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Abstract. In this paper, a high-order moment-based multi-resolution Hermite
weighted essentially non-oscillatory (HWENO) scheme is designed for hyperbolic con-
servation laws. The main idea of this scheme is derived from our previous work [J.
Comput. Phys., 446 (2021) 110653], in which the integral averages of the function and
its first order derivative are used to reconstruct both the function and its first order
derivative values at the boundaries. However, in this paper, only the function values at
the Gauss-Lobatto points in the one or two dimensional case need to be reconstructed
by using the information of the zeroth and first order moments. In addition, an extra
modification procedure is used to modify those first order moments in the troubled-
cells, which leads to an improvement of stability and an enhancement of resolution
near discontinuities. To obtain the same order of accuracy, the size of the stencil re-
quired by this moment-based multi-resolution HWENO scheme is still the same as the
general HWENO scheme and is more compact than the general WENO scheme. More-
over, the linear weights are not unique and are independent of the node position, and
the CFL number can still be 0.6 whether for the one or two dimensional case, which has
to be 0.2 in the two dimensional case for other HWENO schemes. Extensive numerical
examples are given to demonstrate the stability and resolution of such moment-based
multi-resolution HWENO scheme.
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1 Introduction

In this paper, a high-order moment-based multi-resolution Hermite weighted essentially
non-oscillatory (HWENO) scheme is designed for hyperbolic conservation laws

{

ut+∇· f (u)=0,

u(x1,··· ,xd,0)=u0(x1,··· ,xd).
(1.1)

We concentrate our attention on the one and two dimensional cases (d= 1 or 2), and in
these cases we denote x1 as x and x2 as y.

Conservation laws arise from the physical law that the conservative quantity in any
control body can change only due to the flux passing through its boundaries, which nat-
urally hold for many fundamental physical quantities, such as the mass, momentum,
energy and so on. Such conservation laws are widely used in a broad spectrum of disci-
plines where wave motion or advective transport is important: gas dynamics, acoustics,
elastodynamics, optics, geophysics, and biomechanics, to name but a few.

The differential equation (1.1) can be derived from the integral equation by simple
manipulations provided that the conservative quantity and its corresponding flux are
sufficiently smooth. This proviso is important because in practice many interesting so-
lutions are not smooth, but contain discontinuities such as shock waves. A fundamental
feature of nonlinear conservation laws is that discontinuities can easily develop sponta-
neously even from smooth initial data, and must be dealt with carefully both mathemati-
cally and computationally. At a discontinuity in the conservative quantity, the differential
equation does not hold in the classical sense and it is important to remember that the in-
tegral form of the conservation laws does continue to hold which is more fundamental.
This is also why we choose conservative schemes, such as the finite volume method con-
sidered in this paper, which is based on the integral form of the conservation laws.

Since conservation laws have a very wide range of applications and it is almost impos-
sible in general to get their exact solutions, many scholars have explored and proposed
a series of numerical methods and are still trying to improve the performance of these
algorithms. In 1994, Liu et al. proposed the first finite volume WENO scheme in [17],
and then, in 1996, Jiang and Shu improved this WENO scheme to fifth order and to con-
servative finite difference formulation (which is more efficient in multi-dimensions), and
gave a general definition of the smoothness indicators and nonlinear weights in [12]. The
methodology of such WENO schemes is to use a nonlinear convex combination of all
the candidate stencils to improve the order of accuracy in smooth regions without de-
stroying the non-oscillatory behavior near discontinuities. This is also the difference of
such WENO schemes from the ENO schemes in [10,22,23], which only choose the locally
smoothest stencil automatically among all the central and biased spatial stencils. There-
after, different kinds of WENO schemes have been developed in, e.g. [1–3, 6, 18, 28, 29].
Although these WENO schemes work well for most of the problems we encountered,
there is still room for improvement. For example, if we want to obtain a higher order
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scheme, we must further expand the stencil. This will make our scheme not very com-
pact and will also bring trouble to the processing of the boundary conditions. In order
to overcome this drawback, Qiu and Shu proposed the first HWENO scheme and ap-
ply it as limiter for discontinuous Galerkin (DG) method for one-dimensional problems
in [19] and then, in 2005, they extended this HWENO scheme to two-dimensional prob-
lems in [20], where two different stencils were used to reconstruct the function and its
first order derivative values, respectively. The scheme evolves lower degree polynomials
while reconstructing higher degree polynomials to approximate the solution. Dumbser
et al. [8] extended the scheme to a new family of in-cell recovery DG method, referred
to as PN PM methods, which yields a general, unified framework that contains two im-
portant special cases, the classical high order finite volume (FV) schemes (N=0) and the
conventional discontinuous Galerkin (DG) method (N= M), and the HWENO schemes
can be seen as the P1PM method. The main difference of such HWENO scheme from the
WENO scheme is that both the function and its first order derivative values are evolved
in time and used in the reconstruction process, not like the WENO scheme in which only
the function values are evolved and used. This allows the HWENO scheme to obtain the
same order of accuracy as the WENO scheme with relatively narrower stencils. But there
occurs a new issue, that is this HWENO scheme is not stable enough when simulating
certain severe problems with strong discontinuities, including the double Mach and for-
ward step problems. This difficulty is largely due to the fact that the first order derivative
values may become very large near these discontinuities. Thus, the stability issue may
arise, if these large values are used straightforwardly without any modification. Driven
by the goal of solving this issue, many effective methods based on the idea of the origi-
nal HWENO scheme have emerged. For example, the scheme with a new procedure to
reconstruct the first order derivative values by Zhu and Qiu in [27] in 2008, the scheme
with an additional positivity-preserving limiter by Liu and Qiu in [15, 16] in 2015 and
2016, the scheme with a troubled-cell indicator to modify the first order moments near
the discontinuities before the reconstruction algorithm by Zhao et al. in [25, 26] in 2020,
the scheme with a hierarchy of nested central spatial stencils by Li et al. in [14] in 2021
and so on, have been developed.

In 2018 and 2019, Zhu and Shu proposed a new type of high-order finite difference
and finite volume multi-resolution WENO schemes in [28, 29], which only use the infor-
mation on a hierarchy of nested central spatial stencils and can not only obtain high order
accuracy in smooth regions but also allow the accuracy near discontinuities to degrade
gradually. Following the idea of these multi-resolution WENO schemes, we designed
a new type of high-order finite volume and finite difference multi-resolution HWENO
schemes in [14] in 2021, for which only the function values need to be reconstructed by
the HWENO schemes, and the first order derivative values are obtained directly from the
polynomial with the highest degree in the hierarchy. This can improve the resolution of
the scheme but does not have much effect on its stability, since the first two layers in the
hierarchy do not contain the information of the first order derivative. In this paper, the
function and its first order moment values are used in our reconstruction algorithm, and
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only the function values are needed to be reconstructed according to our control equa-
tions. Thus, the coupling between the function and its first order moment is stronger.

There are two issues to be addressed. The first one is that, although the bigger the
linear weights are for higher degree polynomials, the steeper the shock transitions be-
come near the discontinuities, the gap between these linear weights cannot be too large,
otherwise the corresponding nonlinear weights will still be too close to the linear weights
near the discontinuities. This will cause problems, since the higher degree polynomials,
which require the information of the first order derivative or moment, account for too
much in the final reconstruction polynomial, but such first order derivative or moment
values may be very large near the discontinuities. The other one is that with the suit-
able choice of the linear weights, the order of the final reconstruction polynomial will
degrade gradually near the discontinuities until it drops to first order, which will smooth
out these discontinuities to a certain extent. Guided by the idea of Zhao et al. in [25, 26],
we first perform the reconstruction algorithm, and then modify the first order moments
of the troubled-cells and repeat the reconstruction algorithm for these troubled-cells to
update the corresponding Gauss-Lobatto point values. After such a modification pro-
cedure, the proportion of the last two layers will become much higher than that of the
first two layers in the reconstruction process, thus the resolution near the discontinuities
can be increased significantly. In the meantime, this modification procedure can also im-
prove the stability of the scheme by reducing the magnitude of the first order moments
near the discontinuities. In order to better adapt to our high order scheme, we choose
the HLLC-flux (Harten-Lax-van Leer-contact flux) to be our numerical flux, which is an
approximate Riemann solver by assuming that there are four states in the transition from
the left to the right states, thus staying closer to the real physical situation.

The organization of this paper is as follows: In Section 2, we describe the reconstruc-
tion procedure of the moment-based multi-resolution HWENO scheme for hyperbolic
conservation laws in the one and two dimensions in detail. In Section 3, we propose a
number of numerical examples to illustrate the accuracy and resolution of our HWENO
scheme. Concluding remarks are given in Section 4.

