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Abstract. In this paper, we further extend the derivative-based finite-volume multi-
resolution Hermite weighted essentially non-oscillatory (MR-HWENO) scheme pro-
posed in our previous article (Li, Shu and Qiu, J. Comput. Phys., 446:110653, 2021) to
simulate the steady-state problem. When dealing with the steady-state problem, the
process of updating and reconstructing the function values is similar to the previous
scheme, but the treatment of the derivative values is changed. To be more specific, in-
stead of evolving in time, in the sense of cell averages, the scheme uses the derivative
at the current time step and the function at the next time step to reconstruct the deriva-
tive at the next time step by direct linear interpolation. There are two advantages for
this approach: the first is its high efficiency, when handling the derivative, neither the
update on time nor the calculation of nonlinear weights is required; in the meantime,
the CFL number can still be taken up to 0.6 as in the original scheme; the second is
its strong convergence, the corresponding average residual can quickly converge to
machine accuracy, thus obtaining the desired steady-state solution. One- and two-
dimensional numerical experiments are given to verify the high efficiency and strong
convergence of the proposed MR-HWENO scheme for the steady-state problems.
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1 Introduction

In this paper, we apply the derivative-based finite-volume multi-resolution Hermite
weighted essentially non-oscillatory (MR-HWENO) scheme [22] to solve the following
steady-state problem:

∇·F(U)= s(U,X), (1.1)

where U is the unknown variable to be determined, F(U) is the (usually nonlinear)
flux function, s(U,X) is the given source term and X =(x1,··· ,xd). Only one- and two-
dimensional cases are considered in this paper, i.e. d=1 or 2, accordingly, we use x to
denote x1, and y to denote x2.

The steady-state problem is an important mathematical model, which is widely used
in a variety of fields such as compressible fluid dynamics, wave motion, advective trans-
port of matter and so on. However, it is not easy to obtain the solution of these problems
either theoretically or numerically. One way to solve Eq. (1.1) numerically is to solve the
corresponding unsteady hyperbolic balance law by adopting an appropriate time march-
ing method

{

Ut+∇·F(U)= s(U,X),

U(X ,0)=U0(X).
(1.2)

With the advance of time, when the residual of the above unsteady hyperbolic balance
law (1.2) is sufficiently small, the corresponding solution is considered acceptable as the
steady-state solution of (1.1). In this way, we transform the steady-state problem into a
time-dependent hyperbolic balance law problem. But in this case, especially for those
equations with a nonlinear flux function, discontinuities may appear even if the ini-
tial condition is smooth enough. To address this issue, there have existed many works
devoted to designing efficient numerical methods to solve these problems with strong
shocks or contact discontinuities. A partial list includes essentially non-oscillatory (ENO)
schemes in [19,35,36], weighted ENO (WENO) schemes in [21,28] (see also [8]) and Her-
mite WENO (HWENO) schemes in [30, 31, 40, 43–45].

When solving the steady-state problem using the classical WENO schemes [21, 28]
with an appropriate time discretization method [11], we must address the problem that
slight post-shock oscillations may propagate downward from the region near the shock
to the smooth region, causing the residual to hang at a high truncation error level rather
than to stabilize to machine accuracy, see [42]. Although reconstructing the numerical
flux using a limiter or an upwind-biased interpolation technique can improve the con-
vergence of the numerical solution to steady-state as shown in some later papers [33,41],
the residual still fails to converge to machine accuracy for many two-dimensional test
cases. For steady-state simulations of Euler equations, Wan and Xia proposed a new hy-
brid strategy for the fifth-order WENO scheme in [37], which performs better in steady-
state convergence property with less dissipative and dispersive errors compared with
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the existing WENO schemes. They have also extended such scheme to cartesian grids in
dealing with the curved geometries in [38]. Another method is to skip the time advance
and use the Newton iteration or a more robust method, like the homotopy method [12],
which directly solves the nonlinear system derived from a high-order WENO spatial dis-
cretization. A possible difficulty of this approach is that such a nonlinear system may
have multiple solutions, so we have to screen these solutions carefully to pick out the one
we want. Chen proposed a fixed-point fast sweeping WENO method for steady-state
solution of scalar hyperbolic conservation laws [6] and since then a series of improved
schemes have been put forward, see [24,25,39]. Although the convergence of these meth-
ods is much improved over the previous schemes, there are still cases where the residual
fails to converge to the machine accuracy. Therefore, it is still very urgent to design a
numerical scheme that can solve the steady-state problem efficiently.

In order to reduce the computational cost and improve the numerical resolution of
the high-resolution scheme near the discontinuities, the multi-resolution method came
into being. Initially, Harten proposed the original multi-resolution method for solving
the hyperbolic equations in [13–18]. Then Dahmen et al. extended such multi-resolution
scheme to solve the conservation laws in [9] and Chiavassa et al. further put forward a
multi-resolution-based adaptive scheme to solve the hyperbolic conservation laws in [7].
Later, Abgrall promoted this format to unstructured grids in [1–3]. Shi et al. designed the
high-order multi-resolution WENO scheme for complicated flow structures in [34] and
Bürger et al. proposed an adaptive multi-resolution WENO scheme for multi-species
kinematic flow models in [4]. Recently, Zhu and Shu came up with a new type of
multi-resolution WENO (MR-WENO) scheme with increasing higher order of accuracy
on the structured and triangular meshes in [46,48] and then further applied it to solve the
steady-state problem in [47]. Based on such finite volume MR-WENO scheme, a new MR-
WENO limiter for high-order local discontinuous Galerkin (LDG) method is designed for
solving Navier-Stokes equations on triangular meshes in [29]. In general, the main mo-
tivation of the multi-resolution method is to concentrate its computation on those small
regions which may contain strong shocks or contact discontinuities.

Inspired by the MR-WENO scheme [46, 48], we have proposed a new type of high-
order MR-HWENO scheme to solve the hyperbolic conservation laws on structured
meshes in [22] and further improved it in [23]. The main difference between the HWENO
scheme and the WENO scheme is that both the function and first-order derivative or mo-
ment values are evolved over time and used for reconstruction for HWENO scheme,
unlike WENO scheme which only evolves and uses the function values. This also allows
the HWENO scheme to obtain the same order of accuracy as the WENO scheme with nar-
rower stencil. When designing this new type of MR-HWENO scheme, we just refer to the
original idea of the MR-WENO method, but do not introduce the multi-resolution rep-
resentation of the solution and data compression. Compared with the classical HWENO
schemes, the biggest advantage of such MR-HWENO scheme is that only the function
values need to be reconstructed and evolved with HWENO procedure, the first-order
derivative or moment values are directly approximated by a high-order linear interpola-
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tion. In this paper, we will continue to study the numerical performance of this new type
of derivative-based finite-volume MR-HWENO scheme to solve the steady-state prob-
lems. The biggest improvement is that the derivatives are not evolved but only linearly
reconstructed based on time-misaligned u and v values. It turns out that for both the
one- and two-dimensional cases in this paper, the residual of such proposed scheme com-
bined with a third-order total variation diminishing (TVD) Runge-Kutta method can be
reduced to machine accuracy or to a tiny value close to machine zero quickly.

