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Abstract. The radiative transfer equation models the interaction of radiation with scat-
tering and absorbing media and has important applications in various fields in science
and engineering. It is an integro-differential equation involving time, frequency, space
and angular variables and contains an integral term in angular directions while be-
ing hyperbolic in space. The challenges for its numerical solution include the needs
to handle with its high dimensionality, the presence of the integral term, and the de-
velopment of discontinuities and sharp layers in its solution along spatial directions.
Its numerical solution is studied in this paper using an adaptive moving mesh discon-
tinuous Galerkin method for spatial discretization together with the discrete ordinate
method for angular discretization. The former employs a dynamic mesh adaptation
strategy based on moving mesh partial differential equations to improve computa-
tional accuracy and efficiency. Its mesh adaptation ability, accuracy, and efficiency are
demonstrated in a selection of one- and two-dimensional numerical examples.
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1 Introduction

The radiative transfer equation (RTE) models the interaction of radiation with scattering
and absorbing media, which has important applications in fields such as astrophysics,
high energy density physics, nuclear physics, inertial confinement fusion, heat transfer,
stellar atmospheres, optical molecular imaging, infrared and visible light in space and the
atmosphere, and biomedicine. The RTE is an integro-differential equation with seven in-
dependent variables (i.e., time, frequency, space, and angles) for a time-dependent three-
spatial-dimensional problem. Containing an integral term and with its high dimension-
ality, the RTE presents a challenge in the development of efficient numerical algorithms.
On the other hand, the efficient solution of the RTE plays an important role in the study
of radiation hydrodynamics where the RTE is often coupled with the Euler equations, the
energy equation, and the equation of state.

In the past, a number of methods have been developed for the numerical solution of
the RTE. Those methods can be divided roughly into two categories: stochastic and de-
terministic approaches. The Monte Carlo method is a widely used method in the former
category [24, 31]. On the other hand, deterministic approaches involve discrete approxi-
mations of the variables in the RTE. In particular, the discretization needs to be applied
to all coordinates in space and angles. For angular coordinates, the PN method, first in-
troduced in [25] and also known as the spherical harmonics method, uses an orthogonal,
harmonic basis to approximate the solution. Another approach called the discrete or-
dinate method (DOM) [6, 26] employs spectral collocation and the Legendre-Chebyshev
quadrature to discretize the integro-differential equation in angular coordinates. DOM is
widely used for the numerical solution of the transport equation [28, 35] due to its high
accuracy, flexibility, and relatively low computational cost. The angle-discretized RTE
forms a system of linear hyperbolic equations with a numerical integral term, which can
be discretized in space using a standard method such as a finite difference, finite volume,
or finite element method. The discontinuous Galerkin (DG) method is employed for this
purpose in the current work.

The DG method is known to be a particularly powerful numerical tool for the simula-
tion of hyperbolic transport problems. It was first used for the RTE by Reed and Hill [36]
and theoretically studied by Lesaint and Raviart [27]. The method was later extended
to nonlinear conservation laws by Cockburn and Shu [7–10]. The DG method has the
advantages of high-order accuracy, geometric flexibility, suitability for handling h- and
p-adaptivity, extremely local data structure, high parallel efficiency, and a good theo-
retical foundation for stability and error estimates. Over the last few decades, the DG
method has been used widely in scientific and engineering computation.

The objective of the current work is to study an adaptive moving mesh DG method
(for spatial discretization) combined with DOM (for angular discretization) for the nu-
merical solution of the RTE. Due to its hyperbolic nature, the solution of the RTE can
develop discontinuities or sharp layers along spatial directions, which makes mesh adap-
tation an indispensable tool for use in improving computational accuracy and efficiency.
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Mesh adaptation methods can be classified roughly into three groups. The first one is h-
methods, which generate a new mesh by adding or removing points to an existing mesh.
Typically, mesh points are added in regions where the solution variation or error is large,
and mesh points are removed in regions where the solution is smooth. The second group
is p-methods where the order of polynomial approximation varies from place to place ac-
cording to a certain error estimate or indicator. The third group is r-methods, also called
moving mesh methods, which relocate mesh point positions while maintaining the total
number of mesh points and the mesh connectivity.

Several works have been done in using mesh adaptation for the numerical solution
of the RTE. In [22], an adaptive mesh refinement (AMR) algorithm has been formulated
and implemented for the RTE by minimizing the spatial discretization error. In [13], hp-
adaptive DG methods have been developed for the numerical solution of simplified PN

approximations of radiative transfer in non-grey semitransparent media and it has been
found that it is possible to approximate the radiative field with a significantly lower com-
putational cost than solving the equations using the conventional finite element method.
In [12], hp-adaptive methods have been developed based on a short-characteristics ap-
proach embedded in the discontinuous finite element framework. No work has been
done so far in using moving mesh methods for the numerical solution of the RTE.

In this paper, we study a moving mesh method based on moving mesh partial dif-
ferential equations (MMPDEs) [18–20] to solve the radiative transfer equation. An MM-
PDE moves the mesh continuously in time and orderly in space and is formulated as the
gradient flow equation of a meshing functional. We use a newly developed discrete ap-
proach [16] that makes the implementation of the MMPDE method not only significantly
simpler but also much more reliable in the sense that there is a theoretical guarantee for
mesh nonsingularity at semi and fully discrete levels [17]. The MMPDE method deter-
mines the mesh adaptivity for the size, shape, and orientation of mesh elements using
a metric tensor (also called a monitor function) which is matrix-valued function defined
throughout the physical domain.

The full discretization of the RTE includes the discretization in angular directions us-
ing DOM, in space using an adaptive moving mesh DG method [29], and in time using
the backward Euler scheme. The DOM discretization leads to radiative intensity func-
tions for different angular directions which can have discontinuities or sharp layers at
different location in space. To take this into account, we compute a metric tensor based
on the Hessian for each of these functions and then combine them via matrix intersection
(see its definition in Section 4) into a single metric tensor to be used with the MMPDE
method. Numerical results in Section 5 show that the adaptive moving mesh DG method
with this strategy works well for problems with single or multiple sharp layers and dis-
continuities in the sense that it is able to automatically concentrate the mesh points in
the regions of discontinuities or steep transition layers and is more efficient than its fixed
mesh counterpart.

An outline of the paper is as follows. In Section 2, the RTE and DOM are described.
The adaptive moving mesh DG method for solving the two-dimensional RTE is presented
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in Section 3. The generation of adaptive moving meshes using a new implementation of
the MMPDE method is discussed in Section 4. A selection of one- and two-dimensional
examples are presented in Section 5 to demonstrate the mesh adaptation ability of the
adaptive moving mesh DG method and its accuracy and efficiency. Finally, Section 6
contains conclusions and further comments.

