
Journal of Computational Physics 396 (2019) 544–578
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A quasi-Lagrangian moving mesh discontinuous Galerkin

method for hyperbolic conservation laws

Dongmi Luo a, Weizhang Huang b, Jianxian Qiu a,∗
a School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific
Computing, Xiamen University, Xiamen, Fujian 361005, China
b Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 December 2018
Received in revised form 2 May 2019
Accepted 27 June 2019
Available online 15 July 2019

Keywords:
Discontinuous Galerkin
High-order method
Moving mesh
Conservation law

A moving mesh discontinuous Galerkin method is presented for the numerical solution
of hyperbolic conservation laws. The method is a combination of the discontinuous
Galerkin method and the mesh movement strategy which is based on the moving mesh
partial differential equation approach and moves the mesh continuously in time and
orderly in space. It discretizes hyperbolic conservation laws on moving meshes in the
quasi-Lagrangian fashion with which the mesh movement is treated continuously and
no interpolation is needed for physical variables from the old mesh to the new one.
Two convection terms are induced by the mesh movement and their discretization is
incorporated naturally in the DG formulation. Numerical results for a selection of one-
and two-dimensional scalar and system conservation laws are presented. It is shown that
the moving mesh DG method achieves the second and third order of convergence for P 1

and P 2 elements, respectively, for problems with smooth solutions and is able to capture
shocks and concentrate mesh points in non-smooth regions. Its advantage over uniform
meshes and its insensitiveness to mesh smoothness are also demonstrated.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We consider the numerical solution of hyperbolic conservation laws in the form{
ut + ∇ · F = 0,

u(x,0) = u0(x),
(1.1)

where x ∈ � ⊂ Rd (d = 1, 2), � is a bounded domain, F = (f1(u), · · · , fd(u)), and u, f1(u), · · · , fd(u) are either scalars
or vectors. The major difficulty in solving nonlinear hyperbolic conservation laws in (1.1) is that the solution can develop
discontinuities even if the initial condition is smooth. The discontinuous Galerkin (DG) method is an increasingly popular
approach to solve the equations. The DG method was first introduced by Reed and Hill [35] for solving linear hyperbolic
problems associated with neutron transfer. Then a major development of the DG method for time-dependent nonlinear
hyperbolic conservation laws was carried out by Cockburn et al. in a series of papers [6–9]. The DG method can capture the
weak discontinuity without any modification. But the nonlinear limiters must be applied to control the spurious oscillations

* Corresponding author.
E-mail addresses: dongmiluo@stu.xmu.edu.cn (D. Luo), whuang@ku.edu (W. Huang), jxqiu@xmu.edu.cn (J. Qiu).
https://doi.org/10.1016/j.jcp.2019.06.061
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.06.061
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:dongmiluo@stu.xmu.edu.cn
mailto:whuang@ku.edu
mailto:jxqiu@xmu.edu.cn
https://doi.org/10.1016/j.jcp.2019.06.061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.06.061&domain=pdf

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 545
in the numerical solution for strong shocks. One type of these limiters is based on the slope methodology such as the
minmod type limiters [6–9]. These limiters are effective in controlling oscillations. However, the accuracy of the DG method
may decrease if they are mistakenly used in smooth regions. Another type of limiter is based on the weighted essentially
non-oscillatory (WENO) methodology [15,24], which can achieve both high-order accuracy and non-oscillatory properties.
The WENO limiters in [34,50] and the Hermite WENO (HWENO) limiters in [29,32,33,49] belong to this type limiter and
require a wide stencil especially for the high-order accuracy. Recently, a simple WENO limiter [48,51] and compact HWENO
limiter [52,53] for Runge-Kutta DG (RKDG) were developed. The key idea of these limiters is to reconstruct the whole
polynomial in the target element instead of point values or moments.

The physical phenomena in a variety of fields may develop dynamically singular solutions, such as shock waves and
detonation waves. If we use the globally uniform mesh method, the computation can become prohibitively expensive when
dealing with two or higher dimensional systems. Then adaptive mesh methods that can increase the accuracy of the nu-
merical approximations and decrease the computational cost are in critical need. In general, there are three types of mesh
adaptive methods. The first one is h-methods which are widely used and generate a new mesh by adding or removing
points to an old mesh. The second one is p-methods with which the order of the polynomial is increased or decreased from
place to place according to the solution error. The last one is r-methods which are also called moving mesh methods and
relocate the mesh points while keeping the total number of mesh points and the mesh connectivity unchanged. A number
of moving mesh methods have been developed in the past; e.g., see the books or review articles [1,2,5,22,39] and references
therein and some recent applications [42,45,46].

One of the advantages of DG method is that its numerical solution is discontinuous at edges of mesh elements and
flexible for mesh adaptation strategies. There exist a few research works in this aspect. A combination of the hp-method and
DG method was developed in [4] for the hyperbolic conservation laws. Li and Tang [28] solved two-dimensional conservation
laws using rezoning moving mesh methods where the physical variables are interpolated from the old mesh to the new one
using conservative interpolation schemes. The methods are shown to perform well although it is unclear that the method
can be high order. Machenzie and Nicola [30] solved the Hamilton-Jacobi equations by the DG method using a moving mesh
method based on the moving mesh partial differential equation (MMPDE) strategy. Uzunca, Karasözen, and Küçükseyhan
[41] employed the moving mesh symmetric interior penalty Galerkin (SIPG) method to solve PDEs with traveling waves.

In this paper a moving mesh DG method is proposed for the numerical solution of hyperbolic conservation laws. The
method is different from those [28,40] in mesh movement strategy and discretization of physical equations. We use here the
MMPDE moving mesh strategy [20–22] which employs a meshing functional based on the equidistribution and alignment
conditions and a matrix-valued function that provides the information needed to control the size, shape, and orientation
of mesh elements from place to place. Moreover, the newly developed discretization of the MMPDE [18] is used here,
which makes the implementation more easier and much more reliable since there is a theoretical guarantee for mesh
nonsingularity [19]. In contrast to the moving mesh finite difference WENO method [44] where the smoothness of the
mesh is extremely important for accuracy, we find that the moving mesh DG method presented in this work is not sensitive
to the smoothness of the mesh. Furthermore, the method discretizes hyperbolic conservation laws on moving meshes in
the quasi-Lagrangian fashion with which the mesh movement is treated continuously and no interpolation is needed for
physical variables from the old mesh to the new one. Numerical results for a selection of one- and two-dimensional scalar
and system conservation laws will be presented to demonstrate that the moving mesh DG method achieves the second and
third order of convergence for P 1 and P 2 elements, respectively, for problems with smooth solutions and is able to capture
shocks and concentrate mesh points in non-smooth regions. The sensitivity of the accuracy of the method to mesh smooth
will also be discussed.

It is noted that adaptive moving mesh methods like the one proposed in this work are closely related to so-called
arbitrary Lagrangian-Eulerian (ALE) methods [14,31] widely used in computational fluid dynamics and both groups have
the quasi-Lagrange version (that treats mesh movement continuously in time) and the rezoning version (that treats mesh
movement in a discontinuous fashion and interpolates or remaps the physical variables from the old mesh to the new one);
e.g. see [22, Sections 1.5 and 7.1] for more detailed discussion. Interestingly, it is not difficult to show that the quasi-Lagrange
DG discretization on moving meshes considered in the current work is the same as the ALE-DG method of [13] when the
mesh velocity field is calculated through linear interpolation from the nodal mesh velocities. We should emphasize that the
current work focuses on the application of the MMPDE moving mesh approach while [13] gives an analysis of the ALE-DG
method for a general mesh velocity field assumed to be bounded and to result in a regular and nonsingular mesh. Several
adaptive moving mesh finite element methods have been analyzed under similar assumptions on mesh movement by, e.g.,
Bank and Santos [3], Dupont [11], and Dupont and Liu [12].

The organization of the paper is as follows. In Section 2, the DG method, identification of troubled cells, and limiters
on moving meshes are described in detail. The MMPDE moving mesh strategy is described in Section 3. The algorithm
of the moving mesh DG method is presented in Section 4. In Section 5, one- and two-dimensional numerical examples
are presented to demonstrate the accuracy and the mesh adaptation capability of the scheme. Conclusions are drawn in
Section 6.

546 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
2. DG method on moving meshes

In this section we describe a Runge-Kutta DG (RKDG) method for the numerical solution of conservation laws in the
form of (1.1) on a moving triangular mesh and pay special attention to limiters and the identification of troubled cells. We
will discuss the generation of adaptive moving meshes in the next section.

