
Journal of Scientific Computing           (2020) 85:29 
https://doi.org/10.1007/s10915-020-01347-1

AModified Fifth Order Finite Difference Hermite WENO
Scheme for Hyperbolic Conservation Laws

Zhuang Zhao1 · Yong-Tao Zhang2 · Jianxian Qiu3

Received: 28 June 2020 / Revised: 6 September 2020 / Accepted: 12 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we develop a modified fifth order accuracy finite difference Hermite WENO
(HWENO) scheme for solving hyperbolic conservation laws. The main idea is that we first
modify the derivatives of the solution by Hermite WENO interpolations, then we discretize
the original and derivative equations in the spatial directions by the same approximation
polynomials. Comparing with the original finite difference HWENO scheme of Liu and
Qiu (J Sci Comput 63:548–572, 2015), one of the advantages is that the modified HWENO
scheme is more robust than the original one since we do not need to use the additional
positivity-preserving flux limiter methodology, and larger CFL number can be applied.
Another advantage is that higher order numerical accuracy than the original scheme can
be achieved for two-dimensional problems under the condition of using the same approxi-
mation stencil and information. Furthermore, themodified schemepreserves the nice property
of compactness shared by HWENO schemes, i.e., only immediate neighbor information is
needed in the reconstruction, and it has smaller numerical errors and higher resolution than
the classical fifth order finite difference WENO scheme of Jiang and Shu (J Comput Phys
126:202–228, 1996). Various benchmark numerical tests of both one-dimensional and two-
dimensional problems are presented to illustrate the numerical accuracy, high resolution and
robustness of the proposed novel HWENO scheme.
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1 Introduction

In this paper, we propose a modified fifth order Hermite weighted essentially non-
oscillatory (HWENO) scheme in the finite difference framework for one-dimensional and
two-dimensional problems. HWENO scheme was derived from essentially non-oscillatory
(ENO) and weighted essentially non-oscillatory (WENO) schemes, and they have been
widely applied for solving nonlinear hyperbolic conservation laws in recent decades. As
it is known, the solution of the nonlinear hyperbolic conservation laws often contains shock,
contact discontinuities and sophisticated smooth structures, simultaneously. Hence the devel-
opment of high order numerical methods for solving them is challenging. The pioneering
work by Harten et al. [7,8] introduced the finite volume ENO schemes, which used a weaker
version of the total variation diminishing (TVD) criterion [6]. Then, Shu and Osher [23,24]
proposed a class of finite difference ENO schemes for efficiently solving multidimensional
problems. ENO schemes select approximation stencil adaptively based on the local smooth-
ness of candidate stencils, so their numerical accuracy is determined by one of the candidate
stencils. To improve the accuracy of ENO schemes, in 1994 Liu, Osher and Chan [14]
firstly constructed a third-order finite volume WENO scheme based on ENO schemes, in
which they employed a nonlinear convex combination of all candidate stencils to achieve
higher order accuracy in smooth regions. In 1996, Jiang and Shu [11] proposed the third
and fifth order finite difference WENO schemes for multidimensional problems, where they
gave a general framework to design the smoothness indicators and nonlinear weights. Ever
since then, WENO schemes have been further developed and studied extensively, see e.g.
[3,10,12,13,21,29,30,35].

On the other hand, a higher order accuracy WENO scheme needs to use a wide stencil for
the reconstruction. That leads to some difficulties in the application of the method. In order
to balance the compactness and numerical accuracy ofWENO schemes, Qiu and Shu [19,20]
developed a new finite volume scheme based on WENO schemes via dealing with both the
solution and its derivatives. It is termed asHermiteWENO (HWENO) scheme. In the original
HWENO schemes, different polynomials are used in the spatial discretizations of the original
partial differential equation (PDE) and the equations satisfied by derivatives of the solution.
The schemes are compact, but there are some difficulties when they are applied in simulating
some benchmark problems such as the doubleMach and the forward step problems. This issue
was resolved by Zhu and Qiu in [34], where a new procedure to reconstruct the derivative
terms was designed. Later, Liu and Qiu [15,16] proposed the fifth order finite difference
HWENO scheme, inwhich an additional positivity-preserving flux limitermethodology [1,9]
has to be used to ensure the robustness of the method. As a continuation of the work, Zahran
and Abdalla [28] extended the fifth order finite difference HWENO scheme [15] to higher
order accuracy, and Ma and Wu [18] developed a compact HWENO scheme, in which they
solved the first derivative values of the solution by the compact difference method, while Cai
et al. [2] employed the strong stability preserving (SSP) multi-step temporal discretization
procedure for the HWENO schemes [19,34]. The unknown variables solved in these finite
volume and finite difference HWENO schemes [1,2,15,16,18–20,25,28,34] are the solution
of the PDE and its derivatives. Another type of finite volume HWENO schemes [17,26,
31–33] solved equations satisfied by the solution of the PDE and its first order moments.
The concept of moments comes from the discontinuous Galerkin (DG) method [4], and the
PN PM method by Dumbser et al. in [5] where a general and unified framework to define the
numerical scheme extended by DG method was provided. All of these HWENO schemes
[1,2,15–20,25,26,28,33,34] used different stencils and approximation polynomials in the
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spatial discretizations of the original PDE and the equations satisfied by derivatives or the
first order moments of the solution. The derivatives or the first order moments of the solution
were used straightforwardly in the schemes. They could be quite large near the discontinuities
of the solution and lead to instability. To resolve this issue, Zhao et al. [31,32] adopted the
idea of limiters for the discontinuous Galerkin (DG) method [4] to first modify the first order
moments near the discontinuities of the solution, then, the same polynomials to approximate
the numerical fluxes of the original PDE and the equations satisfied by the first ordermoments
were used. It was found that the approach with modifications for the first order moments had
better performance to eliminate the nonlinear oscillations than the other HWENO schemes.
A more robust HWENO scheme was obtained in [31,32]. Motivated by this approach, we
apply modifications of the derivatives of the solution by Hermite interpolations here in the
finite difference HWENO scheme.