The main context of this article is organized as follows. In Section 2, we briefly
review the reconstruction process of the derivative-based finite-volume MR-HWENO
scheme in [22] and show how to apply it to the steady-state problems in the one- and
two-dimensional cases. In Section 3, several classical steady-state testing problems are
presented to demonstrate the high efficiency and strong convergence of the proposed
scheme. Concluding remarks are given in the last section.

2 Derivative-based finite-volume MR-HWENO scheme

In this section, we will describe the procedure of derivative-based finite-volume MR-
HWENO scheme for solving the steady-state problem in one and two dimensions in de-
tail.

2.1 One-dimensional case

To begin with, let us consider the following one-dimensional steady-state problem with
a source term on the right side

f (u)x = s(u,x), x∈ [xL,xR], (2.1)

where the source term s(u,x) is related to both the unknown quantity u and the position
coordinate x. To solve (2.1), we add the partial derivative of the unknown quantity u
with respect to time t to its left side and transform it into the following balance law:

ut+ f (u)x = s(u,x). (2.2)

Note that as t→∞, if the solution of (2.2) tends to the steady-state solution independent of
time t, then the solution of (2.1) is obtained. For simplicity, we divide the computational
domain by a uniform cell mesh {xi+1/2}N

i=0, where N is the number of cells and xi+1/2 is
the node. Then, we denote the mesh size by △x= xi+1/2−xi−1/2 =(xR−xL)/N, the cell
by Ii=[xi−1/2,xi+1/2] and its center by xi =

1
2(xi−1/2+xi+1/2).

We integrate (2.2) over the target cell Ii to obtain its integral formulation

dui(t)

dt
=− 1

△x
[ f (u(xi+1/2,t))− f (u(xi−1/2,t))]+

1

△x

∫

Ii

s(u,x)dx, (2.3)
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where ui(t) is the cell average of u over the target cell Ii, which is defined as

ui(t)=
1

△x

∫

Ii

u(x,t)dx. (2.4)

Then, we approximate (2.3) by the following semi-discrete conservative scheme

dui(t)

dt
=− 1

△x
( f̂i+1/2− f̂i−1/2)+Si= L(u)i, (2.5)

here the numerical flux f̂i+1/2 is chosen to be the Lax-Friedrichs flux, which satisfies the
Lipschitz continuity and consistency, and is defined as

f̂i+1/2= f̂ (u−
i+1/2,u+

i+1/2)=
1

2

[

f
(

u−
i+1/2

)

+ f
(

u+
i+1/2

)

−α
(

u+
i+1/2−u−

i+1/2

)

]

, (2.6)

where u±
i+1/2 are the left and right approximations to the point value u(xi+1/2,t) by the

derivative-based finite-volume MR-HWENO scheme and α=max
u

| f ′(u)| is a global quan-

tity. Si is the approximation of the integral term in the conservative scheme (2.5) by the
four-point Gauss-Lobatto integration

1

△x

∫

Ii

s(u,x)dx≈
4

∑
l=1

ωls
(

u(xGL
i+σl

,t),xGL
i+σl

)

:=Si, (2.7)

where σl and wl represent the corresponding quadrature points and weights defined in
the interval [− 1

2 , 1
2 ]

σ1=−1

2
, σ2=−

√
5

10
, σ3=

√
5

10
, σ4=

1

2
;

ω1=ω4=
1

12
, ω2=ω3=

5

12
.

(2.8)

So here we go, the spatial discretization is complete and our next target is to obtain the
values of u at these Gauss-Lobatto points, i.e. {u+

i−1/2,ui−
√

5/10,ui+
√

5/10,u−
i+1/2} by the

derivative-based finite-volume MR-HWENO scheme in [22].
As for the time discretization, we use the third-order TVD Runge-Kutta method























u
(1)
i =un

i +∆tL(un)i,

u
(2)
i =

3

4
un

i +
1

4
u
(1)
i +

1

4
∆tL(u(1))i,

un+1
i =

1

3
un

i +
2

3
u
(2)
i +

2

3
∆tL(u(2))i,

(2.9)

where n corresponds to time step tn = tn−1+△t and the nonconstant time step satisfies

△t max
1≤i≤N

( | f ′(ui)|
△x

)

=CFL=0.6. (2.10)
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At this point, we have finished the description of the complete algorithm process. The
specific reconstruction and evolution procedure is as follows:

One-dimensional Reconstruction and Evolution Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of u i.e.{(un
i−1/2)

+,un
i−

√
5/10

,un
i+

√
5/10

,

(un
i+1/2)

−} at the current time step tn using the given cell averages {un
l ,vn

l |l= i−1,i,i+1}
by the MR-HWENO scheme in [22]. Here, like the definition of ui in (2.4), vi represents
the cell average of v=ux over the target cell Ii, which can be expressed as

vi(t)=
1

△x

∫

Ii

v(x,t)dx=
1

△x

∫

Ii

ux(x,t)dx. (2.11)

Step 1.1. Select a series of central spatial stencils and reconstruct four polynomials with
different degrees, which meet the following conditions respectively

1

△x

∫

Ik

q1(x)dx=un
k , k= i;

1

△x

∫

Ik

q2(x)dx=un
k , k= i−1,i,i+1;

1

△x

∫

Ik

q3(x)dx=un
k , k= i−1,i,i+1;

1

△x

∫

Ikx

q′3(x)dx=vn
kx

, kx = i;

1

△x

∫

Ik

q4(x)dx=un
k , k= i−1,i,i+1;

1

△x

∫

Ikx

q′4(x)dx=vn
kx

, kx = i−1,i,i+1.

(2.12)

Here, q1(x) is a zeroth degree polynomial, q2(x) is a quadratic polynomial, q3(x) is a
cubic polynomial and q4(x) is a quintic polynomial. Then, we rewrite these polynomials
as

pl2(x)=











q1(x), l2=1,

1

γl2,l2

ql2(x)−
l2−1

∑
l=1

γl,l2

γl2,l2

pl(x), l2=2,3,4,
(2.13)

with ∑
l2
l=1γl,l2 = 1, γl2,l2 6= 0, l2 = 2,3,4, where these γl1,l2 for l1 = 1,··· ,l2; l2 = 2,3,4 are the

linear weights and are defined as

γl1,l2 =
γl1,l2

l2
∑

l=1
γl,l2

; γl1,l2
=10l1−1; l1=1,··· ,l2; l2=2,3,4. (2.14)

Step 1.2. Compute the smoothness indicator βl2 of polynomial pl2(x) in the interval Ii:

βl2 =
κ

∑
α=1

∫

Ii

△x2α−1

(

dα pl2(x)

dxα

)2

dx, l2=2,3,4, (2.15)
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where κ=2,3,5 for l2=2,3,4. As for the special case β1, we refer to the specific algorithm
in article [22] and skip the details here. After all these βl2 ,l2 = 1,2,3,4 are obtained, we
adopt the logic of WENO-Z to define the corresponding nonlinear weights

ωl1,4=
ωl1,4

4

∑
l=1

ωl,4

, ωl1,4=γl1,4

(

1+

(

τ4

βl1+ε

)p)

, l1=1,··· ,4, (2.16)

where p = 2, ε is taken to be 10−6 and the quantity τ4 is used to measure the average
difference between β4 and the other three smoothness indicators βl2 ,l2 = 1,2,3, whose
expression is

τ4=

(

3

∑
l=1

|β4−βl |

3

)2

. (2.17)

Step 1.3. Obtain a convex combination of the above polynomials pl2(x) as follows:

un
i (x)=

4

∑
l=1

ωl,4pl(x), (2.18)

to approximate u at the current time step tn and its corresponding Gauss-Lobatto point
values are

(un
i−1/2)

+=un
i (xi−1/2), un

i∓
√

5/10
=un

i (xi∓
√

5/10), (u
n
i+1/2)

−=un
i (xi+1/2). (2.19)

It is worth noting that we no longer require the reconstructed polynomial of v, which
differs from [22].