2.1. The RKDG discretization on moving meshes

For the moment we assume that a moving mesh Th(t) for the domain � is given at time instants

t0 = 0 < t1 < · · · tn < tn+1 < · · · ≤ T .

The appearances are denoted by T n
h , n = 0, 1, Since they belong to the same mesh, they have the same number of

elements (N) and vertices (Nv) and the same connectivity, and differ only in the location of the vertices. Denote the coor-
dinates of the vertex of T n

h by xn
j , j = 1, 2, · · · , Nv . Between any time interval tn and tn+1, the coordinates and velocities

of the vertices of the mesh are defined as

x j(t) = t − tn

�tn
xn+1

j + tn+1 − t

�tn
xn

j , j = 1,2, · · · , Nv ,

ẋ j(t) = xn+1
j − xn

j

�tn
, j = 1,2, · · · , Nv , (2.1)

where �tn = tn+1 − tn . The DG finite element space is defined as

V k
h = {p(x, t) : p|K ∈ Pk(K),∀K ∈ Th(t)},

where Pk(K) is the space of polynomials of degree ≤ k defined on K . Notice that P k(K) can be expressed as

Pk(K) = span{φ1(x, t), · · · , φL(x, t)},
where L = k + 1 for one dimensional case, L = (k+1)(k+2)

2 for two dimensional case, and {φ1(x, t), · · · , φL(x, t)} is a basis
of Pk(K). Notice that the time dependence of the basis functions comes from the time dependence of the location of the
vertices.

The semi-discrete DG approximation for (1.1) is to find uh(·, t) ∈ V k
h , t ∈ (0, T] such that∫

K

∂uh

∂t
vdxdy +

∫
∂ K

F · �nvds −
∫
K

F · ∇vdxdy = 0, ∀v ∈ Pk(K), ∀K ∈ Th(t) (2.2)

where �n = (nx, ny) is the outward unit normal vector of the triangular boundary ∂ K . Expressing uh as

uh(x, t) =
L∑

j=1

uK
j (t)φ j(x, t), ∀x ∈ K

we can find its time derivative as

∂uh

∂t
=

L∑
j=1

duK
j (t)

dt
φ j(x, t) +

L∑
j=1

uK
j (t)

∂φ j(x, t)

∂t
.

It is not difficult to show [25] that

∂φ j(x, t)

∂t
= −∇φ j(x, t) · Ẋ(x, t),

where Ẋ(x, t) is the linear interpolation of the nodal mesh speed in K , viz.,

Ẋ(x, t) =
3∑

l=1

ẋl�l(x, t)

where ẋl , l = 1, 2, 3 are the nodal mesh speed and �l(x, t), l = 1, 2, 3 are the linear basis functions. Then, we get

∂uh

∂t
=

L∑ duK
j (t)

dt
φ j(x, t) − ∇uh(x, t) · Ẋ(x, t).
j=1

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 547
Inserting this to (2.2) yields∫
K

⎛⎝ L∑
j=1

duK
j (t)

dt
φ j(x, t) − ∇uh(x, t) · Ẋ(x, t)

⎞⎠ vdxdy +
∫
∂ K

F · �nvds −
∫
K

F · ∇vdxdy = 0.

Integrating the second term by parts, we obtain∫
K

L∑
j=1

duK
j (t)

dt
φ j vdxdy +

∫
∂ K

(F − uh Ẋ) · �nvds −
∫
K

(
F · ∇v − uh∇ · (Ẋ v)

)
dxdy = 0. (2.3)

From the above equation we can see that two advection terms are induced by the mesh movement. Denote

H(uh) ≡ (F (uh) − uh Ẋ(x, t)) · �n, H1(uh) ≡ F · ∇v − uh∇ · (Ẋ v).

Applying the Gauss quadrature rule to the second and third terms in (2.3), we get∫
∂ K

H(uh)vds ≈
∑

e

∑
Ge

H(uh(xGe))v(xGe)wGe |e|,∫
K

H1(uh)dxdy ≈
∑

G

H1(uh(xG))wG |K |,

where e represents the edges of the element K , |K | is the volume of the element K , and xG and xGe represent the Gaussian
points on K and e, respectively. The summations

∑
e ,
∑

G , and
∑

Ge
are taken over the edges of ∂ K , Gauss points on K ,

and Gauss points on e, respectively. Replacing the flux H by the numerical flux Ĥ , we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫

K

L∑
j=1

duK
j (t)

dt φ j(x, t)vdxdy +∑
e

∑
Ge

Ĥ v(xint
Ge

)wGe |e|
−∑

G
H1(uh(xG))wG |K | = 0, ∀K ∈ Th, v ∈ V k

h∫
K (uh(x,0) − u0(x))vdxdy = 0, ∀K ∈ Th, v ∈ V k

h

(2.4)

where the numerical flux has the form Ĥ = Ĥ(u(xint
Ge

), u(xext
Ge

)) and u(xint
Ge

) and u(xext
Ge

) are defined as the values from the
interior and exterior of K , respectively, i.e.,

u(xint
Ge

, t) = lim
x→xGe ,x∈K

uh(x, t), u(xext
Ge

, t) = lim
x→xGe ,x/∈K

uh(x, t).

The numerical flux Ĥ(a, b) is required to satisfy the following conditions:

(i) Ĥ(a, b) is Lipschitz continuous in both arguments a and b;
(ii) Ĥ is consistent with H(u), namely, Ĥ(u, u) = H(u).

In this work, we use the local Lax-Friedrichs flux,

Ĥ(a,b) = 1

2

(
H(a) + H(b) − αe,K (b − a)

)
,

where αe,K is the numerical viscosity constant taken as the largest eigenvalues in magnitude of

∂

∂u
(F (ūK) − ūK Ẋ(x, t)) · �n,

∂

∂u
(F (ūK ′) − ūK ′ Ẋ(x, t)) · �n,

where K and K ′ are the elements sharing the common edge e and

ūK = 1

|K |
∫
K

uhdxdy, ūK ′ = 1

|K ′|
∫
K ′

uhdxdy. (2.5)

Finally the semi-discrete scheme (2.4) is discretized in time. Here, we use an explicit, the third order TVD Runge-Kutta
scheme [36]. Casting (2.4) in the form

∂uh = Lh(uh, t),

∂t

548 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
the scheme reads as

u∗
h = un

h + �tn Lh(un
h, tn),

u∗∗
h = 3

4
un

h + 1

4
(u∗

h + �tn Lh(u∗
h, tn + �tn)), (2.6)

un+1
h = 1

3
un

h + 2

3
(u∗∗

h + �tn Lh(u∗∗
h , tn + 1

2
�tn)).

The time step �tn is chosen to ensure the stability of the method. For a fixed mesh, the time step is commonly taken as

�t′ = CFL ·
min

j
Rn

j

max
u

|F ′(un
h) · �n| , (2.7)

where Rn
j is the radius of the inscribed circle of the jth element at tn . For a moving mesh, we need to consider the effects

of mesh movement and thus take the time step as

�t′′ = CFL ·
min

j
Rn+1

j

max
u

|(F ′(un
h) − Ẋn) · �n| . (2.8)

Finally, the time step is taken as �tn = min{�t′, �t′′}.

2.2. Identification of troubled cells and the limiting procedure

A DG method can capture weak discontinuities without any modification. However, nonlinear limiters must be applied
to control spurious oscillations in the numerical solution for strong shocks. We follow the general procedure of Qiu and Shu
[34], i.e., first identify ‘troubled’ cells that may need the limiting procedure and then add the nonlinear limiters on those
cells.

There exist a number of indicators, such as KXRCF [27] and the minmod-type TVB limiters in [32,34,48]. We use the
minmod-type TVB limiter to detect the discontinuity in the current work. To save space, we omit here the detail of the
limiter and refer the reader to [6–9].

Having detected the troubled cells, we apply the nonlinear limiters those cells. Many limiters have been studied in the
literature for RKDG such as the minmod-type TVB limiter [6–9], the limiter based on the classic WENO method [34,50]
and HWENO method [29,32,33,49], the simple WENO limiter [48,51], and the simple and compact HWENO limiter [52,53].
For the minmod-type TVB limiter, the accuracy may decrease if it is mistakenly used in smooth regions. For the limiters in
[29,32–34,49,50], they can achieve high order, but this type of limiter require a wide stencil for high-order accuracy. The
simple WENO limiters in [48,51] and simple HWENO limiters in [52,53] have the advantages including the compactness
of its stencil and freedom in choosing linear weights. However, from [48] we can observe the simple WENO limiters may
not be robust enough for problems containing the strong shocks or low pressure problems, especially for higher order
polynomials. Thus, in this paper, we adopt the simple and compact HWENO limiters in [52,53], which are more robust than
the simple WENO limiters in [48,51]. The key idea of the procedure is to reconstruct the entire polynomial on a troubled
cell as a convex combination of the DG solution polynomial on this cell and the “modified” DG solution polynomials on its
immediately neighboring cells. The modification procedure is in a least square manner [10]. Since the limiting procedure is
the same as for a fixed mesh, we omit the detail here. The interested reader is referred to [52,53] for the detail.