2 The radiative transfer equation

The RTE is an integro-differential equation modeling the conservation of photons [32].
We consider a case with one-group, isotropically scattering radiative transfer. The gov-
erning equation for this case reads as

1

c

∂I(r,Ω,t)

∂t
+Ω·∇I(r,Ω,t)+σt I(r,Ω,t)=

σs

4π

∫

S
I(r,Ω̃,t)dΩ̃+q(r,Ω,t), (2.1)

where c is the speed of photons, r is the spatial variable, ∇ is the gradient operator with
respect to r, Ω is the unit angular variable, S is the unit sphere, t is time, I(r,Ω,t) is the
radiative intensity in the direction Ω, σs ≥ 0 is the scattering coefficient of the medium,
σt ≥σs is the extinction coefficient of the medium due to both absorption and scattering,
and q(r,Ω,t) is a given source term. The vector r is described by the Cartesian coordinates
x,y,z while Ω is usually described by a polar angle β measured with respect to a fixed
axis in space (such as the z axis) and a corresponding azimuthal angle ϕ. Letting µ=cosβ,
then

dr=dxdydz, dΩ=sinβdβdϕ=−dµdϕ.

In this work we consider the numerical solution of (2.1) in one and two spatial dimen-
sions. Since the numerical algorithm is similar in one and two dimensions, we describe
it only in two dimensions. The equation (2.1) reads in two dimensions as

1

c

∂I(x,y,Ω,t)

∂t
+Ω·∇I(x,y,Ω,t)+σt I(x,y,Ω,t)

=
σs

4π

∫

S
I(x,y,Ω̃,t)dΩ̃+q(x,y,Ω,t), (x,y)∈D, (2.2)

where Ω=(ζ,η) and

ζ=sinβcos ϕ=
√

1−µ2cosϕ∈ (−1,1), η=sinβsin ϕ=
√

1−µ2sinϕ∈ (−1,1).

Denote by n(x,y) the unit outward normal vector of the domain boundary ∂D at the
point (x,y) and define ∂Din ={(x,y)∈∂D |n(x,y)·Ω<0}. Then, the boundary condition
can be expressed as

I(x,y,Ω,t)= g(x,y,Ω,t), (x,y)∈∂Din , (2.3)

and the initial condition is

I(x,y,Ω,0)= I0(x,y,Ω), (x,y)∈D, (2.4)
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where g(x,y,Ω,t) and I0(x,y,Ω) are given functions. Note that no boundary condition is
needed in Ω directions.

The RTE (2.2) needs to be discretized in angular, spatial, and time variables. A chal-
lenge for solving (2.2) is due to its high dimensionality: it has two dimensions totally in
both angular and spatial coordinates for a one-spatial-dimensional problem and four di-
mensions for a two-spatial-dimensional problem. To tackle this challenge, a common
strategy is to use a high accuracy discretization in angular coordinates. We use the
discrete-ordinate method [6] for this purpose. DOM will be described later in this sec-
tion. Another challenge for solving (2.2) is due to the fact that it is hyperbolic in space.
This means that its solution can develop discontinuities and sharp layers across the phys-
ical domain, which requires a spatial discretization that can handle those structures and
mesh adaptation that can provide high resolution in regions around them. An adaptive
moving mesh DG method to be presented in the next section will be used to tackle this
challenge.

DOM [6] is a spectral collocation-type method [5]. Indeed, (2.2) is collocated for a
finite number of angular directions while the integral in the angular variable is approxi-
mated by the Legendre-Chebyshev quadrature [26]. The collocation points in ζ and η are
given by

ζm =
√

1−µ2
i cos ϕj, ηm =

√

1−µ2
i sinϕj, m=(i−1)Nc+ j,

where µi, i=1,··· ,Nl denote the roots of the Legendre polynomial of degree Nl and ϕj =
(2j−1)/Nc, j=1,··· ,Nc are the nodes based on a Chebyshev polynomial. Specifically, the
discrete-ordinate approximation of (2.2) is given by

1

c

∂Im(x,y,t)

∂t
+Ωm ·∇Im(x,y,t)+σt Im(x,y,t)

=σs

Na

∑
m′=1

wm′ Im′(x,y,t)+qm(x,y,t), m=1,··· ,Na, (2.5)

where Ωm = (ζm,ηm), m = 1,··· ,Na ≡ Nl Nc, are the discrete angular directions, Im(x,y,t)

is an approximation of I(x,y,Ωm,t), qm(x,y,t) = q(x,y,Ωm,t), and ∑
Na
m=1wm Im(x,y,t) is a

Legendre-Chebyshev quadrature rule with weights wm>0 for (1/4π)
∫

S I(x,y,Ω̃,t)dΩ̃.

3 An adaptive moving mesh DG method for the

two-dimensional DOM RTEs

We notice that (2.5) is a system of hyperbolic equations and its solution can develop
discontinuities and sharp layers. The DG method has been known to be a powerful
numerical tool for the simulation of hyperbolic problems with discontinuous solutions
[27, 36]. Mesh adaptation is also crucial to provide accurate resolution of discontinuities
and sharp layers in the solution and improve computational efficiency. We describe a
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DG method for (2.5) on a general adaptive moving mesh in this section and the adaptive
mesh movement in the next section.

Specifically, we consider time instants

t0=0< t1< ···< tn < tn+1< ··· .

For the moment, we assume that a triangular mesh, which consists of non-overlapping
triangles covering D completely and whose vertices depend on t, is known at the time
instants, i.e., T n

h , n = 0,1,··· , are given. We also assume that the mesh keeps the same
connectivity and the same number of elements and vertices for the whole time period.
(The position of the vertices is the only thing that changes with time.) The generation of
such a moving mesh is discussed in Section 4.

For t∈ [tn ,tn+1], the coordinates and velocities of the vertices of the mesh are defined
as

xj(t)= xn
j

tn+1−t

∆tn
+xn+1

j

t−tn

∆tn
, ẋj(t)=

xn+1
j −xn

j

∆tn
, j=1,··· ,Nv,

yj(t)=yn
j

tn+1−t

∆tn
+yn+1

j

t−tn

∆tn
, ẏj(t)=

yn+1
j −yn

j

∆tn
, j=1,··· ,Nv,

(3.1)

where Nv is the number of the vertices and ∆tn = tn+1−tn. The corresponding mesh is
denoted by Th(t).

We now describe the DG discretization of (2.5) on Th(t). For any element K∈Th(t),
denote its vertices by (xK

1 ,yK
1 ), (xK

2 ,yK
2 ), (xK

3 ,yK
3 ) and its area by |K|. Consider a set of local

orthogonal polynomials of up to degree k in K,

Pk(K,t)=span{φ
(K)
0 (x,y,t), φ

(K)
1 (x,y,t), ··· , φ

(K)
L−1(x,y,t)}, (3.2)

where L=(k+1)(k+2)/2 is the dimension of Pk(K,t) and {φ
(K)
p , p=0,1,··· ,L−1} are the

orthogonal basis functions over the element K. The first three of the basis functions read
as

φ
(K)
0 (x,y,t)=1,

φ
(K)
1 (x,y,t)=

√
2
(

x̂− 1

3

)

,

φ
(K)
2 (x,y,t)=

√
2

2

(

x̂− 1

3

)

+
√

2
(

ŷ− 1

3

)

,

where
[

x̂
ŷ

]

=
1

2|K|

[

(yK
3 −yK

1 ) −(xK
3 −xK

1 )
−(yK

2 −yK
1 ) (xK

2 −xK
1 )

][

x−xK
1

y−yK
1

]

.