The algorithm of the proposed modified HWENO scheme in this paper has the following
two major steps. At first, we modify the derivatives of the solution by the HWENO method
based on its Hermite interpolation. Then the same stencils and polynomials are used to recon-
struct the numerical fluxes of the original PDE and the equations satisfied by the derivatives.
For the systems of hyperbolic conservation laws, all HWENO reconstructions are performed
on local characteristic directions to avoid spurious oscillations as that in the classical fifth
order finite difference WENO scheme [11]. Comparing with the original finite difference
HWENO scheme [15], we do not need to use positivity-preserving flux limiter methodology,
and the new method allows for larger CFL numbers. The effect of using modifications of the
derivatives of the solution to eliminate the non-physical oscillations near the discontinuities
will be shown in Example 3.7 of Sect. 3. Higher order numerical accuracy than the original
finite difference HWENO scheme is achieved for two-dimensional problems in the case of
using the same stencil and information for approximations. In addition, we also make the
comparison of the proposed modified fifth order finite difference HWENO method with the
classical fifth order finite difference WENO method [11], and it is found that the modified
HWENO scheme has less numerical errors and higher resolution under the same conditions.
It is noticed that the modified HWENO scheme needs a little more computational cost than
that of WENO schemes for the same meshes, but it is much more compact as only immediate
neighbor information is used in the reconstructions. In summary, the proposedmodified finite
difference HWENO scheme preserves the compactness and high resolution of the original
finite difference HWENO scheme [15], while it is much more robust and has higher order
numerical accuracy in solving two-dimensional problems as that shown in the numerical
experiments.

The organization of the paper is as the following. In Sect. 2, we present the detailed
construction of the modified finite difference HWENO scheme in one-dimensional and two-
dimensional cases, respectively. In Sect. 3, numerical tests for problems with both smooth
and non-smooth solutions are performed to illustrate the numerical accuracy, high resolution
and robustness of the proposed scheme. Concluding remarks are given in Sect. 4.

2 AModified Fifth Order Finite Difference HWENO Scheme

In this section, we design a modified HWENO scheme in the finite difference framework
for hyperbolic conservation laws. The scheme has the fifth order accuracy for both one-
dimensional and two-dimensional problems, while the original finite difference HWENO
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scheme [15] only has fourth order accuracy for the two-dimensional problems, using the
same stencil in the spatial discretization.

2.1 One-Dimensional Case

We first consider one-dimensional scalar hyperbolic conservation laws{
ut + f (u)x = 0,
u(x, 0) = u0(x).

(2.1)

In the finite difference framework, the spatial domain is partitioned by uniform grid points
{xi }, and xi is the center of the cell Ii . The boundary of Ii is xi+1/2 = xi + �x/2, where
�x is the grid size xi+1 − xi . In order to design a Hermite WENO scheme, we take partial
derivative w.r.t the variable x on both sides of the governing equation (2.1) and denote the
partial derivative of u(x, t) w.r.t x by a new function v(x, t). Then, we obtain the following
equations {

ut + f (u)x = 0, u(x, 0) = u0(x),
vt + h(u, v)x = 0, v(x, 0) = v0(x),

(2.2)

where h(u, v) = f (u)x = f ′(u)ux = f ′(u)v, and v(x, 0) = ux (x, 0). As that in [15,16] by
Liu and Qiu, the semi-discrete finite difference scheme of (2.2) is⎧⎨

⎩
dui (t)
dt = − 1

�x

(
f̂i+1/2 − f̂i−1/2

)
,

dvi (t)
dt = − 1

�x

(
ĥi+1/2 − ĥi−1/2

)
.

(2.3)

Here, f̂i+1/2 and ĥi+1/2 are the numerical fluxes which are the fifth order approximation
of �i+1/2 = �(xi+1/2) and �i+1/2 = �(xi+1/2), respectively, where �(x) and �(x) are
defined implicitly as that in [11,15,16]:

f (u(x)) = 1

�x

∫ x+�x/2

x−�x/2
�(x)dx, h(u(x), v(x)) = 1

�x

∫ x+�x/2

x−�x/2
�(x)dx .

For the stability of the finite difference HWENO scheme, we split the fluxes f (u) and
h(u, v) into two parts: f (u) = f +(u) + f −(u) and h(u, v) = h+(u, v) + h−(u, v), where
d f +(u)

du ≥ 0, ∂h+(u,v)
∂v

≥ 0 and d f −(u)
du ≤ 0, ∂h−(u,v)

∂v
≤ 0, respectively. Here, the global

Lax-Friedrichs flux splitting method is applied as

f ±(u) = 1

2
( f (u) ± αu) and h±(u, v) = 1

2
(h(u, v) ± αv),

where α is defined as maxu | f ′(u)|. The numerical fluxes f̂ ±
i+1/2 and ĥ±

i+1/2 are associated

with the fluxes f ±(u) and h±(u, v), respectively, where f̂i+1/2 = f̂ +
i+1/2 + f̂ −

i+1/2 and

ĥi+1/2 = ĥ+
i+1/2 + ĥ−

i+1/2.

Next, we describe the detailed reconstruction procedure for the numerical fluxes f̂ ±
i+1/2

and ĥ±
i+1/2. Again, unlike the origin finite difference HWENO scheme [15], we first modify

the derivative of the solution by the HWENO method, based on its Hermite interpolation.
The reconstruction procedure is consisted of the following two steps.

Step 1. Modify the derivative of the solution.
Since the solution for hyperbolic conservation laws often contains discontinuities and the

derivative of the solution is quite large near discontinuities, we need to control its derivative
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value. This idea comes fromZhao et al. [31,32], inwhich the first ordermoment of the solution
is modified in advance near the discontinuities. Although a modification for the derivative of
the solution adds extra computational costs to the algorithm, we reduce the computational
costs in the original HWENO scheme by using the same polynomials to reconstruct f̂ ±

i+1/2

and ĥ±
i+1/2 in the following Step 2. Furthermore, a larger CFL number such as 0.6 can be used

in the new method, while the original finite difference HWENO scheme [15] needs to use a
much smaller CFL number such as 0.2 for the stability of the method. This modification step
is important in order to eliminate the non-physical spurious oscillations as that shown in our
numerical experiments. Then there is no need to add the positivity-preserving flux limiter [9]
as that in the original finite difference HWENO scheme [15].

Give three small stencils S1 = {xi−1, xi }, S2 = {xi−1, xi , xi+1}, S3 = {xi , xi+1}, and
a big stencil S0 = {S1, S2, S3} = S2, then, we first construct three quadratic polynomials
p1(x), p2(x), p3(x) on S1, S2, S3 by Hermite interpolation, respectively. They satisfy the
following conditions

p1(xi+l) = ui+l , l = −1, 0, p′
1(xi−1) = vi−1,

p2(xi+l) = ui+l , l = −1, 0, 1,

p3(xi+l) = ui+l , l = 0, 1, p′
3(xi+1) = vi+1.

