2.4) stay positive for all time.
Unfortunately, the scheme described in the previous subsections does not preserve
the solution positivity and the computed solutions may become zero or even nega-
tive at places. Although these values can be very small in magnitude, they can cause
nonphysical oscillations and other problems such as not-a-number (NaN), divergence
of nonlinear iterations, too small time steps, and even early blowup of computation
[39]. We employ here a cutoff strategy, i.e., replace solution values that are below
a positive threshold by the threshold. Unfortunately, no theory exists so far on how
to choose such a threshold. An empirical formula is 30/((M — 1)(N — 1)) (see
Table 1) which has been found to work well for the examples we consider. Notice-
ably, Lu et al. [21] show that the cutoff procedure can retain accuracy, convergence
order, and stability of finite difference schemes for linear or nonlinear parabolic
PDEs.

Table 1 The values of the cutoff
. 30
threshold defined as mr—jv=1;  Mesh (M x N) 41x41 61x61 81x81 121x121
for various mesh sizes
Cutoff threshold 1.87e-2 8.30e-3 4.70e-3 2.10e-3
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3.4 The MMPDE approach of mesh movement

The MMPDE approach [9-11] is used here to generate the adaptive moving mesh.
The main idea of the approach is to generate the moving mesh as the image of a
fixed, reference mesh under a time coordinate transformation. Such a coordinate
transformation is determined as the solution of an MMPDE which in turn is defined
as the gradient flow equation of a meshing functional. We use a meshing functional
formulated in terms of the inverse coordinate transformation & = &(x, y,t) and
n = n(x, y,t) and based on mesh equidistribution and alignment. A monitor func-
tion that is symmetric and uniformly positive definite at each point of the domain is
used in the functional to provide the information for the size, shape, and orientation
of the mesh elements. Denote the Hessian of the energy density by

E.. Ey
H — xx Sy
e

Given its eigen-decomposition H = Qdiag(ii, 12)Q7, we define |H| =
Qdiag(|A1], |A2]) QT . Then, the monitor function is chosen as

M = det(al + |H|)" ¥ [a1+|H|], (3.9)

which is known to be optimal for the H! norm of the error of linear interpolation [11,
12]. Here, o > 0 is the regularization parameter defined through the equation

/ det(M(«))Zdxdy = 2 f det(M(0))2 dxdy,
Q Q

where M(0) denotes the monitor function (3.9) with @ = 0. In practical computation,
the Hessian of E is unknown. It is replaced by an approximation based on Ej (see
Section 3.5 for a more detailed description). The meshing functional is given by

1 2
11E, 7] = 0.1/ det(M)? (ngM—lvg +VnTM‘1Vn) dxdy
Q

1
432 f ﬂ”izdxdy, (3.10)
Q (J det(M)z)

where J = xzy, — x;ye = 1/(6xny — &yn,) is the Jacobian of the coordinate trans-
formation. This functional is proposed in [8] to control mesh equidistribution and
alignment.

The MMPDE is defined as the gradient flow equation of the meshing functional,
ie.,

9c 181 om 141

=, L= (3.11)
ot T §& ot T8
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where T is a parameter used to control the response of the mesh movement to the
change in the monitor function and §1/6& and §1/6n are the functional derivatives
of I[&, n]. It is not difficult to find that

51 1 1
40V (det(M)2 BM ™ VE ) —8(1—26)V - —[ ”y] L (3.12
5 (detvn > pra=" v ) —8(1-260) (]det(M)é |)e

51 1 _ 1 —£,
—=—49V~<det(M)2,3M Vn>—8(1—29)V~ —][ >} L(3.13)
8n JdetM)? L 8x

where
g =vVerM™ Ve + vpT M~ vy, (3.14)

By interchanging the roles of independent and dependent variables and after some
straightforward but lengthy derivations (e.g., see [11, Chapter 6]), we can rewrite the
above equation into

axlAaZAAa2A32 b 0 EAYE:
3 [y}_? ( 11@4-( 12+ 21)3§3n+ 228_’72+Id 1£+Id 2%) [y} ;

(3.15)
where I; is the 2-by-2 identity matrix and the coefficients A;;, by, and by can be
found in [11, Chapter 6].