Step 2. Substitute the values obtained in the previous step into the first stage of the

Runge-Kutta formula (2.9), then the cell average u
(1)
i at the next time stage t(1) can be

obtained.

Step 3. Calculate the cell average v
(1)
i at the next time stage t(1) using the given cell

averages {u
(1)
i−1,u

(1)
i ,u

(1)
i+1;vn

i−1,vn
i+1} by a direct linear interpolation. That is, we reconstruct

a quartic polynomial, which satisfies

1

△x

∫

Ik

p0(x)dx=u
(1)
k , k= i−1,i,i+1;

1

△x

∫

Ikx

p′0(x)dx=vn
kx

, kx = i−1,i+1, (2.20)

and then, the cell average v
(1)
i at the next time stage t(1) can be expressed as

v
(1)
i =

1

△x

∫

Ii

p′0(x)dx=
1

△x

(

−3

4
u
(1)
i−1+

3

4
u
(1)
i+1

)

− 1

4
vn

i−1−
1

4
vn

i+1. (2.21)
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Step 4. In Step 1, replace un
i with u

(1)
i , vn

i with v
(1)
i , and then repeat it to obtain

{(u(1)
i−1/2)

+,u
(1)

i−
√

5/10
, u

(1)

i+
√

5/10
, (u

(1)
i+1/2)

−}. Then, in Step 2, plug these values into the

second stage of the Runge-Kutta formula (2.9) to obtain the cell average u
(2)
i at the next

time stage t(2). Finally, in Step 3, replace u
(1)
i with u

(2)
i , vn

i with v
(1)
i , and then repeat it to

obtain v
(2)
i .

Step 5. In Step 1, replace un
i with u

(2)
i , vn

i with v
(2)
i , and then repeat it to obtain

{(u(2)
i−1/2)

+,u
(2)

i−
√

5/10
, u

(2)

i+
√

5/10
, (u

(2)
i+1/2)

−}. Then, in Step 2, plug these values into the

third stage of the Runge-Kutta formula (2.9) to obtain the cell average un+1
i at the next

time step tn+1. Finally, in Step 3, replace u
(1)
i with un+1

i , vn
i with v

(2)
i , and then repeat it to

obtain vn+1
i .

Step 6. Define the average residual as

N

∑
i=1

m

∑
k=1

|(Rk)i|

mN
, (2.22)

where (Rk)i =
∂(uk)

∂t |i ≈ (uk)
n+1
i −(uk)

n
i

△t is the local residual of the k-th component of the vari-
able u in cell Ii, m is the number of components of the variable u and N is the total number
of grid cells. Repeat the whole algorithm until the average residual is smaller than the
given tolerance value ǫ= 10−13 (this is also the so-called machine accuracy) or the step
number reaches 4000 (except for 200000 for the nozzle flow problem in Example 3.4).

Remark 2.1. The updating strategy shown in Eq. (2.21) can not be directly extended to the
unsteady problems, since there is a misalignment in time when updating the derivative,
which leads to a drop in order. To be specific, in terms of the time accuracy at time stage
tn, the cell average vn

i drops to first order (through Taylor expansion in Eq. (2.23)) and
accordingly the cell average un

i is reduced to the second order.

vn
i −

1

△x

∫

Ii

v(x,tn)dx

=

[

1

△x

(

−3

4
un

i−1+
3

4
un

i+1

)

− 1

4
vn−1

i−1 −
1

4
vn−1

i+1

]

− 1

△x

∫

Ii

v(x,tn)dx

=

[

−uxt(xi,tn)−
3

2
uxx(xi,tn)

]

△t+

[

9

16
uxxx(xi,tn)−

1

2
uxtt(xi,tn)

]

△t2. (2.23)

2.2 Two-dimensional case

Let us now move on to the two-dimensional case

f (u)x+g(u)y = s(u,x,y), (x,y)∈ [xL ,xR]×[yD ,yU ], (2.24)
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where there is a source term s(u,x,y) on the right side of Eq. (2.24), which depends on
both the unknown quantity u and the position coordinate (x,y). Similar to the operation
in one dimension, we add the partial derivative of the unknown quantity u with respect
to time t to the left side of Eq. (2.24) and rewrite it as the following balance law:

ut+ f (u)x+g(u)y= s(u,x,y). (2.25)

Likewise, the solution of (2.25) approaches to the steady-state solution independent of
time t, that is, the solution of (2.24) when t→∞. For the sake of simplicity, we consider

a uniform cell mesh {(xi+1/2,yj+1/2)}
Nx ,Ny

i=0,j=0, where Nx and Ny are the numbers of cells

in the x and y directions, respectively, and (xi+1/2,yj+1/2) is the node. Next, we define

the mesh size as △x=xi+1/2−xi−1/2=
xR−xL

Nx
in the x-direction and △y=yj+1/2−yj−1/2=

yU−yD

Ny
in the y-direction, the cell as Ii,j = [xi−1/2,xi+1/2]×[yj−1/2,yj+1/2] and its center as

(xi,yj)=
(

1
2 (xi−1/2+xi+1/2), 1

2

(

yj−1/2+yj+1/2

))

.
We integrate (2.25) over the target cell Ii,j to obtain the corresponding integral formu-

lation

dũi,j(t)

dt
=− 1

△x△y

∫ yj+1/2

yj−1/2

[ f (u(xi+1/2,y,t))− f (u(xi−1/2,y,t))]dy

− 1

△x△y

∫ xi+1/2

xi−1/2

[

g
(

u(x,yj+1/2,t)
)

−g
(

u(x,yj−1/2,t)
)]

dx

+
1

△x△y

∫∫

Ii,j

s(u,x,y)dxdy, (2.26)

where ũi,j(t) is the cell average of u on the target cell Ii,j, which can be expressed as

ũi,j(t)=
1

△x△y

∫∫

Ii,j

u(x,y,t)dxdy. (2.27)

Next, we approximate (2.26) by the following semi-discrete conservative scheme

dũi,j(t)

dt
=− 1

△x

(

F̂i+ 1
2 ,j− F̂i− 1

2 ,j

)

− 1

△y

(

Ĝi,j+ 1
2
−Ĝi,j− 1

2

)

+Si,j = L(u)i,j, (2.28)

again the Lax-Friedrichs flux is used to define the numerical flux and the integral terms
in the scheme (2.28) are approximated by a four-point Gauss-Lobatto integration, for
instance

1

△x△y

∫∫

Ii,j

s(u,x,y)dxdy≈
4

∑
k=1

4

∑
l=1

ωkωls
(

u
(

xGL
i+σk

,yGL
i+σl

)

,xGL
i+σk

,yGL
i+σl

)

:=Si,j,

1

△y

∫ yj+1/2

yj−1/2

f̂ (u(xi+1/2,y,t))dy≈
4

∑
l=1

ωl f̂
(

u(xi+1/2,yGL
j+σl

,t)
)

:= F̂i+1/2,j,

1

△x

∫ xi+1/2

xi−1/2

ĝ
(

u(x,yj+1/2,t)
)

dx≈
4

∑
k=1

ωk ĝ
(

u(xGL
i+σk

,yj+1/2,t)
)

:= Ĝi,j+1/2,

(2.29)
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where the definitions of the weights ωl and the quadrature points σl are the same as
those in Eq. (2.8). Up to now, we have finished the description of the spatial discretiza-
tion and our next objective is to reconstruct the values of these Gauss-Lobatto points
i.e. {u±

i∓1/2,j+σl
,u±

i+σk,j∓1/2|k, l=1,2,3,4; ui+σk,j+σl
|k,l=2,3} by the derivative-based finite-

volume MR-HWENO scheme in [22].