3. The MMPDE moving mesh strategy

In this section we discuss the generation of T n+1
h using the MMPDE moving mesh method. To this end, we assume

that the mesh T n
h at t = tn and the numerical approximation un

h of a physical variable u are given. We also assume that a
reference computational mesh T̂c = {ξ̂ξξ j}Nv

j=1, a deformation of the physical mesh, has been chosen. This mesh is fixed for
the whole computation and can be taken as the initial physical mesh. For the purpose of mesh generation, we need to use
another mesh, called the computational mesh Tc = {ξξξ j}Nv

j=1, which is also a deformation of the physical mesh and will be
used as an intermediate variable.

The MMPDE method views any nonuniform mesh as a uniform one in some metric specified by a metric tensor M =
M(x). The metric tensor M(x) is a symmetric and positive definite matrix for each x and uniformly positive definite on �.
It provides the information needed to control the size, shape and orientation of the mesh elements throughout the domain.
In our computation we use

M= det(I + |H(un
h)|)−

1
d+4 (I + |H(un

h)|), (3.1)

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 549
where d is the dimension of the domain (d = 1 for one dimension and d = 2 for two dimensions), I is the d × d
identity matrix, H(un

h) is a recovered Hessian from the numerical solution un
h , |H(un

h)| = Q diag(|λ1|, · · · , |λd|)Q T with
Q diag(λ1, · · · , λd)Q T being the eigen-decomposition of H(un

h), and det(·) is the determinant of a matrix. The metric tensor
(3.1) is known to be optimal for the L2 norm of linear interpolation error [23]. In our computation the Hessian is recovered
using the quadratic least square fitting [47]. More specifically, for a given node, at least five neighboring nodes from its
element patch are selected. If the patch does not contain a sufficient number of nodes, nodes from the neighboring patches
are then added to the selection. Then quadratic polynomials are formed by least squares fitting the function values at the
selected nodes. Finally, the Hessian is obtained by differentiating the obtained polynomial twice. It has been shown in [26]
that such a recovered Hessian works well in mesh adaptation although it may not be necessarily convergent on a general
mesh.

It is common practice in moving mesh computation to smooth the metric tensor/monitor function for smoother meshes.
To this end, we apply a low-pass filter [22,44] to the smoothing of the metric tensor several sweeps every time it is
computed.

For scalar equations, we use the solution to the equation as u in computing M. For the Euler system, motivated by
the choice in [38], we take u to be the quantity S = 0.5

√
1 + β(

ρ
max(ρ)

)2 + 0.5
√

1 + β(E
max(E)

)2. Its nodal value at x j (j =
1, 2, · · · , Nv) is computed as

S j = 0.5

√√√√1 + β(
ρ j

max
1�m�Nv

(ρm)
)2 + 0.5

√√√√1 + β(
E j

max
1�m�Nv

(Em)
)2, (3.2)

ρ j =

∑
K∈ω j

|K |ρK∑
K∈ω j

|K | , E j =

∑
K∈ω j

|K |E K∑
K∈ω j

|K | ,

where ω j is the element patch associated with x j and β is a positive parameter. The choice of β is given in Section 5.
We now describe the MMPDE moving mesh strategy. A mesh Th is uniform in the metric M with reference to a

computational mesh Tc will be referred to as an M-uniform mesh with respect to Tc . It is known [16] that such a mesh
satisfies the equidistribution and alignment conditions

|K |√det(MK) = σh|Kc|
|�c| , ∀K ∈ Th (3.3)

1

d
tr((F ′

K)−1M−1
K (F ′

K)−T) = det((F ′
K)−1M−1

K (F ′
K)−T)

1
d , ∀K ∈ Th (3.4)

where Kc is the element in Tc corresponding to K , F K is the affine mapping from Kc to K and F ′
K is its Jacobian matrix,

MK is the average of M over K , tr(·) is the trace of a matrix, and

|�c| =
∑

Kc∈Tc

|Kc|, σh =
∑

K∈Th

|K |det(MK)
1
2 .

The equidistribution condition (3.3) determines the size of the element K through the metric tensor M. The volume |K | is
smaller in regions where det(MK)

1
2 is larger. On the other hand, the alignment condition (3.4) determines the shape and

orientation of K through MK and Kc .
The objective of the MMPDE moving mesh method is to generate a mesh satisfying the above two conditions as closely

as possible. This is done by minimizing the energy function

Ih(Th,Tc) =
∑

K∈Th

|K |√det(MK)(tr((F ′
K)−1M−1

K (F ′
K)−T))

3d
4

+ d
3d
4
∑

K∈Th

|K |√det(MK)

(|Kc|
|K |√det(MK)

) 3
2

, (3.5)

which is a Riemann sum of a continuous functional developed in [17] based on equidistribution and alignment for vari-
ational mesh adaptation. Notice that Ih(Th, Tc) is a function of the vertices {ξξξ j} of the computational mesh Tc and the
vertices {x j} of the physical mesh Th . Here we use the ξ -formulation where we take Th = T n

h and minimize Ih(T n
h , Tc)

by solving its gradient system with respect to {ξξξ j}. Thus, the mesh equation reads as

dξξξ j

dt
= − P j

τ

(
∂ Ih

∂ξξξ j

)T

, j = 1,2, · · · , Nv (3.6)

550 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
where ∂ Ih
∂ξξξ j

is considered as a row vector, τ > 0 is a parameter used to adjust the time scale of the mesh movement to
respond the changes in M, and P j is a positive function used to make the MMPDE to have desired invariant properties.
In this paper, we take P j = det(M(x j))

1
4 so that (3.6) is invariant under scaling transformations of M. Using the notion of

scalar-by-matrix differentiation, we can find the analytical formulations of the derivatives in (3.6) [18] and rewrite the mesh
equation as

dξξξ j

dt
= P j

τ

∑
K∈ω j

|K |vvv K
jK

, j = 1,2, · · · , Nv (3.7)

where jK is the local index of x j in K and vvv K
jK

is the local velocity for x j contributed by K . The local velocities contributed
by K to its vertices are given by⎡⎢⎣ (vvv K

1)T

...

(vvv K
d)T

⎤⎥⎦= −E−1
K

∂G

∂J
− ∂G

∂det(J)

∂det(Ê K)

∂det(E K)
Ê−1

K , vvv K
0 = −

d∑
i=1

vvv K
i , (3.8)

where the vertices of K and Kc are denoted by xK
j , j = 0, 1, ..., d and ξξξ K

j , j = 0, 1, ..., d, respectively, E K = [xK
1 −

xK
0 , · · · , xK

d − xK
0] and Ê K = [ξξξ K

1 − ξξξ K
0 , · · · , ξξξ K

d − ξξξ K
0] are the edge matrices of K and Kc , the function G = G(J , det(J), MK)

with J = (F ′
K)−1 = Ê K E−1

K is associated with the energy function (3.5), and its definition and derivatives are given by

G(J ,det(J),M) =√det(M)(tr(JM−1J T))
3d
4 + d

3d
4
√

det(M)

(
det(J)√
det(M)

) 3
2

,

∂G

∂J
= 3d

2

√
det(M)(tr(JM−1J T))

3d
4 −1M−1J T ,

∂G

∂det(J)
= 3

2
d

3d
4 det(M)−

1
4 det(J)

1
2 .

In practical computation, we first compute the edge matrices and the local velocities for all elements and then use (3.7)
to obtain the nodal mesh velocities. The mesh equation is modified for the boundary mesh points. For fixed points, the
mesh velocity can be set to be zero. For those on a boundary edge, the mesh velocities should be modified to ensure they
stay on the boundary.