The moving mesh equation (3.15) is supplemented with the one-dimensional
version of the MMPDE for the adaptation of boundary points (cf. [8]). They are dis-
cretized in space using central finite differences and in time by the backward Euler
method with coefficients A;; and b; calculated at the previous time step. The resulting
algebraic systems are solved using the sparse matrix solver UMFPACK [5].

3.5 The solution procedure

We now describe the overall solution procedure of the moving mesh FD method.
Assume that the physical solutions E” and 7", the mesh (x”, y"), and the time step
size At, are given atf = t,,.

Step 1. The moving mesh step. The monitor function (3.9) is computed using
E"™ and (x", y") and smoothed using several sweeps of a low-pass filter. The Hes-
sian of the energy density used in (3.9) is replaced by an approximation obtained
using least squares fitting. More specifically, at any mesh point, a local quadratic
polynomial is constructed by least squares fitting of the nodal values of E” at
neighboring mesh points. The approximate Hessian at the given mesh point is
then obtained by differentiating the quadratic polynomial twice. After the moni-
tor function has been obtained, the mesh equation (3.15) is integrated from #, to
tht1 =ty + At, for the new mesh (x" 1, y?+1),
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Step 2. The predictor of the physical PDE solving step. The physical PDE
(3.7) is integrated at #, using the predictor-corrector scheme (3.8) with £} r = =E}, 7
and 7" = T}. During the integration, the mesh is considered to move hnearly in
time, Viz.,

x(t)_ — 1ty n+1+tn+Atn—txn’ (t)_ t,,yn+1+tn+Atn—t

Aty Aty Aty Aty

n

(3.16)
Step 3. The corrector of the physical PDE solving step. The physical PDE
(3.7) is integrated from ¢, to #,,4 using the predictor-corrector scheme (3.8) with
Ej and T;" being taken as the solutions obtained in Step 2.

3.6 Stability

As we have seen from the previous subsection, the whole system consisting of the
mesh and physical equations is solved in an alternating manner: the mesh equa-
tion (3.15) is integrated using the backward Euler scheme with the coefficients being
calculated at the previous step while the physical PDE (3.7) is integrated with the
predictor-corrector scheme (3.8). It is extremely difficult, if not impossible, to per-
form a von Neumann analysis for the stability of the overall scheme due to highly
nonlinear couplings between the mesh and the physical solution. With the implicit
treatments of each of the mesh and physical equations and due to their parabolic
nature, we can expect that the method has a good stability. Indeed, we have not expe-
rienced any stability issue in our computation at least for the range of the time step
size we have used.

4 Numerical tests

4.1 Conservation analysis

In this subsection, we test the conservation of energy E and temperature 7'. Define
the radiation temperature as 7, = E /4. We want to see if the material temperature
T stays close to the radiation temperature 7, as time being.

Example 4.1 For this example, the distribution of the atomic mass number is given

by (cf. Fig. 7a)

_ 5 forx.ye(3. 3 x (3. %)
2x, y) = { 1, otherwise. @.1

The boundary and initial conditions are given by (2.3) and (2.4), respectively. We stop
the computation at + = 3.0 and use the cutoff method discussed in §3.3. The results
obtained with mesh 41 x 41 and 81 x 81 are plotted in Fig. 2. Although there are some
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(a): 41 x 41, Z = 5/1, at (40,40) (b): 81 x 81,Z = 5/1, at (40,40)
F < Un
L B — s T
L i —a— Tr
0.14 —_—a T 08l
F —a— Tr F
@12 06
e E
g r s [
o | o [
2 204
50.1 5 |
0.08 o2F
ok
0'06-\\HlHHlHHlH\\|““|““| T SRR SPAAVATEN SATETATN SYRTETAT S |
0.5 1 1.5 2 25 3 0.5 1 1.5 2 25
time time

Fig.2 Example 4.1 The comparison between material temperature 7' and radiation temperature 7}

oscillations at the beginning and end of the computation, the material temperature T
stays close with the radiation temperature 7, for most of the time.