To discretize time, we still use the third-order TVD Runge-Kutta method



























ũ
(1)
i,j = ũ

n
i,j+∆tL(un)i,j,

ũ
(2)
i,j =

3

4
ũ

n
i,j+

1

4
ũ
(1)
i,j +

1

4
∆tL(u(1))i,j,

ũ
n+1
i,j =

1

3
ũ

n
i,j+

2

3
ũ
(2)
i,j +

2

3
∆tL(u(2))i,j,

(2.30)

where n also corresponds to the time step tn = tn−1+△t and the nonconstant time step
satisfies

△t max
1≤i≤Nx,1≤j≤Ny

(

| f ′(ũi,j)|
△x

+
|g′(ũi,j)|

△y

)

=CFL=0.6. (2.31)

At this point, we have obtained the complete discrete scheme and the detailed process is
displayed as follows:

Two-dimensional Reconstruction and Evolution Algorithm:

7 8 9 j+1
4 5 6 j
1 2 3 j−1

i−1 i i+1
The big stencil and its new labels.

Step 1. Reconstruct the Gauss-Lobatto point values of u i.e.
{(un

i∓1/2,j+σl
)±,(un

i+σk,j∓1/2)
±|k, l = 1,2,3,4; un

i+σk,j+σl
|k, l = 2,3} at the current time

step tn using the given cell averages {ũ
n
k,l ,ṽ

n
k,l ,w̃

n
k,l |k = i−1,i,i+1; l = j−1, j, j+1} by the

derivative-based finite-volume MR-HWENO scheme in [22]. Again, like the definition
of ũi,j in (2.27), ṽi,j and w̃i,j indicate the cell averages of v=ux and w=uy over the target
cell Ii,j respectively, which can be taken as



















ṽi,j(t)=
1

△x△y

∫∫

Ii,j

v(x,y,t)dxdy=
1

△x△y

∫∫

Ii,j

ux(x,y,t)dxdy,

w̃i,j(t)=
1

△x△y

∫∫

Ii,j

w(x,y,t)dxdy=
1

△x△y

∫∫

Ii,j

uy(x,y,t)dxdy.

(2.32)
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Step 1.1. Select a series of nested central templates and reconstruct four polynomials of
different degrees, which satisfy the following conditions respectively

For q1(x,y) :
1

△x△y

∫∫

Ik

q1(x,y)dxdy= ũ
n
k , k=5.

For q2(x,y) :
1

△x△y

∫∫

Ik

q2(x,y)dxdy= ũ
n
k , k=1,··· ,9.

For q3(x,y) :
1

△x△y

∫∫

Ik

q3(x,y)dxdy= ũ
n
k , k=1,··· ,9;

1

△x△y

∫∫

Ikx

∂q3(x,y)

∂x
dxdy= ṽ

n
kx

, kx =5;

1

△x△y

∫∫

Iky

∂q3(x,y)

∂y
dxdy= w̃

n
ky

, ky =5.

For q4(x,y) :
1

△x△y

∫∫

Ik

q4(x,y)dxdy= ũ
n
k , k=1,··· ,9;

1

△x△y

∫∫

Ikx

∂q4(x,y)

∂x
dxdy= ṽ

n
kx

, kx =1,3,4,5,6,7,9;

1

△x△y

∫∫

Iky

∂q4(x,y)

∂y
dxdy= w̃

n
ky

, ky =1,2,3,5,7,8,9. (2.33)

Compared to the one-dimensional case, the similarity is that the degrees of q1(x,y),
q2(x,y), q3(x,y) and q4(x,y) are the same as those of q1(x), q2(x), q3(x) and q4(x) in (2.12)
respectively, but the difference is that except for q1(x,y), the other three polynomials do
not satisfy all the required equalities exactly. This is because the number of unknowns
in finding the coefficients of these polynomials is smaller than the number of equations.
Thus we require these three polynomials to have the same cell average as u on the target
cell Ii,j (to ensure conservation) and in the meantime we match the other conditions in
the sense of least squares as described in [20]. Next, we rewrite the polynomials above as

pl2(x,y)=











q1(x,y), l2=1,

1

γl2,l2

ql2(x,y)−
l2−1

∑
l=1

γl,l2

γl2,l2

pl(x,y), l2=2,3,4,
(2.34)

with ∑
l2
l=1γl,l2 =1, γl2,l2 6=0, l2 =2,3,4, where these γl1,l2 for l1 =1,··· ,l2; l2 =2,3,4 are still

the linear weights and are defined the same as (2.14).

Step 1.2. Compute the smoothness indicator βl2 of the polynomial pl2(x,y) in the target
cell Ii,j:

βl2 =
κ

∑
|α|=1

∫∫

Ii,j

|Ii,j||α|−1

(

∂|α|

∂xαx ∂yαy
pl2(x,y)

)2

dxdy, l2=2,3,4, (2.35)
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where α= (αx,αy), |α|= αx+αy and κ = 2,3,5 for l2 = 2,3,4. For the special choice of β1,
please see the detailed algorithm in [22], and we omit the details here for brevity. Then
the idea of WENO-Z is still adopted to define the corresponding nonlinear weights, the
specific definition is shown in (2.16).

Step 1.3. Combine the above polynomials pl2(x,y) to get a new polynomial as follows:

un
i,j(x,y)=

4

∑
l=1

ωl,4pl(x,y), (2.36)

to approximate u at the current time step tn and its corresponding Gauss-Lobatto point
values are

(un
i∓1/2,j+σl

)±=un
i,j(xi∓1/2,yj+σl

), l=1,2,3,4;

(un
i+σk,j∓1/2)

±=un
i,j(xi+σk

,yj∓1/2), k=1,2,3,4; (2.37)

un
i+σk,j+σl

=un
i,j(xi+σk

,yj+σl
), k,l=2,3.

We note that it is still not necessary to obtain the reconstructed polynomials of v and w
as in [22].

Step 2. Plug the values obtained in the previous step into the first stage of the Runge-

Kutta formula (2.30) to obtain the cell average ũ
(1)
i,j at the next time stage t(1).