Also a quartic polynomial p0(x) is constructed on S0 byHermite interpolation,which satisfies

p0(xi+l) = ui+l , l = −1, 0, 1, p′
0(xi+l) = vi+l , l = −1, 1.

Then, their derivative values at xi are evaluated and we have

p′
1(xi ) = −vi−1 + 2(ui − ui−1)

�x
,

p′
2(xi ) = ui+1 − ui−1

2�x
,

p′
3(xi ) = −vi+1 + 2(ui+1 − ui )

�x
,

p′
0(xi ) = −vi−1 + vi+1

4
+ 3(ui+1 − ui−1)

4�x
.

The linear weights γ1 = 1
4 , γ2 = 1

2 and γ3 = 1
4 are obtained by requiring that

p′
0(xi ) =

3∑
n=1

γn p
′
n(xi ).

Next, we compute the smoothness indicators βn to measure how smooth the functions pn(x)
are in the target cell Ii , using the same definition as in [11,22],

βn =
r∑

α=1

∫
Ii

�x2α−1
(
dα pn(x)

dxα

)2

dx, n = 1, 2, 3. (2.4)

Here r = 2 is the degree of the polynomials pn(x). The explicit formulas are
⎧⎨
⎩

β1 = (2ui − 2ui−1 − vi−1�x)2 + 13
3 (ui − ui−1 − vi−1�x)2,

β2 = 1
4 (ui+1 − ui−1)

2 + 13
12 (ui−1 − 2ui + ui+1)

2,

β3 = (2ui+1 − 2ui − vi+1�x)2 + 13
3 (ui+1 − ui − vi+1�x)2.
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Now, the nonlinear weights are obtained as

ωn = ω̄n∑3
l=1 ω̄l

, with ω̄n = γn

(βn + ε)2
, n = 1, 2, 3,

where ε is set as 10−6 to avoid the denominator being zero. At last, the derivative value vi is
modified by

vnewi =
3∑

n=1

ωn p
′
n(xi ).

vnewi is the modified value of v at the point xi .

Step 2. Reconstruct the numerical fluxes f̂ ±
i+1/2 and ĥ±

i+1/2.

For simplicity, we only give the detailed reconstruction procedures for f̂ +
i+1/2 and ĥ

+
i+1/2,

while the formulas for the negative part of numerical fluxes f̂ −
i+1/2 and ĥ−

i+1/2 are mirror

symmetric with respect to xi+1/2 of that for f̂
+
i+1/2 and ĥ

+
i+1/2, respectively. Again, we would

like to emphasize that the modified HWENO scheme uses the same stencils and polynomials
to reconstruct f̂ +

i+1/2 and ĥ
+
i+1/2, and it is different from the original finite differenceHWENO

scheme [15].
Weuse the same stencils S1, S2, S3 and S0 given inStep 1 to reconstruct three cubic polyno-

mials p1(x), p2(x), p3(x) on S1, S2, S3 and a quintic polynomial p0(x) on S0, respectively,
which satisfy

1

�x

∫
Ii+l

p1(x)dx = f +(ui+l), l = −1, 0,
1

�x

∫
Ii−1

p′
1(x)dx = h+(ui−1, vi−1),

1

�x

∫
Ii
p′
1(x)dx = h+(ui , v

new
i ),

1

�x

∫
Ii+l

p2(x)dx = f +(ui+l), l = −1, 0, 1,
1

�x

∫
Ii
p′
2(x)dx = h+(ui , v

new
i ),

1

�x

∫
Ii+l

p3(x)dx = f +(ui+l), l = 0, 1,
1

�x

∫
Ii+1

p′
3(x)dx = h+(ui+1, vi+1),

1

�x

∫
Ii
p′
3(x)dx = h+(ui , v

new
i ), (2.5)

and

1

�x

∫
Ii+l

p0(x)dx = f +(ui+l), l = −1, 0, 1,
1

�x

∫
Ii±1

p′
0(x)dx = h+(ui±1, vi±1),

1

�x

∫
Ii
p′
0(x)dx = h+(ui , v

new
i ), (2.6)

and in the next procedures, f +(ui+l) and h+(ui±1, vi±1) would be simplified as f +
i+l and

h+
i±1, respectively, and h+(ui , vnewi ) is also simplified as h+

i .

Remark 1 The reconstruction of the numerical flux f̂ +
i+1/2 uses the numerical values

{ui−1, ui , ui+1} and their derivatives {vi−1, v
new
i , vi+1}, shown in (2.5) and (2.6). Here vnewi

represents the modified value of v at the point xi , while vi±1 are still the original derivatives
at the points xi±1. Hence, the reconstruction of f̂ +

i+1/2 only uses the numerical values and
their derivatives at {xi−1, xi , xi+1}, which preserves the nice property of compactness of the
HWENO schemes.
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Note that the reconstructions for f̂ +
i+1/2 and ĥ+

i+1/2 use the same smoothness indicators,
then,wefirst compute the smoothness indicatorsβn , whichmeasure howsmooth the functions
pn(x) are on the cell Ii , by using the formula of the smoothness indicators (2.4). The explicit
expressions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = (h+
i �x)2 + 13

3

[
3( f +

i−1 − f +
i ) + (h+

i−1 + 2h+
i )�x

]2
+ 781

20

[
2( f +

i−1 − f +
i ) + (h+

i−1 + h+
i )�x

]2
,

β2 = (h+
i �x)2 + 13

12 ( f
+
i−1 − 2 f +

i + f +
i+1)

2

+ 781
80 ( f +

i−1 − f +
i+1 + 2h+

i �x)2,

β3 = (h+
i �x)2 + 13

3

[
3( f +

i − f +
i+1) + (2h+

i + h+
i+1)�x

]2
+ 781

20

[
2( f +

i − f +
i+1) + (h+

i + h+
i+1)�x

]2
.

(2.7)

Step 2.1. Reconstruct the numerical flux f̂ +
i+1/2.

Using (2.5) and (2.6), we compute the reconstructions of f̂ +
i+1/2 by evaluating the values

of these polynomials at the point xi+1/2. Their explicit expressions are

p1(xi+1/2) = 1

2
f +
i−1 + 1

2
f +
i + 1

6
h+
i−1�x + 5

6
h+
i �x,

p2(xi+1/2) = 1

12
f +
i−1 + 5

6
f +
i + 1

12
f +
i+1 + 1

2
h+
i �x,

p3(xi+1/2) = 1

2
f +
i + 1

2
f +
i+1 + 1

6
h+
i �x − 1

6
h+
i+1�x,

p0(xi+1/2) = 11

60
f +
i−1 + 19

30
f +
i + 11

60
f +
i+1 + 1

20
h+
i−1�x + 1

2
h+
i �x − 1

20
h+
i+1�x .