2 Moment-based multi-resolution HWENO scheme

In this section, we describe the reconstruction procedure of the moment-based multi-
resolution HWENO scheme for the one and two dimensional hyperbolic conservation
laws, which has sixth order of accuracy in smooth regions and high resolution near
discontinuities. Here sixth order is simply taken as an example, arbitrarily high order
HWENO schemes can be designed following the same lines.

2.1 One dimensional case

In this subsection, we first consider the following relatively simple one-dimensional hy-
perbolic conservation laws



368 J. Li, C.-W. Shu and J. Qiu / Commun. Comput. Phys., 32 (2022), pp. 364-400

{

ut+ f (u)x =0,

u(x,0)=u0(x).
(2.1)

For simplicity, the computational domain is divided by a uniform mesh Ii=[xi−1/2,xi+1/2]
with the uniform mesh size △x = xi+1/2−xi−1/2, and the corresponding cell center is
denoted by xi =

1
2(xi−1/2+xi+1/2).

Firstly, multiply the governing equation (2.1) by 1
△x and 1

△x
x−xi
△x , respectively. Then,

integrate the resulting equations over the target cell Ii and perform the integration by
parts, obtaining the following equations














1

△x

∫

Ii

utdx=− 1

△x

[

f
(

u(xi+1/2,t)
)

− f
(

u(xi−1/2,t)
)

]

,

1

△x

∫

Ii

ut
x−xi

△x
dx=− 1

2△x

[

f
(

u(xi+1/2,t)
)

+ f
(

u(xi−1/2,t)
)

]

+
1

(△x)2

∫

Ii

f (u)dx.

(2.2)

Next, define the zeroth and first order moments as follows














ui(t)=
1

△x

∫

Ii

u(x,t)dx,

vi(t)=
1

△x

∫

Ii

u(x,t)
x−xi

△x
dx,

(2.3)

and then, swap the spatial integration and time derivation and approximate the flux by
a numerical flux, obtaining the following semi-discrete conservative scheme















dui(t)

dt
=− 1

△x
( f̂i+1/2− f̂i−1/2),

dvi(t)

dt
=− 1

2△x
( f̂i+1/2+ f̂i−1/2)+

1

△x
Fi(u).

(2.4)

Here, the numerical flux is taken to be the HLLC flux f̂i+1/2 = f̂ HLLC(u−
i+1/2,u+

i+1/2). As
an example, for Euler equations

∂

∂t





ρ
ρµ
E



+
∂

∂x





ρµ
ρµ2+p

µ(E+p)



=0, (2.5)

where ρ is the density, µ is the velocity, E is the total energy and p is the pressure, the
specific expression of the HLLC flux is as follows:

f̂ HLLC(uL,uR)=



















fL, 0≤ sL ,

f ∗L , sL ≤0≤ s∗,

f ∗R, s∗≤0≤ sR,

fR, sR ≤0,

(2.6)
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where fL/R = f (uL/R), f ∗L/R = fL/R+sL/R∗(u∗
L/R−uL/R); sL =µL−cL∗coe fL , sR =µR+cR∗

coe fR ,

coe fL/R =











1, p∗≤ pL/R,
√

1+
(γ+1)∗(p∗/pL/R−1)

2γ
, otherwise,

(2.7)

u∗
L/R=ρL/R∗

sL/R−µL/R

sL/R−s∗
∗







1
s∗

EL/R

ρL/R
+(s∗−µL/R)∗

(

s∗+ pL/R

ρL/R∗(sL/R−µL/R)

)






, (2.8)

where p∗ = pL+pR+(µL−µR)∗(c∗∗ρ∗)
2 , s∗ = µL+µR+(pL−pR)/(c

∗∗ρ∗)
2 ; ρ∗ = ρL+ρR

2 , c∗ = cL+cR
2 ; and γ

is the ratio of specific heats. The integral term Fi(u) is approximated by a four-point
Gauss-Lobatto integration

Fi(u)=
1

△x

∫

Ii

f (u)dx≈
4

∑
l=1

ωl f
(

u(xGL
l ,t)

)

, (2.9)

where the weights are ω1=ω4=
1
12 , ω2=ω3=

5
12 and the quadrature points on the target

cell Ii are

xGL
1 = xi−1/2, xGL

2 = xi−
√

5/10, xGL
3 = xi+

√
5/10, xGL

4 = xi+1/2,

where xi+ξ = xi+ξ△x.
Finally, we present the spatial reconstruction procedure of the point values {u+

i−1/2,

ui−
√

5/10, ui+
√

5/10, u−
i+1/2} from the given moment values {u,v|i−1;u,v|i;u,v|i+1} in detail

as follows:

The 1D Reconstruction Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of u.

Step 1.1. Reconstruct a series of polynomials of different degrees.
First, select a series of central spatial stencils and reconstruct a zeroth degree polyno-

mial q1(x), a quadratic polynomial q2(x), a cubic polynomial q3(x) and a quintic polyno-
mial q4(x), respectively, such that

1

△x

∫

Ik

q1(x)dx=uk, k= i;

1

△x

∫

Ik

q2(x)dx=uk, k= i−1,i,i+1;

1

△x

∫

Ik

q3(x)dx=uk, k= i−1,i,i+1;
1

△x

∫

Ikx

q3(x)
x−xkx

△x
dx=vkx

, kx = i;

1

△x

∫

Ik

q4(x)dx=uk, k= i−1,i,i+1;
1

△x

∫

Ikx

q4(x)
x−xkx

△x
dx=vkx

, kx = i−1,i,i+1.

(2.10)
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Then, the polynomials ql2(x) are transformed to obtain a new set of polynomials
pl2(x), whose expressions are given by (2.11)

pl2(x)=











q1(x), l2=1,

1

γl2,l2

ql2(x)−
l2−1

∑
l=1

γl,l2

γl2,l2

pl(x), l2=2,3,4,
(2.11)

with ∑
l2
l=1γl,l2 = 1, γl2,l2 6= 0, l2 = 2,3,4, where these γl1,l2 for l1 = 1,··· ,l2; l2 = 2,3,4 are the

linear weights and are defined as

γl1,l2 =
γl1,l2

∑
l2
l=1γl,l2

; γl1,l2
=10l1−1; l1=1,··· ,l2; l2=2,3,4. (2.12)

As for why we choose such a set of linear weights, we will discuss in detail in Remark
2.1 later. Putting these linear weights into (2.11), obtain the following relations

p1(x)=q1(x),

p2(x)=
11

10
q2(x)− 1

10
q1(x),

p3(x)=
111

100
q3(x)− 11

100
q2(x),

p4(x)=
1111

1000
q4(x)− 111

1000
q3(x).

(2.13)

Step 1.2. Compute the corresponding nonlinear weights of the above polynomials.

First, compute the smoothness indicator βl2 of function pl2(x) in the interval Ii:

βl2 =
κ

∑
α=1

∫

Ii

△x2α−1

(

dα pl2(x)

dxα

)2

dx, l2=2,3,4, (2.14)

where κ=2,3,5 for l2 =2,3,4. It is important to note that the definition of β1 is different,
where a new polynomial qnew

1 (x) is required and is defined as follows:

(1) Reconstruct two polynomials q1L(x) and q1R(x), such that

1

△x

∫

Ik

q1L(x)dx=uk, k= i−1,i;

1

△x

∫

Ik

q1R(x)dx=uk, k= i,i+1,

(2.15)

and then, obtain their associated smoothness indicators

β1L =(ui−ui−1)
2, β1R =(ui+1−ui)

2, (2.16)
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and the absolute difference τ1 between β1L and β1R

τ1= |β1R−β1L|2, (2.17)

where the selection of the power is to be consistent with the definition (2.23) of τ4 later.

(2) Give these two polynomials q1L(x) and q1R(x) the same linear weights γ1L =γ1R =
1
2

and calculate the corresponding nonlinear weights as

ω1L=
ω1L

ω1L+ω1R
, ω1R=

ω1R

ω1L+ω1R
, (2.18)

ω1L =γ1L

(

1+
τ1

β1L+ε

)

, ω1R =γ1R

(

1+
τ1

β1R+ε

)

, (2.19)

where ε=10−10 is applied to avoid the denominator of (2.19) to be zero.