Step 3. Calculate the cell averages ṽ
(1)
i,j and w̃

(1)
i,j at the next time stage t(1) using the given

cell averages {ũ
(1)
i−1,j, ũ

(1)
i,j , ũ

(1)
i+1,j; ṽ

n
i−1,j, ṽ

n
i+1,j} and {ũ

(1)
i,j−1, ũ

(1)
i,j , ũ

(1)
i,j+1; w̃

n
i,j−1, w̃

n
i,j+1} by

a direct linear interpolation, respectively. That is, reconstruct two quartic polynomials,
which satisfy

1

△x

∫ xk+1/2

xk−1/2

p01(x)dx= ũ
(1)
k,j , k= i−1,i,i+1;

1

△x

∫ xkx+1/2

xkx−1/2

p′01(x)dx= ṽ
n
kx,j, kx = i−1,i+1;

1

△y

∫ yk+1/2

yk−1/2

p02(y)dy= ũ
(1)
i,k , k= j−1, j, j+1;

1

△y

∫ yky+1/2

yky−1/2

p′02(y)dy= w̃
n
i,ky

, ky = j−1, j+1, (2.38)

and next, define the cell averages ṽ
(1)
i,j and w̃

(1)
i,j at the next time stage t(1) as

ṽ
(1)
i,j =

1

△x

∫ xi+1/2

xi−1/2

p′01(x)dx=
1

△x

(

− 3

4
ũ
(1)
i−1,j+

3

4
ũ
(1)
i+1,j

)

− 1

4
ṽ

n
i−1,j−

1

4
ṽ

n
i+1,j,

w̃
(1)
i,j =

1

△y

∫ yj+1/2

yj−1/2

p′02(y)dy=
1

△y

(

− 3

4
ũ
(1)
i,j−1+

3

4
ũ
(1)
i,j+1

)

− 1

4
w̃

n
i,j−1−

1

4
w̃

n
i,j+1. (2.39)



J. Li, C.-W. Shu and J. Qiu / Commun. Comput. Phys., 36 (2024), pp. 877-907 889

Step 4. In Step 1, replace ũ
n
i,j with ũ

(1)
i,j , ṽ

n
i,j with ṽ

(1)
i,j , w̃

n
i,j with w̃

(1)
i,j and then repeat

it to obtain the Gauss-Lobatto point values {(u(1)
i−1/2,j+ηl

)+,(u
(1)
i+1/2,j+ηl

)−| l = 1,2,3,4;

(u
(1)
i+ξk,j−1/2)

+,(u
(1)
i+ξk,j+1/2)

−| k= 1,2,3,4; u
(1)
i+ξk,j+ηl

|k, l = 2,3}. Then, in Step 2, plug these

values into the second stage of the Runge-Kutta formula (2.30) to obtain the cell average

ũ
(2)
i,j at the next time stage t(2). Finally, in Step 3, replace ũ

(1)
i,j with ũ

(2)
i,j , ṽ

n
i,j with ṽ

(1)
i,j , w̃

n
i,j

with w̃
(1)
i,j and then repeat it to obtain ṽ

(2)
i,j and w̃

(2)
i,j .

Step 5. In Step 1, replace ũ
n
i,j with ũ

(2)
i,j , ṽ

n
i,j with ṽ

(2)
i,j , w̃

n
i,j with w̃

(2)
i,j and then repeat

it to obtain the Gauss-Lobatto point values {(u(2)
i−1/2,j+ηl

)+,(u
(2)
i+1/2,j+ηl

)−| l = 1,2,3,4;

(u
(2)
i+ξk,j−1/2)

+,(u
(2)
i+ξk,j+1/2)

−| k= 1,2,3,4; u
(2)
i+ξk,j+ηl

|k,l = 2,3}. Then, in Step 2, plug these

values into the third stage of the Runge-Kutta formula (2.30) to obtain the cell average

ũ
n+1
i,j at the next time step tn+1. Finally, in Step 3, replace ũ

(1)
i,j with ũ

n+1
i,j , ṽ

n
i,j with ṽ

(2)
i,j , w̃

n
i,j

with w̃
(2)
i,j and then repeat it to obtain ṽ

n+1
i,j and w̃

n+1
i,j .

Step 6. Repeat the whole reconstruction algorithm until the average residual (2.22) with
N=Nx×Ny is smaller than the given tolerance value ǫ=10−13 or the step number reaches
4000.

Remark 2.2. For one-dimensional systems, the definition of α in (2.6) will become the
maximum value of the absolute value of its eigenvalues, i.e. α=max

u
|λ(u)|, and the CFL

condition (2.10) will become

△t max
1≤k≤m,1≤i≤N

( |λk(ui)|
△x

)

=CFL=0.6, (2.40)

where λk denotes the k-th eigenvalue of the matrix f ′(u) and i refers to the i-th cell. Simi-
larly, for two-dimensional systems, the definition of α in (2.6) will become α=max

u
|λx(u)|

in the x-direction and α=max
u

|λy(u)| in the y-direction, and the CFL condition (2.31) will

become

△t max
1≤k≤m,1≤i≤Nx,1≤j≤Ny

(

|λk
x(ũi,j)|
△x

+
|λk

y(ũi,j)|
△y

)

=CFL=0.6, (2.41)

where λk
x denotes the k-th eigenvalue of the matrix f ′(u), λk

y denotes the k-th eigenvalue
of the matrix g′(u) and i, j refers to the cell in column i, row j.

3 Numerical tests

In this section, we present a number of numerical experiments to test the performance
of the proposed derivative-based finite-volume MR-HWENO scheme for scalar and sys-
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tem steady-state problems with source terms in one and two dimensions. Here “MR-
HWENO5” represents the fifth-order multi-resolution HWENO scheme, “MR-WENO5”
represents the fifth-order multi-resolution WENO scheme and “WENO5-Z” represents
the fifth-order WENO-Z scheme. The third-order TVD Runge-Kutta method is used in
time for all numerical simulations. The CFL number is taken to be 0.6 for both the one-
and two-dimensional cases. Unnormalized linear weights are set to be γ1,4=1, γ2,4=10,
γ3,4=100 and γ4,4=1000.

3.1 The one-dimensional problems

Example 3.1. We solve the one-dimensional Burgers’ equation:

(

u2

2

)

x

=sinxcosx, x∈ [0,π], (3.1)

with a source term at its right end, which depends only on the position x. The initial
condition is

u0(x)=βsinx, (3.2)

and the boundary condition is u(0)=u(π)=0.
This problem has been treated as a typical initial value problem with multiple steady-

state solutions in [32], and its steady-state solution depends on the value of β, to be more
specific:

(1) If −1 < β < 1, there will be a shock wave within the computational domain.
This shock wave consists of two branches (sinx and −sinx) and is located at
xs = π−arcsin

√

1−β2 (derived from the conservation of mass
∫ π

0 udx = 2β). Un-
der such a circumstance, we take β= 0.5 to test the resolution of our scheme near
the discontinuity. At this point, the shock wave is roughly located at xs = 2.0944.
The numerical results of the MR-HWENO5, MR-WENO5 and WENO5-Z schemes
versus the exact solution are shown in Fig. 1. It is observed that the convergence
rates of these three schemes are almost the same.

(2) Otherwise, the solution will be smooth in the open interval, but then forms a shock
at the boundary x=π (for β≥1) or x=0 (for β≤−1), and later converges to a smooth
steady state u(x,∞)=sinx (for β≥1) or u(x,∞)=−sinx (for β≤−1), respectively. In
this case, we take β=2 to test the accuracy of our scheme in the smooth region. The
corresponding errors and convergence orders of the MR-HWENO5 (on uniform
and non-uniform meshes), MR-WENO5 and WENO5-Z schemes are listed in Table
1. Here, the non-uniform mesh is obtained by adding a 20% random disturbance to
the uniform mesh, that is, the quasi-uniform mesh. We can see that these schemes
are all of fifth-order in the L1 norm and fourth-order in the L∞ norm due to the effect
of the shock at the boundary x=π(β=2≥1). The error of the MR-HWENO5 scheme
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Figure 1: 1D-Burgers’ equation: s(x)= sinxcosx, β= 0.5. The numerical results versus the exact solution.
Number of cells: 100.