The mesh equation (3.7) (with the proper modifications for boundary vertices) can be integrated from tn to tn+1, start-
ing with the reference computational mesh T̂c as an initial mesh. Then the new computational mesh T n+1

c is obtained
and forms a correspondence ψh with the physical mesh T n

h with the property xn
j = ψh(ξξξn+1

j), j = 1, 2, · · · , Nv . Finally,
the new physical mesh T n+1

h is defined as xn+1
j = ψh(ξ̂ξξ j), j = 1, 2, · · · , Nv , which can readily be computed using linear

interpolation.
The equation (3.7) is called the ξ -formulation of the MMPDE moving mesh method. Alternatively, we can use the

x-formulation where we take Tc = T̂c and minimize Ih by integrating its gradient system with respect to {x j}; see [16]. Al-
though its implementation is more complex and costly than the ξ -formulation, the x-formulation has the advantage that it
can be shown analytically [19] that the moving mesh governed by the x-formulation will stay free of tangling and cross-over
for both convex or concave domains. Such a theoretical result is not available for the ξ -formulation although the numerical
experiment shows that it also produces nonsingular moving meshes.

4. The moving mesh DG method

We now summarize the procedure of the method. Assume the physical solution un
h and the mesh xn (or denoted by T n

h)
are given at t = tn .

• Step 1: Moving mesh.
– Compute the time step using (2.7);
– Use un

h and xn to compute the monitor function M and then smooth it several times;

– Integrate the MMPDE (3.7) with an initial mesh T̂c to get the new computational mesh T n+1
c . Recall that the corre-

spondence between T n+1
c and T n

h is denoted by ψh , i.e., T n
h = ψh(T n+1

c);

– Define the new physical mesh T̃ n+1
h = ψh(T̂c) and then compute the velocity of the nodes by (2.1):

ẋ j(t) = x̃n
j − xn

j

�t′ , j = 1,2, · · · , Nv , tn � t � tn + �t′.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 551
Table 5.1
Example 5.1: Solution error with periodic boundary conditions and T = 0.5

π .

k N 160 320 640 1280 2560 5120

1

L1 1.561e-5 4.107e-6 1.061e-6 2.705e-7 6.856e-8 1.733e-8
Order 1.93 1.95 1.97 1.98 1.98
L2 4.214e-5 1.133e-5 2.956e-6 7.560e-7 1.922e-7 4.880e-8
Order 1.89 1.94 1.97 1.98 1.98
L∞ 5.199e-5 1.367e-5 3.544e-6 8.970e-7 2.257e-7 5.701e-8
Order 1.93 1.95 1.98 1.99 1.98

2

L1 1.267e-7 1.735e-8 2.216e-9 2.619e-10 2.927e-11 3.223e-12
Order 2.87 2.97 3.08 3.16 3.18
L2 8.116e-7 1.444e-7 2.250e-8 2.984e-9 3.336e-10 3.197e-11
Order 2.49 2.68 2.91 3.16 3.38
L∞ 2.924e-6 5.921e-7 1.053e-7 1.612e-8 2.120e-9 2.427e-10
Order 2.30 2.49 2.71 2.93 3.13

– Compute the time step �t′′ by (2.8) and let �tn = min(�t′, �t′′). Finally, the physical mesh T n+1
h is obtained as

xn+1
j = xn

j + �tn · ẋ j, j = 1,2, · · · , Nv .

• Step 2: Solve the physical equations. The conservation law (1.1) is integrated from tn to tn+1 = tn + �tn using the DG
method described in Section 2. The numerical solution un+1

h at t = tn+1 is obtained.
• Step 3: If tn+1 < T , we compute the time step �t′ using the CFL stability condition and go to Step 1.

5. Numerical examples

In this section we present numerical results obtained with the moving mesh DG method described in the previous sec-
tions for a selection of one- and two-dimensional examples. Recall that the method has been described in two dimensions.
Its implementation in one dimension is similar. The CFL number in time step selection is set to be 0.3 for P 1 elements and
0.15 for P 2 elements. The parameter τ in (3.6) is taken as 0.01 for accuracy test problems and 10−3 and 10−4 for one- and
two-dimensional systems with discontinuities, respectively. The parameter β in (3.2) is taken as 10 for one-dimensional ex-
amples and 1 for two-dimensional problems, unless otherwise stated. Moving and uniform meshes will be denoted by “MM”
and “UM”, respectively. Unless otherwise stated, three sweeps of a low-pass filter [22,44] are applied to the smoothing of
the metric tensor every time it is computed. In addition, for examples having an exact solution, the error of the computed
solution is measured in the global norm, i.e.,

‖eh‖Lq =
⎛⎝ T∫

0

∫
�

|eh(x, t)|qdxdt

⎞⎠
1
q

, q = 1,2,∞.

5.1. One-dimensional examples

Example 5.1. We first consider Burgers’ equation

ut +
(

u2

2

)
x
= 0, x ∈ (0,2)

subject to the initial condition u(x, 0) = 0.5 + sin(πx) and a periodic boundary condition. We compute the solution up to
T = 0.5

π when the solution is still smooth and the exact solution can be computed using Newton’s iteration. The error is
listed in Table 5.1, which shows the convergence of the second order for P 1 elements and the third order for P 2 elements
for the moving mesh DG method.

To test the convergence of the method for discontinuous solutions, we compute Burgers’ equation up to T = 1.5
π when

the shock appears. The error of L1 is listed in Table 5.3. The results indicate that the computed solution is convergent
although the convergence order decreases to one for both P 1 and P 2 elements.

To see how the smoothness of the mesh affects the accuracy of the method, we list the L1 error in Tables 5.2 and 5.3 for
the solutions computed with different numbers of sweeps of the low-pass filter applied to the metric tensor. One can see
that the results are almost the same. In Table 5.3 where the solution is discontinuous, the error is slightly worse for the case
with more sweeps. This is because more sweeps lead to smoother meshes with less concentration near the shock. Overall,
the results show that the accuracy of the method is not sensitive to the smoothness of the mesh, which is in contrast with
the situation for the moving mesh finite difference WENO method [44].

552 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Table 5.2
Example 5.1: Solution error in L1 norm with periodic boundary conditions and T = 0.5

π . Various numbers of sweeps of a low-pass filter have been applied
to the smoothing of the metric tensor.

k Sweeps\N 160 320 640 1280 2560 5120

1

3 1.561e-5 4.107e-6 1.061e-6 2.705e-7 6.856e-8 1.733e-8
Order 1.93 1.95 1.97 1.98 1.98
30 1.569e-5 4.115e-6 1.062e-6 2.705e-7 6.856e-8 1.733e-8
Order 1.93 1.95 1.97 1.98 1.98
100 1.585e-5 4.133e-6 1.064e-6 2.707e-7 6.859e-8 1.733e-8
Order 1.94 1.96 1.97 1.98 1.98

2

3 1.267e-7 1.735e-8 2.216e-9 2.619e-10 2.927e-11 3.223e-12
Order 2.87 2.97 3.08 3.16 3.18
30 1.033e-7 1.457e-8 1.941e-9 2.403e-10 2.800e-11 3.168e-12
Order 2.83 2.91 3.01 3.10 3.14
100 9.208e-8 1.309e-8 1.779e-9 2.259e-10 2.699e-11 3.115e-12
Order 2.81 2.88 2.98 3.06 3.12

Table 5.3
Example 5.1: Solution error in L1 norm with periodic boundary conditions and T = 1.5

π . Various numbers of sweeps of a low-pass filter have been applied
to the smoothing of the metric tensor.

k Sweeps\N 20 40 80 160 320 640 1280

1

3 4.187e-3 9.542e-4 2.662e-4 9.171e-5 3.843e-5 1.876e-5 1.015e-5
Order 2.13 1.84 1.54 1.25 1.03 0.89
30 1.133e-2 1.803e-3 3.658e-4 1.195e-4 5.016e-5 2.450e-5 1.311e-5
Order 2.65 2.30 1.61 1.25 1.03 0.90
100 1.620e-2 3.615e-3 6.444e-4 1.753e-4 7.009e-5 3.347e-5 1.762e-5
Order 2.16 2.49 1.88 1.32 1.07 0.93

2

3 1.336e-3 2.308e-4 8.626e-5 4.070e-5 2.198e-5 1.304e-5 7.809e-6
Order 2.53 1.42 1.08 0.89 0.75 0.74
30 5.134e-3 7.975e-4 1.586e-4 6.101e-5 3.074e-5 1.725e-5 9.943e-6
Order 2.69 2.33 1.38 0.99 0.83 0.79
100 6.611e-3 2.133e-3 3.631e-4 1.042e-4 4.599e-5 2.398e-5 1.335e-5
Order 1.63 2.55 1.80 1.18 0.94 0.84

Table 5.4
Example 5.1: Solution error at T = 1.

k N 20 40 80 160 320 640

1
L1 4.595e-3 1.094e-3 4.654e-4 2.014e-4 8.903e-5 4.409e-5
Order 2.07 1.23 1.21 1.18 1.01

2
L1 4.037e-3 9.605e-4 4.041e-4 1.750e-4 7.880e-5 3.812e-5
Order 2.07 1.25 1.21 1.15 1.05

We also compute Burgers’ equation with a discontinuous initial condition

u(x,0) =
{

1, for − 1 � x � 0
0, for 0 < x � 1.