Then the associated DG finite element space can be defined as

Vk
h (t)={Ih

m(x,y,t)∈L2(D) : Ih
m(x,y,t)|K ∈Pk(K,t), ∀K∈Th(t)}. (3.3)
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Notice that any function in this space can be expressed as

Ih
m(x,y,t)=

L−1

∑
p=0

I
[p]
m,K(t)φ

(K)
p (x,y,t), (x,y)∈K, (3.4)

where I
[p]
m,K, p=0,··· ,L−1, are the degrees of freedom. Moreover, its time derivative can

be written as

∂Ih
m(x,y,t)

∂t
=

L−1

∑
p=0

(dI
[p]
m,K(t)

dt
φ
(K)
p (x,y,t)+ I

[p]
m,K(t)

∂φ
(K)
p (x,y,t)

∂t

)

. (3.5)

It is not difficult (e.g., see [23]) to show that

∂φ
(K)
p (x,y,t)

∂t
=−Π1(x,y,t)·∇φ

(K)
p (x,y,t), (3.6)

where Π1(x,y,t)=(Ẋ,Ẏ) is the piecewise linear interpolation of the nodal mesh velocities,
i.e.,

Ẋ=
1

3
(ẋK

1 + ẋK
2 + ẋK

3 )φ
(K)
0 −

√
2

4
(ẋK

1 −2ẋK
2 + ẋK

3 )φ
(K)
1 −

√
2

2
(ẋK

1 − ẋK
3 )φ

(K)
2 ,

Ẏ=
1

3
(ẏK

1 + ẏK
2 + ẏK

3 )φ
(K)
0 −

√
2

4
(ẏK

1 −2ẏK
2 + ẏK

3 )φ
(K)
1 −

√
2

2
(ẏK

1 − ẏK
3 )φ

(K)
2 .

(3.7)

Combining (3.5) and (3.6), we get

∂Ih
m(x,y,t)

∂t
=

L−1

∑
p=0

dI
[p]
m,K(t)

dt
φ
(K)
p (x,y,t)−Π1(x,y,t)·∇Ih

m(x,y,t), (x,y)∈K. (3.8)

Multiplying (2.5) by a test function φ(x,y,t) ∈ Vk
h (t), integrating the resulting equation

over K, replacing Im(x,y,t) with its approximation Ih
m(x,y,t), and using (3.8), we have

∫

K

(1

c

L−1

∑
p=0

dI
[p]
m,K(t)

dt
φ
(K)
p

)

φdxdy+
∫

K
σt Ih

m(x,y,t)φdxdy

+
∫

K
(Ωm−

1

c
Π1(x,y,t))·∇Ih

m(x,y,t)φdxdy

=
∫

K
σsΨK(x,y,t)φdxdy+

∫

K
qm(x,y,t)φdxdy, (3.9)

where

ΨK(x,y,t)=
Na

∑
m=1

wm Ih
m,K(x,y,t)
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and Ih
m,K(x,y,t) denotes the restriction of Ih

m(x,y,t) on K. Applying the divergence theo-
rem on the third term, we get

∫

K

(1

c

L−1

∑
p=0

dI
[p]
m,K(t)

dt
φ
(K)
p

)

φdxdy+
∫

K
σt Ih

m(x,y,t)φdxdy

−
∫

K

(

∇·
(

φ(Ωm−
1

c
Π1(x,y,t))

)

)

Ih
m(x,y,t))dxdy

+
∫

∂K
nK ·
(

Ωm−
1

c
Π1(x,y,t)

)

Ih
m(x,y,t)φds

=
∫

K
σsΨK(x,y,t)φdxdy+

∫

K
qm(x,y,t)φdxdy, (3.10)

where nK is the outward unit normal to the boundary ∂K. In the above equation, Ih
m(x,y,t)

is discontinuous across the cell boundaries in general and its value thereon is not well
defined. To specify the value, we define the outflow boundary ∂Km+ and the inflow
boundary ∂Km− of the element K by

∂Km+=
{

(x,y)∈∂K
∣

∣

(

Ωm−
1

c
Π1(x,y,t)

)

·nK(x,y,t)≥0
}

,

∂Km−=
{

(x,y)∈∂K
∣

∣

(

Ωm−
1

c
Π1(x,y,t)

)

·nK(x,y,t)<0
}

.

(3.11)

It is useful to point out that, in practice, (1/c)Π1(x,y,t) is much smaller than Ωm for most
situations and ∂Km+ and ∂Km− can be computed using the simpler formulas

∂Km+={(x,y)∈∂K |Ωm ·nK(x,y,t)≥0},

∂Km−={(x,y)∈∂K |Ωm ·nK(x,y,t)<0}.
(3.12)

Since each interior edge is shared by two triangular elements, the value of Ih
m(x,y,t) on

any edge of K can be defined based on its value on K or on the other element sharing the
common edge with K. These values are denoted by Ih

m(int(K),t)) and Ih
m(ext(K),t), re-

spectively. For the upwind numerical flux, we use Ih
m(int(K),t) for the outflow boundary

and Ih
m(ext(K),t) for the inflow boundary. Thus, we can rewrite (3.10) into

∫

K

(1

c

L−1

∑
p=0

dI
[p]
m,K(t)

dt
φ
(K)
p

)

φdxdy+
∫

K
σt Ih

m(x,y,t)φdxdy

−
∫

K

(

∇·
(

φ(Ωm−
1

c
Π1(x,y,t))

)

)

Ih
m(x,y,t)dxdy

+
∫

∂Km−
nK ·
(

Ωm−
1

c
Π1(x,y,t)

)

Ih
m(ext(K),t)φds

+
∫

∂Km+
nK ·
(

Ωm−
1

c
Π1(x,y,t)

)

Ih
m(int(K),t)φds

=
∫

K
σsΨK(x,y,t)φdxdy+

∫

K
qm(x,y,t)φdxdy. (3.13)
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Explicit time stepping can cause extremely small time steps due to the high photon
speed. To avoid this difficulty, we use the backward Euler scheme for (3.13), i.e.,

∫

K

(1

c

L−1

∑
p=0

I
[p]
m,K(tn+1)− I

[p]
m,K(tn)

∆tn
φ
(K)
p

)

φdxdy+
∫

K
σt Ih

m(x,y,tn+1)φdxdy

−
∫

K

(

∇·
(

φ(Ωm−
1

c
Π1(x,y,tn+1))

)

)

Ih
m(x,y,tn+1)dxdy

+
∫

∂Km−
nK ·
(

Ωm−
1

c
Π1(x,y,tn+1)

)

Ih
m(ext(K),tn+1)φds

+
∫

∂Km+
nK ·
(

Ωm−
1

c
Π1(x,y,tn+1)

)

Ih
m(int(K),tn+1)φds

=
∫

K
σsΨK(x,y,tn+1)φdxdy+

∫

K
qm(x,y,tn+1)φdxdy,

∀φ∈Vk
h (tn+1), K∈Th(tn+1), m=1,··· ,Na. (3.14)