Then we find the linear weights γ1, γ2 and γ3 by requiring that

p0(xi+1/2) =
3∑

n=1

γn pn(xi+1/2),

which gives that γ1 = 3
10 , γ2 = 2

5 and γ3 = 3
10 . With the smoothness indicators {βn}3n=1

computed in (2.7), the nonlinear weights are formulated as

ωn = ω̄n∑3
l=1 ω̄l

, with ω̄n = γn

(βn + ε)2
, n = 1, 2, 3,

where ε is a small positive number taken as 10−6. The final reconstruction of f̂ +
i+1/2 is given

by

f̂ +
i+1/2 =

3∑
n=1

ωn pn(xi+1/2).

Step 2.2. Reconstruct the numerical flux ĥ+
i+1/2.

Similarly, we first compute the derivative values of these polynomials at the point xi+1/2

to have

p′
1(xi+1/2) = 4 f +

i−1 − 4 f +
i

�x
+ 3

2
h+
i−1 + 7

2
h+
i ,

p′
2(xi+1/2) = f +

i−1 − 4 f +
i + 3 f +

i+1

4�x
+ 1

2
h+
i ,
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p′
3(xi+1/2) = 2 f +

i+1 − 2 f +
i

�x
− 1

2
h+
i − 1

2
h+
i+1,

p′
0(xi+1/2) = f +

i−1 − 8 f +
i + 7 f +

i+1

4�x
+ 1

12
h+
i−1 − 1

6
h+
i − 5

12
h+
i+1.

The linear weights γ1, γ2 and γ3 are determined by requiring

p′
0(xi+1/2) =

3∑
n=1

γn p
′
n(xi+1/2),

which gives that γ1 = 1
18 , γ2 = 1

9 and γ3 = 5
6 . With the smoothness indicators {βn}3n=1

calculated in (2.7), the nonlinear weights are formulated as

ωn = ω̄n∑3
l=1 ω̄l

, with ω̄n = γn

(βn + ε)2
, n = 1, 2, 3,

where ε is still taken as 10−6. Finally, the reconstructed value of ĥ+
i+1/2 is given by

ĥ+
i+1/2 =

3∑
n=1

ωn p
′
n(xi+1/2).

After the spatial discretization, the semi-discrete scheme (2.3) is solved by the third order
TVD Runge-Kutta method [23] in time as the following⎧⎨

⎩
U (1) = Un + �t L(Un),

U (2) = 3
4U

n + 1
4U

(1) + 1
4�t L(U (1)),

U (n+1) = 1
3U

n + 2
3U

(2) + 2
3�t L(U (2)),

(2.8)

where U = (u, vnew)T for the one-dimensional case.

2.2 Two-Dimensional Case

In this section we consider the two-dimensional hyperbolic conservation laws{
ut + f (u)x + g(u)y = 0,
u(x, y, 0) = u0(x, y).

(2.9)

For the simplicity of algorithm description, we focus on the scalar equation. The extension to
a system of equations is straightforward. The computation domain is partitioned by a uniform
mesh with grid points {(xi , y j )}, and grid sizes �x = xi+1 − xi and �y = y j+1 − y j . The
half grid points xi+1/2 = xi + �x/2 and y j+1/2 = y j + �y/2. The computation cell Ii, j is
defined by [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2], and (xi , y j ) is the center of the cell Ii, j . To
design a Hermite WENO scheme, we take the partial derivatives of the governing equation
(2.9) with respect to the x and y variables, respectively, and introduce new variables v = ux
and w = uy , then obtain the following equations⎧⎨

⎩
ut + f (u)x + g(u)y = 0, u(x, y, 0) = u0(x, y),
vt + h(u, v)x + r(u, v)y = 0, v(x, y, 0) = v0(x, y),
wt + q(u, w)x + s(u, w)y = 0, w(x, y, 0) = w0(x, y),

(2.10)
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where

h(u, v) = f ′(u)v, r(u, v) = g′(u)v, v(x, y, 0) = ux (x, y, 0);
q(u, w) = f ′(u)w, s(u, w) = g′(u)w, w(x, y, 0) = uy(x, y, 0).

We can notice that the Eqs. (2.2) and (2.10) have the similar form, such as f (u)x and g(u)y
are related to h(u, v)x and s(u, w)y , respectively. Therefore, we can extend the methodology
from one-dimensional case to approximate these four terms, but the mixed derivative terms
q(u, w)x and r(u, v)y are hard to approximate like one-dimensional case. Hence, we would
only introduce how to approximate themixed derivative terms here. Just like one-dimensional
case, we first give the semi-discrete finite difference scheme of (2.10) following as

⎧⎪⎪⎨
⎪⎪⎩

dui, j (t)
dt = − 1

�x

(
f̂i+1/2, j − f̂i−1/2, j

)
− 1

�y

(
ĝi, j+1/2 − ĝi, j−1/2

)
,

dvi, j (t)
dt = − 1

�x

(
ĥi+1/2, j − ĥi−1/2, j

)
− 1

�y

(
r̂i, j+1/2 − r̂i, j−1/2

)
,

dwi, j (t)
dt = − 1

�x

(
q̂i+1/2, j − q̂i−1/2, j

) − 1
�y

(
ŝi, j+1/2 − ŝi, j−1/2

)
.

(2.11)

Here, the numerical fluxes f̂i±1/2, j , ĥi±1/2, j , ĝi, j±1/2 and ŝi, j±1/2 are reconstructed in a
dimension-by-dimensional manner by adding a modification methodology for the partial
derivatives in the x and y directions in advance. The mixed derivative terms q̂i±1/2, j and
r̂i, j±1/2 would be reconstructed by linear approximation for we have modified the partial
derivatives vi, j and wi, j for all points.

The general frameworks for the spatial discretization are: in Step 3, we modify the partial
derivative values in the x and y directions, respectively; then, in Step 4, we introduce the
main procedures to reconstruct the numerical fluxes.

Step 3. Modify the partial derivative of the solution.
We would modify the partial derivative values in the x and y directions denoted by dimen-

sion by dimension, respectively, and the explicit procedures have been introduced in Step 1
for one-dimensional problems. Also, the modified values of v and w at the point (xi , y j ) are
represented as vnewi, j and wnew

i, j in the next procedures, respectively.