(3) Obtain a new polynomial

qnew
1 (x)=ω1Lq1L(x)+ω1Rq1R(x), (2.20)

and set β1 to be

β1=
∫

Ii

△x

(

dqnew
1 (x)

dx

)2

dx=
(

ω1L

(

ui−ui−1

)

+ω1R

(

ui+1−ui

)

)2
. (2.21)

Then, we still adopt the idea of WENO-Z as shown in [6] to define the corresponding
nonlinear weights

ωl1,4=
ωl1,4

∑
4
l=1ωl,4

, ωl1,4=γl1,4

(

1+
τ4

βl1 +ε

)

, l1=1,··· ,4, (2.22)

where ε is also taken to be 10−10 and the quantity τ4 is defined to be the absolute difference
among above smoothness indicators

τ4=

(

∑
3
l=1 |β4−βl |

3

)2

. (2.23)

Step 1.3. Obtain an approximation polynomial ui(x) of u(x).
The new reconstruction polynomial ui(x) of u(x) is defined as

ui(x)=
4

∑
l=1

ωl,4pl(x), (2.24)

and the Gauss-Lobatto point values that we need are taken to be

u+
i−1/2=ui(xi−1/2), ui∓

√
5/10=ui(xi∓

√
5/10), u−

i+1/2=ui(xi+1/2). (2.25)
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Step 2. Update the Gauss-Lobatto point values of u in the troubled-cells.

Step 2.1. Identify the troubled-cells.
The so-called troubled-cells are those cells that may contain discontinuities. In 2005,

Qiu and Shu systematically investigated and compared a few troubled-cell indicators for
the Runge-Kutta discontinuous Galerkin method in [20]. Here, we choose the KXRCF
troubled-cell indicator proposed by Krivodonova et al. in [13] to identify the troubled-
cells, and its judgment criterion is that the target cell Ii is identified to be a troubled-cell,
if

ℵi =

∣

∣

∫

∂I−i

(

ui(x)−uni
(x)
)

ds
∣

∣

h
p+1

3

i

∣

∣∂I−i
∣

∣||ui(x)||
>1, (2.26)

where ∂I−i is the inflow boundary (−→v ·−→n <0, −→v is the velocity of the flow and −→n is the
outer normal vector to ∂Ii), Ini

is the neighbor of Ii on the side of ∂I−i , hi is the length of the
cell Ii, the parameter p (i.e. the degree of ui(x)) is taken to be 5, ui(x) is the approximation
polynomial of u(x) obtained in Step 1 above and the norm is taken to be the L∞ norm.

Step 2.2. Modify the first order moments in the troubled-cells.
If the target cell Ii is identified to be a troubled-cell, we would like to modify the first

order moment vi in it. First, obtain a quartic polynomial by linear interpolation, which
satisfies

1

△x

∫

Ik

p0(x)dx=uk, k=i−1,i,i+1;
1

△x

∫

Ikx

p0(x)
x−xkx

△x
dx=vkx

, kx=i−1,i+1, (2.27)

and then, modify the first order moment vi as

vi=
1

△x

∫

Ii

p0(x)
x−xi

△x
dx=− 5

76
ui−1+

5

76
ui+1−

11

38
vi−1−

11

38
vi+1. (2.28)

Step 2.3. Update the Gauss-Lobatto point values of u for these troubled-cells.
After modifying the first order moments in the troubled-cells, repeat the reconstruc-

tion process Step 1 for these troubled-cells to update corresponding Gauss-Lobatto point
values of u.

Step 3. Discretize the semi-discrete scheme in time.
After all these Gauss-Lobatto point values are obtained, substitute them into the for-

mula of the numerical flux. Then, discretize (2.4) by a third-order TVD Runge-Kutta
method in time























U(1)=Un+∆tL(Un),

U(2)=
3

4
Un+

1

4
U(1)+

1

4
∆tL(U(1)),

Un+1=
1

3
Un+

2

3
U(2)+

2

3
∆tL(U(2)),

(2.29)

to obtain a fully discrete scheme.
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Remark 2.1. In Step 1 above, through a series of Taylor expansion analyses, we can verify
that βl =u

′2△x2+O(△x4), l=1,2,3,4, thus β4−βl =O(△x4) for l <4 and τ4 =O(△x8),
then

u(x)−ui(x)=u(x)−
4

∑
l=1

ωl,4pl(x)

=

[

u(x)−
4

∑
l=1

γl,4pl(x)

]

+
4

∑
l=1

(ωl,4−γl,4)
(

u
(

x
)

−pl

(

x
)

)

=O(△x6)+O(△x6)∗O(△x)

=O(△x6). (2.30)

According to above Taylor expansion analyses, we can prove that our reconstruction al-
gorithm can obtain sixth order of accuracy in smooth regions. When there is a disconti-
nuity in the target cell Ii, the modified first order moment vi in (2.28) will become O(1),
for the difference between ui−1 and ui+1 is O(1).

As in our previous paper [14], the linear weights are not unique and are indepen-
dent of the node position. We have also tried other choices of the linear weights with
γl1,l2

=2l1−1, γl1,l2
=4l1−1, γl1,l2

=6l1−1, γl1,l2
=8l1−1. From our numerical experiments, we

find that even though different choices of the linear weights do not affect the order of
accuracy in smooth regions, they do affect the resolution near discontinuities. That is
to say, the bigger the linear weights are for higher-degree polynomials, the steeper the
shock transitions become, but also the more unstable the scheme becomes. Thus, the gap
between these linear weights should not be too large, otherwise it could become too close
to the linear interpolation, which could cause oscillations. We must find a balance. How-
ever, due to the space limitation, we only show the results of one choice, which is also the
choice in [28, 29] and our previous paper [14]. We choose these series of linear weights
for fair comparison and they do work well for all our numerical examples. It is worth
mentioning that this modification procedure can also improve the stability of the scheme
by reducing the magnitude of the first order moments near the discontinuities.

Remark 2.2. In Step 2 above, we can also choose other indicators to identify troubled-
cells, such as the minmod-based total variation bounded (TVB) limiter in [7], moment
limiter of Biswas, Devine and Flaherty in [4], a modification of the moment limiter by
Burbeau, Sagaut and Bruneau in [5], the monotonicity-preserving(MP) limiter in [24], a
modification of the MP limiter in [21], a troubled-cell indicator based on Harten’s subcell
resolution idea in [9] and so on. But as shown in Section 3, the KXRCF troubled-cell indi-
cator works pretty well for our scheme in the one-dimensional case. What needs a special
attention is that, for the one dimensional scalar equation, the solution u is defined as our
indicator variable, and then the corresponding −→v = f

′
(u); for the one dimensional Euler

system, only the density ρ is set to be our indicator variable, and then the corresponding−→v =µ is the velocity of the fluid. In short, for the one dimensional case, the line integral
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average in the formula (2.26) is actually the boundary point value, that is

1
∣

∣∂I−i
∣

∣

∣

∣

∣

∣

∫

∂I−i

(

ui(x)−uni
(x)
)

ds

∣

∣

∣

∣

=
∣

∣

∣
(u+

i− 1
2

−u−
i− 1

2

)∗s f (−→v i− 1
2
)+(u−

i+ 1
2

−u+
i+ 1

2

)∗s f (−−→v i+ 1
2
)
∣

∣

∣
, (2.31)

where the switch function s f (x) is defined as

s f (x)=

{

1, x>0,

0, otherwise,
(2.32)

and the norm ||ui(x)|| is taken to be the maximum norm of all the Gauss-Lobatto point
values in the cell Ii (i.e. ||ui(x)||≈max{|u+

i−1/2|,|ui−
√

5/10|,|ui+
√

5/10|,|u−
i+1/2|}). Note that

all the values used in the troubled-cell indicator are already obtained in the reconstruction
process Step 1, thus there is no need to reconstruct an extra polynomial as in [25, 26].

According to [13],

∫

∂I−i

(

ui−uni

)

ds=
∫

∂I−i

(

ui−u
)

ds+
∫

∂I+ni

(

u−uni

)

ds

=

{

O(hp+2)+O(h2p+2)=O(hp+2), u|∂Ii
is smooth,

O(h)+O(h)=O(h), u|∂Ii
is discontinuous,

(2.33)

where the parameter p also represents the degree of ui(x) and is taken to be 5. Here, we let
the troubled-cell indicator converge to the smooth case twice as fast as the discontinuous
case, then as either h→0 or p→∞

ℵi =







O(h
2(p+1)

3 )−→0, u|∂Ii
is smooth,

1

O(h
p+1

3 )
−→∞, u|∂Ii

is discontinuous,
(2.34)

thus the troubled-cell indicator can be defined as
{

ℵi <1, Ii is not a troubled-cell,

ℵi >1, Ii is a troubled-cell.
(2.35)

2.2 Two dimensional case

In this subsection, we then consider the following more complicated two-dimensional
hyperbolic conservation laws

{

ut+ f (u)x+g(u)y=0,

u(x,y,0)=u0(x,y).
(2.36)
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Still for the sake of simplicity, the computational domain is divided by a uniform
mesh Ii,j= [xi−1/2,xi+1/2]×[yj−1/2,yj+1/2] with the uniform mesh sizes △x=xi+1/2−xi−1/2

in the x-direction and △y= yj+1/2−yj−1/2 in the y-direction, and the corresponding cell

center is denoted by (xi,yj)=
(

1
2

(

xi−1/2+xi+1/2

)

, 1
2

(

yj−1/2+yj+1/2

))

.