The above equations form a coupled system for the unknown functions Ih
m(x,y,tn+1),

m=1,··· ,Na since the function ΨK(x,y,tn+1) contains all of them. To decouple these func-
tions from the equations, a functional-type iteration called the source iteration (SI) [28,39]
(also referred to as the grid sweeping algorithm) has been widely used for solving the sys-
tem in a Gauss-Seidel-like manner. To be specific, assuming that the ℓ-th iteration solu-

tions I
h(ℓ)
m,K (x,y,tn+1) (for m=1,··· ,Na and K∈Th(tn+1)) are known, we compute the new

approximations I
h(ℓ+1)
m,K (x,y,tn+1) element by element in a sweeping direction [11] and

through all angular directions m=1,··· ,Na for each given element. Thus, for K∈Th(tn+1),
we have

∫

K

(1

c

L−1

∑
p=0

I
[p](ℓ+1)
m,K (tn+1)− I

[p]
m,K(tn)

∆tn
φ
(K)
p

)

φdxdy+
∫

K
σt I

h(ℓ+1)
m,K (x,y,tn+1)φdxdy

−
∫

K

(

∇·
(

φ(Ωm−
1

c
Π1(x,y,tn+1))

)

)

I
h(ℓ+1)
m,K (x,y,tn+1)dxdy

+
∫

∂Km−
nK ·
(

Ωm−
1

c
Π1(x,y,tn+1)

)

I
h(ℓ+1)
m,K (ext(K),tn+1)φds

+
∫

∂Km+
nK ·
(

Ωm−
1

c
Π1(x,y,tn+1)

)

I
h(ℓ+1)
m,K (int(K),tn+1)φds

=
∫

K
σsΨ∗

K(x,y,tn+1)φdxdy+
∫

K
qm(x,y,tn+1)φdxdy,

∀φ∈Vk
h (tn+1), m=1,··· ,Na, (3.15)
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where

Ψ∗
K(x,y,tn+1)=

Na

∑
m=1

wm I∗m,K(x,y,tn+1),

I∗m,K(x,y,tn+1)=

{

I
h(ℓ+1)
m,K (x,y,tn+1), when available,

I
h(ℓ)
m,K (x,y,tn+1), otherwise.

The iteration is stopped when the difference between two consecutive iterates is smaller

than a given tolerance. In our computation, we use maxm‖I
h(ℓ+1)
m − I

h(ℓ)
m ‖∞ ≤ 10−12. The

source iteration is very effective, taking only a few iterations to achieve convergence for
most of the problems tested.

The time integration alternates between solving the physical equation and generating
the mesh. Starting with the current mesh T n

h and a solution Ih
m(x,y,tn), m= 1,··· ,Na, a

new mesh T
n+1

h is generated using the MMPDE moving mesh strategy to be described in
the next section. Then, the DOM-DG scheme (3.15) at tn+1 is solved for the new solution
approximation Ih

m(x,y,tn+1), m=1,··· ,Na.

4 The MMPDE moving mesh method on triangular meshes

In this section we describe the generation of T
n+1

h based on T n
h and numerical solution

Ih
m(x,y,tn), m = 1,··· ,Na using the MMPDE moving mesh method [18–20]. The method

utilizes a metric tensor (or called a monitor function) to provide the information of the
size, shape, orientation of mesh elements throughout the domain that is needed for mesh
adaptation. We use here a new implementation of the method proposed in [16]. A unique
feature for the numerical solution of the RTE is that the functions Ih

m(x,y,tn), m=1,··· ,Na

which correspond to the radiative intensity at angular directions Ωm, m= 1,··· ,Na may
have discontinuities and sharp layers at different locations in space. To take this into
account, we first compute the metric tensor for each function and then combine all of the
metric tensors into a single one.

We start with noting that T
n+1

h and T n
h have the same number of the elements (N),

the same number of the vertices (Nv), and the same connectivity. They differ only in the
location of the vertices. We assume that a reference computational mesh T̂c={(ξ̂1

j , ξ̂2
j ), j=

1,··· ,Nv}, which also has the same connectivity and the same numbers of vertices and
elements as T n

h , has been chosen. In our computation, we take it as a uniform mesh

(in the Euclidean metric) defined on domain D. T̂c stays fixed in the computation. The
generation of T

n+1
h is through a computational mesh Tc = {(ξ1

j ,ξ2
j ), j= 1,··· ,Nv} which

serves as an intermediate variable.

A key idea of the MMPDE moving mesh method is to view any nonuniform mesh
as a uniform one in some metric M [15, 18]. The metric tensor M =M(x,y,t) is a sym-
metric and uniformly positive definite matrix-valued function defined on D. It provides
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the magnitude and direction information needed for determining the size, shape, and
orientation of the mesh elements throughout the domain. Various metric tensors have
been proposed; e.g., see [18, 21]. We here use a metric tensor based on the Hessian of the
computed solution. Let HK(Ih

m(tn)) be the Hessian or a recovered Hessian of Ih
m(tn) on K.

Let the eigen-decomposition of HK(Ih
m(tn)) be

HK(Ih
m(tn))=Qdiag(λ1,λ2)Q

T.

Denote
|HK(Ih

m(tn))|=Qdiag(|λ1|,|λ2|)QT.

The metric tensor is then defined as

MK,m=det
(

I+
1

αh,m
|HK(Ih

m(tn))|
)− 1

6
(

I+
1

αh,m
|HK(Ih

m(tn))|
)

, ∀K∈Th, (4.1)

where Th denotes a general physical mesh, I is the identity matrix, det(·) is the deter-
minant of a matrix, and αh,m is a regularization parameter defined through the algebraic
equation

∑
K∈Th

|K|det(MK,m)
1
2 =2 ∑

K∈Th

|K|det(|HK(Ih
m(tn))|)

1
3 .

The metric tensor (4.1) is known [21] to be optimal for the L2-norm of linear interpolation
error.

Notice that for each m (1≤m≤Na), MK,m provides the mesh adaptation information
only for function Ih

m(x,y,tn). To account for all of the functions in the mesh adaptation,
we need to combine the metric tensors into a single one. We define

MK =MK,1∩MK,2∩···∩MK,Na ,

where “∩” stands for the intersection of symmetric and positive definite matrices which
is defined as follows. Let A and B be two symmetric and positive definite matrices. There
exists a nonsingular matrix P such that PAPT=I and PBPT=diag(b1,b2). The intersection
of A and B is then defined as A∩B=P−1diag(max(1,b1),max(1,b2))P−T. Define

DC ={(x,y) : (x,y)C(x,y)T
<1}

for any symmetric and positive definite matrix C. It is not difficult to show that DA∩B ⊆
DA∩DB, which gives the meaning of the name “intersection”. Notice that the definition
is not optimal in the sense that DA∩B is not necessarily the biggest ellipse inscribed in DA

and DB.
It is known [15, 18] that if Th is uniform in the metric M in reference to the computa-

tional mesh Tc, it satisfies

|K|
√

det(MK)=
σh|Kc|
|Dc|

, ∀K∈Th, (4.2)

1

2
tr
(

(F′
K)

−1M−1
K (F′

K)
−T
)

=det
(

(F′
K)

−1M−1
K (F′

K)
−T
)

1
2 , ∀K∈Th, (4.3)
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where F′
K is the Jacobian matrix of the affine mapping: FK :Kc∈Tc→K, MK is the average

of M over K, tr(·) denotes the trace of a matrix, and

|Dc|= ∑
Kc∈Tc

|Kc|, σh = ∑
K∈Th

|K|det(MK)
1
2 .

