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A MOVING MESH WENO METHOD FOR ONE-DIMENSIONAL
CONSERVATION LAWS∗

XIAOBO YANG† , WEIZHANG HUANG‡ , AND JIANXIAN QIU§

Abstract. In this paper, we develop an efficient moving mesh weighted essentially nonoscilla-
tory (WENO) method for one-dimensional hyperbolic conservation laws. The method is based on
the quasi-Lagrange approach of the moving mesh strategy in which the mesh is considered to move
continuously in time. Several issues arising from the implementation of the scheme, including mesh
smoothness, mesh movement restriction, and computation of transformation relations, and their ef-
fects on the accuracy of the underlying scheme have been addressed. Particularly, it is found that
a least squares smoothing can be used to effectively smooth the mesh, and the transformation rela-
tions can be computed using either high order finite differences or WENO applied to some geometric
conservation laws. Moreover, mesh movement can cause WENO schemes to become unconditionally
unstable. A simple strategy is used to restrict the mesh movement and recover the stability. Nu-
merical results are presented to demonstrate the accuracy and shock-capturing ability of the new
scheme.
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1. Introduction. We are concerned with the numerical solution of one-dimen-
sional conservation laws in the form

(1.1)

{
∂u
∂t + ∂f(u)

∂x = 0,

u(x, 0) = u0(x).

A major challenge in the numerical solution of this type of system is to capture
discontinuous solutions such as shock waves with reasonable accuracy. High order
schemes have proven to be advantageous in achieving this goal in many applications.
We are particularly interested in WENO schemes in this paper. Weighted essen-
tially nonoscillatory (WENO) schemes are designed based on the successful essentially
nonoscillatory (ENO) schemes by Harten [7, 6]. The first WENO scheme was con-
structed by Liu, Osher, and Chan [15] for a third order finite volume version in one
dimension. Third and fifth order finite difference WENO schemes in multidimensions
were constructed by Jiang and Shu [13] with a general framework for the design of the
smoothness indicators and nonlinear weights. Hu and Shu implemented the WENO
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scheme for triangular meshes [9]. Qiu and Shu [17] developed finite difference WENO
with Lax–Wendroff-type time discretization. Both ENO and WENO use the idea of
adaptive stencils in the reconstruction procedure. ENO uses the smoothest stencil
for reconstruction while WENO uses a convex combination of the candidate stencils,
each being assigned a nonlinear weight depending on the local smoothness of the
numerical solution based on that stencil. WENO improves ENO with better robust-
ness, smoothness of fluxes, steady state convergence, provable convergence properties,
and efficiency. WENO schemes have been widely used in applications, especially for
problems with both discontinuities and complex smooth regions such as compressible
turbulence simulations and aerodynamics [13, 19].

Solutions of nonlinear hyperbolic conservations laws often exhibit a wide range
of localized structures, such as shock waves, contact discontinuities, and rarefaction
waves. Mesh adaptation has become an indispensable tool for use in the efficient
numerical solution of this type of problem (e.g., see [11]). Loosely speaking, there are
three types of mesh adaptation methods. The first one is h-methods, which generate
a new mesh by adding or removing points to an existing mesh. Typically, mesh
points are added in the regions where the solution variation or error is large, and
mesh points are removed in the regions where the solution is smooth. The second
type is p-methods with which the order of polynomial approximation varies from
place to place according to a certain error estimate or indicator. The third type is
r-methods, also called moving mesh methods, which relocate mesh point positions
while maintaining the total number of mesh points and the mesh connectivity.

In this paper we study moving mesh methods for the numerical solution of con-
servation laws. There exist a few research works in this aspect. Noticeably, Stockie,
Mackenzie, and Russell [22] developed a Godunov-type moving mesh method for solv-
ing one-dimensional hyperbolic conservation laws. Particularly, they constructed dif-
ferent monitor functions to capture shocks and discontinuities in different regions of
the physical solution. Wan-Lung and Tan [26] solved the Boussinesq equation using
a moving mesh method developed in [24]. Tang and Tang [23] solved one- and two-
dimensional conservation laws using rezoning moving mesh methods where physical
PDEs were integrated on a uniform mesh over a time step and conservative interpola-
tion was used to transfer solutions from the old mesh to the new mesh. The methods
are shown to work well generally for hyperbolic conservation laws although it is un-
clear that they can be high order since the conservative interpolation technique used
is only second order in space.

It is worth pointing out that although tremendous work has been done with
WENO and adaptive mesh methods separately, only a few works have combined finite
difference WENO with an adaptive mesh environment. For example, Shen, Qiu, and
Christlieb [18] developed a finite difference WENO scheme with AMR (adaptive mesh
refinement) which achieves the fifth order spatial accuracy and third order temporal
accuracy.

Li and Hyman [14] also developed a finite difference WENO scheme with AMR
which maintains the conservation property and high accuracy of WENO. Yoon, Kim,
and Hwang [28] developed a simple finite difference WENO scheme with AMR. The
scheme employs a special time level integration to maintain the conservation and
order of WENO. Moreover, there is basically no research work done to implement
finite difference WENO schemes with adaptive moving meshes in the so-called quasi-
Lagrange approach (in which the mesh is considered to move continuous in time; see
[11]). A major difficulty in using a high order finite difference WENO scheme in and
adaptive mesh environment is that the mesh should be sufficiently smooth in both
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time and space [16, 20]. Our experience also indicates that the convergence order of
a high order finite difference WENO scheme can deteriorate dramatically when the
mesh is not sufficiently smooth. To improve the mesh smoothness, we apply a least
squares smoothing directly to the mesh. This is in addition to the commonly used
smoothing of the monitor function via a low-pass filter. Numerical results show that
the least squares smoothing is very effective.