Firstly, multiply the governing equation (2.36) by 1
△x△y , 1

△x△y
x−xi
△x and 1

△x△y

y−yj

△y , re-

spectively. Then, integrate the resulting equations over the target cell Ii,j and perform the
integration by parts, obtaining the following equations



















































































































































1

△x△y

∫

Ii,j

utdxdy=− 1

△x△y

yj+1/2
∫

yj−1/2

[

f
(

u(xi+1/2,y,t)
)

− f
(

u(xi−1/2,y,t)
)

]

dy

− 1

△x△y

xi+1/2
∫

xi−1/2

[

g
(

u(x,yj+1/2,t)
)

−g
(

u(x,yj−1/2,t)
)

]

dx,

1

△x△y

∫

Ii,j

ut
x−xi

△x
dxdy=− 1

2△x△y

yj+1/2
∫

yj−1/2

[

f
(

u(xi+1/2,y,t)
)

+ f
(

u(xi−1/2,y,t)
)

]

dy

+
1

(△x)2△y

∫

Ii,j

f (u)dxdy− 1

△x△y

xi+1/2
∫

xi−1/2

[

g
(

u(x,yj+1/2,t)
)

−g
(

u(x,yj−1/2,t)
)

] x−xi

△x
dx,

1

△x△y

∫

Ii,j

ut

y−yj

△y
dxdy=− 1

△x△y

yj+1/2
∫

yj−1/2

[

f
(

u(xi+1/2,y,t)
)

− f
(

u(xi−1/2,y,t)
)

]y−yj

△y
dy

− 1

2△x△y

xi+1/2
∫

xi−1/2

[

g
(

u(x,yj+1/2,t)
)

+g
(

u(x,yj−1/2,t)
)

]

dx+
1

△x(△y)2

∫

Ii,j

g(u)dxdy.

(2.37)

Next, define the zeroth and first order moments in the x and y directions as follows



































ũi,j(t)=
1

△x△y

∫

Ii,j

u(x,y,t)dxdy,

ṽi,j(t)=
1

△x△y

∫

Ii,j

u(x,y,t)
x−xi

△x
dxdy,

w̃i,j(t)=
1

△x△y

∫

Ii,j

u(x,y,t)
y−yj

△y
dxdy,

(2.38)

and then, swap the spatial integration and time derivation and approximate the flux by
a numerical flux, obtaining the following semi-discrete conservative scheme
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dũi,j(t)

dt
=− 1

△x△y

∫ yj+1/2

yj−1/2

[

f̂
(

u(xi+1/2,y)
)

− f̂
(

u(xi−1/2,y)
)

]

dy

− 1

△x△y

∫ xi+1/2

xi−1/2

[

ĝ
(

u(x,yj+1/2)
)

− ĝ
(

u(x,yj−1/2)
)

]

dx,

dṽi,j(t)

dt
=− 1

2△x△y

∫ yj+1/2

yj−1/2

[

f̂
(

u(xi+1/2,y)
)

+ f̂
(

u(xi−1/2,y)
)

]

dy

+
1

△x
Fi,j(u)−

1

△x△y

∫ xi+1/2

xi−1/2

[

ĝ
(

u(x,yj+1/2)
)

− ĝ
(

u(x,yj−1/2)
)

] x−xi

△x
dx,

dw̃i,j(t)

dt
=− 1

△x△y

∫ yj+1/2

yj−1/2

[

f̂
(

u(xi+1/2,y)
)

− f̂
(

u(xi−1/2,y)
)

]y−yj

△y
dy

− 1

2△x△y

∫ xi+1/2

xi−1/2

[

ĝ
(

u(x,yj+1/2)
)

+ ĝ
(

u(x,yj−1/2)
)

]

dx+
1

△y
Gi,j(u).

(2.39)

Here the numerical fluxes are still taken to be the HLLC fluxes, and the integral terms are
also approximated by a four-point Gauss-Lobatto integration, for instance

Fi,j(u)=
1

△x△y

∫

Ii,j

f (u)dxdy≈
4

∑
k=1

4

∑
l=1

ωkωl f
(

u(xGL
k ,yGL

l )
)

, (2.40)

1

△y

∫ yj+1/2

yj−1/2

f̂
(

u(xi+1/2,y)
)

dy≈
4

∑
l=1

ωl f̂
(

u(xi+1/2,yGL
l )
)

, (2.41)

1

△x

∫ xi+1/2

xi−1/2

x−xi

△x
ĝ
(

u(x,yj+1/2)
)

dx≈
4

∑
k=1

ωk

xGL
k −xi

△x
ĝ
(

u(xGL
k ,yj+1/2)

)

, (2.42)

where the weights are ω1=ω4=
1

12 , ω2=ω3=
5
12 and the quadrature points on the target

cell Ii,j are

xGL
1 = xi−1/2, xGL

2 = xi−
√

5/10, xGL
3 = xi+

√
5/10, xGL

4 = xi+1/2;

yGL
1 =yj−1/2, yGL

2 =yj−
√

5/10, yGL
3 =yj+

√
5/10, yGL

4 =yj+1/2,

where xi+ξ = xi+ξ△x and yj+η =yj+η△y.
Finally, we present the spatial reconstruction procedure of the point values

{u±
i∓1/2,j+ηl

|l =1,2,3,4}, {u±
i+ξk,j∓1/2|k=1,2,3,4} and {ui+ξk,j+ηl

|k=2,3; l =2,3} (ξ1 = η1 =

−1/2, ξ2 =η2 =−
√

5/10, ξ3 =η3 =
√

5/10 and ξ4 =η4 =1/2) from the given cell-average
values {ũ,ṽ,w̃|kx ,ky

; kx = i−1,i,i+1; ky = j−1, j, j+1} in detail as follows:

The 2D Reconstruction Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of u.
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7 8 9 j+1
4 5 6 j
1 2 3 j−1

i−1 i i+1
The big stencil and its new labels.

Step 1.1. Reconstruct a series of polynomials of different degrees.

Step 1.1.1. Reconstruct a zeroth degree polynomial q1(x,y) such that

1

△x△y

∫

Ik

q1(x,y)dxdy= ũk, k=5. (2.43)

Step 1.1.2. Reconstruct a quadratic polynomial q2(x,y) such that

1

△x△y

∫

Ik

q2(x,y)dxdy= ũk, k=1,··· ,9. (2.44)

Step 1.1.3. Reconstruct a cubic polynomial q3(x,y) such that

1

△x△y

∫

Ik

q3(x,y)dxdy= ũk, k=1,··· ,9;

1

△x△y

∫

Ikx

q3(x,y)
x−xkx

△x
dxdy= ṽkx

, kx =5; (2.45)

1

△x△y

∫

Iky

q3(x,y)
y−yky

△y
dxdy= w̃ky

, ky =5.

Step 1.1.4. Reconstruct a quintic polynomial q4(x,y) such that

1

△x△y

∫

Ik

q4(x,y)dxdy= ũk, k=1,··· ,9;

1

△x△y

∫

Ikx

q4(x,y)
x−xkx

△x
dxdy= ṽkx

, kx =1,3,4,5,6,7,9; (2.46)

1

△x△y

∫

Iky

q4(x,y)
y−yky

△y
dxdy= w̃ky

, ky =1,2,3,5,7,8,9.

What needs special attention is that the number of equations is greater than the number
of unknowns when we reconstruct the quadratic polynomial q2(x,y), the cubic polyno-
mial q3(x,y) and the quintic polynomial q4(x,y). To solve this problem, we require these
polynomials must have the same cell average as u on the target cell Ii,j (to maintain con-
servation) and match the other conditions in a least square sense as described in [11].

Step 1.1.5. Then, further manipulate the above reconstructed polynomials to obtain a
new set of polynomials pl2(x,y) as follows

pl2(x,y)=











q1(x,y), l2=1,

1

γl2,l2

ql2(x,y)−
l2−1

∑
l=1

γl,l2

γl2,l2

pl(x,y), l2=2,3,4,
(2.47)
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with ∑
l2
l=1γl,l2 = 1, γl2,l2 6= 0, l2 = 2,3,4, where these γl1,l2 for l1 = 1,··· ,l2; l2 = 2,3,4 are still

the linear weights and are defined as (2.12). Likewise putting these linear weights into
(2.47), obtain the following relations

p1(x,y)=q1(x,y),

p2(x,y)=
11

10
q2(x,y)− 1

10
q1(x,y),

p3(x,y)=
111

100
q3(x,y)− 11

100
q2(x,y),

p4(x,y)=
1111

1000
q4(x,y)− 111

1000
q3(x,y).