The condition (4.2), called the equidistribution condition, determines the size of elements
through the metric tensor M. On the other hand, (4.3), referred to as the alignment con-
dition, determines the shape and orientation of elements through MK and shape of Kc.
An energy function associated with these conditions is given by

Ih(Th,Tc)=
1

3 ∑
K∈Th

|K|det(MK)
1
2
(

tr((F′
K)

−1M−1
K (F′

K)
−T)
)2

+
4

3 ∑
K∈Th

|K|det(MK)
1
2

(

det(F′
K)det(MK)

1
2

)−2
, (4.4)

which is actually a Riemann sum of a continuous functional developed in [14] based on
mesh equidistribution and alignment.

Note that Ih(Th,Tc) is a function of the vertices ξ j =(ξ1
j ,ξ2

j ), j=1,··· ,Nv, of the com-

putational mesh Tc and the vertices xj =(xj,yj), j=1,··· ,Nv, of the physical mesh Th. A

straight way of solving the minimization problem is to take Tc as T̂c and then solve
the minimization problem of Ih(Th,T̂c) for the new physical mesh T

n+1
h . However,

Ih(Th,T̂c) is highly nonlinear in ξ j =(ξ1
j ,ξ2

j ), j=1,··· ,Nv. The fact that M is a function of

x and thus MK is a function of the coordinates of the physical vertices makes the situa-
tion more difficult. Here, we adopt an indirect approach, i.e., to take Th as T n

h , minimize
Ih(T

n
h ,Tc) with respect to Tc, and then obtain the new physical mesh using the rela-

tion between T n
h and newly obtained Tc. The minimization is carried out by integrating

the mesh equation which is defined as the gradient system of the energy function (the
MMPDE approach), viz.,

dξ j

dt
=−det(M(xj))

1
2

τ

(∂Ih(T
n

h ,Tc)

∂ξξξ j

)T
, j=1,··· ,Nv, (4.5)

where ∂Ih/∂ξ j is considered as a row vector, τ > 0 is a parameter used to adjust the
response time of mesh movement to the changes in M. Using the notion of scalar-by-
matrix differentiation [16], we can rewrite (4.5) as

dξ j

dt
=

det(M(xj))
1
2

τ ∑
K∈ωj

|K|vK
jK

, j=1,··· ,Nv, (4.6)

where ωj is the element patch associated with the vertex xj, jK is the local index of xj in

K, and vK
jK

is the local velocity contributed by K. Denote the edge matrices of K and Kc by
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EK = [xK
1 −xK

0 , xK
2 −xK

0 ] and EKc = [ξK
1 −ξK

0 , ξK
2 −ξK

0 ], respectively. Let J =(F′
K)

−1 = EKc E
−1
K

and define

G(J,det(J))=
1

3
det(MK)

1
2 (tr(JM−1

K JT))2+
4

3
det(MK)

1
2

(

det(J)

det(MK)
1
2

)2

.

It is not difficult [16] to find the derivatives of G with respect to J and det(J) as

∂G

∂J
=

4

3
det(MK)

1
2 (tr(JM−1

K JT))M−1
K JT,

∂G

∂det(J)
=

8

3
det(MK)

− 1
2 det(J).

(4.7)

Then, the local velocities are expressed as

[

(vK
1 )

T

(vK
2 )

T

]

=−E−1
K

∂G

∂J
− ∂G

∂det(J)

det(EKc)

det(EK)
E−1

Kc
, vK

0 =−vK
1 −vK

2 . (4.8)

Note that the velocities for the boundary nodes need to be modified properly. For ex-
ample, the velocities for the corner vertices should be set to be zero. For other boundary
vertices, the velocities should be modified such that they only slide along the boundary
and do not move out of the domain. Specifically, we assume that the domain boundary
can be expressed as ψ(ξ)= 0. Consider a boundary vertex ξ j on the boundary which is

not a corner and denote the mesh equation (4.5) by
dξ j

dt =uj. This equation can be modified
into

dξ j

dt
=uj−

(∇ψ·uj)∇ψ

|∇ψ|2 ,

which satisfies ∇ψ· dξ j

dt =0 and makes the node slide on the boundary.
The mesh equation (4.6) can be integrated from tn to tn+1, starting with the reference

computational mesh T̂c as the initial mesh. The obtained new mesh is denoted by T n+1
c .

Note that T n
h is kept fixed during the integration and it and T n+1

c form a correspondence,

i.e., T n
h =Φh(T

n+1
c ). Then the new physical mesh T

n+1
h is defined as T

n+1
h = Φh(T̂c)

which can be readily computed using linear interpolation.
To conclude this section we would like to point out that a number of other moving

mesh methods have been developed in the past and there is a vast literature in the area.
The interested reader is referred to the books/review articles [1–3,18,37] and some recent
articles [4, 30, 38, 43].

5 Numerical examples

In this section we present numerical results obtained with the moving mesh DG method
described in the previous sections for a number of one- and two-dimensional exam-
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ples for the RTE. Unless otherwise stated, we use in the discrete-ordinate approxima-
tion the Gauss-Legendre P8 and the Legendre-Chebyshev P8-T8 rules for one- and two-
dimensional problems, respectively, and take the final time as T=0.1. By trial and error,
we have found that the time step size ∆t = 10−3 is sufficiently small so that the spatial
error dominates the total error in the computation. For mesh movement, we take τ=0.1
for Example 5.3 and τ = 0.01 for the others. For the cases having an exact solution, the
error in the computed solution is measured in the (global) L1, L2, and L∞ norm, i.e.,

∫ T

0
‖eh(·,t)‖L1 dt,

∫ T

0
‖eh(·,t)‖L2 dt,

∫ T

0
‖eh(·,t)‖L∞ dt.

Example 5.1 (A discontinuous test for the one-dimensional RTE simulating the absorbing-s-
cattering model). We take extinction coefficient σt=1000, σs =1, c=3.0×108, and

q(x,µ,t)=σt sin(2π(tanh(Rx)+5µt))+
10πµ

c
cos(2π(tanh(Rx)+5µt))

+2πµRcos(2π(tanh(Rx)+5µt))(1−tanh2(Rx))

+
σs

20πt
(cos(2π(tanh(Rx)+5t))−cos(2π(tanh(Rx)−5t)))+a(σt−σs),

where a=2 and R=200. The initial condition is I(x,µ,0)= sin(2πtanh(Rx))+a and the
boundary conditions are

I(−1,µ,t)=sin(2π(−tanh(R)+5µt))+a, 0<µ≤1, 0< t≤T,

I(1,µ,t)=sin(2π(tanh(R)+5µt))+a, −1≤µ<0, 0< t≤T.