With the quasi-Lagrange approach of moving mesh methods, the moving mesh is
viewed as a time-dependent coordinate transformation from a computational (refer-
ence) domain to the physical domain. The associated transformation relations such
as the Jacobian matrix and determinant must be approximated numerically for the
discretization of the underlying physical PDEs. It is shown that the approximations
of the relations should be high order to maintain the convergence order of WENO
schemes. We consider several high order finite difference approximations for this
purpose. We also use so-called geometric conservation laws (GCLs) [8, 25] and the
WENO scheme to update the Jacobian of the coordinate transformation. Effects of
satisfaction of GCLs by a numerical scheme have been extensively studied; e.g., see
[1, 5, 8, 25].

Numerical experiment also shows that abrupt mesh movement can cause WENO
schemes to become unconditionally unstable. To avoid this difficulty, we use a simple
strategy to restrict the mesh movement. It turns out that the mesh movement re-
striction plays a crucial role in recovering the stability of the underlying scheme while
allowing a high level of mesh adaptivity.

An outline of this paper is as follows. The moving mesh WENO method is pre-
sented in section 2. The accuracy of the method and the effects of mesh smoothness,
mesh restriction, and computation of transformation relations are addressed in sec-
tion 3. In section 4, we examine the performance and shock capturing capability of
the new methods with a collection of examples with discontinuities. Finally, section 5
contains concluding remarks.

2. Method description. In this section, we describe the moving mesh WENO
method for solving the one-dimensional conservation law (1.1). The method is based
on the quasi-Lagrange approach of the moving mesh method [11] in which we first
transform the physical PDE from the physical coordinates (x, t) into the computa-
tional coordinates (ξ, t) and then discretize it using a finite difference WENO scheme
in space and a Runge–Kutta scheme in time.

We view a moving mesh as the image of a computational mesh under a time-
dependent coordinate transformation from the computational domain to the physical
domain. Denote such a coordinate transformation by x = x(ξ, t): [0, 1] → [a, b].
Under the transformation, we can write (1.1) as

(2.1)
∂u

∂t
+ ξt

∂u

∂ξ
+ ξx

∂f(u)

∂ξ
= 0.

Letting J = xξ (= 1/ξx) (the Jacobian) and multiplying both sides of (2.1) with J ,
we get

(2.2) J
∂u

∂t
+ Jξt

∂u

∂ξ
+

∂f(u)

∂ξ
= 0.

From the identities

J
∂u

∂t
=

∂(Ju)

∂t
− u

∂J

∂t
, Jξt

∂u

∂ξ
=

∂(Juξt)

∂ξ
− u

∂(Jξt)

∂ξ
,
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we can rewrite (2.2) as

(2.3)
∂(Ju)

∂t
+

∂(Juξt + f(u))

∂ξ
− u

(
∂J

∂t
+

∂(Jξt)

∂ξ

)
= 0.

Moreover, from

∂J

∂t
=

∂xξ

∂t
= xξt,

∂(Jξt)

∂ξ
=

∂(xξξt)

∂ξ
=

∂(−xt)

∂ξ
= −xξt,

we have

(2.4)
∂J

∂t
+

∂(Jξt)

∂ξ
= 0.

Combining this with (2.3) leads to

(2.5)
∂(Ju)

∂t
+

∂(Juξt + f(u))

∂ξ
= 0.

Equation (2.4) is often referred to as the geometric conservation law (GCL) in the
literature. The GCL is an identity satisfied by the continuous coordinate transforma-
tion. It reflects the reproduction of the uniform flow, and the satisfaction of GCL by
a numerical scheme often has a significant effect on the accuracy and stability of the
scheme (cf. section 2.2). Equation (2.5) can be rewritten as

(2.6)
∂û

∂t
+

∂f̂(û)

∂ξ
= 0,

where

û = Ju, f̂(û) = ûξt + f(J−1û).

The moving mesh WENO method is based on the conservation law (2.6) in the
new coordinate system. Following the standard WENO notation, we define a uniform
computational mesh as

(2.7) 0 = ξ 1
2
< ξ 3

2
< · · · < ξN− 1

2
< ξN+ 1

2
= 1,

where ξi+ 1
2
= iΔξ, i = 0, . . . , N and Δξ = 1/N . The mesh cells and cell centers are

denoted by

Ii = [ξi− 1
2
, ξi+ 1

2
], ξi =

1

2
(ξi− 1

2
+ ξi+ 1

2
), i = 1, 2, . . . , N.

The corresponding moving mesh in the physical domain is denoted by

(2.8) a = x 1
2
(t) < x 3

2
(t) < · · · < xN− 1

2
(t) < xN+ 1

2
(t) = b.

We assume that the mesh points vary linearly in time in each time slab, i.e.,

xi+ 1
2
(t) =

tn+1 − t

Δtn
xn
i+ 1

2
+

t− tn
Δtn

xn+1
i+ 1

2

, i = 0, . . . , N, t ∈ [tn, tn+1].

The new mesh xn+1
i+1/2, i = 0, . . . , N , is generated via the so-called equidistribution

principle (cf. section 2.3.1). Having determined the moving mesh, the conservation
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law (2.6) can be discretized in space (on a uniform computational mesh) and time. It
should be pointed out that the transformation quantities J and ξt have to be approx-
imated numerically in the discretization and their approximations have significant
effects on the stability and accuracy of the underlying scheme. In our computation,
we approximate J = xξ using central finite differences (cf. (2.10)) initially and GCL
(2.4) later; see the discussion in section 2.2. Quantity ξt is calculated through the
relation

(2.9) ξt = −J−1ẋ.

In the following, we give a flowchart of the moving mesh WENO scheme. Impor-
tant components of the algorithm such as the WENO discretization, satisfaction of
GCL, mesh movement and smoothing, and mesh movement restriction will be elabo-
rated later.