Number of iteration
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Figure 2: 1D-Burgers’ equation: s(x)= sinxcosx, β= 2.0. The convergence history of the average residual.
Number of cells: 70.

on uniform mesh is smaller than that of the MR-HWENO5 scheme on non-uniform
mesh and the other two schemes for the same mesh size. The convergence history
of the average residual varying with the number of iterations is shown in Fig. 2.
It is observed that although the residuals corresponding to all schemes can reach
machine accuracy, MR-HWENO5 scheme on uniform mesh declines the fastest.
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Table 1: 1D-Burgers’ equation: s(x)=sinxcosx, β=2.0. The initial condition u(x,0)=2sin(x). The boundary

condition u(0)=u(π)=0. L1 and L∞ error.

Uniform MR-HWENO5 scheme Non-uniform MR-HWENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

20 4.48E-07 2.33E-06 4.62E-07 2.47E-06

30 6.99E-08 4.77 5.18E-07 3.87 7.16E-08 4.79 5.29E-07 3.96

40 1.84E-08 4.78 1.70E-07 3.98 1.96E-08 4.63 1.80E-07 3.86

50 6.45E-09 4.79 7.04E-08 4.04 7.56E-09 4.36 8.04E-08 3.69

60 2.73E-09 4.80 3.38E-08 4.09 2.91E-09 5.33 3.64E-08 4.43

70 1.32E-09 4.81 1.81E-08 4.12 1.37E-09 4.96 1.87E-08 4.39

MR-WENO5 scheme WENO5-Z scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

20 3.47E-06 2.38E-05 3.48E-06 2.39E-05

30 5.16E-07 4.90 3.98E-06 4.59 5.16E-07 4.90 3.98E-06 4.60

40 1.32E-07 4.89 1.26E-06 4.11 1.32E-07 4.89 1.26E-06 4.12

50 4.53E-08 4.89 5.07E-07 4.17 4.53E-08 4.89 5.07E-07 4.17

60 1.89E-08 4.88 2.39E-07 4.21 1.89E-08 4.88 2.39E-07 4.21

70 9.00E-09 4.88 1.26E-07 4.24 9.00E-09 4.88 1.26E-07 4.24

Example 3.2. The following is still a one-dimensional Burgers’ equation:

(

u2

2

)

x

=−πcos(πx)u, x∈ [0,1], (3.3)

but unlike Example 3.1, the source term on the right side hinges on both the position x
and the solution u itself. The initial condition is

u0(x)=

{

1, if 0≤ x<0.5,

−0.1, if 0.5≤ x≤1,
(3.4)

and the boundary condition is u(0)=1 and u(1)=−0.1.

This problem was studied as an example of multiple steady states for one-
dimensional transonic flows in [10], which has two steady-state solutions involving a
shock

u(x)=

{

u+=1−sin(πx), if 0≤ x< xs,

u−=−0.1−sin(πx), if xs ≤ x≤1,
(3.5)

where xs=0.1486 or xs=0.8514. Even though both of these solutions satisfy the Rankine-
Hugoniot jump condition and the entropy condition, only the first one with a shock at
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Figure 3: 1D-Burgers’ equation: s(u,x)=−πcos(πx)u. The numerical results versus the exact solution (left)
and the convergence history of the average residual (right). Number of cells: 100.

xs=0.1486 is stable for a small perturbation. For this reason, this problem is always used
to demonstrate the good convergence of the scheme. That is to say, although there is a
reasonable perturbation in the steady state at the beginning, the numerical solution can
still converge to the stable one. Note that the jump in the initial condition lies between
the shock waves of above two admissible steady-state solutions. The numerical results of
the MR-HWENO5, MR-WENO5 and WENO5-Z schemes versus the exact solution and
the convergence history of the average residual varying with the number of iterations
are shown in Fig. 3. It is easy to see that the residuals of these three schemes can reduce
to machine precision, and the MR-HWENO5 scheme drops slightly faster than the other
two schemes.

Example 3.3. The one-dimensional shallow water equations:

(

hu

hu2+ 1
2 gh2

)

x

=

(

0
−ghbx

)

, x∈ [0,10], (3.6)

where h is the height of the water to the bottom, u is the velocity of the fluid, g is the grav-
itational constant and function b(x) represents the bottom topography, which is given to

be b(x)=5exp− 2
5 (x−5)2

. Both the initial condition and the boundary condition are

h+b=10, hu=0. (3.7)

Notice that the initial condition above is stationary, which itself is also a steady-state so-
lution of (3.6). Starting from such a stationary initial condition, we can test out how well
our scheme performs in the smooth region. The corresponding errors and convergence
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Table 2: 1D shallow water equation. The stationary initial condition h+b = 10,hu = 0. The exact boundary
condition. L1 and L∞ error.

MR-HWENO5 scheme MR-WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

20 6.34E-05 3.24E-04 2.77E-04 1.87E-03

30 8.30E-06 6.04 4.45E-05 5.90 3.53E-05 6.13 2.87E-04 5.58

40 1.85E-06 5.97 1.01E-05 5.91 7.49E-06 6.17 6.89E-05 5.68

50 5.55E-07 6.00 3.03E-06 5.98 2.28E-06 5.92 2.12E-05 5.88

60 2.03E-07 6.02 1.12E-06 5.98 8.62E-07 5.83 7.85E-06 5.94

70 8.66E-08 5.95 4.74E-07 5.98 3.74E-07 5.84 3.35E-06 5.96

WENO5-Z scheme

grid points L1 error order L∞ error order

20 2.44E-04 7.70E-04

30 3.86E-05 5.48 1.29E-04 5.31

40 8.72E-06 5.91 3.13E-05 5.64

50 2.62E-06 6.00 9.66E-06 5.86

60 9.72E-07 5.92 3.55E-06 5.99

70 4.16E-07 5.94 1.49E-06 6.05

orders of the MR-HWENO5, MR-WENO5 and WENO5-Z schemes for h are listed in Ta-
ble 2, where the sixth-order super-convergence rate of these three schemes is observed in
L1 norm and L∞ norm. Also, the error of the MR-HWENO5 scheme is smaller than that
of the other two schemes for the same mesh size. The convergence history of the average
residual varying with the number of iterations is shown in Fig. 4, where there is not much
difference between the residuals when the steady state is reached and the rates at which
the residuals decrease among these three schemes.

Example 3.4. The one-dimensional nozzle flow problem:




ρu
ρu2+p

u(E+p)





x

=−A′(x)

A(x)





ρu
ρu2

u(E+p)



, x∈ [0,1], (3.8)

where ρ is the density, u is the velocity of the fluid, E is the total energy, γ= 1.4 is the
gas constant, p = (γ−1)

(

E− 1
2 ρu2

)

is the pressure and A(x) represents the area of the
cross-section of the nozzle, which is determined by the following relation

A(x) f (Mach number at x)=constant, ∀x∈ [0,1],

where

f (w)=
w

(1+δ0w2)p0
, δ0=

1

2
(γ−1), p0=

1

2
· γ+1

γ−1
.
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Figure 4: 1D shallow water equation. The convergence history of the average residual. Number of cells: 70.