Step 4. Reconstruct the numerical fluxes f̂i±1/2, j , ĥi±1/2, j , ĝi, j±1/2, ŝi, j±1/2, q̂i±1/2, j

and r̂i, j±1/2.
The numerical fluxes f̂i±1/2, j , ĥi±1/2, j , ĝi, j±1/2 and ŝi, j±1/2 are reconstructed in a

dimension-by-dimensional manner, and the procedures are similar to one-dimensional case
introduced in Step 2. For the mixed derivative terms q̂i±1/2, j and r̂i, j±1/2, there’s no need to
split the fluxes q(u, w) and r(u, v), and they would be reconstructed by the linear approx-
imation straightforwardly, as we have modified the partial derivatives of the solution in
Step 3, while the original finite difference HWENO scheme [15] needed to split the fluxes
q(u, w) and r(u, v) and used the third order WENO method to overcome the non-physical
oscillations, which leads to the HWENO scheme [15] only has fourth order accuracy in the
two-dimensional case.

In the next procedures, we only introduce the reconstruction for q̂i+1/2, j in detail, and
q(ui, j , wnew

i, j ) is simplified as qi, j . The reconstruction for r̂i, j+1/2 is similar, which would
not be presented repeatedly.

We first give the stencil S0 = {xi−1, xi , xi+1, xi+2}, then we get a cubic polynomial p0(x)
on S0, satisfying

1

�x

∫ xi+k+1/2

xi+k−1/2

p0(x)dx = qi+k, j , k = −1, 0, 1, 2,
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then, we can easily obtain the linear approximation for q̂i+1/2, j as

q̂i+1/2, j = p0(xi+1/2) = 1

12

(−qi−1, j + 7qi, j + 7qi+1, j − qi+2, j
)
. (2.12)

After we finish the spatial discretization, the semi-discrete scheme (2.11) is discretized in
time by the third order TVD Runge-Kutta method, and the explicit expression is presented
in (2.8) with U = (u, vnew,wnew)T for two-dimensional case.

Remark 2 For the two-dimensional cases, the mixed derivative q̂i+1/2, j is reconstructed
directly by the linear scheme (2.12). The partial derivatives of the solution have been modi-
fied by HWENO methodology at all points in Step 3, and it is interesting to observe that the
linear reconstruction for the mixed derivative does not lead to any spurious oscillations in
the numerical experiments as shown in the next section.

Remark 3 For the system case, such as the one-dimensional and two-dimensional compress-
ible Euler equations, all HWENOprocedures are implementedwith a local characteristic field
decomposition as in [11], while the linear approximation is performed using the component
by component approach.

3 Numerical Experiments

In this section, we perform the numerical experiments to test the modified finite difference
HWENO scheme by solving various one-dimensional and two-dimensional problems. The
numerical results of the proposed fifth order finite difference HWENO scheme are compared
to that by the classical fifth order finite difference WENO scheme of Jiang and Shu [11] and
the original finite difference HWENO scheme of Liu and Qiu [15] without the positivity-
preserving flux limiter [9], to highlight the new properties of the new scheme. The CFL
number for the new modified HWENO scheme and the classical WENO scheme [11] in the
numerical experiments is set as 0.6, while for the original finite difference HWENO scheme
[15], a smaller CFL number such as 0.2 has to be used. Also the original finite difference
HWENO scheme [15] can only achieve fourth order accuracy for two-dimensional problems
while our new scheme enhances the accuracy order to the fifth order based on the same stencil
of the scheme.

Here in this section,weuse themodifiedHWENOscheme to denote the newmodifiedfinite
difference HWENO scheme developed in this paper, and use the classical WENO scheme to
represent the classical fifth order finite difference WENO scheme [11]. In addition, we use
the original HWENO scheme to denote the original finite difference HWENO scheme [15]
without the positivity-preserving flux limiter [9].

3.1 Smooth Problems

Example 3.1 We solve the one-dimensional Burgers’ equation:

ut +
(
u2

2

)
x

= 0, 0 < x < 2. (3.1)

The initial condition is u(x, 0) = 0.5 + sin(πx) with periodic boundary condition. The
final time is T = 0.5/π , when the solution is still smooth. We present the numerical errors
and orders in Table 1 for the WENO and HWENO schemes. It is seen that the WENO
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Table 1 1D-Burgers’ equation: initial data u(x, 0) = 0.5 + sin(πx). WENO and HWENO schemes. T =
0.5/π . L1 and L∞ errors and orders

Grid points Classical WENO scheme Original HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.90E−02 7.46E−02 1.48E−02 6.58E−02

20 2.06E−03 3.20 1.23E−02 2.60 1.19E−03 3.63 7.96E−03 3.05

40 1.22E−04 4.08 1.05E−03 3.55 5.10E−05 4.55 4.79E−04 4.05

80 4.36E−06 4.80 4.78E−05 4.46 1.66E−06 4.94 1.68E−05 4.84

160 1.64E−07 4.74 1.41E−06 5.09 6.07E−08 4.77 6.53E−07 4.69

320 4.78E−09 5.10 7.35E−08 4.26 1.74E−09 5.13 3.20E−08 4.35

Grid points Modified HWENO scheme

L1 error Order L∞ error Order

10 6.39E−03 3.00E−02

20 5.67E−04 3.49 4.04E−03 2.90

40 3.18E−05 4.16 3.85E−04 3.39

80 1.35E−06 4.56 1.31E−05 4.88

160 5.32E−08 4.67 5.67E−07 4.53

320 1.55E−09 5.10 2.06E−08 4.78

and HWENO schemes all achieve designed fifth order accuracy, but the modified HWENO
scheme has smaller L1 and L∞ errors than the classical WENO and the original HWENO
schemes on the same mesh. In addition, the original HWENO and the modified HWENO
schemes only need a compact three-point stencil while the classical WENO scheme needs a
five-point stencil in the reconstructions.