The exact solution of this example is I(x,µ,t)=sin(2π(tanh(Rx)+5µt))+a. The mesh
trajectories for the P2-DG method with a moving mesh of N=80 are shown in Fig. 1. The
moving mesh solution (N = 80) in the direction µ=−0.5255 is compared with the fixed

-1 -0.5 0 0.5 1

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

Figure 1: Example 5.1. The mesh trajectories are obtained with the P2-DG method with a moving mesh of
N=80.
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Figure 2: Example 5.1. The solution in the direction µ =−0.5255 obtained with the P2-DG method with a
moving mesh of N=80 is compared with those obtained with fixed meshes of N=80 and N=1280. MM and
FM stand for moving mesh and fixed mesh, respectively.

mesh solutions obtained with N = 80 and N = 1280 in Fig. 2. Similar results are shown
in Fig. 3 for the angular direction µ= 0.9603. These results show that the moving mesh
solution (N=80) is more accurate than those with fixed meshes of N=80 and N=1280.

The error in the L1 and L2 norm is shown in Fig. 4 for both P1-DG and P2-DG methods
with fixed and moving meshes. It can be seen that both fixed and moving meshes lead to
almost the same order of convergence for relatively large N, i.e., 2nd order for P1-DG and
3rd-order for P2-DG. However, a moving mesh always produces more accurate solutions
than a fixed mesh of the same size for this example.

To show the efficiency of the methods, we plot in Fig. 5 the L1 norm of the error against
the CPU time measured in seconds on a Thinkpad T440 with Matlab 2017a. One can see
that moving mesh (MM) P1-DG (resp. P2-DG) is more efficient than fixed mesh (FM) P1-
DG (resp. P2-DG) in the sense that the former leads to a smaller error than the latter for
a fixed amount of the CPU time. Moreover, when N>50, MM (resp. FM) P2-DG is more
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Figure 3: Example 5.1. The solution in the direction µ=0.9603 obtained with the P2-DG method with a moving
mesh of N=80 is compared with those obtained with fixed meshes of N=80 and N=1280.
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Figure 4: Example 5.1. The L1 and L2 norm of the error with moving and fixed meshes.
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Figure 5: Example 5.1. The L1 norm of the error is plotted against the CPU time.

efficient than MM (resp. FM) P1-DG. Thus, a moving mesh improves the computational
efficiency and the quadratic DG method has better efficiency than the linear one on both
fixed and moving meshes when N is sufficiently large.

Example 5.2 (A discontinuous example of the one-dimensional RTE for the absorbing-s-
cattering model). In this example, we take σs =1, c=3.0×108, and

σt =











1, for 0≤ x<0.2,

900, for 0.2≤ x<0.6,

90, for 0.6≤ x≤1,

q(x,µ,t)=











100e−t, for 0≤ x<0.2,

1, for 0.2≤ x<0.6,

1000e3t , for 0.6≤ x≤1.

The initial condition is I(x,µ,0)=15x and the boundary conditions are given by

I(0,µ,t)=0, for 0<µ≤1, 0< t≤T,

I(1,µ,t)=15+2t, for −1≤µ<0, 0< t≤T.

The solution of this problem has two sharp layers. Since its analytical form is unavailable
for comparison purpose we take the numerical solution obtained with the P2-DG method
with a fixed mesh of N = 20000 as the reference solution. The mesh trajectories for the
P2-DG method with a moving mesh of N = 80 are shown in Fig. 6. The moving mesh
solution (N=80) in the direction µ=−0.1834 is compared with the fixed mesh solutions
obtained with N = 80 and N = 1280 in Fig. 7. Similar results are shown in Fig. 8 for the
angular direction µ=0.1834. The results show that the moving mesh solution (N=80) is
more accurate than those with fixed meshes of N=80 and N=1280.
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Figure 6: Example 5.2. The mesh trajectories are obtained with the P2-DG method with a moving mesh of
N=80.
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Figure 7: Example 5.2. The solution in the direction µ =−0.1834 obtained with the P2-DG method with a
moving mesh of N=80 is compared with those obtained with fixed meshes of N=80 and N=1280.
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Figure 8: Example 5.2. The solution in the direction µ=0.1834 obtained with the P2-DG method with a moving
mesh of N=80 is compared with those obtained with fixed meshes of N=80 and N=1280.

Example 5.3 (An accuracy test for the two-dimensional RTE for the absorbing-scattering
model). In this example, we take σt=22000, σs =1, c=3.0×108, and

q(x,y,ζ,η,t)=et

(

−2π(ζ+η)(ζ2+η2)cos3
(π

2
(x+y)

)

sin
(π

2
(x+y)

)

+
((1

c
+σt

)

(ζ2+η2)− 2

3
σs

)

cos4
(π

2
(x+y)

)

+
(1

c
+σt−σs

)

)

.

The initial condition is I(x,y,ζ,η,0)=(ζ2+η2)cos4(π
2 (x+y))+1 and the boundary condi-

tions are given by

I(x,0,ζ,η,t)= et

(

(ζ2+η2)cos4
(π

2
x
)

+1

)

, η>0,

I(x,1,ζ,η,t)= et

(

(ζ2+η2)cos4
(π

2
(x+1)

)

+1

)

, η<0,
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Figure 9: Example 5.3. The L1 and L∞ norm of the error with moving and fixed meshes.

I(0,y,ζ,η,t)= et

(

(ζ2+η2)cos4
(π

2
y
)

+1

)

, ζ>0,

I(1,y,ζ,η,t)= et

(

(ζ2+η2)cos4
(π

2
(1+y)

)

+1

)

, ζ<0.

The exact solution of this problem is I(x,y,ζ,η,t) = et
(

(ζ2+η2)cos4(π
2 (x+y))+1

)

. The

error in the L1 and L∞ norm is plotted in Fig. 9 for the P1-DG and P2-DG methods with
fixed and moving meshes. It can be seen that both fixed and moving meshes lead to
comparable results and the same convergence order (2nd for P1-DG and 3rd for P2-DG),
which is consistent with the theoretical prediction.

Example 5.4 (A discontinuous example of the two-dimensional RTE for the transparent
model). In this test, we solve the two-dimensional RTE (2.2) with σt=0, σs=0, c=3.0×108 ,
q=0, ζ=0.3, and η=0.5. The computational domain is (0,1)×(0,1). The initial condition
is

I(x,y,ζ,η,0)=

{

0, for y<
η
ζ x,

cos6
(

π
2 y
)

, otherwise.

The boundary conditions are

I(0,y,ζ,η,t)=cos6
(π

2
y
)

cos10(t), I(x,0,ζ,η,t)=0.

The exact solution of this example is

I(x,y,ζ,η,t)=

{

0, for y<
η
ζ x,

cos6
(

π
2 (y−

η
ζ x)
)

cos10(t− x
cζ ), otherwise.