(2.48)

Step 1.2. Compute the corresponding nonlinear weights of the above polynomials.
First, compute the smoothness indicator βl2 of the function pl2(x,y) in the interval Ii,j:

βl2 =
κ

∑
|α|=1

∫

Ii,j

|Ii,j||α|−1

(

∂|α|

∂xαx ∂yαy
pl2(x,y)

)2

dxdy, l2=2,3,4, (2.49)

where α=(αx,αy), |α|=αx+αy and κ=2,3,5 for l2=2,3,4. Note that the definition of β1 is
an exception, where a new polynomial qnew

1 (x,y) is required and is defined as follows:

(1) Reconstruct four polynomials q1k(x,y) for k=1,2,3,4, such that

1

△x△y

∫

Ik

q11(x,y)dxdy= ũk, k=4,5,8;

1

△x△y

∫

Ik

q12(x,y)dxdy= ũk, k=5,6,8;

1

△x△y

∫

Ik

q13(x,y)dxdy= ũk, k=2,5,6;

1

△x△y

∫

Ik

q14(x,y)dxdy= ũk, k=2,4,5,

(2.50)

and then, obtain their associated smoothness indicators

β11=(ũi,j−ũi−1,j)
2+(ũi,j+1−ũi,j)

2,

β12=(ũi+1,j−ũi,j)
2+(ũi,j+1−ũi,j)

2,

β13=(ũi+1,j−ũi,j)
2+(ũi,j−ũi,j−1)

2,

β14=(ũi,j−ũi−1,j)
2+(ũi,j−ũi,j−1)

2,

(2.51)

and the absolute difference τ1 among these smoothness indicators

τ1=

(

∑k 6=l |β1k−β1l |
6

)2

, (2.52)
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where the selection of the power is to be consistent with the definition (2.17) of τ1 in the
one dimension.

(2) Give these four polynomials q1k(x,y) the same linear weights γ1k =
1
4 for k= 1,2,3,4

and calculate the corresponding nonlinear weights as

ω1k =
ω1k

∑
4
l=1ω1l

, (2.53)

ω1k =γ1k

(

1+
τ1

β1k+ε

)

, k=1,2,3,4, (2.54)

where ε is still taken to be 10−10 as in the one dimensional case.

(3) Obtain a new polynomial

qnew
1 (x,y)=

4

∑
l=1

ω1lq1l(x,y), (2.55)

and set β1 to be

β1= ∑
|α|=1

|Ii,j||α|
(

∂|α|

∂xαx ∂yαy
qnew

1 (x,y)

)2

, (2.56)

where α=(αx,αy), |α|=αx+αy.
Then, define the corresponding nonlinear weights as (2.22).

Step 1.3. Obtain an approximation polynomial ui,j(x,y) of u(x,y).
The new reconstruction polynomial ui,j(x,y) of u(x,y) is defined as

ui,j(x,y)=
4

∑
l=1

ωl,4pl(x,y), (2.57)

and the Gauss-Lobatto point values that we need are taken to be

u±
i∓1/2,j+ηl

=ui,j(xi∓1/2,yj+ηl
), l=1,2,3,4;

u±
i+ξk,j∓1/2=ui,j(xi+ξk

,yj∓1/2), k=1,2,3,4;

ui+ξk,j+ηl
=ui,j(xi+ξk

,yj+ηl
), k=2,3; l=2,3,

(2.58)

where ξ1=η1=−1/2, ξ2=η2=−
√

5/10, ξ3=η3=
√

5/10 and ξ4 =η4=1/2.

Step 2. Update the Gauss-Lobatto point values of u in the troubled-cells.
Here, we still choose the KXRCF troubled-cell indicator to identify the troubled-cells

as in the one dimensional case, that is the target cell Ii,j is identified to be a troubled-cell,
if

ℵi,j =

∣

∣

∫

∂I−i,j

(

ui,j(x,y)−uni,j
(x,y)

)

ds
∣

∣

h
p+1

3

i,j

∣

∣∂I−i,j
∣

∣||ui,j(x,y)||
>1, (2.59)
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where ∂I−i,j is the inflow boundary (−→v ·−→n < 0, −→v is the velocity of the flow and −→n is

the outer normal vector to ∂Ii,j), Ini,j
is the neighbor of Ii,j on the side of ∂I−i,j , hi,j is the

length of the cell Ii,j, the parameter p (i.e. the degree of ui,j(x,y)) is also taken to be 5,
ui,j(x,y) is the approximation polynomial of u(x,y) obtained in Step 1 and the norm is
still taken to be the L∞ norm. If the target cell Ii,j is identified to be a troubled-cell, we
would like to modify the first order moment ṽi,j in the x direction by using the infor-
mation of {ũi−1,j,ũi,j,ũi+1,j,ṽi−1,j,ṽi+1,j} and modify the first order moment w̃i,j in the y
direction by using the information of {ũi,j−1,ũi,j,ũi,j+1,w̃i,j−1,w̃i,j+1} in a dimension-by-
dimension manner. After modifying the first order moments in the troubled-cells, repeat
the reconstruction process Step 1 for these troubled-cells to update the corresponding
Gauss-Lobatto point values of u.

Step 3. Discretize the semi-discrete scheme in time.
After all these Gauss-Lobatto point values are obtained, put them into the formula of

the numerical flux. Then, discretize (2.39) by the third-order TVD Runge-Kutta method
(2.29) in time to complete the entire discretization process.

Remark 2.3. In Step 2 above, we still choose the KXRCF troubled-cell indicator to identify
troubled-cells. As shown in Section 3, the KXRCF troubled-cell indicator works pretty
well for our scheme in the two-dimensional case as well. What needs a special attention
is that, for the two dimensional scalar equation, the solution u is defined as our indicator
variable, and then the corresponding −→v = f

′
(u) in the x-direction and −→v = g

′
(u) in the

y-direction; for the two dimensional Euler system, only the density ρ is set to be our
indicator variable, and then the corresponding −→v =µ is the velocity in the x-direction of
the fluid and −→v = ν is the velocity in the y-direction of the fluid. In short, for the two
dimensional case, the line integral average in the formula (2.59) is approximated by a
four-point Gauss-Lobatto integration, that is

1
∣

∣∂I−i,j
∣

∣

∣

∣

∣

∣

∣

∫

∂I−i,j

(

ui,j(x,y)−uni,j
(x,y)

)

ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4

∑
l=1

△yωl(u
+
i− 1

2 ,j+ηl
−u−

i− 1
2 ,j+ηl

)∗s f (−→v i− 1
2 ,j)

+
4

∑
l=1

△yωl(u
−
i+ 1

2 ,j+ηl
−u+

i+ 1
2 ,j+ηl

)∗s f (−−→v i+ 1
2 ,j)

+
4

∑
k=1

△xωk(u
+
i+ξk,j− 1

2

−u−
i+ξk,j− 1

2

)∗s f (−→v i,j− 1
2
)

+
4

∑
k=1

△xωk(u
−
i+ξk,j+ 1

2

−u+
i+ξk,j+ 1

2

)∗s f (−−→v i,j+ 1
2
)

∣

∣

∣

∣

∣

1
∣

∣∂I−i,j
∣

∣

, (2.60)

where the switch function s f (x) is defined as (2.32) and the norm ||ui,j(x,y)|| is taken to be
the maximum norm of all the Gauss-Lobatto point values in the cell Ii,j (i.e. ||ui,j(x,y)||≈
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max{|u±
i∓1/2,j+ηl

| : l = 1,2,3,4; |u±
i+ξk ,j∓1/2| : k= 1,2,3,4; |ui+ξk ,j+ηl

| : k= 2,3; l = 2,3}). Note

that all the values used in the troubled-cell indicator are also already obtained in the
reconstruction process Step 1, thus there is no need to reconstruct an extra polynomial as
in [25, 26].

3 Numerical tests

In this section, a number of typical numerical examples are given to demonstrate
the stability and resolution of our moment-based multi-resolution HWENO scheme.
Here, the scheme termed as “WENO5-Z” represents the fifth order WENO-Z scheme,
the scheme termed as “HWENO6” represents the sixth order moment-based multi-
resolution HWENO scheme without Step 2 i.e. without the modification process, and
the scheme termed as “HWENO6-M5-I/NI” represents the sixth order moment-based
multi-resolution HWENO scheme with the first order moments of the troubled-cells are
modified by a quartic polynomial, where “I” means only the first order moments of the
troubled-cells are modified while “NI” means the first order moments of all the cells are
modified without judgment. Before we start to show the results of the examples we have
calculated, let us first explain some of the parameters in particular: the first one is that we
set the CFL number as 0.6 for both the one and two dimensional cases, but note that for
the accuracy tests a suitably reduced time step is used in order to ensure the dominance
of the spatial error; the second one is that we take the linear weights as γ1,4=1, γ2,4=10,
γ3,4=100 and γ4,4=1000 both in the one and two dimensions in this paper.