The error for both P 1 and P 2 elements at T = 1 is listed in Table 5.4. Once again, the results show that the computed
solution is convergent at a rate of the first order for both P 1 and P 2 elements.

Example 5.2. To see the accuracy of the method for system problems, we compute the Euler equations,⎛⎝ ρ
ρu
E

⎞⎠
t

+
⎛⎝ ρu

ρu2 + P
u(E + P)

⎞⎠
x

= 0, (5.1)

where ρ is the density, u is the velocity, E is the energy density, and P is the pressure. The equation of state is E =
P

γ −1 + 1
2 ρu2 with γ = 1.4. The initial condition is

ρ(x,0) = 1 + 0.2sin(πx), u(x,0) = 1, P (x,0) = 1,

and a periodic boundary condition is used. The exact solution for this problem is

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 553
Table 5.5
Example 5.2: Error in computed density for periodic boundary conditions and T = 1.0, β = 100.

k N 10 20 40 80 160 320 640

1

L1 5.629e-3 1.370e-3 3.334e-4 8.171e-5 1.998e-5 4.909e-6 1.230e-6
Order 2.04 2.04 2.03 2.03 2.02 2.00
L2 5.241e-3 1.266e-3 3.070e-4 7.570e-5 1.877e-5 4.721e-6 1.220e-6
Order 2.05 2.04 2.02 2.01 1.99 1.95
L∞ 1.312e-2 3.110e-3 7.213e-4 1.764e-4 4.625e-5 1.235e-5 3.324e-6
Order 2.08 2.11 2.03 1.93 1.90 1.89

2

L1 3.420e-4 4.887e-5 6.837e-6 9.274e-7 1.191e-7 1.406e-8 1.530e-9
Order 2.81 2.84 2.88 2.96 3.08 3.20
L2 3.821e-4 6.070e-5 9.058e-6 1.316e-6 1.791e-7 2.148e-8 2.211e-9
Order 2.65 2.74 2.78 2.88 3.06 3.28
L∞ 1.247e-3 2.363e-4 3.994e-5 6.651e-6 1.067e-6 1.504e-7 1.700e-8
Order 2.40 2.56 2.59 2.64 2.83 3.15

Fig. 5.1. Example 5.3 (Sod Problem). The moving mesh solution (density) with N = 100 is compared with the uniform mesh solutions with N = 100, 200,
and 400. P 1 elements are used.

554 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.2. Example 5.3 (Sod Problem). The moving mesh solution (density) with N = 100 is compared with the uniform mesh solutions with N = 100, 200,
and 400. P 2 elements are used.

ρ(x, t) = 1 + 0.2sin(π(x − t)), u(x, t) = 1, P (x, t) = 1.

The final time is T = 1.0. The parameter β in (3.2) is set to be 100. The error in computed density is listed in Table 5.5.
From the table one can see that the (k + 1)th order of accuracy of the scheme is achieved for this nonlinear system.

Example 5.3. This example is the Sod problem of the Euler equation (5.1) subject to the inflow/outflow boundary condition
and a Riemann initial condition

(ρ, u, p) =
{

(1,0,1), for x < 0
(0.125,0,0.1), for x > 0.

The computational domain is (−5, 5) and the final time is T = 2.0.
The moving mesh DG solution (density) obtained with N = 100 is compared with the uniform mesh solutions obtained

with N = 100, 200, and 400 in Figs. 5.1 and 5.2. One can see that the moving mesh solutions are more accurate than

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 555
Fig. 5.3. Example 5.3 (Sod Problem). The trajectories of a moving mesh with N = 100 are plotted.

the uniform mesh solutions for the same number of points and comparable with those with N = 400 for both P 1 and P 2

elements.
The trajectories of a moving mesh are plotted in Fig. 5.3. From the figure, one can observe that the points are concen-

trated at x = 0 initially where the initial condition is discontinuous. As time evolves, the moving mesh can capture not only
the shock but also the contact discontinuity well. In addition, the points are also clustered at the front and the tail of the
rarefaction since the Hessian is used in the computation of the metric tensor M.

Small oscillations near the shock are visible in Fig. 5.1. Interestingly, when the entropy S = log(
ργ

P) is used for computing
the metric tensor M, more mesh points are concentrated in the shock region (see the mesh trajectories in Fig. 5.6) and the
oscillations disappear (Figs. 5.4 and 5.5). However, less points are now available to resolve the rarefaction wave.

Example 5.4. In this example we consider the Lax problem of the Euler equations (5.1) with the initial condition

(ρ, u, p) =
{

(0.445,0.698,3.528), for x < 0
(0.5,0,0.571), for x > 0

and the inflow/outflow boundary condition. The computational domain is (−5, 5) and the integration is stopped at T = 1.3.
The computed density is plotted in Figs. 5.7 and 5.8 and the trajectories of the moving mesh are shown in Fig. 5.9.

From the figures, one can see that the moving mesh solution (density) obtained with N = 100 is more accurate than
that obtained with a uniform mesh with N = 400 for both P 1 and P 2 elements in this example. From the trajectories, one
can see that the points are concentrated at the shock, contact discontinuity and the rarefaction the same as for the Sod
problem.

The moving mesh DG (MMDG) solution (density) obtained with N = 100 is compared with the fifth-order moving mesh
WENO (MMWENO5 of [44]) solution obtained with N = 200 in Fig. 5.10. One can see that MMDG-P 1 and -P 2 solutions
with N = 100 are more accurate overall than the MMWENO5 solution with N = 200. Moreover, by close examination one
may see that oscillations are visible at the top-right corner of the computed shock by MMDG but at the top-left corner of
the computed shock by MMWENO5.

The oscillations can be eliminated if the entropy is used to compute the monitor function. The results of the density for
P 1 and P 2 are shown in Figs. 5.11 and 5.12, respectively. The trajectories of the moving mesh are shown in Fig. 5.13, where
one can observe that the points are not concentrated at the rarefaction.

Example 5.5. The Shu-Osher problem [37] is considered in this example, which contains both shocks and complex smooth
region structures. We solve the Euler equations (5.1) with a moving shock (Mach = 3) interacting with a sine wave in
density. The initial condition is

(ρ, u, p) =
{

(3.857143,2.629369,10.333333), for x < −4

(1 + 0.2sin(5x),0,1), for x > −4.

The physical domain is taken as (−5, 5) in the computation. The computed density is shown at T = 1.8 against an “exact
solution” obtained by a fifth-order finite volume WENO scheme with 10,000 uniform points.

The trajectories are plotted in Fig. 5.16. The moving mesh solution (density) with N = 150 is compared with the uniform
mesh solutions with N = 150, 400, and 600 in Figs. 5.14 and 5.15. From the figures, one can observe that for the same

556 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.4. Example 5.3 (Sod Problem). The moving mesh solution (density) with N = 200 is compared with the uniform mesh solutions with N = 200, 400,
and 600. P 1 elements are used.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 557
Fig. 5.5. Example 5.3 (Sod Problem). The moving mesh solution (density) with N = 200 is compared with the uniform mesh solutions with N = 200, 400,
and 600. P 2 elements are used.

558 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.6. Example 5.3 (Sod Problem). The trajectories of a moving mesh with N = 200 are plotted.

number of mesh points, the moving mesh results are clearly better than the uniform mesh ones. Moreover, the moving
mesh solution with N = 150 is comparable with the uniform mesh solution with N = 400 when P 2 elements are used in
Fig. 5.15 and is better than the uniform mesh solution with N = 600 for P 1 elements in Fig. 5.14. These results demonstrate
the advantage of the moving mesh method in improving the computational accuracy.

The P 1 and P 2 MMDG solutions (density) are compared with the MMWENO5 solution obtained with N = 200 in Fig. 5.17.
From the figure, we can see that the P 1 MMDG solution with N = 150 and the P 2 MMDG solution with N = 100 are
more accurate than the MMWENO5 solution with N = 200, which indicates the proposed method can use less points than
MMWENO5 to achieve the same level of error.