Example 4.2 For this example, the distribution of the atomic mass number is given
by (cf. Fig. 7b)

10, for (x,y) € (§.3) x (3, %)

; 4.2
1, otherwise. 4.2)

z(x,y) = {

The setting for the computation is the same as for the previous example. The results
obtained with a mesh 81 x 81 are plotted in Fig. 3. Once again, one can see that with

(a): 81 x 81,2 = 10/1, at (40,40) (b): 81 x 81, Z = 10/1, at (50,40)

'F F .

09F 09F —a=— Tr
g ——T g
0.8F Tr 08fF
07k 07k
20.6 F 20.6 F
S F 3 F
S05F So05F
g . g |
EO_ F E0.4:—
Q F Q F
=03 03k

o b b b b 111l N IS EVEENETI RSN EUATETETE BRI R |
0.5 1 1.5 2 25 3 ! 0.5 1 1.5 2 25 3
time time

Fig.3 Example 4.2. The comparison between the material temperature 7 and the radiation temperature 7,
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(a): 81 x 81, Z = 10/10/1, at (80,80) (b): 81 x 81, Z = 10/10/1, at (10,10)

0.26

0.24

—s— Tr

temperature
o
N
N
temperature

0.2

OM8% v vy v Coo b by
0.5 1 1.5 2 25 3 0.5 1 15 2 25 3
time time

Fig.4 Example 4.3. The comparison between material temperature 7 and radiation temperature 7,

the time going on, the material temperature 7 stays close to the radiation temperature
T,.

Example 4.3 The material configuration for this example is shown in Fig. 18. The
insets are (3/16,7/16) x (9/16, 13/16) and (9/16, 13/16) x (3/16,7/16) and the
distribution of the atomic mass number is given as

10, for (x,y) € (<, f—g)x(%,%)
2(x,y) = 1 10, for (x,y) € (15, 12) X (55 15) (4.3)

1, otherwise.

The boundary of 2 = (0, 1) x (0, 1) is considered as insulated with respect to both
radiation and material conduction, i.e.,

oE oT
— =—=0, ondf. 4.4
on on

The initial condition is taken as (cf. [35])

E(x,y,0) =0.001 4 100 exp (—100()62 + yz)) , T(x,y,0)=E(x,y, O)%.
4.5)
The results can be seen form Fig. 4. Once again, we can see that the material
temperature 7' stays close to the radiation temperature 7.

4.2 Accuracy test

In this subsection, we study the accuracy of our moving mesh method. We consider
two types of initial conditions: smooth conditions and Marshak wave conditions.
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(a): Moving Mesh errors (b): Uniform Mesh errors
1 T 1 T
| 3
0.1 " 5 0.1 = 5
u TE
g a T g 1N N
E - E g
S u. 5 - . .
£ 001¢ - 5 001 1
E E
o =}
wv 2]
0.001 error-mm-L1 —%— 1 0.001 error-um-L1 —%— 1
error-mm-L2 - -B- - error-um-L2 - -8- -
error-mm-Linf ----®--- error-um-Linf ----&--
0.0001;5 100 foog 0000155 100 1000
Mesh cells Mesh cells

Fig.5 Example4.4. The L1, L,, L errors of moving mesh and uniform mesh solutions for smooth initial
condition

(a): Moving Mesh errors (b): Uniform Mesh errors

0.01F IR 1

Solution errors
o
(= -
o]
Solution errors

1 0.001 error-um-L1 —%—
error-um-L2 - -B8-
error-um-Linf ---

0.001 error-mm-L1 —%—
error-mm-L2 - -
error-mm-Linf ---

0'000]100 1000 0‘000]100 1000
Mesh cells Mesh cells

Fig.6 Example 4.5. The L1, L2, L« errors of moving mesh and uniform mesh solutions with Marshak
initial condition

(a): Examples 4.1 and 4.6 (b): Examples 4.2 and 4.7

1 BE4 1 BE4
0.84 Z=1 0.84 Z=1
0.6 0.6

B(C1 =5 B(C3 B(1 Z=10 B(3
0.4 0.4
0.2 0.2

0 02 04U 0% 1 0 02040 0% 1

Fig. 7 Material configuration for Examples 4.1, 4.2, 4.6, and 4.7
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(c): t=2.0