Example 3.1. One-dimensional scalar Burgers’ equation:

µt+

(

µ2

2

)

x

=0, 0< x<2, (3.1)

with the initial condition µ(x,0) = 0.5+sin(πx) and periodic boundary condition. The
solution for this problem remains smooth at time T = 0.5/π, and the corresponding
errors and convergence orders when approximating the solution with the WENO5-Z,
HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes are listed in Table 1. How-
ever, the solution becomes discontinuous at time T= 1.5/π. The reference solution and
its approximation using the WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-
NI schemes at this later time, as well as the time-history of the flagged troubled-cells are
plotted in Fig. 1.

Example 3.2. Two-dimensional scalar Burgers’ equation:

µt+

(

µ2

2

)

x

+

(

µ2

2

)

y

=0, 0< x,y<4, (3.2)
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Table 1: µt+
(

µ2

2

)

x
=0. The initial condition µ(x,0)=0.5+sin(πx). Periodic boundary condition. T=0.5/π.

WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes. L1 and L∞.

WENO5-Z scheme

grid points L1 error order L∞ error order

10×2 2.57E-04 2.03E-03

20×2 1.62E-05 3.99 2.15E-04 3.23

40×2 7.18E-07 4.49 9.94E-06 4.44

80×2 2.43E-08 4.88 3.55E-07 4.81

160×2 7.91E-10 4.94 1.15E-08 4.94

320×2 2.50E-11 4.98 3.68E-10 4.97

WENO5-Z scheme HWENO6 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10 6.92E-04 2.93E-03 5.24E-03 2.26E-02

20 2.57E-04 1.43 2.03E-03 0.30 5.67E-04 3.21 4.61E-03 2.29

40 1.62E-05 3.99 2.15E-04 3.23 1.23E-06 8.85 1.37E-05 8.40

80 7.18E-07 4.49 9.94E-06 4.44 2.90E-09 8.72 3.27E-08 8.71

160 2.43E-08 4.88 3.55E-07 4.81 2.46E-11 6.88 3.52E-10 6.54

320 7.91E-10 4.94 1.15E-08 4.94 3.95E-13 5.96 3.69E-12 6.57

HWENO6-M5-I scheme HWENO6-M5-NI scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10 5.24E-03 2.26E-02 6.48E-03 3.01E-02

20 5.67E-04 3.21 4.61E-03 2.29 3.11E-04 4.38 9.84E-04 4.93

40 1.23E-06 8.85 1.37E-05 8.40 6.97E-06 5.48 2.55E-05 5.27

80 2.90E-09 8.72 3.27E-08 8.71 5.96E-08 6.87 9.36E-07 4.77

160 2.46E-11 6.88 3.52E-10 6.54 1.88E-09 4.98 2.95E-08 4.99

320 3.95E-13 5.96 3.69E-12 6.57 6.02E-11 4.97 9.53E-10 4.95

with the initial condition µ(x,y,0)=0.5+sin
(

π(x+y)/2
)

and periodic boundary condi-
tion. As in the one dimensional case, the solution for this problem remains smooth at
time T = 0.5/π, and the corresponding errors and convergence orders when approxi-
mating the solution with the WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-
NI schemes are listed in Table 2. However, the solution becomes discontinuous at time
T=1.5/π. The reference solution and its approximation using the WENO5-Z, HWENO6,
HWENO6-M5-I and HWENO6-M5-NI schemes at x= y at this later time, as well as the
time-history of the flagged troubled-cells at x= y and the locations of the troubled-cells
at the final time are plotted in Fig. 2.



J. Li, C.-W. Shu and J. Qiu / Commun. Comput. Phys., 32 (2022), pp. 364-400 383

x

u

0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

x

u

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

-0.5

0

0.5

1

1.5

x

t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 1: 1D-Burgers’ equation. T=1.5/π. Top: density, density zoomed in; bottom: the time-history of the
flagged troubled-cells. Solid line: the exact solution; diamonds: WENO5-Z scheme with double cells; gradients:
WENO5-Z scheme; squares: HWENO6 scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI
scheme. Number of cells: 200.

Example 3.3. One-dimensional Euler equations:

∂

∂t





ρ
ρµ
E



+
∂

∂x





ρµ
ρµ2+p

µ(E+p)



=0, 0< x<2π, (3.3)

where ρ is the density, µ is the velocity, E is the total energy and p is the pressure. The
initial conditions are

ρ(x,0)= 1+0.2sin(x)

2
√

3
, µ(x,0)=

√
γρ(x,0), p(x,0)=ρ(x,0)γ , (3.4)

and the boundary conditions are periodic. The exact solution of above Euler equations
is given in [14]. The solution for this problem remains smooth at time T = 3, and the
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Table 2: µt+
(

µ2

2

)

x
+
(

µ2

2

)

y
= 0. The initial condition µ(x,y,0) = 0.5+sin

(

π(x+y)/2
)

. Periodic boundary

condition. T=0.5/π. WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes. L1 and L∞.

WENO5-Z scheme

grid points L1 error order L∞ error order

10
√

3× 10
√

3 3.26E-04 1.62E-03

20
√

3× 20
√

3 3.07E-05 3.40 2.13E-04 2.93

40
√

3× 40
√

3 1.29E-06 4.47 1.65E-05 3.61

80
√

3× 80
√

3 4.69E-08 4.78 6.75E-07 4.61

160
√

3×160
√

3 1.54E-09 4.90 2.24E-08 4.88

320
√

3×320
√

3 4.94E-11 4.97 7.21E-10 4.96

WENO5-Z scheme HWENO6 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10× 10 1.69E-03 5.84E-03 1.03E-02 2.96E-02

20× 20 2.01E-04 3.07 1.42E-03 2.03 7.78E-05 7.05 2.65E-04 6.80

40× 40 1.52E-05 3.72 1.46E-04 3.27 2.41E-06 5.01 1.56E-05 4.09

80× 80 6.30E-07 4.59 8.57E-06 4.09 3.86E-08 5.97 5.42E-07 4.84

160×160 2.29E-08 4.77 3.27E-07 4.71 5.62E-10 6.10 9.83E-09 5.78

320×320 7.52E-10 4.93 1.10E-08 4.89 6.83E-12 6.36 1.24E-10 6.31

HWENO6-M5-I scheme HWENO6-M5-NI scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10× 10 1.03E-02 2.96E-02 1.08E-02 4.31E-02

20× 20 7.78E-05 7.05 2.65E-04 6.80 1.42E-04 6.25 8.03E-04 5.74

40× 40 2.41E-06 5.01 1.56E-05 4.09 6.62E-06 4.42 3.84E-05 4.39

80× 80 3.86E-08 5.97 5.42E-07 4.84 1.03E-07 6.00 8.33E-07 5.53

160×160 5.62E-10 6.10 9.83E-09 5.78 2.87E-09 5.17 2.30E-08 5.18

320×320 6.83E-12 6.36 1.24E-10 6.31 9.77E-11 4.88 7.42E-10 4.95

corresponding errors and convergence orders when approximating the solution with the
WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes are listed in Table
3.

Example 3.4. Two-dimensional Euler equations:

∂

∂t









ρ
ρµ
ρν
E









+
∂

∂x









ρµ
ρµ2+p

ρµν
µ(E+p)









+
∂

∂y









ρν
ρµν

ρν2+p
ν(E+p)









=0, 0< x,y<4π, (3.5)
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Figure 2: 2D-Burgers’ equation. T=1.5/π. Top: density, density zoomed in at x=y; bottom: the time-history
of the flagged troubled-cells at x= y, the locations of the troubled-cells at the final time. Solid line: the exact
solution; diamonds: WENO5-Z scheme with double cells; gradients: WENO5-Z scheme; squares: HWENO6
scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI scheme. Number of cells: 200×200.

where ρ is the density, µ is the velocity in the x-direction, ν is the velocity in the y-
direction, E is the total energy and p is the pressure. The initial conditions are

ρ(x,y,0)=
1+0.2sin(

x+y
2 )√

6
, µ(x,y,0)=ν(x,y,0)=

√

γ
2 ρ(x,y,0), p(x,y,0)=ρ(x,y,0)γ ,

(3.6)
and the boundary conditions are periodic in both directions. The exact solution of above
Euler equations is given in [14]. The solution for this problem continues to remain smooth
at time T = 3, and the corresponding errors and convergence orders when approximat-
ing the solution with the WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI
schemes are listed in Table 4.
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Table 3: 1D-Euler equations: The initial condition ρ(x,0)= 1+0.2sin(x)

2
√

3
, µ(x,0)=

√
γρ(x,0) and p(x,0)=ρ(x,0)γ .