Example 5.6. We consider the interaction of blast waves of the Euler equations (5.1), which was first used by Woodward
and Colella [43] as a test problem for various numerical schemes. The initial condition is given by

(ρ, u, p) =
⎧⎨⎩ (1.0,0,1000), for 0 ≤ x < 0.1

(1.0,0,0.01), for 0.1 ≤ x < 0.9
(1.0,0,100), for 0.9 ≤ x ≤ 1.

The physical domain is taken as (0, 1) and a reflective boundary condition is applied to both ends. The results at time
T = 0.038 are plotted against an “exact solution” computed by a fifth-order finite difference WENO scheme [24] with
81,920 uniform mesh points.

In this example, the parameter β in (3.2) is taken as 1. The trajectories of a moving mesh method are plotted in Fig. 5.20
which show that the two blast waves propagate in the right direction and finally collide. From Figs. 5.18 and 5.19, we
can see that for the same number of mesh points, the solutions with a moving mesh are much better than those with a
uniform mesh. In addition, the moving mesh solution obtained with N = 150 is comparable with the uniform mesh solution
obtained with N = 600.

The MMDG solutions (density) obtained with N = 300 are compared with the MMWENO5 solution obtained with N =
400 in Fig. 5.21. From the figure, we can observe that the MMDG solutions with N = 300 are more accurate than the
MMWENO5 solution with N = 400.

5.2. Two-dimensional examples

For two-dimensional examples, an initial triangular mesh is obtained by dividing any rectangular element into four
triangular elements; see Fig. 5.22. A moving mesh associated with the initial mesh in Fig. 5.22 is denoted by N = 10 ×10 ×4.
Other meshes will be denoted similarly.

Example 5.7. We solve Burgers’ equation in two dimensions,

ut +
(

u2

2

)
x
+
(

u2

2

)
y
= 0, (x, y) ∈ (0,4) × (0,4)

subject to the initial condition u(x, y, 0) = 0.5 + sin(
π(x+y)

) and a periodic boundary condition in both directions.
2

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 559
Fig. 5.7. Example 5.4 (Lax Problem). The moving mesh solution (density) with N = 100 is compared with the uniform mesh solutions with N = 100, 200,
and 400. P 1 elements are used.

560 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.8. Example 5.4 (Lax Problem). The moving mesh solution (density) with N = 100 is compared with the uniform mesh solutions with N = 100, 200,
and 400. P 2 elements are used.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 561
Fig. 5.9. Example 5.4 (Lax Problem). The trajectories of a moving mesh with N = 100 are plotted.

Fig. 5.10. Example 5.4 (Lax Problem). The moving mesh DG solution (density) with N = 100 is compared with the moving mesh WENO solution with
N = 200.

562 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.11. Example 5.4 (Lax Problem). The moving mesh solution (density) with N = 200 is compared with the uniform mesh solutions with N = 200, 400,
and 600. P 1 elements are used.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 563
Fig. 5.12. Example 5.4 (Lax Problem). The moving mesh solution (density) with N = 200 is compared with the uniform mesh solutions with N = 200, 400,
and 600. P 2 elements are used.

564 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.13. Example 5.4 (Lax Problem). The trajectories of a moving mesh with N = 200 are plotted.

We compute the solution up to T = 0.5
π when the solution is still smooth. The error is listed in Table 5.6. The results

show the anticipated (k + 1)th order convergence of the moving mesh DG method when P k elements (k = 1 and 2) are
used.

To see how the smoothness of the mesh affects the accuracy of the method, we list the L1 error in Tables 5.7 for the
discontinuous solutions computed with T = 1.5

π and different numbers of sweeps of the low-pass filter applied to the metric
tensor. As for Example 5.1, one can see that the error and convergence order are comparable although the error is slightly
worse for the case with more sweeps.

To show the efficiency of the moving mesh method, we plot the L1 error as a function of the CPU time for both uniform
and moving meshes in Fig. 5.23 when T = 1.5

π . The results are obtained on a single Intel Core i5 CPU with 2.0 GHz and 8.00
GB of RAM using Matlab R2018b. From the figure, one can see that the moving mesh method is more efficient than the
uniform mesh method for small L1 error whereas the latter is more efficient for large L1 error.

Example 5.8. We solve the Euler equations

ut + f1(u)x + f2(u)y ≡ ∂

∂t

⎛⎜⎜⎝
ρ

ρμ
ρν
E

⎞⎟⎟⎠+ ∂

∂x

⎛⎜⎜⎝
ρμ

ρμ2 + P
ρμν

μ(E + P)

⎞⎟⎟⎠+ ∂

∂ y

⎛⎜⎜⎝
ρν

ρμν

ρν2 + P
ν(E + P)

⎞⎟⎟⎠= 0, (5.2)

where ρ is the density, μ and ν are the velocity components in the x- and y-direction, respectively, E is the energy
density, and P is the pressure. The equation of state is E = P

γ −1 + 1
2 ρ(μ2 + ν2) with γ = 1.4. The initial condition is

ρ(x, y, 0) = 1 + 0.2sin(
π(x+y)

2), μ(x, y, 0) = 0.7, ν(x, y, 0) = 0.3, p(x, y, 0) = 1 and a periodic boundary condition is applied
in both directions.

The computational domain is (0, 2) × (0, 2) and the final time is T = 1. We take the parameter β in (3.2) as 100. The
results in Table 5.8 show the convergence order of the second order for k = 1 and the third order for k = 2 for the moving
mesh DG method for the Euler system in two dimensions.

Example 5.9. This is the double Mach reflection problem [43]. We solve the Euler equations (5.2) in a computational domain
of (0, 4) × (0, 1). The initial condition is given by

u =
{

(8,57.1597,−33.0012,563.544)T , for y ≥ h(x,0)

(1.4,0,0,2.5)T , otherwise

where h(x, t) = √
3(x − 1

6) − 20t . The exact post shock condition is imposed from 0 to 1
6 at the bottom while the reflection

boundary condition for the rest of the bottom boundary. At the top, the boundary condition is the values that describe the
exact motion of the Mach 10 shock. On the left and right boundaries, the inflow and outflow boundary conditions are used,
respectively. The final time is T = 0.2.

The density contours are shown in Figs. 5.24–5.31 on (0, 3) × (0, 1). From these figures, one can see that more elements
are concentrated in the regions where the shock and the complex structures are located. The result of the moving mesh
method with N = 120 × 30 × 4 is comparable with that obtained with 1.5 times more uniform mesh points. The same is
observed with a moving mesh of N = 240 × 60 × 4.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 565
Fig. 5.14. Example 5.5 (Shu-Osher Problem). The moving mesh solution (density) with N = 150 is compared with the uniform mesh solutions with N = 150,
400, and 600. P 1 elements are used.

566 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.15. Example 5.5 (Shu-Osher Problem). The moving mesh solution (density) with N = 150 is compared with the uniform mesh solutions with N = 150,
400, and 600. P 2 elements are used.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 567
Fig. 5.16. Example 5.5 (Shu-Osher Problem). The trajectories of a moving mesh with N = 150 are plotted.

Fig. 5.17. Example 5.5 (Shu-Osher Problem). The moving mesh DG solution (density) is compared with the moving mesh WENO solutions with N = 200.

568 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.18. Example 5.6 (Blast Wave Problem). The moving mesh solution (density) with N = 150 is compared with the uniform mesh solutions with N = 150
and 600. P 1 elements are used.

Example 5.10. The last example is the forward step problem [43]. We solve the Euler equations (5.2) in a computational
domain of (0, 3) × (0, 1). The problem is set up as follows: the wind tunnel is 1 unit wide and 3 units long. The step is 0.2
units high and is located 0.6 units from the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3
flow, namely,

(ρ,μ,ν, p) = (1.4,3,0,1).

Reflective boundary conditions are employed along the wall of the tunnel and inflow and outflow boundary conditions are
applied at the entrance and exit, respectively. The final time is T = 4.

The density contours from 0.32 to 6.15 are plotted in Figs. 5.32 and 5.33. One can clearly see that the numerical solutions
with the moving mesh method have better resolution than those with a uniform mesh of the same number of points.

6. Conclusions

In the previous sections we have presented a moving mesh DG method for the numerical solution of hyperbolic conser-
vation laws. The mesh is moved using the MMPDE moving mesh strategy where the nodal mesh velocities are defined as

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 569
Fig. 5.19. Example 5.6 (Blast Wave Problem). The moving mesh solution (density) with N = 150 is compared with the uniform mesh solutions with N = 150
and 600. P 2 elements are used.