The moving mesh WENO algorithm.
Step 1. Initialization.
(a) Start with a uniform mesh and an initial solution.
(b) An adaptive mesh based on the initial solution is computed using de

Boor’s algorithm (to be described in section 2.3.1). This mesh is denoted
by x0 and used as the initial mesh for the integration of conservation
laws. Compute the initial solution u0 on mesh x0.

(c) Approximate the transformation quantity J = xξ by a fourth order finite
difference (FD4),

(2.10)

J(ξi+1/2, t0) ≈
x0
i− 3

2

− 8x0
i− 1

2

+ 8x0
i+ 1

2

+ x0
i+ 3

2

12Δξ
, i = 2, . . . , N − 1.

The approximation near the boundary is computed using a periodic or
extrapolative extension corresponding to the periodic or inflow/outflow
boundary condition of the underlying problem.

(d) Set n = 0, t = t0, and Δ̃t0 = Δt0.
Step 2. Mesh movement. Assume that the physical solution un, the mesh
xn, and the metric derivative Jn = xn

ξ , and the time step size Δ̃tn are known
at time t = tn.
(a) The prediction step. Integrate the conservation laws using a finite differ-

ence WENO (fifth order or third order) scheme on mesh xn. The mesh
is fixed during the integration. The obtained physical solution is denoted
by ūn and used for computing the new adaptive mesh.

(b) Generating the new mesh. Compute the monitor function Mn(x) =
M(tn, x) based on ūn and xn. The needed solution derivatives are cal-
culated using a gradient recovery technique based on the nodal values
of the computed solution. The new mesh, denoted by x̃n+1, is obtained
using de Boor’s algorithm. The mesh speed is computed as

(2.11) ẋn
i+ 1

2
=

x̃n+1
i+ 1

2

− xn
i+ 1

2

Δ̃tn
, i = 0, . . . , N.

(c) Mesh movement restriction. The mesh movement is restricted so that
the mesh points do not move too far away from their current locations
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over a time step; see section 2.3.3. This step is necessary for ensuring
the stability of the numerical method. The restriction typically results
in a smaller time step, Δtn ≤ Δ̃tn. The mesh is updated as

(2.12) xn+1
i+ 1

2

= xn
i+ 1

2
+Δtnẋ

n
i+ 1

2
, i = 0, . . . , N.

(d) The transformation quantity Jn+1 = xn+1
ξ for the new mesh is computed

using the WENO scheme (which is the same as that used in Step 2(a)
and Step 3) for GCL (2.4) (cf. section 2.2).

Step 3. Integration of conservation laws. The conservation laws (2.6)
are integrated using the WENO scheme (to be described in section 2.1) from
tn to tn+1 = tn +Δtn and the obtained solution is denoted by un+1.

Step 4. If tn+1 < T , compute Δ̃tn+1 using the CFL condition (3.1) and go
to Step 2.

2.1. WENO for the transformed conservation laws. In this subsection,
we give a brief description of the finite difference WENO method applied to the
transformed conservation law (2.6) on the uniform mesh (2.7) in ξ. A semidiscrete
conservative high order finite difference scheme for (2.6) can be cast in the form

(2.13)
dûi

dt
= − 1

Δξ
(f̂i+1/2 − f̂i−1/2),

where ûi(t) ≈ û(ξi, t), f̂i+1/2 ≈ h(ξi+1/2), and h(ξ) is a function implicitly defined
[13] as

f̂(û(ξ)) =
1

Δξ

∫ ξ+Δξ/2

ξ−Δξ/2

h(s)ds.

For the case where (2.6) is a scalar equation and f̂ ′(û) ≥ 0, the numerical flux of
the fifth order finite difference WENO scheme is given by

(2.14) f̂i+ 1
2
= ω1f̂

(1)

i+ 1
2

+ ω2f̂
(2)

i+ 1
2

+ ω3f̂
(3)

i+ 1
2

,

where f̂
(i)

i+ 1
2

are three third order fluxes on three different stencils given by

f̂
(1)

i+ 1
2

=
1

3
f̂(ûi−2)− 7

6
f̂(ûi−1) +

11

6
f̂(ûi),

f̂
(2)

i+ 1
2

= −1

6
f̂(ûi−1) +

5

6
f̂(ûi) +

1

3
f̂(ûi+1),

f̂
(3)

i+ 1
2

=
1

3
f̂(ûi) +

5

6
f̂(ûi+1)− 1

6
f̂(ûi+2),

and the nonlinear weights ωi are given by

ωi =
ω̃i∑3

k=1 ω̃k

, ω̃k =
γk

(ε+ βk)2
.

Here, ε is a small positive parameter used to avoid the denominator to become zero
(taken as ε = 10−6 in our computation), γk’s are the linear weights defined as

γ1 =
1

10
, γ2 =

3

5
, γ3 =

3

10
,
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and βk’s are the smoothness indicators given by

β1 =
13

12
(f̂(ûi−2)− 2f̂(ûi−1) + f̂(ûi))

2 +
1

4
(f̂(ûi−2)− 4f̂(ûi−1) + 3f̂(ûi))

2,

β2 =
13

12
(f̂(ûi−1)− 2f̂(ûi) + f̂(ûi+1))

2 +
1

4
(f̂(ûi−1)− f̂(ûi+1))

2,

β3 =
13

12
(f̂(ûi)− 2f̂(ûi+1) + f̂(ûi+2))

2 +
1

4
(3f̂(ûi)− 4f̂(ûi+1) + f̂(ûi+2))

2.

For scalar equations not satisfying the property f̂ ′(û) ≥ 0, we can use the flux
splitting

f̂(û) = f̂+(û) + f̂−(û),
df̂+

dû
≥ 0,

df̂−

dû
≤ 0.