(d): t=2.4 (e): t=2.8 (f): t=3.0

04 06 02 04 06 08
X X

Fig. 8 Example 4.6. The computed solution at r = 1.0, 1.5, 2.0, 2.4, 2.8, 3.0 is obtained with a moving
mesh of 81 x 81

(b): t=1.5
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Fig.9 Example 4.6 The moving mesh (81 x 81) is shown atz = 1.0, 1.5, 2.0, 2.4, 2.8, 3.0
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(a): with MM at ¢ = 1.0 (b): with UM at ¢t = 1.0

0.2 0.4 0.6 0.8

X

(c): with MM at t = 2.0 (d): with UM at ¢t = 2.0

(e): with MM at t = 2.5 (f): with UM at t = 2.5

02 04 _,06 08 02 04 ,06 08

X X

(g): with MM at ¢t = 3.0 (h): with UM at ¢t = 3.0

0.2 04 , 0.6 0.8 0.2 0.4 06 08

X X

Fig. 10 Example 4.6. The contours of the temperature obtained with a moving mesh (MM) of size 61 x 61

are compared with those obtained with a uniform mesh (UM) of size 121 x 121
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(a): with MM1 at t = 1.0 (b): with MM2 at ¢t = 1.0

06 08

0.2 04

X

(c): with MM1 at t = 2.0 (d): with MM2 at t = 2.0

02 04 06 08

X

(e): with MM at ¢ = 2.5 (f): with MM2 at t = 2.5

0.6 . 02 04 ,06 08

02 04

X X

Fig. 11 Example 4.6. The contours of the temperature obtained with an MM1 of size 121 x 121 are
compared with those obtained with an MM2 of size 41 x 41 (with the physical PDE being solved on a

mesh of size 121 x 121
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(a): with MM1 at ¢ .0 (b): with MM2 at ¢t = 1.0

0.2 0.4 X 06 0.8 0.2 04 ., 0.6 0.8

X
(c): with MM1 at t = 2.0 (d): with MM2 at t = 2.0

0 02 04 ,06 08

X X

(e): with MM1 at ¢t = 2.5 (f): with MM2 at t = 2.5
1

0.2 04 ., 0.6 0.8

X

(h): with MM2 at t = 3.0

o

o

,,
A
o

06 038 02 04 06 08

X

X

Fig. 12 Example 4.6. Moving meshes of size 121 x 121 obtained with MM1 and MM2 moving mesh
strategies. MM2 is obtained by uniformly interpolating a 41 x 41 moving mesh
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Table 2 CPU time comparison among one-level and two-level moving mesh methods and the uniform
mesh method for Example 4.6. The CPU time is measured in seconds. The last column is the ratio of the
used CPU time to that used with a uniform mesh of the same size

Fine mesh Coarse mesh Total CPU time Ratio
One-level MM 41x41 41x41 2544 5.32
81x81 81x81 33724 14.81
121x121 121x121 356720 63.91
Tow-level MM 41x41 41x41 2544 5.32
81x81 41x41 8549 3.76
121x121 41x41 20325 3.64
Fixed mesh 41x41 n/a 478 1
81x81 n/a 2276 1
121x121 n/a 5581 1

4.2.1 Smooth conditions in one-dimensional case

Example 4.4 We first consider the smooth initial condition as

E(x,0) = E + (Eg — Er)(1 + tanh(50(x — 0.25)))/2, x € [0, 1] 46)
T(X,O)ZE(X,O)1/4, xE[O,l] ’
and the boundary condition as
$EO,0) = -0 E)O0,1) = 3Er, x=0 @
$EO. D+ 5 :E)O0, 1) = 3Eg, x=1

where E; = 4 and Eg = 0.004. The exact solution for this example is not available,
and we use the numerical solution obtained with a uniform mesh of 4000 as the
reference solution. The error is plotted in Fig. 5.

Here, we use the number of mesh cells as 50, 100, 200, 400, and 800 for both
uniform and moving meshes. From Fig. 5, we can see that both uniform mesh and
moving mesh solutions are convergent. Upon a closer look at the figure, one can find
thatthe L1, Ly, and L norm of the error of moving mesh solutions are much smaller
than those of uniform mesh solutions. The former seems to decrease faster too.