1160 M. Zhang et al. / Commun. Comput. Phys., 27 (2020), pp. 1140-1173

(a) Radiative intensity on MM N=1600
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(b) MM N=1600 at t=0.1

(c) Radiative intensity on FM N=1600 (d) Radiative intensity on FM N=57600

Figure 10: Example 5.4. The radiative intensity contours (and mesh) at t=0.1 obtained by the P2-DG method
with a moving mesh of N=1600 and fixed meshes of N=1600 and N=57600.

Notice that only a single angular direction is chosen in this example and the integral term
in (2.2) is not involved.

The radiative intensity contours obtained with a moving mesh of N=1600 and fixed
meshes of N = 1600 and N = 57600 are shown in Fig. 10. In Fig. 11, we compare the
radiative intensity cut along the line y= 0.495 for the moving mesh of N = 1600 and the
fixed meshes of N=1600 and N=57600. The results show that the moving mesh solution
(N=1600) is better than that with the fixed mesh of N=1600 and is comparable with that
with the fixed mesh of N=57600.

The error in the L1 and L2 norm is shown in Fig. 12 for the P1-DG and P2-DG meth-
ods with fixed and moving meshes. It is worth pointing out that we cannot expect P1-DG
and P2-DG can achieve their optimal order for this problem since the solution is discon-
tinuous. One can see from the figure that both fixed and moving meshes lead to almost
the same convergence order. The order of P1-DG is about 0.72 in L1 norm and 0.36 in L2

norm while that of P2-DG is about 0.81 in L1 norm and 0.41 in L2 norm. Moreover, the
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Figure 11: Example 5.4. The comparison of the radiative intensity cut along the line y=0.495 obtained by the

P2-DG method with a moving mesh of N=1600 and fixed meshes of N=1600 and N=57600.
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Figure 12: Example 5.4. The L1 and L2 norm of the error with moving and fixed meshes.

figure shows that a moving mesh produces more accurate solutions than a fixed mesh of
the same number of elements for this example.

Example 5.5 (A discontinuous example of the two-dimensional RTE for the purely ab-
sorbing model). In this example, we choose σt =1, σs =0, c=3.0×108, q=0, ζ =0.4, and
η=0.9. The computational domain is (0,1)×(0,1). The initial condition is

I(x,y,ζ,η,0)=

{

tanh(500(x−0.5))+1, for y<
η
ζ x,

1, otherwise.

The boundary conditions are

I(0,y,ζ,η,t)= e(y
2 t), I(x,0,ζ,η,t)= tanh(500(x−0.5))+1.



1162 M. Zhang et al. / Commun. Comput. Phys., 27 (2020), pp. 1140-1173

(a) Radiative intensity on MM N=6400
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(b) MM N=6400 at t=0.1

(c) Radiative intensity on FM N=6400 (d) Radiative intensity on FM N=102400

Figure 13: Example 5.5. The radiative intensity contours (and mesh) at t=0.1 obtained by the P2-DG method
with a moving mesh of N=6400 and fixed meshes of N=6400 and N=102400.

The exact solution of this example is

I(x,y,ζ,η,t)=







(tanh(500(x− ζ
η y−0.5))+1)e−

σt
η y

, for y<
η
ζ x,

e

(

(y− η
ζ x)2(t− x

cζ )−
σt
ζ x
)

, otherwise,

which exhibits a discontinuity along with y= η
ζ x and a sharp layer along with x= ζ

η y+0.5.

Like the previous example, only a single angular direction is chosen in this example and
the integral term in (2.2) is not involved.

The radiative intensity contours obtained with the P2-DG method with a moving
mesh of N = 6400 and fixed meshes of N = 6400 and N = 102400 are shown in Fig. 13.
In Fig. 14, the radiative intensity cut along the line y=0.495 is compared for moving and
fixed meshes. The advantage of using a moving mesh is clear. The error in the L1 and L2

norm is plotted as a function of N in Fig. 15 for fixed and moving meshes. The P1-DG
method shows an order of about 0.87 in L1 norm and 0.57 in L2 norm while P2-DG has
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(c) MM N=6400, FM N=102400
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Figure 14: Example 5.5. The radiative intensity cut along the line y=0.495 obtained a moving mesh of N=6400
is compared with those obtained with fixed meshes of N=6400 and N=102400.
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Figure 15: Example 5.5. The L1 and L2 norm of the error with moving and fixed meshes.
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Figure 16: Example 5.5. The L1 norm of the error is plotted against the CPU time.

an order of 1.2 in L1 norm and 0.73 in L2 norm for both fixed and moving meshes. A
moving mesh produces more accurate solutions than a fixed mesh of the same number
of elements for this example.

To show the efficiency of the methods for this two-dimensional example, we plot the
L1 norm of the error against the CPU time in Fig. 16. We can see that the error is smaller
for moving mesh P1-DG (resp. P2-DG) than fixed mesh P1-DG (resp. P2-DG) for a fixed
amount of the CPU time. Moreover, the better efficiency of a higher-order method is
more obvious in this example than the one-dimensional Example 5.1: Fixed mesh P2-DG
is nearly equally or more efficient than moving mesh P1-DG.

Example 5.6 (A steep transition layer example of the two-dimensional RTE for the ab-
sorbing-scattering model). In this example, the parameters are taken as σt=10000, σs=1,
c=3.0×108, and

q(x,y,ζ,η,t)=et

(

(1

c
+σt

)(

a−tanh
(

R(x2+y2−
√

2(1−ζ2−η2)
)

)

−2R(ζx+ηy)
(

1−tanh2(R(x2+y2−
√

2(1−ζ2−η2)
)

)

+

√
2σs

2R

(

ln
(

cosh(R(
√

2−x2−y2))
)

−ln
(

cosh(R(x2+y2))
)

)

−σsa

)

,

where R=200 and a=10. The initial condition is

I(x,y,ζ,η,0)=
(

a−tanh
(

R(x2+y2−
√

2(1−ζ2−η2)
)

)

and the boundary conditions are

I(x,0,ζ,η,t)= et
(

a−tanh
(

R(x2−
√

2(1−ζ2−η2)
)

)

, η>0,

I(x,1,ζ,η,t)= et
(

a−tanh
(

R(x2+1−
√

2(1−ζ2−η2)
)

)

, η<0,
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(a) Radiative intensity on MM N=6400
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(b) MM N = 6400 at t=0.1

(c) Radiative intensity on FM N=6400 (d) Radiative intensity on FM N=57600

Figure 17: Example 5.6. The radiative intensity contours in the direction Ω=(−0.2578,−0.1068) (and mesh)

at t = 0.1 obtained by P2-DG method with a moving mesh of N = 6400 and fixed meshes of N = 6400 and
N=57600.

I(0,y,ζ,η,t)= et
(

a−tanh
(

R(y2−
√

2(1−ζ2−η2)
)

)

, ζ>0,

I(1,y,ζ,η,t)= et
(

a−tanh
(

R(1+y2−
√

2(1−ζ2−η2)
)

)

, ζ<0.