Fig. 5.20. Example 5.6 (Blast Wave Problem). The trajectories of a moving mesh with N = 150 are plotted.

570 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.21. Example 5.5 (Blast Wave Problem). The moving mesh DG solutions (density) with N = 300 are compared with the moving mesh WENO solution
with N = 400.

Fig. 5.22. An initial triangular mesh used in two dimensional computation. A moving mesh associated with this initial mesh is denoted by N = 10 × 10 × 4.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 571
Table 5.6
Example 5.7 (Burgers’ equation): Solution error with periodic boundary conditions and T = 0.5

π .

k N 4 × 4 × 4 8 × 8 × 4 16 × 16 × 4 32 × 32 × 4 64 × 64 × 4 128 × 128 × 4 256 × 256 × 4

1

L1 1.747e-1 4.126e-2 9.444e-3 2.441e-3 6.334e-4 1.611e-4 4.079e-5
Order 2.08 2.13 1.95 1.95 1.98 1.98
L2 1.714e-1 4.156e-2 9.642e-3 2.531e-3 6.750e-4 1.738e-4 4.451e-5
Order 2.04 2.11 1.93 1.91 1.96 1.97
L∞ 1.024e-1 2.935e-2 8.746e-3 2.303e-3 6.527e-4 1.643e-4 4.055e-5
Order 1.80 1.75 1.93 1.82 1.99 2.02

2

L1 2.301e-2 4.140e-3 5.379e-4 7.488e-5 9.759e-6 1.155e-6 1.320e-7
Order 2.47 2.94 2.84 2.94 3.08 3.13
L2 2.226e-2 5.360e-3 7.435e-4 1.264e-4 2.082e-5 2.650e-6 2.719e-7
Order 2.05 2.85 2.56 2.60 2.97 3.28
L∞ 1.236e-2 5.641e-3 1.171e-3 2.343e-4 4.322e-5 6.119e-6 6.826e-7
Order 1.13 2.27 2.32 2.44 2.82 3.16

Table 5.7
Example 5.7: Solution error in L1 norm with periodic boundary conditions and T = 1.5

π . Various numbers of sweeps of a low-pass filter have been applied
to the smoothing of the metric tensor.

k Sweeps\N 2 × 2 × 4 4 × 4 × 4 8 × 8 × 4 16 × 16 × 4 32 × 32 × 4 64 × 64 × 4 128 × 128 × 4

1

3 2.083e0 8.769e-1 3.099e-1 8.168e-2 2.175e-2 8.022e-3 3.924e-3
Order 1.25 1.50 1.92 1.91 1.44 1.03
30 2.084e0 8.693e-1 3.439e-1 1.125e-1 3.492e-2 1.379e-2 6.502e-3
Order 1.26 1.34 1.61 1.69 1.34 1.08
100 2.084e0 8.724e-1 3.527e-1 1.331e-1 4.521e-2 1.862e-2 8.712e-3
Order 1.26 1.31 1.41 1.56 1.28 1.10

2

3 1.073e0 4.406e-1 1.459e-1 4.358e-2 1.252e-2 5.336e-3 3.244e-3
Order 1.28 1.59 1.74 1.80 1.23 0.72
30 1.077e0 4.368e-1 1.786e-1 6.670e-2 2.515e-2 1.117e-2 5.858e-3
Order 1.30 1.29 1.42 1.41 1.17 0.93
100 1.077e0 4.378e-1 1.892e-1 8.369e-2 3.326e-2 1.571e-2 8.025e-3
Order 1.30 1.21 1.18 1.33 1.08 0.97

Fig. 5.23. Example 5.7. L1 error is plotted as a function of CPU time (in seconds).

the gradient system of an energy function associated with mesh equidistribution and alignment. Moreover, hyperbolic con-
servation laws are discretized on a moving mesh in the quasi-Lagrangian fashion with which the mesh movement is treated
continuously and thus no interpolation is needed for physical variables from the old mesh to the new one. Furthermore,
the mesh movement introduces two extra convection terms in the finite element formulation of conservation laws and their
discretization can be incorporated into the DG discretization naturally.

572 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Table 5.8
Example 5.8: Solution error (in density) for periodic boundary conditions and T = 1, β = 100.

k N 2 × 2 × 4 4 × 4 × 4 8 × 8 × 4 16 × 16 × 4 32 × 32 × 4 64 × 64 × 4 128 × 128 × 4

1

L1 2.590e-1 5.771e-2 1.263e-2 2.991e-3 7.470e-4 1.873e-4 4.635e-5
Order 2.17 2.19 2.08 2.00 2.00 2.02
L2 1.510e-1 3.754e-2 8.453e-3 2.018e-3 5.031e-4 1.293e-4 3.256e-5
Order 2.01 2.15 2.07 2.00 1.96 1.99
L∞ 1.543e-1 8.735e-2 2.249e-2 5.674e-3 1.663e-3 4.273e-4 9.618e-5
Order 0.82 1.96 1.99 1.77 1.96 2.15

2

L1 5.116e-2 1.059e-2 1.727e-3 2.590e-4 3.557e-5 4.255e-6 4.595e-7
Order 2.27 2.62 2.74 2.86 3.06 3.21
L2 3.474e-2 7.500e-3 1.285e-3 2.100e-4 3.157e-5 3.913e-6 3.936e-7
Order 2.21 2.55 2.61 2.73 3.01 3.31
L∞ 5.626e-2 2.082e-2 4.512e-3 8.601e-4 1.608e-4 2.278e-5 2.329e-6
Order 1.43 2.21 2.39 2.42 2.82 3.29

Fig. 5.24. P 1 elements are used. 30 equally spaced density contours from 1.4 to 22.1183 are used in the contour plots.

The numerical results for a selection of one- and two-dimensional examples have been presented. They show that the
moving mesh DG method achieves the second and third order of convergence for P 1 and P 2 elements, respectively, for
problems with smooth solutions and is able to capture shocks and concentrate mesh points in non-smooth regions. More-
over, it is shown that the numerical solution with a moving mesh is generally more accurate than that with a uniform mesh
of the same number of points and often comparable with the solution obtained with a much finer uniform mesh. Further-
more, numerical results for problems with smooth and discontinuous solutions in one and two dimensions have shown that
the accuracy of the method is not sensitive to the smoothness of the mesh, which is in contrast with the situation for the
moving mesh finite difference WENO method [44].

We recall that the Hessian of a physical variable has been used in this work to guide the mesh adaptation (cf. (3.1)).
This is based on linear interpolation error [23] and has been known to work for many problems. Nevertheless, it would be
advantageous to define the metric tensor based on some a posteriori error estimate. Investigations of using residual-based
metric tensors for the moving mesh DG method presented in this work have been underway.

Acknowledgements

The work was supported in part by China NSAF grant U1630247, Science Challenge Project, No. TZ2016002 and NSFC
grant 11571290. D.M. Luo gratefully acknowledges the financial support from China Scholarship Council under the grant
201506310112 to visit the Department of Mathematics, University of Kansas from September 2015 to September 2017. He
also thanks Professor Jun Zhu at Nanjing University of Aeronautics and Astronautics for his help with the HWENO limiters.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 573
Fig. 5.25. P 1 elements are used. Close view of the complex zone in Fig. 5.24.

Fig. 5.26. P 1 elements are used. 30 equally spaced density contours from 1.4 to 22.1183 are used in the contour plots.

574 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.27. P 1 elements are used. Close view of the complex zone in Fig. 5.26.

Fig. 5.28. P 2 elements are used. 30 equally spaced density contours from 1.4 to 22.1183 are used in the contour plots.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 575
Fig. 5.29. P 2 elements are used. Close view of the complex zone in Fig. 5.28.

Fig. 5.30. P 2 elements are used. 30 equally spaced density contours from 1.4 to 22.1183 are used in the contour plots.

576 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
Fig. 5.31. P 2 elements are used. Close view of the complex zone in Fig. 5.30.

Fig. 5.32. P 1 elements are used. 30 equally spaced density contours from 0.32 to 6.15 are used in the contour plots.

D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578 577
Fig. 5.33. P 2 elements are used. 30 equally spaced density contours from 0.32 to 6.15 are used in the contour plots.