4.2.2 Marshak wave conditions in one-dimensional case

Example 4.5 In this example, we use the Marshak wave initial condition

T(x,0) = E(x, 0)1/4, x €0, 1] @.8)

{ E(x,0) = EL + (Er — EL)(1 +tanh(50(x — 0.08)))/2, x €0, 1]
and the boundary condition (4.7) with E; = 4.0, Eg = 1073. The solution of
this problem is called a Marshak wave solution. We use the mesh of 100, 200, 400,
and 800 cells and plot the error in Fig. 6. One can see that the error is smaller and
converges faster with moving meshes than uniform meshes.
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(a): t=1.0 (b): t=1.5 (c): t=2.0

04 , 0.6

X

(d): t=2.4 (f): t=3.0

(i): t=5.0

02 04,06 08 1 02 04,06 08 1 02 04 0%

X X X

Fig. 13 Example 4.7. The computed solution with a moving mesh of 81 x 81 is shown at r =
1.0,1.5,2.0,2.4,2.8,3.0,3.5,4.0,5.0

4.3 Discontinuous Test

In this section, we present numerical results obtained by the moving mesh FD method
described in the previous section for three examples of multi-material radiation dif-
fusion. The material configuration is given in Fig. 7 for the first two examples and
in Fig. 18 for the third one (which also has a slightly different boundary condition
than (2.3)). In the results, MM, MM1, and MM2 stand for moving mesh, one-level
moving mesh, and two-level moving mesh, respectively.

Example 4.6 For this example, the distribution of the atomic mass number is given
by (4.1). The initial and boundary conditions are given in (2.3) and (2.4), respectively.

A typical moving mesh of 81 x 81 and the computed solution thereon are shown
in Figs. 8 and 9. From the figures, we can see that the hot wave front propagates from
left to right and meets the central obstacle and then a Marshak wave is formed. The
profile of the Marshak wave has been captured accurately by the moving mesh and
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Fig. 14 Example 4.7. The moving mesh of 81 x 81 is shown atr = 1.0, 1.5,2.0,2.4,2.8, 3.0, 3.5, 4.0, 5.0

the nodes concentrate around the front of the wave. This demonstrates the mesh con-
centration ability of the moving mesh method. Fig. 10 shows the solutions obtained
with a moving mesh of 61 x 61 and a uniform mesh of 121 x 121, which are

comparable.

The results obtained with a moving mesh of 121 x 121 are compared in Figs. 11
and 12 to those obtained with a two-level moving mesh strategy (MM?2) [7] where a
mesh of size 41 x 41 is moved using the moving mesh method, but the physical PDEs
are solved on a mesh of 121 x 121 that is generated by uniformly refining the moving
mesh. Interestingly, MM2 leads to results with comparable accuracy but saves sig-
nificant CPU time. The CPU times for one-level and two-level moving meshes and
uniform meshes are listed in Table 2. From the table, one can see that the moving
mesh method is more costly than the method with a uniform mesh of the same size.
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(a): with MM at ¢ = 1.0 (b): with UM at ¢ = 1.0

(d): with UM at t = 2.0

02 04 ,06 08 02 04 ,06 08

X X

(e): with MM at t = 2.5 (f): with UM at t = 2.5

02 04 ,06 08 02 04 ,06 08

X X

(g): with MM at t = 3.0 (h): with UM at ¢t = 3.0

02 04 0.6 0.8

X

Fig. 15 Example 4.7. The contours of the temperature obtained with a moving mesh (MM) of size 61 x 61
are compared with those obtained with a uniform mesh (UM) of size 121 x 121
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(a): with MM1 at ¢t = 1.0 (b): with MM2 at t = 1.0

04 06 08

02 04, 06 08
X

X

(c): with MM at ¢ = 2.0 (d): with MM2 at ¢ = 2.0

02 04 06 08

X

(g): with MM1 at t = 3.0 (h): with MM2 at t = 3.0

0.2 04 0.6 0.8

02 04 06

X X

Fig. 16 Example 4.7. The contours of the temperature obtained with an MM1 of size 121 x 121 are
compared with those obtained with an MM2 of size 41 x 41 (with the physical PDE being solved on a
uniformly refined mesh of size 121 x 121)
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(a): with MM1 at ¢t = 1.0 (b): with MM2 at ¢t = 1.0
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Fig. 17 Example 4.7. Moving meshes of size 121 x 121 obtained with MM1 and MM2 moving mesh
strategies. MM2 is obtained by uniformly interpolating a 41 x 41 moving mesh
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Table 3 CPU time comparison among one-level, two-level moving mesh and uniform mesh methods for
Example 4.7. The CPU time is measured in seconds. The last column is the ratio of the used CPU time to
that used with a uniform mesh of the same size