Example 3.2 We consider the one-dimensional Euler system of equations:

∂

∂t

⎛
⎝ ρ

ρμ

E

⎞
⎠ + ∂

∂x

⎛
⎝ ρμ

ρμ2 + p
μ(E + p)

⎞
⎠ = 0, (3.2)

in which ρ is density, μ is velocity, E is total energy and p is pressure. The initial conditions
are ρ(x, 0) = 1 + 0.2 sin(πx), μ(x, 0) = 1, p(x, 0) = 1 and γ = 1.4. Periodic boundary
conditions are applied here. The computational domain is x ∈ [0, 2π], and the final time is
T = 2. The exact solution is ρ(x, T ) = 1 + 0.2 sin(π(x − T )), μ(x, 0) = 1, p(x, 0) = 1.
We list the numerical errors and accuracy orders of the density for the WENO and HWENO
schemes in Table 2. It shows that these schemes achieve designed fifth order accuracy. Again,
the modified HWENO scheme has smaller numerical errors than the classical WENO and
the original HWENO schemes on the same mesh, and the original HWENO and the modified
HWENO schemes aremore compact than the classicalWENO scheme because twoHWENO
schemes only need three points while the classical WENO scheme needs five points in the
spatial reconstructed stencil.
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Table 2 1D-Euler equations: initial data ρ(x, 0) = 1 + 0.2 sin(πx), μ(x, 0) = 1 and p(x, 0) = 1. WENO
and HWENO schemes. T = 2. L1 and L∞ errors and orders

Grid points Classical WENO scheme Original HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.13E−02 1.66E−02 5.50E−03 8.67E−03

20 6.26E−04 4.17 9.94E−04 4.06 2.61E−04 4.40 4.39E−04 4.30

40 2.04E−05 4.94 3.72E−05 4.74 8.00E−06 5.03 1.55E−05 4.83

80 6.45E−07 4.98 1.21E−06 4.94 2.48E−07 5.01 4.81E−07 5.01

160 2.01E−08 5.01 3.67E−08 5.05 7.68E−09 5.01 1.43E−08 5.07

320 6.09E−10 5.04 1.01E−09 5.19 2.32E−10 5.05 3.85E−10 5.22

Grid points Modified HWENO scheme

L1 error Order L∞ error Order

10 5.64E−03 9.96E−03

20 2.44E−04 4.53 4.43E−04 4.49

40 7.14E−06 5.09 1.40E−05 4.99

80 2.21E−07 5.01 4.37E−07 5.00

160 6.85E−09 5.01 1.25E−08 5.13

320 2.05E−10 5.06 3.53E−10 5.14

Example 3.3 We consider the two-dimensional Burgers’ equation:

ut + (
u2

2
)x + (

u2

2
)y = 0, 0 < x < 4, 0 < y < 4. (3.3)

The initial condition isu(x, y, 0) = 0.5+sin(π(x+y)/2)with periodic boundary conditions.
The final time is T = 0.5/π , when the solution is still smooth. We show the numerical errors
and accuracy orders in Table 3, which illustrates that the classical WENO and the modified
HWENO schemes both have desired fifth order accuracy, while the original HWENO scheme
only has fourth order accuracy. Similar to the previous examples, the modified HWENO
scheme has better performance with smaller L1 and L∞ errors than the classical WENO
and the original HWENO schemes on the same mesh, and the big stencil in the HWENO
reconstruction only needs three points and ismore compact than the classicalWENO scheme.

Example 3.4 We solve the two-dimensional Euler system of equations:

∂

∂t

⎛
⎜⎜⎝

ρ

ρμ

ρν

E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎞
⎟⎟⎠ + ∂

∂ y

⎛
⎜⎜⎝

ρν

ρμν

ρν2 + p
ν(E + p)

⎞
⎟⎟⎠ = 0, (3.4)

where ρ is the density, (μ, ν) is the velocity, E is the total energy and p is the pressure. The
initial conditions are ρ(x, y, 0) = 1+0.2 sin(π(x + y)), μ(x, y, 0) = 0.7, ν(x, y, 0) = 0.3,
p(x, y, 0) = 1 and γ = 1.4. The computational domain is (x, y) ∈ [0, 2] × [0, 2]. Periodic
boundary conditions are applied in each direction. The final time is T = 2, and the exact
solution of ρ is ρ(x, y, T ) = 1+ 0.2 sin(π(x + y − T )). The numerical errors and accuracy
orders of the density for the WENO and HWENO schemes are presented in Table 4. Again
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Table 3 2D-Burgers’ equation: initial data u(x, y, 0) = 0.5+sin(π(x+y)/2).WENOandHWENOschemes.
T = 0.5/π . L1 and L∞ errors and orders

Grid points Classical WENO scheme Original HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 2.07E−02 7.50E−02 6.41E−02 6.94E−02

20 × 20 2.17E−03 3.25 1.21E−02 2.63 5.47E−03 3.55 6.74E−03 3.36

40 × 40 1.28E−04 4.09 1.04E−03 3.54 8.13E−04 2.75 9.19E−04 2.87

80 × 80 4.47E−06 4.83 4.73E−05 4.46 1.97E−04 2.05 6.23E−04 0.56

160 × 160 1.65E−07 4.76 1.39E−06 5.09 1.02E−05 4.27 5.37E−05 3.54

320 × 320 4.78E−09 5.11 7.28E−08 4.25 9.28E−08 6.77 4.08E−07 7.04

Grid points Modified HWENO scheme

L1 error Order L∞ error Order

10 × 10 6.92E−03 3.01E−02

20 × 20 5.91E−04 3.55 3.98E−03 2.92

40 × 40 3.22E−05 4.20 3.82E−04 3.38

80 × 80 1.35E−06 4.57 1.29E−05 4.89

160 × 160 5.30E−08 4.67 5.65E−07 4.51

320 × 320 1.54E−09 5.11 2.05E−08 4.78

we see that the classical WENO and the modified HWENO schemes have designed fifth
order accuracy, while the original HWENO scheme only has fourth order accuracy, and the
modified HWENO scheme has smaller L1 and L∞ errors than the classical WENO and the
original HWENO schemes on the same mesh. In addition, two HWENO schemes are much
more compact as only immediate neighbor information is used in the reconstructions.

3.2 Non-smooth Problems

Example 3.5 We solve the one-dimensional Burgers’ equation (3.1) given in Example 3.1
with the same initial and boundary conditions, but the final time is T = 1.5/π when the
solution is discontinuous. The numerical solution and the exact solution are plotted in Fig. 1.
We see that both the classical WENO and the modified HWENO schemes obtain the results
which are free of the non-physical oscillations, while the original HWENO scheme still
has slight oscillations even using smaller CFL number as the derivative of the solution near
by discontinuities is directly used for the scheme, which would be quite large, and the
modified HWENO scheme can overcome oscillations well through HWENO reconstructing
the derivatives. In addition, the modified HWENO scheme has better resolution than the
classical WENO scheme with slightly less transition points across the discontinuities.