In our computation we use Lax–Friedrichs flux splitting, where

f̂±(û) =
1

2
(f̂(û)± αû), α = max

û
|f̂ ′(û)|.

With the numerical fluxes defined, scheme (2.13) together with appropriate bound-
ary conditions forms a system of ordinary differential equations which can be writ-
ten as

ût = L(û, t).

The system can be integrated using a Runge–Kutta scheme. In our computation, we
use a third order Runge–Kutta scheme, i.e.,

(2.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
û(1) = ûn +ΔtL(ûn, tn),

û(2) = 3
4 û

n + 1
4 û

(1) + 1
4ΔtL(û(1), tn +Δt),

ûn+1 = 1
3 û

n + 2
3 û

(2) + 2
3ΔtL(û(2), tn + 1

2Δt).

For the case where (2.6) is a system of conservation laws, the WENO approxima-
tion is constructed using a local characteristic decomposition. To save space, we refer
the interested reader to [19] for details of the decomposition.

2.2. Geometric conservation law. We have seen that GCL (2.4) is an identity
satisfied by the continuous coordinate transformation. It reflects the so-called uniform
flow reproduction in the sense that it can be obtained by inserting the uniform flow
solution u(x, t) ≡ 1 into (2.6). Unfortunately, the finite difference WENO scheme
described in the previous subsection generally does not preserve this property; i.e.,
un
i ≡ 1 does not necessarily imply un+1

i ≡ 1. This means that the scheme is not
consistent with the underlying differential equations. The violation of GCL typically
affects the accuracy and stability of the underlying numerical scheme.

A remedy for this difficulty was proposed by Hindman [8]. Applying to our
case, it requires that the Jacobian J = xξ be considered as an unknown variable
and computed by applying the same finite difference WENO scheme to GCL (2.4).
(This is in contrast to a direct finite difference approximation of xξ.) Our numerical
examples show that this enforcement of GCL is crucial to the accuracy of the moving
mesh WENO scheme.
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2.3. Mesh movement, restriction, and smoothing. In this subsection, we
describe the mesh generation with emphasis on mesh movement, restriction, and
smoothing.

2.3.1. De Boor’s algorithm. For the moment, we assume that a monitor func-
tion M = M(x) has been defined on the current mesh xn

i+ 1
2

, i = 0, . . . , N . The new

mesh is determined by the so-called equidistribution principle [4]. Indeed, the princi-
ple requires that M(x) be evenly distributed among the mesh cells, i.e.,

(2.16)

∫ x̃n+1
i+1/2

x̃n+1
i−1/2

M(x)dx =
1

N

∫ b

a

M(x)dx, i = 1, . . . , N.

The above equation can be solved for the mesh using de Boor’s algorithm [4]. With
the algorithm, the monitor function M(x) is considered as a piecewise constant func-
tion, i.e.,

(2.17) M(x) =
1

2

(
Mn

i−1/2 +Mn
i+1/2

)
, x ∈ [xn

i−1/2, x
n
i+1/2], i = 1, . . . , N,

whereMn
i+1/2 denotes the nodal value of the monitor function at x = xn

i+1/2. Denoting

P (x) =

∫ x

a

M(x)dx,

it is easy to see that

P (xn
j+1/2) =

j∑
i=1

(xn
i+1/2 − xn

i−1/2)
Mn

i+1/2 +Mn
i−1/2

2
, j = 1, . . . , N.

It follow from (2.16) that

P (x̃n+1
i+1/2) = ξi+1/2P (b), i = 1, . . . , N − 1.

Since P (x) is piecewise linear, it is easy to show that

(x̃n+1
i+1/2 − xn

k−1/2)
Mn

k−1/2 +Mn
k+1/2

2
= ξi−1/2P (b)− P (xn

k−1/2)

or

x̃n+1
i+1/2 = xn

k−1/2 +
2(ξi+1/2P (b)− P (xn

k−1/2))

Mn
k−1/2 +Mn

k+1/2

,

where k is an index satisfying

P (xn
k−1/2) < ξi+1/2P (b) ≤ P (xn

k+1/2).

It is remarked that de Boor’s algorithm described above is simple and robust in
one dimension but cannot be applied to multidimensional mesh generation. Multidi-
mensional extensions of the equidistribution principle and related meshing strategies
can be seen, e.g., in Huang and Russell [10, 11].
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2.3.2. Monitor functions. In the preceding subsection we have seen that the
monitor function controls the concentration of the mesh points, and thus its choice
is the key to the success of the mesh adaptation strategy. The choice of the opti-
mal monitor function according to interpolation error estimates has been extensively
discussed; e.g., see [2, 3, 12]. In our computation, we use

(2.18) M =
(
1 +

1

α
|u′|2

) 1
3

,

where the intensity controlling parameter α is defined as

α = max

{
1,
[ 1

b− a

∫ b

a

|u′| 23 dx
]3}

.

The main reason for choosing this monitor function is that it involves only the
first derivative of the solution whose recovery (see the discussion below) is generally
smoother and less expensive to compute than higher derivatives.

In practical computation, the solution derivative involved in (2.18) is replaced
by a numerical approximation based on the nodal values of the computed solution
at the current time step. Such an approximation can be obtained using a direct
finite difference or a more sophisticated gradient recovery technique. We use in our
computation a least squares method [11, section 2.5.1]. To be specific, for any given
point xj+1/2, let xi

j+1/2, i = 1, . . . , 2p + 1 (p ≥ 1), be the 2p + 1 neighboring mesh

points which are closest to xj+1/2 (including xj+1/2 itself). Define the center of
those points as x̂j+1/2. Let Hj+1/2 = maxi=1,...,2p+1 |xi

j+1/2− x̂j+1/2|, and denote the
first three Legendre polynomials by

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
.