Fine mesh Coarse mesh Total CPU time Ratio
One-level MM 41x41 41x41 2951 5.85
81x81 81x81 139374 58.76
121x121 121x121 1786732 333.03
Tow-level MM 41x41 41x41 2951 5.85
81x81 41x41 9581 4.03
121x121 41x41 21888 4.08
Fixed mesh 41x41 n/a 498 1
81x81 n/a 2372 1
121x121 n/a 5365 1

This is not surprising since the moving mesh method solves more equations. The effi-
ciency of the moving mesh method can be improved significantly using the two-level
moving mesh strategy. For example, for the case with mesh 81 x 81, the CPU time of
MM2 (with the coarse mesh 41 x 41) is about 25.3% of that with the one-level mov-
ing mesh (MM1). For the case 121 x 121, the CPU time for MM2 is only about 5.7%
of that of MM1. Moreover, when the mesh size increases from 41 x 41 to 81 x 81
the CPU time increases about 13.3 times for MM1. This number is about 10.6 times

0.8
Z=10

0.6
BC1 B(3
0.4

Z=10

RO
0 T LIS B ) W T T

0.2 0.4 0.6 0.8 1

Fig. 18 The material configuration for Examples 4.3 and 4.8. The walls BC1, BC2, BC3, BC4 are
insulated with respect to radiation diffusion and material conduction
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when the mesh size increases from 81 x 81 to 121 x 121. For MM2, the correspond-
ing number is only 3.36 and 2.38, respectively. Finally, we compare MM2 with the
uniform mesh method. From Table. 2, we can see that the difference between the two
is getting smaller as the mesh becomes finer.

Example 4.7 The setting of this example is the same as the previous example except
that the distribution of the atomic mass number is given by (4.2). Note that the jump
in the values of z is more significant than that in the previous example.

The moving mesh of 81 x 81 and the solution are shown in Figs. 13 and 14. From
the figures, we can see that the shape of the central obstacle and the profile of the
Marshak wave have been captured and reflected accurately by the mesh concentra-
tion. It is also worth mentioning that the solutions obtained here are comparable to
those obtained by Kang [17, Fig. 6 on page 15] but with more mesh points. Com-
parison results are shown in Fig. 15 for a moving mesh of 61 x 61 versus a uniform
mesh of 121 x 121 and in Figs. 16 and 17 for a one-level moving mesh of 121 x 121
versus a two-level moving mesh of 41 x 41 (with the physical PDE being solved on

(a): t=0.5 (b): t=0.7 (c): t=0.8

02 04,06 08

X

Fig. 19 Example 4.8. The computed solution on a moving mesh of 81 x 81 is shown at ¢t =
0.5,0.7,0.8,0.9, 1.0, 1.5, 2.0, 2.5, 3.0
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a uniformly refined mesh of 121 x 121). The results are all comparable. Moreover,
the CPU time is listed in Table 3. It can be seen that the two-level moving mesh
strategy can significantly improve the efficiency of the moving mesh method without
compromising the accuracy.

Example 4.8 The material configuration for this example is shown in Figs. 18. The
insets are (3/16,7/16) x (9/16, 13/16) and (9/16, 13/16) x (3/16,7/16) and the
distribution of the atomic mass number is given by (4.3). The boundary of Q =
(0, 1) x (0, 1) is considered as insulated with respect to both radiation and material
conduction; see (4.4). The initial condition is taken as (4.5).