This problem has the exact solution

I(x,y,ζ,η,t)= et
(

a−tanh
(

R(x2+y2−
√

2(1−ζ2−η2)
)

)

,

for which the location of the steep transition layers changes with the angular variable
Ω=(ζ,η). The radiative intensity contours for the directions Ω=(−0.2578,−0.1068) and
Ω = (0.7860,0.3256) are shown in Figs. 17 and 18, respectively, for the P2-DG method
with moving and fixed meshes. It can be seen that the elements of the moving mesh are
concentrated in the regions of the sharp transition layers in the radiative intensities for all
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(a) Radiative intensity on MM N=6400
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(b) MM N = 6400 at t=0.1

(c) Radiative intensity on FM N=6400 (d) Radiative intensity on FM N=57600

Figure 18: Example 5.6. The radiative intensity contours in the direction Ω=(0.7860,0.3256) (and mesh) at

t=0.1 obtained by P2-DG method with a moving mesh of N=6400 and fixed meshes of N=6400 and N=57600.

angular directions. (The mesh shows four layers while only two layers are shown in the
intensity contours in Figs. 17 and 18. The figures for the intensities for other directions
are omitted to save space.) It can be seen that the moving mesh (N = 6400) provides a
better resolution of the layers than the fixed mesh of N=6400 and is comparable with the
fixed mesh of N=57600.

The error in the L1 and L2 norm is plotted in Fig. 19 as a function of N. The conver-
gence order is similar for both fixed and moving meshes, i.e., the order of P1-DG is about
1.7 in L1 norm and 1.6 in L2 norm and that of P2-DG is 2.2 in both L1 and L2 norm.

Example 5.7 (A steep transition layer example of the two-dimensional RTE for the ab-
sorbing-scattering model). In this final example, we take σt =33, σs =3, and c=3.0×108.
The computational domain is (−1,1)×(−1,1). Define

C0(x,y)= tanh

(

R
(

x2+y2− 1

8

)

)

,
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Figure 19: Example 5.6. The L1 and L2 norm of the error with moving and fixed meshes.

C1(x,y)= tanh

(

R
(

(x−0.5)2+(y−0.5)2− 1

8

)

)

,

C2(x,y)= tanh

(

R
(

(x−0.5)2+(y+0.5)2− 1

8

)

)

,

C3(x,y)= tanh

(

R
(

(x+0.5)2+(y−0.5)2− 1

8

)

)

,

C4(x,y)= tanh

(

R
(

(x+0.5)2+(y+0.5)2− 1

8

)

)

,

where R=200. The source term is taken as

q(x,y,ζ,η,t)

=et(ζ2+η2)

(

(1

c
+σt

)(

5a−
4

∑
i=0

Ci(x,y)
)

−R
(

2(ζx+ηy)(1−C0(x,y)2)

+(ζ(2x−1)+η(2y−1))(1−C1(x,y)2)+(ζ(2x−1)+η(2y+1))(1−C2(x,y)2)

+(ζ(2x+1)+η(2y−1))(1−C3(x,y)2)+(ζ(2x+1)+η(2y+1))(1−C4(x,y)2)
)

)

− 2

3
etσs

(

5a−
4

∑
i=0

Ci(x,y)
)

,

where a = 2. The initial condition is I(x,y,ζ,η,0) = (ζ2+η2)
(

5a−∑
4
i=0Ci(x,y)

)

and the
boundary conditions are

I(x,0,ζ,η,t)= et(ζ2+η2)
(

5a−
4

∑
i=0

Ci(x,0)
)

, η>0,
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(a) Radiative intensity on MM N=6400
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Figure 20: Example 5.7. The radiative intensity contours in the direction Ω=(0.2578,0.1068) (and mesh) at

t=0.1 obtained by P2-DG method with a moving mesh of N=6400 and fixed meshes of N=6400 and N=57600.

I(x,1,ζ,η,t)= et(ζ2+η2)
(

5a−
4

∑
i=0

Ci(x,1)
)

, η<0,

I(0,y,ζ,η,t)= et(ζ2+η2)
(

5a−
4

∑
i=0

Ci(0,y)
)

, ζ>0,

I(1,y,ζ,η,t)= et(ζ2+η2)
(

5a−
4

∑
i=0

Ci(1,y)
)

, ζ<0.

The exact solution of the problem is

I(x,y,ζ,η,t)= et(ζ2+η2)
(

5a−
4

∑
i=0

Ci(x,y)
)

,

which exhibits a sharp layer of five-ring shape, independent of ζ and η. The radiative
intensity contours in the direction Ω = (0.2578,0.1068) are shown in Fig. 20 for the P2-
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(c) MM N=6400, FM N=57600
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Figure 21: Example 5.7. The radiative intensity in the direction Ω=(0.2578,0.1068) cut along the line y=0.8x
obtained a moving mesh of N = 6400 is compared with those obtained with fixed meshes of N = 6400 and
N=57600.

DG method with moving and fixed meshes. In Fig. 21, the radiative intensity cut along
the line y= 0.8x for the direction Ω=(0.2578,0.1068) is compared for moving and fixed
meshes. The error in L1 and L2 norm is plotted as a function of N in Fig. 22.

6 Conclusions

In the previous sections an adaptive moving mesh DG method has been presented for the
numerical solution of the radiative transfer equation. The RTE is an integro-differential
equation modeling the conservation of photons. It involves an integral term in the angu-
lar directions while being hyperbolic in space. The challenges for its numerical solution
include the needs to handle with its high dimensionality, the presence of the integral
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Figure 22: Example 5.7. The L1 and L2 norm of the error with moving and fixed meshes.

term, and the development of discontinuities and sharp layers in its solution along spa-
tial directions. In the current work, the RTE is discretized first in the angular directions
with the discrete ordinate method and then with a DG method in space on a moving
mesh. The mesh is moved adaptively using the MMPDE strategy to provide better res-
olution of sharp layers or discontinuities and thus better efficiency. The source iteration
is used to avoid the coupling of the radiative intensities for all angular directions in the
integral term.

A selection of one- and two-dimensional examples have been presented to demon-
strate the accuracy and efficiency of the method. It has been shown that the method is
able to automatically concentrate the mesh points in regions of discontinuities or steep
transition layers and is more efficient than its fixed mesh counterpart. Particularly, the
combination of the metric tensors for radiative intensities for different angular directions
into a single metric tensor using the matrix intersection seems to work well for the tested
problems with single or multiple sharp layers and discontinuities. Interestingly, the re-
sults also show that the quadratic DG method has better efficiency than the linear DG for
both fixed and moving meshes.

It should be pointed out that we have not considered positivity-preserving limiters
[39, 42] nor nonoscillatory limiters such as TVB limiter [7, 9], the WENO limiter [33, 40],
or HWENO limiter [34,41] in the current work. One may observe that localized spurious
oscillations occur in numerical solutions containing discontinuities. How to combine lim-
iters with our moving mesh DG method for the RTE or more general integro-differential
equations will be an interesting research topic for the near future. Other future work
will include extending the method to the numerical solution of the RTE coupled with the
Euler equations, the material equation or the energy equation for real situations.
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