A least squares quadratic polynomial

(2.19) q(x) =

2∑
k=0

akPk

(
x− x̂j+1/2

Hj+1/2

)
is determined by minimizing

(2.20) min
a0,a1,a2

2p+1∑
i=1

(q(xi
j+1/2)− u(xi

j+1/2))
2.

Then q′(xj+1/2) is used as the approximation to the solution derivative at xj+1/2. We
take p = 1 in the gradient recovery.

Generally speaking, the recovered solution derivative contains numerical oscil-
lations which typically lead to a nonsmooth mesh. To obtain a smoother mesh, a
common approach in the moving mesh context is to smooth the monitor function
each time after it has been computed. We use a low-pass filter

(2.21) M̃n
i+1/2 =

1

4
Mn

i−1/2 +
1

2
Mn

i+1/2 +
1

4
Mn

i+3/2, i = 1, . . . , N − 1,

with appropriate modifications for the boundary points. Several sweeps of the filter
are used each time. (Twenty sweeps are used for all examples considered in this
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paper except for Examples 4.4, 4.5, and 4.6 for which 40, 100, and 200 sweeps are
used, respectively, for extra smoothness of the mesh.)

Our numerical experience also shows that the accuracy of the moving mesh
WENO scheme relies crucially on the smoothness of the mesh. To further smooth
the mesh, we apply to the newly generated mesh a least squares smoothing similar
to (2.19) and (2.20) used for gradient recovery. Specifically, a quadratic polynomial
q(ξ) associated with a given point ξj+ 1

2
is constructed by the least squares fitting

to a (2p + 1)-neighboring-point subset of the data sets (ξi+ 1
2
, x̃n+1

i+ 1
2

), i = 0, . . . , N .

Then the mesh location at ξj+ 1
2
is updated as the value of the quadratic polynomial

at the point, i.e., q(ξj+ 1
2
) → x̃n+1

j+ 1
2

. The parameter p is taken as p = 10 in most of

our computation. Its effects on the accuracy of the underlying scheme is discussed in
section 3.2.

2.3.3. Mesh movement restriction. An important component of the moving
mesh WENO scheme is the restriction of mesh movement. Numerical experiments
show that the scheme becomes unstable (even for a tiny time step) when mesh points
move too far away from their current location over one time step (cf. section 3.2).
A simple, heuristic strategy [11, section 2.6.1] is used for this purpose. Define the
mesh speed ẋn

i+1/2 as in (2.11). We then require that the new mesh location xn+1
i+1/2

defined in (2.12) stay within the interval [xn
i , x

n
i+1], i.e.,

xn
i =

1

2

(
xn
i−1/2 + xn

i+1/2

)
≤ xn

i+1/2 = xn
i+1/2 +Δtnẋ

n
i+1/2 ≤ xn

i+1

=
1

2

(
xn
i+1/2 + xn

i+3/2

)
.

This implies that

(2.22) Δtn ≤
⎧⎨⎩− 1

2ẋn
i+1/2

(
xn
i+1/2 − xn

i−1/2

)
if ẋn

i+1/2 < 0,

+ 1
2ẋn

i+1/2

(
xn
i+3/2 − xn

i+1/2

)
if ẋn

i+1/2 ≥ 0.

The new time step size Δtn is then chosen as the minimum of the right-hand term of
the above equation over all the mesh points.

3. Numerical tests. In this section we present numerical results obtained with
the moving mesh WENO scheme described in the previous section for a selection of
problems. Both the third and fifth order WENO schemes are used in our computation.
We observed that they attain the predicted convergence orders for the accuracy test
examples and produce sharp, ENO shock transitions for shock test examples. To
save space, we show only the results obtained by the fifth order WENO scheme. For
all computation, the third order TVD Runge–Kutta method (2.15) is used for time
integration. The CFL number (for the time step selection) is taken as CFL = 0.8

and Δ̃tn is chosen as

(3.1) α
Δ̃tn
Δξ

= CFL,

where α = supû |f̂ ′(û)|. An exception is the accuracy tests where a smaller time

step α
˜Δtn

Δξ5/3
= CFL is used so that the temporal discretization is sufficiently small
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and the solution error for the fifth order WENO scheme is dominated by the spatial
discretization error.

It is noted that the time step is controlled by both the CFL condition and the
mesh movement restriction. As shown in the flowchart of the moving mesh WENO
scheme in section 2, the time step Δ̃tn is first computed using (3.1) and then a

time step Δtn is computed to satisfy conditions Δtn ≤ Δ̃tn and (2.22). This double
control mechanism is necessary to ensure the stability of the underlying scheme. CFL
condition (3.1) is the stability condition for the WENO scheme with a uniform mesh.
Moreover, as will be seen in section 3.2, for problems with strong discontinuities the
mesh points can move rapidly into the area where the discontinuities form. In this
case, without mesh movement restriction the moving meshWENO scheme can become
unstable even for very small CFL numbers. On the other hand, when the solution is
smooth and there is no significant mesh movement, the CFL condition should govern
the time step.

3.1. Accuracy test. We first examine the accuracy of the scheme using three
examples with exact solutions: a linear scalar problem, a nonlinear scalar problem,
and a nonlinear system.

Example 3.1. We consider a linear scalar conservation law equation

(3.2) ut + ux = 0,

with the initial condition u(x, 0) = 1 + 0.2 sin(x) and a periodic boundary condition,
the computational domain [0, 2π], and the final time T = 2.0. The exact solution of
this problem is given by

u = 1 + 0.2 sin(x− t).

The error of the numerical solution obtained with the moving mesh WENO (WENO5)
is shown in Figure 1. It can be seen that the convergence order is about fifth, which
is consistent with the theoretical prediction.
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Fig. 1. Example 3.1 (linear scalar conservation law equation). The L1, L2, and L∞ norm of
the error in the numerical solution at T = 2 is plotted as a function of the number of mesh points.