Periodic boundary condition. T = 3. WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes.
L1 and L∞.

WENO5-Z scheme

grid points L1 error order L∞ error order

10×2 4.24E-04 2.15E-03

20×2 3.72E-05 3.51 3.10E-04 2.79

40×2 2.02E-06 4.20 3.23E-05 3.26

80×2 7.04E-08 4.84 1.46E-06 4.47

160×2 2.13E-09 5.05 5.15E-08 4.83

320×2 6.96E-11 4.93 1.66E-09 4.95

WENO5-Z scheme HWENO6 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10 2.87E-03 1.03E-02 8.54E-04 2.95E-03

20 4.24E-04 2.76 2.15E-03 2.26 1.87E-05 5.52 1.41E-04 4.39

40 3.72E-05 3.51 3.10E-04 2.79 4.99E-07 5.23 9.01E-06 3.97

80 2.02E-06 4.20 3.23E-05 3.26 7.57E-09 6.04 1.95E-07 5.53

160 7.04E-08 4.84 1.46E-06 4.47 1.10E-10 6.10 2.60E-09 6.23

320 2.13E-09 5.05 5.15E-08 4.83 1.69E-12 6.03 3.65E-11 6.15

HWENO6-M5-I scheme HWENO6-M5-NI scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10 8.54E-04 2.95E-03 8.76E-04 3.67E-03

20 1.87E-05 5.52 1.41E-04 4.39 1.09E-04 3.01 5.35E-04 2.78

40 4.99E-07 5.23 9.01E-06 3.97 8.44E-06 3.69 1.05E-04 2.35

80 7.57E-09 6.04 1.95E-07 5.53 2.49E-07 5.08 5.37E-06 4.28

160 1.10E-10 6.10 2.60E-09 6.23 7.12E-09 5.13 1.66E-07 5.02

320 1.69E-12 6.03 3.65E-11 6.15 2.15E-10 5.05 5.03E-09 5.05

Comment: According to the results listed in Tables 1-4, we can see that both the
HWENO6 and HWENO6-M5-I schemes can reach sixth order accuracy, this is because
the reconstruction process is of the sixth order and the ratio of the troubled-cells of the
HWENO6-M5-I scheme is always 0 i.e. the modification procedure has not been enacted
for these smooth cases. If we modify the first order moments of all the cells without
judgment, we can see that the HWENO6-M5-NI scheme can reach fifth order accuracy as
expected, this is because the first order moments of all the cells are modified by a quartic
polynomial, which leads to the decrease in the order of accuracy. Moreover, the error of
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Table 4: 2D-Euler equations: The initial condition ρ(x,y,0)=
1+0.2sin( x+y

2 )√
6

, µ(x,y,0)= ν(x,y,0)=
√

γ
2 ρ(x,y,0)

and p(x,y,0) = ρ(x,y,0)γ . Periodic boundary condition. T = 3. WENO5-Z, HWENO6, HWENO6-M5-I and

HWENO6-M5-NI schemes. L1 and L∞.

WENO5-Z scheme

grid points L1 error order L∞ error order

10
√

3× 10
√

3 7.80E-04 5.28E-03

20
√

3× 20
√

3 9.76E-05 2.99 9.45E-04 2.48

40
√

3× 40
√

3 6.72E-06 3.78 9.69E-05 3.21

80
√

3× 80
√

3 2.56E-07 4.71 5.30E-06 4.19

160
√

3×160
√

3 7.67E-09 5.03 1.82E-07 4.83

320
√

3×320
√

3 2.32E-10 5.04 5.64E-09 5.01

WENO5-Z scheme HWENO6 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10× 10 5.04E-03 1.56E-02 6.56E-03 1.74E-02

20× 20 4.86E-04 3.37 3.78E-03 2.04 2.54E-04 4.69 1.78E-03 3.29

40× 40 5.54E-05 3.13 5.62E-04 2.74 1.13E-05 4.50 1.13E-04 3.97

80× 80 3.50E-06 3.98 5.70E-05 3.30 2.70E-07 5.38 6.06E-06 4.22

160×160 1.22E-07 4.83 2.65E-06 4.42 4.18E-09 6.01 1.14E-07 5.73

320×320 3.69E-09 5.05 8.83E-08 4.90 4.67E-11 6.49 1.37E-09 6.39

HWENO6-M5-I scheme HWENO6-M5-NI scheme

grid points L1 error order L∞ error order L1 error order L∞ error order

10× 10 6.56E-03 1.74E-02 6.70E-03 2.20E-02

20× 20 2.54E-04 4.69 1.78E-03 3.29 4.20E-04 4.00 2.73E-03 3.01

40× 40 1.13E-05 4.50 1.13E-04 3.97 2.47E-05 4.09 2.23E-04 3.61

80× 80 2.70E-07 5.38 6.06E-06 4.22 7.57E-07 5.03 1.47E-05 3.93

160×160 4.18E-09 6.01 1.14E-07 5.73 2.14E-08 5.14 4.76E-07 4.95

320×320 4.67E-11 6.49 1.37E-09 6.39 6.24E-10 5.10 1.30E-08 5.20

this HWENO6-M5-NI scheme is lower than that of the WENO5-Z scheme with the same
meshes, but higher than that of the WENO5-Z scheme with the same degree of freedoms
i.e. with doubled (1D) or tripled (2D) meshes.

From Fig. 1 and Fig. 2, we can observe that all the schemes work well in comparison
with the exact solution with the results from all the schemes being almost indistinguish-
able and the moment modification process does not happen when the solution is still
smooth from the corresponding time-history of the flagged troubled-cells.
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Figure 3: The Lax problem. T = 0.16. Top: density, density zoomed in; bottom: the time-history of the
flagged troubled-cells. Solid line: the exact solution; diamonds: WENO5-Z scheme with double cells; gradients:
WENO5-Z scheme; squares: HWENO6 scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI
scheme. Number of cells: 200.

Example 3.5. The Lax problem: one-dimensional Euler equations (3.3) with the Riemann
initial condition:

(ρ,µ,p)T =

{

(0.445,0.698,3.528)T , −0.5< x<0,

(0.5,0,0.571)T , 0< x<0.5.
(3.7)

The reference solution and its approximation of the density ρ using the WENO5-Z,
HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes at the final time T = 0.16, as
well as the time-history of the flagged troubled-cells are plotted in Fig. 3.
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Figure 4: The shock density wave interaction problem. T = 1.8. Top: density, density zoomed in; bottom:
the time-history of the flagged troubled-cells. Solid line: the exact solution; diamonds: WENO5-Z scheme with
double cells; gradients: WENO5-Z scheme; squares: HWENO6 scheme; triangles: HWENO6-M5-I scheme;
circles: HWENO6-M5-NI scheme. Number of cells: 400.

Example 3.6. The shock density wave interaction problem: one-dimensional Euler equa-
tions (3.3) with a moving Mach=3 shock interaction containing sine waves in the density:

(ρ,µ,p)T =

{

(3.857143,2.629369,10.333333)T , −5< x<−4,
(

1+0.2sin(5x),0,1
)T

, −4< x<5.
(3.8)

The reference solution and its approximation of the density ρ using the WENO5-Z,
HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes at the final time T = 1.8, as
well as the time-history of the flagged troubled-cells are plotted in Fig. 4.
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Figure 5: The blast wave problem. T=0.038. Top: density, density zoomed in; bottom: the time-history of the
flagged troubled-cells. Solid line: the exact solution; diamonds: WENO5-Z scheme with double cells; gradients:
WENO5-Z scheme; squares: HWENO6 scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI
scheme. Number of cells: 800.

Example 3.7. The blast wave problem: one-dimensional Euler equations (3.3) with the
initial condition:

(ρ,µ,p)T =











(1,0,103)T, 0< x<0.1,

(1,0,10−2)T, 0.1< x<0.9,

(1,0,102)T, 0.9< x<1.

(3.9)

The reference solution and its approximation of the density ρ using the WENO5-Z,
HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes at the final time T = 0.038,
as well as the time-history of the flagged troubled-cells are plotted in Fig. 5.