Example 3.6 We solve a one-dimensional nonlinear non-convex scalar Buckley-Leverett
problem:

ut +
(

4u2

4u2 + (1 − u)2

)
x

= 0, −1 ≤ x ≤ 1.
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Table 4 2D-Euler equations: initial dataρ(x, y, 0) = 1+0.2 sin(π(x+y)),μ(x, y, 0) = 0.7, ν(x, y, 0) = 0.3
and p(x, y, 0) = 1. WENO and HWENO schemes. T = 2. L1 and L∞ errors and orders

Grid points Classical WENO scheme Original HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 1.94E−02 2.80E−02 3.32E−02 6.75E−02

20 × 20 1.07E−03 4.18 1.53E−03 4.19 5.70E−03 2.54 1.82E−02 1.89

40 × 40 3.57E−05 4.91 6.06E−05 4.66 2.43E−03 1.23 7.27E−03 1.33

80 × 80 1.11E−06 5.00 2.01E−06 4.92 8.47E−06 8.17 2.91E−05 7.97

160 × 160 3.45E−08 5.02 6.22E−08 5.01 1.32E−07 6.00 2.84E−07 6.68

320 × 320 1.03E−09 5.06 1.73E−09 5.17 7.30E−09 4.18 1.74E−08 4.03

Grid points Modified HWENO scheme

L1 error order L∞ error Order

10 × 10 8.78E−03 1.38E−02

20 × 20 3.84E−04 4.52 6.21E−04 4.47

40 × 40 1.13E−05 5.08 2.11E−05 4.88

80 × 80 3.47E−07 5.03 6.50E−07 5.02

160 × 160 1.07E−08 5.02 1.94E−08 5.07

320 × 320 3.20E−10 5.06 5.49E−10 5.14

Fig. 1 1D-Burgers’ equation: initial data u(x, 0) = 0.5 + sin(πx). T = 1.5/π . From left to right: the
numerical results and its partial enlarged view. Black solid line: the exact solution; blue plus signs: the result
of the classical WENO scheme; green triangles: the result of the original HWENO scheme; red squares: the
result of the modified HWENO scheme. Grid points: 80

The initial condition is u = 1 for − 1
2 ≤ x ≤ 0 and u = 0 elsewhere with constant boundary

conditions. The final time is T = 0.4. The exact solution of this problem contains both
shock wave and rarefaction wave. It is a popular benchmark problem to test high-order
numerical methods. If schemes are not carefully designed, they may converge to a non-
physical solution which violates the entropy condition. The numerical results are presented
in Fig. 2. We can see that the modified HWENO scheme performs well in capturing the
correct entropy solution as the classical WENO scheme, and the modified HWENO scheme
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Fig. 2 1D Buckley-Leverett problem: initial data u = 1 for− 1
2 ≤ x ≤ 0 and u = 0 elsewhere. T = 0.4. From

left to right: the numerical results and its partial enlarged view. Black solid line: the exact solution; blue plus
signs: the result of the classical WENO scheme; green triangles: the result of the original HWENO scheme;
red squares: the result of the modified HWENO scheme. Grid points: 80

shows slightly less dissipations and has better resolution than the classical WENO scheme.
In addition, we can see the original HWENO scheme still has slight oscillations, while the
modified HWENO scheme can control the non-physical oscillations well.

Example 3.7 Wesolve the one-dimensional Euler systemof equations (3.2)with the following
Riemann initial condition:

(ρ, μ, p, γ )T =
{

(0.445, 0.698, 3.528, 1.4)T , x ∈ [−0.5, 0),
(0.5, 0, 0.571, 1.4)T , x ∈ [0, 0.5].

The final time is T = 0.16. The exact solution and the numerical results of density ρ

using 200 grid points with a zoomed in picture are presented in Fig. 3. Both the classical
WENO and the modified HWENO schemes generate a stable entropy solution. Again, due
to the compactness of the HWENO scheme, the result computed by the modified HWENO
scheme has better resolution than the classical WENO scheme. We also can see the result
of the original HWENO scheme without the positivity-preserving flux limiter [9], shown by
the green triangle symbols in Fig. 3. Obvious oscillations are observed and this can not be
improved by using a smaller CFL number. The result shows that the positivity-preserving flux
limiter is a key component to ensure the nonlinear stability of the original HWENO scheme.
However the positivity-preserving flux limiter is not needed in themodifiedHWENO scheme
of this paper, leading to a simpler and more robust scheme. In addition, to verify whether the
modification for the derivative of the solution is necessary or not, we solve this problem by
the method which does not modify the derivative of the solution in the modified HWENO
scheme. The result is shown by the purple circle symbols in Fig. 3. Obvious non-physical
oscillations are observed. This illustrates that the step of modification for the derivative of
the numerical solution in the new HWENO scheme is significant and necessary to eliminate
the non-physical oscillations and ensure the nonlinear stability of the scheme.

Example 3.8 We solve the following Shu-Osher problem, and the initial condition is

(ρ, μ, p, γ )T =
{

(3.857143, 2.629369, 10.333333, 1.4)T , x ∈ [−5,−4),
(1 + 0.2 sin(5x), 0, 1, 1.4)T , x ∈ [−4, 5].
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Fig. 3 The Lax problem. T = 0.16. From left to right: density; density zoomed in; Black solid line: the exact
solution; blue plus signs: the result of the classical WENO scheme; green triangles: the result of the original
HWENO scheme; red squares: the result of the modified HWENO scheme; purple circles: the result of the
modified HWENO scheme with no modification procedure for the derivative of the solution. Grid points: 200

Fig. 4 The shock density wave interaction problem. T = 1.8. From left to right: density; density zoomed in.
Black solid line: the exact solution; blue plus signs: the result of the classical WENO scheme; green triangles:
the result of the original HWENO scheme; red squares: the result of the modified HWENO scheme. Grid
points: 400

The final time is T = 1.8. The solution of this problemhas amovingMach 3 shock interacting
with sine waves in density [22], and contains both shock waves and complex smooth region
structures. We present the computed density ρ against the referenced “exact” solution and
the zoomed in picture in Fig. 4. The referenced “exact” solution is computed by the fifth
order finite difference WENO scheme [11] with 2000 grid points. It can be seen that the the
modified HWENO scheme simulates this problemwell, and it also has higher resolution than
the classical WENO and the original HWENO schemes.