Example 3.2. The second example is a nonlinear scalar equation—Burgers’ equa-
tion,

(3.3) ut +
(u2

2

)
x
= 0,
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subject to the initial condition u(x, 0) = 1
3 +

2
3 sin(x) and a periodic boundary condi-

tion. The exact solution for this problem is defined implicitly through the equation

u(x, t) =
1

3
+

2

3
sin(x− u(x, t)t).

The exact solution is smooth before t = 1 and can be computed using the Newton
iteration. The error at T = 1 is plotted in Figure 2, which confirms the fifth order
convergence of the underlying scheme.
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Fig. 2. Example 3.2 (Burgers’ equation). The L1, L2, and L∞ norm of the error in the
numerical solution at T = 1 is plotted as a function of the number of mesh points.

Example 3.3. This example is a system of nonlinear equations—the Euler equa-
tions,

(3.4) wt + f(w)x = 0,

where

w = (ρ, ρu,E)T , f(w) = (ρu, ρu2 + p, u(E + p))T ,

ρ is the density, u is the velocity, E is the energy density, and p is the pressure. The
equation of state is E = p

γ−1 + 1
2ρu

2 with γ = 1.4. A periodic boundary condition is

used and the initial condition is set to be ρ(x, 0) = 1.0+ 0.2 sin(x), u(x, 0) = 0.5, and
p(x, 0) = 1.0. The exact solution for this problem is

ρ(x, t) = 1.0 + 0.2 sin(x− 0.5t), u(x, t) = 0.5, p(x, t) = 1.

The final time for the computation is T = 2.0. We used the entropy S = log(ργ/p) for
computing the monitor function (cf. section 2.3.2). The error in the density is plotted
in Figure 3, which, once again, shows the fifth order convergence of the scheme.

3.2. Effects of GCL satisfaction, mesh smoothness, and mesh move-
ment restriction. These effects are demonstrated using Example 3.2 (Burgers’ equa-
tion). First, to demonstrate the effect of GCL satisfaction we consider the use of
second (FD2), fourth (FD4, (2.10)), and sixth (FD6) order finite difference approxi-
mations for Jn+1 = xn+1

ξ in Step 2(d) of the algorithm described in section 2. The
numerical results obtained using these approximations and GCL are shown in Fig-
ure 4. From the figure, we can see that FD2 is not acceptable. Moreover, FD4 is
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Fig. 3. Example 3.3 (Euler equations). The L1, L2, and L∞ norm of the error in the density
at T = 2 is plotted as a function of the number of mesh points.
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Fig. 4. Example 3.2 (Burgers’ equation). The L1 norm of the error at T = 1 in the numerical
solution is plotted as a function of the number of mesh points. The moving mesh WENO scheme
with finite difference approximations or the GCL procedure for the Jacobian of the coordinate trans-
formation is used.

acceptable but leads to only a fourth order convergence. Finally, FD6 gives the cor-
rect (fifth) order of the WENO scheme although the results are slightly worse than
those obtained based on GCL. These results show that the satisfaction of GCL is
not necessary, but it does improve the accuracy of the underlying scheme. It can be
replaced with a sufficiently high order finite difference approximation of xξ.

Next, we examine the effects of smoothness of the mesh using the least squares
smoothing described in the last paragraph of section 2.3.2. The results obtained with
different values of p are shown in Figure 5. Notice that the greater p is, the smoother
the mesh. The results confirm the observation (e.g., see Shu [20]) that the mesh needs
to be sufficiently smooth in order to achieve the designed accuracy order.

Finally, we examine the effects of mesh movement restriction on stability of the
moving mesh WENO scheme. They are significant only when the mesh points move
fast enough. For this reason, we integrate Burgers’ equation for a long time T = 2
when a sharp shock wave has formed and propagated to the right end of the domain.
The computation was done without mesh movement restriction for CFL numbers
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Fig. 5. Example 3.2 (Burgers’ equation). The L1 norm of the error at T = 1 in the numerical
solution is plotted as a function of the number of mesh points. The moving mesh WENO scheme
with various values of p in the least squares smoothing of the mesh is used.

ranging from 0.001 to 0.8. All of the numerical solutions blow up, indicating that the
underlying scheme without mesh movement restriction is unconditionally unstable.
On the other hand, as will be seen in Example 4.2, the scheme with mesh movement
restriction is stable as long as the time step satisfies the CFL condition.

4. Examples with shocks. We now present numerical results obtained with
the moving mesh WENO scheme for a number of examples containing discontinuities
(shocks, rarefaction waves, and contact discontinuities). These examples either do not
have exact solutions or have discontinuous solutions. The L1 error is computed for the
three system examples (Lax problem, Shu–Osher problem, and blast-wave problem)
against a numerical solution obtained with 6400 uniform mesh points. The perfor-
mance of the scheme is examined by comparing moving mesh results with uniform
mesh results.

Example 4.1. This example is the linear equation (3.2) subject to a periodic
boundary condition and the initial condition

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
6 (G(x, z − δ) +G(x, z + δ) + 4G(x, z)) for x ∈ (−0.8,−0.6),

1 for x ∈ (−0.4,−0.2),

1− |10(x− 0.1)| for x ∈ (0, 0.2),
1
6 (F (x, a − δ) + F (x, a+ δ) + 4F (x, a)) for x ∈ (0.4, 0.6),

0 otherwise,

where

G(x, z) = e−β(x−z)2 , F (x, a) =
√
max(1 − α2(x − a)2, 0),

a = 0.5, z = −0.7, δ = 0.005, α = 10, β =
log 2

36δ2
.