The initial condition is an isentropic initial value with a shock at x = 0.5. As for the
boundary condition, it is taken to be ρ(x→−∞)=p(x→−∞)=1. The inlet Mach number
at x = 0 is 0.8, the outlet Mach number at x= 1 is 1.8, and the Mach number is linearly
distributed before and after the shock wave. The numerical results of the MR-HWENO5
(on uniform and non-uniform meshes), MR-WENO5 and WENO5-Z schemes versus the
exact solution are shown in Fig. 5. Here, the non-uniform mesh is also obtained by adding
a 20% random disturbance to the uniform mesh, and the step size of the cells located in
the interval [0.4,0.6], where the shock roughly lies, is set to be 1/2 that of the rest of the
cells when dividing the initial uniform grid. Fig. 6 shows the convergence history of the
average residual varying with the number of iterations. It is observed that there is little
difference in the residuals corresponding to these four schemes when the steady state
is reached, and the MR-HWENO5 scheme on uniform mesh converges faster than the
MR-HWENO5 scheme on non-uniform mesh and the other two schemes.

3.2 The two-dimensional problems

Example 3.5. The two-dimensional Burgers’ equation:

(

1√
2

u2

2

)

x

+

(

1√
2

u2

2

)

y

=sin

(

x+y√
2

)

cos

(

x+y√
2

)

, (x,y)∈
[

0,
π√

2

]

×
[

0,
π√

2

]

, (3.9)

where there is a source term that depends only on the position (x,y) at its right end. The
initial condition is

u0(x,y)=βsin

(

x+y√
2

)

, (3.10)

and the boundary condition is taken to be the exact solution of this steady-state problem.
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Figure 5: 1D nozzle flow problem. The numerical results versus the exact solution. Number of cells: 100.
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Figure 6: 1D nozzle flow problem. The convergence history of the average residual. Number of cells: 100.



J. Li, C.-W. Shu and J. Qiu / Commun. Comput. Phys., 36 (2024), pp. 877-907 897

Table 3: 2D-Burgers’ equation: s(x,y) = sin
(

x+y√
2

)

cos
(

x+y√
2

)

, β = 1.2. The initial condition u(x,y,0) =

1.2sin
(

x+y√
2

)

. The exact boundary condition. L1 and L∞ error.

MR-HWENO5 scheme MR-WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

20×20 3.86E-07 5.88E-06 2.20E-08 3.16E-07

30×30 1.18E-09 17.2 1.51E-08 17.7 4.06E-09 5.02 8.03E-08 4.07

40×40 1.43E-10 8.39 3.72E-09 5.57 1.15E-09 5.01 2.90E-08 4.05

50×50 5.20E-11 5.04 1.68E-09 3.96 4.22E-10 5.01 1.26E-08 4.14

60×60 2.32E-11 4.83 8.67E-10 3.96 1.83E-10 5.01 6.25E-09 4.21

70×70 1.19E-11 4.70 4.96E-10 3.90 8.92E-11 5.00 3.40E-09 4.26

WENO5-Z scheme

grid points L1 error order L∞ error order

20×20 2.20E-08 3.16E-07

30×30 4.06E-09 5.02 8.03E-08 4.07

40×40 1.15E-09 5.01 2.90E-08 4.05

50×50 4.21E-10 5.01 1.26E-08 4.14

60×60 1.83E-10 5.01 6.25E-09 4.21

70×70 8.92E-11 5.00 3.40E-09 4.26

In terms of the equation form, this problem seems to be a special case of the one-
dimensional Example 3.1 along the northeast-southwest diagonal, but essentially it is a
two-dimensional problem. This is due to the fact that this diagonal is at a 45◦ angle from
our grid lines. Here, we take β=1.2, and the corresponding smooth steady-state solution

of this problem is u(x,y)= sin
(

x+y√
2

)

. The corresponding errors and convergence orders

of the MR-HWENO5, MR-WENO5 and WENO5-Z schemes are listed in Table 3. Similar
to the results in Table 1, the L1 error can still reach fifth-order precision, while the L∞ error
is only fourth-order precision. The error of the MR-HWENO5 scheme is smaller than that
of the other two schemes for the same mesh size. The convergence history of the average
residual varying with the number of iterations is shown in Fig. 7. As shown in the figure,
the residuals corresponding to all schemes can be reduced to machine accuracy, and the
residual of MR-HWENO5 scheme reduces faster than that of the other two schemes.

Example 3.6. The two-dimensional Euler equations:








ρu
ρu2+p

ρuv
u(E+p)









x

+









ρv
ρuv

ρv2+p
v(E+p)









y

=0, (x,y)∈ [0,2π]×[0,2π], (3.11)
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Figure 7: 2D-Burgers’ equation: s(x,y)=sin
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)

, β=1.2. The convergence history of the average

residual. Number of cells: 70×70.
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Figure 8: 2D-Euler equations. Left: case(1); right: case(2). The convergence history of the average residual.
Number of cells: 70×70.

here ρ is the density, (u,v) is the velocity, E is the total energy, γ is the gas constant which
is again taken as 1.4 and p=(γ−1)(E− 1

2(ρu2+ρv2)) is the pressure. For this problem,
there are many possible steady-state solutions, for example:

(1) ρ(x,y,∞)=1+0.2(x−y), u(x,y,∞)=1, v(x,y,∞)=1, p(x,y,∞)=1;

(2) ρ(x,y,∞)=1+0.2(2(x−y)), u(x,y,∞)=1, v(x,y,∞)=1, p(x,y,∞)=1.

We take the initial conditions and boundary conditions in both directions to be the two ex-
act steady-state solutions above, respectively. The corresponding errors and convergence
orders of the MR-HWENO5, MR-WENO5 and WENO5-Z schemes are listed in Table 4,
where the expected fifth-order accuracy in the L1 norm and the L∞ norm is observed. The
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Table 4: 2D-Euler equations. The exact initial condition. The exact boundary condition. L1 and L∞ error.

case (1)

MR-HWENO5 scheme MR-WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

20×20 9.00E-06 4.12E-05 5.16E-05 2.22E-04

30×30 1.28E-06 5.01 5.87E-06 5.00 7.39E-06 4.99 3.25E-05 4.93

40×40 3.16E-07 5.00 1.47E-06 4.96 1.82E-06 5.01 8.14E-06 4.95

50×50 1.06E-07 5.00 4.95E-07 4.97 6.10E-07 5.01 2.74E-06 4.98

60×60 4.34E-08 5.00 2.03E-07 4.99 2.49E-07 5.01 1.12E-06 4.98

70×70 2.03E-08 5.00 9.50E-08 4.99 1.16E-07 5.01 5.27E-07 5.00

case (1) case (2)

WENO5-Z scheme MR-HWENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

20×20 5.47E-05 2.40E-04 6.08E-04 2.89E-03

30×30 7.46E-06 5.12 3.45E-05 4.98 8.34E-05 5.10 4.57E-04 4.73

40×40 1.82E-06 5.03 8.39E-06 5.06 2.02E-05 5.08 1.08E-04 5.15

50×50 6.10E-07 5.02 2.81E-06 5.02 6.74E-06 5.03 3.65E-05 4.99

60×60 2.49E-07 5.02 1.14E-06 5.02 2.73E-06 5.03 1.48E-05 5.02

70×70 1.16E-07 5.01 5.34E-07 5.01 1.28E-06 5.01 6.88E-06 5.06

case (2)