Example 3.9 We consider a problem of the interaction of two blast waves, and the initial
condition is

(ρ, μ, p, γ )T =
⎧⎨
⎩

(1, 0, 103, 1.4)T , 0 < x < 0.1,
(1, 0, 10−2, 1.4)T , 0.1 < x < 0.9,
(1, 0, 102, 1.4)T , 0.9 < x < 1.
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Fig. 5 The blast wave problem. T = 0.038. From left to right: density; density zoomed in. Black solid line:
the exact solution; blue plus signs: the result of the classical WENO scheme; red squares: the result of the
modified HWENO scheme. Grid points: 800

The final time T is 0.038 and the reflective condition is applied in two boundaries. The
numerical results of the density by the WENO and HWENO schemes, the reference “exact”
solution and the zoomed in picture are plotted in Fig. 5. The reference “exact” solution
is obtained by a converged solution computed by the fifth order finite difference WENO
scheme [11] with 2000 grid points. We see that the modified HWENO scheme generates
a stable solution without non-physical oscillations. However, the original HWENO scheme
fails to simulate this problem if the positivity-preserving flux limiter [9] is not used, even
with a smaller CFL number. This shows that the modified HWENO scheme proposed in this
paper is more robust than the original one [15]. Also, the new HWENO scheme has better
resolution than the classical WENO scheme as shown in Fig. 5.

Example 3.10 We solve the two-dimensional Burgers’ equation (3.3) in Example 3.3 with
the same initial and boundary conditions, and the final time is T = 1.5/π , when the solution
is discontinuous. The numerical solutions computed by the WENO and HWENO schemes,
alongwith the exact solution are presented in Fig. 6. Again, we see that themodifiedHWENO
scheme has a slightly better resolution than the classical WENO and the original HWENO
schemes.

Example 3.11 We solve the double Mach reflection problem from [27] modeled by the two-
dimensional Euler system of equations (3.4). The computational domain is ([0, 4] × [0, 1]).
γ = 1.4 and the final time is T = 0.2. This example has a reflection wall located at the
bottom, starting from x = 1

6 , y = 0, making a 60o angle with the x-axis. At the bottom
boundary, the exact post-shock condition is imposed from x = 0 to x = 1

6 and the rest
has the reflection boundary condition. At the top boundary, the exact motion of the Mach
10 shock is imposed. Inflow and outflow boundary conditions are applied for the left and
right boundaries, respectively. In Fig. 7, we present the numerical results computed by the
classical WENO and the modified HWENO schemes in the region [0, 3] × [0, 1] and the
blow-up region around the double Mach stems. It is observed that the modified HWENO
scheme generates a result with higher resolution than the classical WENO scheme, while
the original HWENO scheme fails to simulate this problem if the positivity-preserving flux
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Fig. 6 2D-Burgers’ equation: initial data u(x, y, 0) = 0.5+ sin(π(x + y)/2). T = 1.5/π . From left to right:
the numerical solution at x = y, its partial enlarged view and the surface computed by the modified HWENO
scheme. Black solid line: the exact solution; blue plus signs: the result of the classical WENO scheme; green
triangles: the result of the original HWENO scheme; red squares: the result of the modified HWENO scheme.
Grid points: 80 × 80

limiter [9] is not employed, even with a smaller CFL number, which illustrates that the
modified HWENO scheme proposed in this paper is more robust than the original one [15].

Example 3.12 The problem is about a Mach 3 wind tunnel with a forward step [27] modeled
by the two-dimensional Euler system of equations (3.4). In this problem, there is a wind
tunnel with a initial right-goingMach 3 flow, and it has the width of 1 unit and the length of 3
units. The height of the step is 0.2 unit and it is located 0.6 length unit from the left-hand end
of the tunnel. Reflective boundary conditions are applied along the wall of the tunnel. Inflow
and outflow boundary conditions are applied at the entrance and the exit, respectively. The
corner of the step is a singular point and we treat it as in [27]. We compute this problem till
the time T = 4, and present the numerical results of the classical WENO and the modified
HWENO schemes with 960×320 grid points in Fig. 8. It shows that the classicalWENO and
the modified HWENO schemes simulate this problem very well and they have comparable
resolution for this problem. Again, the original HWENO scheme [15] fails to simulate this
problem if the positivity-preserving flux limiter [9] is not applied, even with a smaller CFL
number.

4 Concluding Remarks

In this paper, a modified fifth order finite difference Hermite weighted essentially non-
oscillatory (HWENO) scheme is proposed for solving one-dimensional and two-dimensional
hyperbolic conservation laws. Comparingwith the original finite differenceHWENO scheme
[15], the modified HWENO scheme is simpler and more robust since we do not need to add
a positivity-preserving flux limiter and use a smaller CFL number than the usual to ensure
the stability of the scheme as in [15]. The new HWENO scheme has fifth order accuracy
in solving both the one-dimensional and the two-dimensional problems, while based on the
same reconstruction stencil the original finite difference HWENO scheme only has fourth
order accuracy in solving the two-dimensional problems. Note that we develop an algorithm
to modify the derivatives of the numerical solution in Step 1 and Step 3 of the scheme. This is
a significant and necessary component in the scheme to eliminate the possible non-physical
oscillations and ensure the nonlinear stability. Furthermore, we also make the comparison of
the computational time for the WENO and HWENO schemes in the numerical tests, and it is
found that the modified HWENO scheme uses less computational cost than the original one
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Fig. 7 Double Mach reflection problem. T = 0.2. 30 equally spaced density contours from 1.5 to 22.7. From
top to bottom: the result of the classical WENO scheme; the result of the modified HWENO scheme; zoomed
of the classical WENO and the modified HWENO schemes. Grid points: 1600 × 400

since the new cost of the modification procedure is offset by the fact that the new scheme is
free of the flux limiter and can use a larger CFL number, while the modified HWENO scheme
needs a little more computational cost than that of the classical WENO scheme [11], but the
modified HWENO scheme is much more compact as only immediate neighbor information
is used in the reconstructions with smaller numerical errors. Numerical experiments in the
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Fig. 8 Forward step problem. T = 4. 30 equally spaced density contours from 0.32 to 6.15. From top to
bottom: the result of the the classical WENO scheme; the result of the modified HWENO scheme; Grid
points: 960 × 320

paper show that the proposed modified fifth order finite difference HWENO scheme has bet-
ter performances than the original finite difference HWENO scheme [15] and the classical
fifth order finite difference WENO scheme [11].
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