The exact solution is a traveling wave formed by the combination of Gaussian and
square-, sharp triangle-, and half ellipse-shaped waves. The domain is taken as [−1, 1],
and the final time is T = 2. A moving mesh solution (N = 200) is compared with
the solutions obtained with uniform meshes of N = 400 and N = 800 in Figure 6.
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(c) MM N = 200, UM N = 800

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++
++
++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
+++++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+
+

+

+

+

+

+

+

+
+
++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+

+

+

+

+

+

+

+
+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++
++
+
+
+
+
+
+
++
++
++
++
++
++
++
++
++
+
+
+
+
+
+
++
+++
++++++
+
+
+
+
+
+++++++++++++++++++
+
+
+
+
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+
+
+
+

+

+

+
+
+
+
+
+
++
++
++
++
++
+++
+++
++++
+++++++++
++++++++++++++++++++++++++++++
+
+
+
+
+
+

+

+

+

+
+
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

u

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Exact
moving (N=200)
Fixed (N=800)+

(d) Close view of (c) near x = −0.3
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Fig. 6. Example 4.1 (linear scalar conservation laws). The moving mesh solution with N = 200
is compared with the uniform mesh solutions with N = 400 and N = 800. Here, MM and UM mean
moving mesh and uniform mesh, respectively.

The figure shows that the result obtained by the moving mesh method with N = 200 is
better than that with N = 400 uniform points and comparable to that with N = 800
uniform points.

Example 4.2. This example is basically the same as Example 3.2 except Burgers’
equation is integrated for a longer time T = 2.0 when a shock has formed and is
propagating towards the right end of the domain. The trajectories of a moving mesh
N = 80 are shown in Figure 7, and Figure 8 shows that the moving mesh solution
(N = 80) is better than those obtained with 160 and 320 uniform points.

Example 4.3. We consider in this example the nonlinear Buckley–Leverett prob-
lem

ut +

(
4u2

4u2 + (1− u)2

)
x

= 0, x ∈ (−1, 1), t < 0.4,
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Fig. 7. Example 4.2 (Burgers’ equation). The trajectories of a moving mesh with N = 80 are
plotted.

subject to the initial condition

u =

{
1 for x ∈ (− 1

2 , 0),

0 otherwise

and the inflow/outflow boundary condition. The exact solution is a shock-rarefaction-
contact discontinuity mixture. The trajectories of a moving mesh N = 80 are shown
in Figure 9, and the moving mesh solution (N = 80) is compared with those obtained
with 160 and 320 uniform points in Figure 10. It can be seen that the moving mesh
solution is better than that obtained with 160 uniform points and comparable with
that obtained with 320 uniform points.

Example 4.4. This example is the Lax problem of the Euler equations (3.4)
subject to the inflow/outflow boundary condition and a Riemann initial condition

(ρ, v, p) =

{
(0.445, 0.698, 3.528) for x ≤ 0,

(0.5, 0, 0.571) for x > 0.

The physical domain is taken as (−5, 5) and the integration is stopped at T = 1.3.
As in Example 3.3, the monitor function is computed based on the entropy. The
trajectories of a moving mesh are shown in Figure 11. From the figure (particularly
Figure 11(b)), one can see that there is a sharp readjustment of mesh points at the
first time step. This is because the mesh is equidistributing to the initial solution
and the solution at the first time step that have different discontinuity strengths.
The initial solution for this example is discontinuous at x = 0 and its strength of
discontinuity is infinity. On the other hand, this initial discontinuity is smeared by
the WENO scheme (and spatial discretization), and the strength of discontinuity of
the solution at the first time step is at most conversely proportional to the minimal
spacing of the initial mesh. As a result of the different discontinuity strengths, the
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(c) MM N = 80, UM N = 320
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(d) Close view of (c) near x = 3.8
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Fig. 8. Example 4.2 (Burgers’ equation). The moving mesh solution with N = 80 is compared
with the uniform mesh solutions with N = 160 and N = 320.

mesh has different degrees of concentration initially and at the first time step, and
thus the sharp readjustment occurs.

The moving mesh solution obtained with N = 200 is compared with uniform mesh
solutions obtained with N = 400 and N = 800 in Figure 12. From the figure we can
see that the shock and contact discontinuity are captured by the monitor function.
The moving mesh solution of shock is clearly better than that obtained with 400
uniform points and even comparable to that with 800 uniform points. One may also
notice from Figures 12(c) and (f) that there is a dip to the right of the rarefaction
in the uniform mesh solutions with 400 and 800 points but not in the moving mesh
solution, which can be considered an advantage of the moving mesh method.

Finally, we will consider the L1 error of moving mesh and uniform mesh solutions.
The L1 errors of density are shown in Table 1. From it we see that the L1 error of
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Fig. 9. Example 4.3 (Buckley–Leverett equation). The trajectories of a moving mesh with
N = 80 are plotted.

the moving mesh solution with N = 200 is clearly smaller than that obtained with
600 uniform points, and the L1 error of the moving mesh solution with N = 300 is
smaller than that obtained with 800 uniform points. These results are consistent with
what is shown in Figure 12.

Example 4.5. We now consider the Shu–Osher problem [21], which contains both
shocks and complex smooth region structures. It models a shock interaction with en-
tropy waves and is governed by the Euler equations (3.4) subject to the inflow/outflow
boundary condition and the initial condition

(ρ, v, p) =

{
(3.857143, 2.629369, 10.333333) for x < −4,

(1 + ε sin(5x), 0, 1) for x ≥ −4.