References

[1] M.J. Baines, Moving Finite Elements, Oxford University Press, Oxford, 1994.
[2] M.J. Baines, M.E. Hubbard, P.K. Jimack, Velocity-based moving mesh methods for nonlinear partial differential equations, Commun. Comput. Phys. 10

(2011) 509–576.
[3] R.E. Bank, R.F. Santos, Analysis of some moving space-time finite element methods, SIAM J. Numer. Anal. 30 (1993) 1–18.
[4] K. Bey, J. Oden, hp-version discontinuous Galerkin methods for hyperbolic conservation laws, Comput. Methods Appl. Mech. Eng. 133 (1996) 259–286.
[5] C.J. Budd, W. Huang, R.D. Russell, Adaptivity with moving grids, Acta Numer. 18 (2009) 111–241.
[6] B. Cockburn, S. Hou, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: the

multidimensional case, Math. Comput. 54 (1990) 545–581.
[7] B. Cockburn, S.-Y. Lin, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws III: one

dimensional systems, J. Comput. Phys. 84 (1989) 90–113.
[8] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general frame-

work, Math. Comput. 52 (1989) 411–435.
[9] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: multidimen-

sional systems, J. Comput. Phys. 141 (1998) 199–224.
[10] M. Dumbser, D.S. Balsara, E.F. Toro, C.D. Munz, A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes

on unstructured meshes, J. Comput. Phys. 227 (2008) 8209–8253.
[11] T. Dupont, Mesh modification for evolution equations, Math. Comput. 39 (1982) 85–107.
[12] T. Dupont, Y. Liu, Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations, SIAM J. Numer. Anal. 40 (2002)

914–927.
[13] P. Fu, G. Schnücke, Y. Xia, Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes, Math.

Comput. (2019) 1–35.
[14] C.W. Hirt, A.A. Amsden, J.L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys. 14 (1974) 227–253.
[15] C. Hu, C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys. 150 (1999) 97–127.
[16] W. Huang, Mathematical principles of anisotropic mesh adaptation, Commun. Comput. Phys. 1 (2006) 276–310.
[17] W. Huang, Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys. 174 (2001) 903–924.
[18] W. Huang, L. Kamenski, A geometric discretization and a simple implementation for variational mesh generation and adaptation, J. Comput. Phys. 301

(2015) 322–337.
[19] W. Huang, L. Kamenski, On the mesh nonsingularity of the moving mesh PDE method, Math. Comput. 87 (2018) 1887–1911.
[20] W. Huang, Y. Ren, R.D. Russell, Moving mesh methods based on moving mesh partial differential equations, J. Comput. Phys. 113 (1994) 279–290.
[21] W. Huang, Y. Ren, R.D. Russell, Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle, SIAM J. Numer. Anal.

31 (1994) 709–730.
[22] W. Huang, R.D. Russell, Adaptive Moving Mesh Methods, Springer-Verlag, New York, 2011.
[23] W. Huang, W. Sun, Variational mesh adaptation II: error estimates and monitor functions, J. Comput. Phys. 184 (2003) 619–648.
[24] G. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.
[25] P. Jimack, A. Wathen, Temporal derivatives in the finite-element method on continuously deforming grids, SIAM J. Numer. Anal. 28 (1991) 990–1003.
[26] L. Kamenski, W. Huang, How a nonconvergent recovered Hessian works in mesh adaptation, SIAM J. Numer. Anal. 52 (2014) 1692–1708.
[27] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic

conservation laws, Appl. Numer. Math. 48 (2004) 323–338.
[28] R. Li, T. Tang, Moving mesh discontinuous Galerkin method for hyperbolic conservation laws, J. Sci. Comput. 27 (2006) 347–363.
[29] H. Luo, J.D. Baum, R. Lohner, A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys. 225 (2007)

686–713.
[30] J. Machenzie, A. Nicola, A discontinuous Galerkin moving mesh method for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 29 (2007) 2258–2282.
[31] L.G. Margolin, Introduction to “an arbitrary Lagrangian-Eulerian computing method for all flow speeds”, J. Comput. Phys. 135 (1997) 198–202.

http://refhub.elsevier.com/S0021-9991(19)30469-3/bib426169393461s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4261696E65732D32303131s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4261696E65732D32303131s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib425331393933s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483139s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4248523039s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483033s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483033s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483032s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483032s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483031s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483031s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483034s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483034s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483431s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483431s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4475706F6E7431393832s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4475706F6E744C697532303032s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4475706F6E744C697532303032s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483530s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483530s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib414C4531393734s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483035s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483338s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483237s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483233s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483233s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483337s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483339s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483238s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483238s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483232s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483330s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483036s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483430s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483331s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483432s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483432s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483037s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483039s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483039s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483230s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib414C4531393937s1

578 D. Luo et al. / Journal of Computational Physics 396 (2019) 544–578
[32] J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case, J.
Comput. Phys. 193 (2003) 115–135.

[33] J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case,
Comput. Fluids 34 (2005) 642–663.

[34] J. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput. 26 (2005) 907–929.
[35] W.H. Reed, T.R. Hill, Triangular Mesh Methods for Neutron Transport Equation, Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.
[36] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput. 9 (1988) 1073–1084.
[37] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys. 83 (1989) 32–78.
[38] J.M. Stockie, J.A. Mackenzie, R.D. Russell, A moving mesh method for one-dimensional hyperbolic conservation laws, SIAM J. Sci. Comput. 22 (2001)

1791–1813.
[39] T. Tang, Moving mesh methods for computational fluid dynamics flow and transport, in: Recent Advances in Adaptive Computation, Hangzhou, 2004,

in: AMS Contemporary Mathematics, vol. 383, Amer. Math. Soc., Providence, RI, 2005, pp. 141–173.
[40] H. Tang, T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41 (2003) 487–515.
[41] M. Uzunca, B. Karasözen, T. Küçükseyhan, Moving mesh discontinuous Galerkin methods for PDEs with traveling wave, Appl. Math. Comput. 292 (2017)

9–18.
[42] E.S. Wise, B.T. Cox, B.E. Treeby, Mesh density functions based on local bandwidth applied to moving mesh methods, Commun. Comput. Phys. 22 (2017)

1286–1308.
[43] P.R. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984) 115–173.
[44] X. Yang, W. Huang, J. Qiu, A moving mesh WENO method for one-dimensional conservation laws, SIAM J. Sci. Comput. 34 (2012) A2317–A2343.
[45] F. Zhang, W. Huang, X. Li, S. Zhang, Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton’s

iteration, J. Comput. Phys. 356 (2018) 127–149.
[46] H. Zhang, P.A. Zegeling, A moving mesh finite difference method for non-monotone solutions of non-equilibrium equations in porous media, Commun.

Comput. Phys. 224 (2017) 935–964.
[47] Z. Zhang, A. Naga, A new finite element gradient recovery method: superconvergence property, SIAM J. Sci. Comput. 26 (2005) 1192–1213.
[48] X. Zhong, C.-W. Shu, A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys. 232 (2013)

397–415.
[49] J. Zhu, J. Qiu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: unstructured meshes, J. Sci.

Comput. 39 (2009) 293–321.
[50] J. Zhu, J. Qiu, C.-W. Shu, M. Dumbser, Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J. Comput. Phys. 227

(2008) 4330–4353.
[51] J. Zhu, X. Zhong, C.-W. Shu, J. Qiu, Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshed, J. Comput.

Phys. 248 (2013) 200–220.
[52] J. Zhu, X. Zhong, C.-W. Shu, J. Qiu, Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter, Commun. Comput.

Phys. 19 (2016) 944–969.
[53] J. Zhu, X. Zhong, C.-W. Shu, J. Qiu, Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured

meshes, Commun. Comput. Phys. 21 (2017) 623–649.

http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483130s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483130s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483131s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483131s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483133s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483030s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483231s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483235s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483332s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483332s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib54616E3035s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib54616E3035s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483333s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483239s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483239s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib7769736532303137s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib7769736532303137s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483236s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483038s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4665692D5A68616E67s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib4665692D5A68616E67s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib7A68616E6732303137s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib7A68616E6732303137s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483439s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483135s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483135s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483132s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483132s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483134s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483134s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483136s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483136s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483137s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483137s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483138s1
http://refhub.elsevier.com/S0021-9991(19)30469-3/bib45483138s1

	A quasi-Lagrangian moving mesh discontinuous Galerkin method for hyperbolic conservation laws
	1 Introduction
	2 DG method on moving meshes
	2.1 The RKDG discretization on moving meshes
	2.2 Identiﬁcation of troubled cells and the limiting procedure

	3 The MMPDE moving mesh strategy
	4 The moving mesh DG method
	5 Numerical examples
	5.1 One-dimensional examples
	5.2 Two-dimensional examples

	6 Conclusions
	Acknowledgements
	References