MR-WENO5 scheme WENO5-Z scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

20×20 3.10E-03 1.46E-02 3.67E-03 1.56E-02

30×30 4.61E-04 4.90 2.16E-03 4.90 5.25E-04 4.99 2.42E-03 4.78

40×40 1.16E-04 4.95 5.69E-04 4.77 1.24E-04 5.15 6.14E-04 4.90

50×50 3.91E-05 4.96 1.99E-04 4.82 4.05E-05 5.14 2.10E-04 4.93

60×60 1.61E-05 4.97 8.20E-05 4.95 1.63E-05 5.08 8.56E-05 5.00

70×70 7.53E-06 4.99 3.83E-05 5.02 7.58E-06 5.04 3.98E-05 5.04

error of MR-HWENO5 scheme is still much smaller than that of the other two schemes
under the same mesh size. The convergence history of the average residual varying with
the number of iterations is shown in Fig. 8. As shown in the figure, although all these
schemes can converge to machine accuracy, the residual of the MR-HWENO5 scheme
is smaller than that of the other two schemes in the initial stage and achieves machine
accuracy in fewer steps.

Example 3.7. The two-dimensional Euler equations (3.11) in region [0,4]×[0,1]. The ini-
tial condition is

(ρ,u,v,p)=
(

1,2.9,0,
1

γ

)

. (3.12)
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Figure 9: Regular shock reflection problem of the 2D-Euler equations. Top: 15 equally spaced contours for ρ of
the numerical results by the MR-HWENO5, MR-WENO5 and WENO5-Z schemes from 1.10 to 2.58; bottom:
the cross-sections at y=0.1 and y=0.5. Number of cells: 120×30.
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Figure 10: Regular shock reflection problem of the 2D-Euler equations. The convergence history of the average
residual. Number of cells: 120×30.

As for the boundary condition, it is taken to be (ρ,u,v,p) =
(1.69997,2.61934,−0.50632,1.52819) on the upper boundary y = 1 and it is a reflec-
tive boundary on the lower boundary y=0. The left boundary at x=0 is an inflow with
(ρ,u,v,p)=

(

1,2.9,0, 1
γ

)

, and the right boundary at x=4 is an outflow. This problem was
considered as a regular shock reflection problem of the two-dimensional Euler equations
in [5]. The contours and the cross-sections at y=0.1 and y=0.5 of the numerical results
by the MR-HWENO5, MR-WENO5 and WENO5-Z schemes are displayed in Fig. 9.
Fig. 10 displays the convergence history of the average residual varying with the number
of iterations. It is observed that the declining trend of residual is almost the same for
both the MR-HWENO5 scheme and the MR-WENO5 scheme, and the residuals when
they reach the steady state are much smaller than that of the WENO5-Z scheme.

Example 3.8. A supersonic flow past a plate with an attack angle α=10◦ problem:

(1) the calculation region is chosen to be [0,10]×[−5,5] with a plate located at x∈ [1,2],
y=0;

(2) the calculation region is chosen to be [0,7]×[−5,5] with a plate located at x∈ [2,7],
y=0.

The governing equation is the two-dimensional Euler equations (3.11). The initial con-
dition is (p,ρ,µ,ν) = ( 1

γ(Ma∞)2 ,1,cos(α),sin(α)), where the free stream Mach number is

Ma∞=3. The physical values of the inflow and outflow boundary conditions are applied
in each direction, and the slip boundary condition is imposed on the plate. The contours
of the numerical results by the MR-HWENO5, MR-WENO5 and WENO5-Z schemes are
displayed in Fig. 11. Fig. 12 displays the convergence history of the average residual
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Figure 11: A supersonic flow past a plate with an attack angle problem. Left: 30 equally spaced contours for
pressure p of the numerical results for case(1) by the MR-HWENO5, MR-WENO5 and WENO5-Z schemes from
0.02 to 0.23. Number of cells: 200×200. Right: 30 equally spaced contours for pressure p of the numerical
results for case(2) by the MR-HWENO5, MR-WENO5 and WENO5-Z schemes from 0.031 to 0.161. Number
of cells: 140×200.
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Figure 12: A supersonic flow past a plate with an attack angle problem. The convergence history of the average
residual. Left: case(1). Number of cells: 200×200. Right: case(2). Number of cells: 140×200.

varying with the number of iterations. We can observe that apart from the WENO5-Z
scheme, the residuals of the other two schemes can be reduced to machine accuracy, and
the residual of MR-HWENO5 scheme decreases faster than that of MR-WENO5 scheme
for both cases. Furthermore, from Fig. 13, which shows the results of case(1) and case(2)
with ǫ = 10−6,10−10,10−12,10−40 in (2.16), we can come to a conclusion that the ǫ does
affect the convergence of the average residual. In general, the smaller the ǫ, the worse the
convergence. This is also why we change ǫ=10−10 in [22, 23] to ǫ=10−6 in (2.16), which
is consistent with the parameter setting in Ref. [47].

4 Concluding remarks

In this paper, we apply the derivative-based finite-volume MR-HWENO scheme in [22] to
solve the steady-state problems. The scheme in this paper possesses the same reconstruc-
tion and updating process for the function value as in [22], but differs for the derivative
value. Instead of evolving in time, the derivative value at the next time step is obtained
by a direct linear interpolation of the derivative value at the current time step together
with the function value at the next time step in the sense of cell average. Since the prob-
lems we are dealing with are steady, such a misalignment in time does not have much
effect on the accuracy in the smooth region and the resolution near the discontinuity of
the scheme. The main advantage of the MR-HWENO scheme for steady-state problems
is that it simplifies the calculation of the derivative. Moreover, the CFL number can still
be chosen to be 0.6 in both one- and two-dimensional cases, while the CFL number is
only 0.3 for the residual distribution WENO scheme in [26] and 0.2 for the residual dis-
tribution HWENO scheme in two-dimensional case in [27]. The numerical results in the
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Figure 13: A supersonic flow past a plate with an attack angle problem. The convergence history of the
average residual. Left: case(1). Number of cells: 200×200. Right: case(2). Number of cells: 140×200. From
top to bottom: MR-HWENO5, MR-WENO5, WENO5-Z.
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previous section further show that the residual of MR-HWENO scheme can converge to
machine accuracy or an extremely small number, and falls either faster than or just as fast
as the MR-WENO and WENO-Z schemes.

This paper pays more attention to whether the scheme can converge to the solution
of the problem quickly and correctly. Its numerical performance in certain problems (e.g.
one-dimensional nozzle flow problem Example 3.4) still needs to be further improved, in
terms of better capturing of discontinuity and better suppression of oscillations, which
also provides a direction for our future research.

For the sake of simplicity, this paper mainly considers the MR-HWENO scheme on
uniform meshes, except for some numerical experiments in Examples 3.1 and 3.4. We
will consider more non-uniform and unstructured meshes in our future research.

Fig. 13 shows that the ǫ in (2.16) does affect the convergence of the average residual. In
general, the smaller the ǫ, the worse the convergence. Thus, it is worth studying a method
that is not sensitive to ǫ in terms of good convergence for the steady-state problems.
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