A typical moving mesh of size 81 x 81 and the computed solution thereon are
shown in Figs. 19 and 20. Once again, we can see that our moving mesh method is
able to capture the Marshak wave accurately. The results are in good agreement with

(b): t=0.7
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Fig.20 Example 4.8. The moving mesh of 81 x 81 is shown atz = 0.5,0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0
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(a): with MM at ¢t = 1.0 (b): with UM at ¢ = 1.0

(c): with MM at t = 2.0 (d): with UM at ¢t = 2.0

02 04 ,06 08
X 0.2

(g): with MM at ¢t = 3.0 (h): with UM at t = 3.0

0.2 0.4 0.2 04 0.6 0.8

X X

Fig.21 Example 4.8. The contours of the temperature obtained with a moving mesh (MM) of size 61 x 61
are compared with those obtained with a uniform mesh (UM) of size 121 x 121
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(a): with MM at t = 1.0 (b): with MM2 at ¢ = 1.0

02 04,06 08

X
(e): with MM1 at t = 2.5

(f): with MM2 at ¢ = 2.5

06 08 0.2 04 , 06 08

02 04

X X

(g): with MM1 at t = 3.0 (h): with MM2 at t = 3.0

0.6 0.8

0.2 0.4

X

02 04 X 0.6

Fig.22 Example 4.8.The contours of the temperature obtained with an MM1 of size 121 x 121 are com-
pared with those obtained with an MM2 of size 41 x41 (with the physical PDE being solved on a uniformly

refined mesh of size 121 x 121)
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(a): with MM1 at ¢ = 1.0

(c): with MM1 at t = 2.0

(e): with MM1 at t = 2.5

02 04 , 06 0.8

X

(g): with MM1 at ¢t = 3.0

0 02 04 ,06 038

X

(b): with MM2 at t = 1.0

02 04 06 0.8

X

(d): with MM2 at t = 2.0

(f): with MM2 at t = 2.5

02 04 , 06 0.8

X

(h): with MM2 at ¢ = 3.0

Fig. 23 Example 4.8. Moving meshes of size 121 x 121 obtained with MM1 and MM2 moving mesh
strategies. MM2 is obtained by uniformly interpolating a 41 x 41 moving mesh
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Table 4 CPU time comparison among one-level, two-level moving mesh and uniform mesh methods for
Example 4.8. The CPU time is measured in seconds. The last column is the ratio of the used CPU time to
that used with a uniform mesh of the same size

Fine Mesh Coarse Mesh Total CPU time Ratio
One-level MM 41x41 41x41 2359 4.72
81x81 81x81 38828 17.25
121x121 121x121 983286 174.16
Tow-level MM 41x41 41x41 2359 4.72
81x81 41x41 8912 3.96
121x121 41x41 22836 4.04
Fixed mesh 41x41 n/a 500 1
81x81 n/a 2251 1
121x121 n/a 5646 1

those by Sheng et al. [35]. Comparison results are shown in Fig. 21 for a moving
mesh of 61 x 61 and a uniform mesh of 121 x 121 and in Figs. 22 and 23 for one-level
and two-level moving meshes of 121 x 121. The CPU time is recorded in Table 4.

5 Conclusions

In the previous sections we have studied the moving mesh finite difference solution
of the 2T model for multi-material, non-equilibrium radiation diffusion equations
based on the MMPDE moving mesh strategy. The model involves nonlinear diffu-
sion coefficients and its solutions stay positive for all time when they are positive
initially. Nonlinear diffusion and preservation of solution positivity pose challenges
in the numerical solution of the model. A coefficient-freezing predictor-corrector
method has been used for treating nonlinear diffusion while a cutoff strategy with a
positive threshold [21] has been employed to keep the solutions positive. A two-level
moving mesh strategy and the sparse matrix solver UMFPACK with the MAC OSX
acceleration have been used to improve the efficiency of the computation.

The method has been applied to three examples of multi-material non-equilibrium
radiation diffusion. The numerical results show that the method is able to capture the
profiles and local structures of Marshak waves with adequate mesh concentration.
The numerical solutions are in good agreement with those in the existing literature.
Comparison studies have also been made between uniform and adaptive moving
meshes and between one-level and two-level moving meshes. It is shown that the two-
level moving mesh strategy can significantly improve the computational efficiency
with only a mild accuracy compromise. Extending the current method to three-
dimensional radiation diffusion models [19] and more realistic three-temperature
models [1] will be an interesting research topic for near future.
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