J. Li, C.-W. Shu and J. Qiu / Commun. Comput. Phys., 32 (2022), pp. 364-400 391

x

D
e

n
s

it
y

-2 -1 0 1 2

0

1

2

3

4

5

6

x

V
e

lo
c

it
y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1000

-500

0

500

1000

x

P
re

s
s

u
re

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

200000

400000

600000

800000

x

t

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.0002

0.0004

0.0006

0.0008

0.001

Figure 6: The Sedov blast wave problem. T = 0.001. Top: density, velocity; bottom: pressure, the time-
history of the flagged troubled-cells. Solid line: the exact solution; squares: HWENO6 scheme; triangles:
HWENO6-M5-I scheme; circles: HWENO6-M5-NI scheme. Number of cells: 400.

Example 3.8. The Sedov blast wave problem: one-dimensional Euler equations (3.3) with
the initial condition:

(ρ,µ,E)T =

{

(1,0,10−12)T, x∈ [−2,2]\the center cell,

(1,0, 3200000
△x )T, x∈ the center cell.

(3.10)

The reference solution and its approximation of the density ρ, the velocity µ and the
pressure p using the HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes at the
final time T=0.001, as well as the time-history of the flagged troubled-cells are plotted in
Fig. 6.



392 J. Li, C.-W. Shu and J. Qiu / Commun. Comput. Phys., 32 (2022), pp. 364-400

x

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

y

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

Figure 7: Double Mach reflection problem. T=0.2. WENO5-Z. 30 equally spaced density contours from 1.5
to 22.7. From top to bottom: density contours, zoom-in density contours around the Mach stem. Number of
cells: 1200

√
3×300

√
3 in the region of [0,4]×[0,1].

Example 3.9. Double Mach reflection problem: two-dimensional Euler equations (3.5) in
a computational domain [0,4]×[0,1] with a reflection wall lying at the bottom, starting
from the position (x,y)=( 1

6 ,0), making a 60◦ angle with the x-axis. For the bottom of the
domain, at the reflection wall the reflection boundary condition is applied, and at the rest
of the bottom the exact post-shock condition is imposed. For the top of the domain, the
corresponding boundary condition is exactly the motion of a Mach 10 shock with γ=1.4.
The contours of the computed density ρ and its blow-up region around the double Mach
stem obtained by the WENO5-Z, HWENO6 (with the power of the nonlinear weights
(2.22) set to be 2 i.e. ωl1,4 =γl1,4

(

1+( τ4
βl1

+ε )
2
)

, l1 =1,··· ,4, since this scheme will blow up

without modification under the parameter conditions given in above section for the dou-
ble Mach reflection problem), HWENO6-M5-I and HWENO6-M5-NI schemes, as well as
the corresponding locations of the troubled-cells for the HWENO6-M5-I scheme at the
final time T=0.2 are plotted in the Figs. 7-11.
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Figure 8: Double Mach reflection problem. T=0.2. WENO5-Z. 30 equally spaced density contours from 1.5
to 22.7. From top to bottom: density contours, zoom-in density contours around the Mach stem. Number of
cells: 1200×300 in the region of [0,4]×[0,1].

Example 3.10. Forward step problem: two-dimensional Euler equations (3.5) in a one
length unit wide and three length units long wind tunnel with a 0.2 length units high
step located 0.6 length units from the left side of the tunnel. At the beginning, we initial-
ize this problem by a right-going Mach 3 flow. Along the wall of the tunnel the reflec-
tion boundary condition is applied, and at the entrance the inflow boundary condition
is imposed, while at the exit the outflow boundary condition is imposed. The contours
of the computed density ρ obtained by the WENO5-Z, HWENO6, HWENO6-M5-I and
HWENO6-M5-NI schemes, as well as the corresponding locations of the troubled-cells
for the HWENO6-M5-I scheme at the final time T=4 are plotted in Figs. 12-16.

Comment: From above six examples (Examples 3.5-3.10), we can see that the results of
the HWENO6-M5-I scheme have much better resolutions and sharper shock transitions
than those of the HWENO6 scheme without the modification procedure. This might be
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Figure 9: Double Mach reflection problem. T=0.2. HWENO6(with the power of the nonlinear weights (2.22)

set to be 2 i.e. ωl1,4 =γl1,4

(

1+( τ4
βl1

+ε )
2
)

, l1 = 1,··· ,4). 30 equally spaced density contours from 1.5 to 22.7.

From top to bottom: density contours, zoom-in density contours around the Mach stem. Number of cells:
1200×300 in the region of [0,4]×[0,1].

due to the fact that after modifying the first order moments of the troubled-cells, the
proportion of the last two layers is much higher than that of the first two layers in the
reconstruction process. But if we modify the first order moments of all the cells without
judgment, we can find that for Examples 3.9 and 3.10, the resolution of the HWENO6-
M5-NI scheme is not significantly improved compared to the HWENO6 scheme. This is
because too much good information i.e. the first order moments of those good-cells has
been edited out. Combined with the results obtained in the previous four continuous
examples (Examples 3.1-3.4), modifying the first order moments of all the cells without
judgment will lead to a drop in order, indicating that the judgment step is very necessary.
Moreover, we can also observe that such HWENO6-M5-I scheme has better resolution
than the WENO5-Z scheme with the same meshes and almost the same resolution as
the WENO5-Z scheme with the same degree of freedoms, but better stability than the
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Figure 10: Double Mach reflection problem. T = 0.2. HWENO6-M5-I. 30 equally spaced density contours
from 1.5 to 22.7. From top to bottom: density contours, zoom-in density contours around the Mach stem, the
locations of the troubled-cells at the final time. Number of cells: 1200×300 in the region of [0,4]×[0,1].

WENO5-Z scheme, which can be seen from Example 3.8, i.e. the Sedov blast wave prob-
lem, since this example will burst when using the WENO5-Z scheme. Also, this modifi-
cation procedure can increase the stability of our scheme according to the double Mach
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Figure 11: Double Mach reflection problem. T= 0.2. HWENO6-M5-NI. 30 equally spaced density contours
from 1.5 to 22.7. From top to bottom: density contours, zoom-in density contours around the Mach stem.
Number of cells: 1200×300 in the region of [0,4]×[0,1].
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Figure 12: Forward step problem. T= 4. WENO5-Z. 30 equally spaced density contours from 0.32 to 6.15.
Number of cells: 600

√
3×200

√
3 in the region of [0,3]×[0,1].
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Figure 13: Forward step problem. T= 4. WENO5-Z. 30 equally spaced density contours from 0.32 to 6.15.
Number of cells: 600×200 in the region of [0,3]×[0,1].
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Figure 14: Forward step problem. T= 4. HWENO6. 30 equally spaced density contours from 0.32 to 6.15.
Number of cells: 600×200 in the region of [0,3]×[0,1].

reflection problem, since this problem will blow up when using the HWENO6 scheme
without modification under the parameter conditions given in above section.

4 Concluding remarks

In this paper, we have designed a high-order moment-based multi-resolution HWENO
scheme for hyperbolic conservation laws in the one and two dimensional cases on struc-
tured meshes. In comparison with our previous work in [14], the new feature of this
HWENO scheme is that the zeroth and first order moments rather than the first order
derivative are used in the spacial reconstruction algorithm, and only the function val-
ues of the Gauss-Lobatto points in one or two dimensional case are needed to be re-
constructed. Also, after the reconstruction algorithm, an extra modification procedure
is used to modify those first order moments of the troubled-cells and the correspond-
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Figure 15: Forward step problem. T = 4. HWENO6-M5-I. 30 equally spaced density contours from 0.32 to
6.15. From top to bottom: density contours, the locations of the troubled-cells at the final time. Number of
cells: 600×200 in the region of [0,3]×[0,1].
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Figure 16: Forward step problem. T=4. HWENO6-M5-NI. 30 equally spaced density contours from 0.32 to
6.15. Number of cells: 600×200 in the region of [0,3]×[0,1].

ing Gauss-Lobatto point values of these troubled-cells need to be updated by repeating
the reconstruction algorithm, to enhance both resolution and stability. At the same time,
the linear weights are not unique and are independent of the node position, and the
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CFL number can still be 0.6 whether for the one or two dimensional case, which has
to be 0.2 in the two dimensional case for other HWENO schemes, for example those
in [15, 16, 25, 26]. This HWENO scheme is achieved by reconstructing the Gauss-Lobatto
point values, modifying the first order moments of those cells which are identified to
be troubled-cells by the KXRCF troubled-cell indicator and repeating the reconstruction
algorithm to update the corresponding Gauss-Lobatto point values of these troubled-
cells. In comparison with the multi-resolution WENO scheme, our major advantages are
still the compactness of the stencils and smaller errors under the same mesh and with
the same order. The framework of this moment-based multi-resolution HWENO scheme
would be particularly efficient and simple on unstructured meshes, the study of which is
our ongoing work.
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