We used ε = 0.2 and the physical domain as (−5, 5) in our computation. The com-
puted density is plotted at T = 1.8 against the reference “exact” solution obtained
using the fifth order finite difference WENO scheme [13] with 6400 uniform points.
The trajectories of a typical moving mesh are shown in Figure 13. The moving mesh
solutions obtained with N = 200 and 400 are compared with the uniform mesh so-
lutions obtained with N = 200, 300, 400 and N = 400, 600, 800 in Figures 14 and 15,
respectively. From Figure 14(a) and (b), we can see that for the same number of mesh
points, the moving mesh results are better than the uniform mesh ones. Particularly,
the complex oscillations in the middle of the computational region are well resolved
by the moving mesh but not by the uniform mesh. From Figure 14(c), we see that the
moving mesh solution with N = 200 is better than that obtained with 300 uniform
points.

If we increase the number of uniform mesh points to N = 400 while keeping the
number of moving mesh points the same (N = 200), we can see from Figure 14(d)
that the first few oscillations on the left are resolved better with 400 uniform points.
But in the rest of the physical domain, the moving mesh results are comparable or
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(a) MM N = 80, UM N = 160
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Fig. 10. Example 4.3 (Buckley–Leverett equation). The moving mesh solution with N = 80 is
compared with the uniform mesh solutions with N = 160 and N = 320.

even better than the uniform mesh results. The same observation can be made from
Figure 15, where the moving mesh solution with N = 400 is better than those with
uniform meshes N = 400 and 600 and comparable to the uniform mesh solution with
N = 800.

Next, we compare the accuracy of the moving mesh method with the uniform
mesh method. The L1 errors of density are listed in Table 2. We can see that the
L1 error of the moving mesh solution with N = 200 is clearly smaller than that
with uniform meshes N = 200 and 300. Similarly, the L1 error with the moving
mesh N = 400 is smaller than those with uniform meshes N = 400 and 600 and
comparable to the one with 800 uniform points. It is remarked that this Shu–Osher
problem is a difficult test problem for moving mesh methods since a large portion of
the physical domain is filled with features that require fine resolution. Nevertheless,
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(a) N = 200 (b) Close view of (a) near the origin

Fig. 11. Example 4.4 (Lax problem). The trajectories of a moving mesh with N = 200 are plotted.

(a) MM N = 200, UM N = 400
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(c) Close view of (a) near rarefaction wave
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(d) MM N = 200, UM N = 800


+
+

+

+

+

+

+

+
++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

de
ns
ity

-4 -2 0 2 4

0.4

0.6

0.8

1

1.2

Exact
Moving (N=200)
Fixed (N=800)+

(e) Close view of (d) near shock

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+

+

+

+

+

+

+
+++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

de
ns
ity

1 2 3 4

0.4

0.6

0.8

1

1.2

Exact
Moving (N=200)
Fixed (N=800)+

(f) Close view of (d) near rarefaction wave
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Fig. 12. Example 4.4 (Lax problem). The moving mesh solution (density) with N = 200 is
compared with the uniform mesh solutions with N = 400 and N = 800.
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Table 1

(Lax problem) L1 errors of density for uniform and moving meshes.

N 200 300 400 600 800
Uniform mesh 1.21E-02 8.64E-03 5.49E-03 4.18E-03 2.48E-03
Moving mesh 3.59E-03 2.30E-03 1.39E-03 1.12E-03 7.81E-04

mesh trajectory

t

-4 -2 0 2 4

0.5

1

1.5

Fig. 13. Example 4.5 (Shu–Osher problem). The trajectories of a moving mesh with N = 200
are plotted.

our moving mesh method still shows some savings: the ratio of the numbers of moving
mesh points and uniform mesh points required to achieve a specific level of accuracy
is about 1:1.5.

Example 4.6. The last example is the blast-wave problem modeling the interac-
tion of two blast waves. It is governed by the Euler equations (3.4) subject to the
initial condition

(ρ, v, p) =

⎧⎨⎩
wL, 0 < x < 0.1,
wM , 0.1 < x < 0.9,
wR, 0.9 < x < 1,

where

wL = (1, 0, 103), wM = (1, 0, 10−2), wR = (1, 0, 102).

The physical domain is taken as (0, 1) and at both ends the reflective boundary
condition is applied. The system is integrated up to T = 0.038. The computed
density is plotted against the reference “exact” solution obtained with the fifth order
finite difference WENO scheme [13] with 6400 uniform mesh points. The results are
shown in Figures 16, 17, and 18. This problem was first used by Woodward and
Colella [27] as a test problem for various numerical schemes.

The mesh trajectories in Figure 16 show that the two blast waves propagate in
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(a) MM N = 200, UM N = 200
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(c) MM N = 200, UM N = 300
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(d) MM N = 200, UM N = 400
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Fig. 14. Example 4.5 (Shu–Osher problem). Density. The moving mesh solution with N = 200
is compared with the uniform mesh solutions with N = 200, N = 300, and N = 400.

the right direction and finally collide. Two dense mesh trajectory lines form near
x = 0.1 and x = 0.9 initially. For the time being, the two waves collide at t = 0.027.

Next, we will discuss our moving mesh results compared with uniform mesh re-
sults. From Figures 17 and 18 (particularly the close views in (b) and (c)), we can see
that when the same number of mesh points N = 200 is used, the moving mesh results
are better than the uniform mesh results. When the number of uniform mesh points
increases, we can see that the moving mesh solution with N = 200 is comparable
to that obtained with twice the number of uniform mesh points. The same can be
observed with 400 moving mesh points (cf. Figures 18).

The L1 errors of density for the moving and uniform mesh methods are listed in
Table 3. We can see that the L1 error of the moving mesh solution with N = 200
is smaller than the uniform mesh solution N = 200 and comparable to those with
N = 300 and N = 400 of uniform mesh. The L1 error of the moving mesh solution
with N = 300 is smaller than that obtained with N = 400 and comparable to the
uniform mesh solution of N = 600. For moving mesh with N = 400, we also can see
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(a) MM N = 400, UM N = 400
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(c) MM N = 400, UM N = 600
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(d) MM N = 400, UM N = 800
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Fig. 15. Example 4.5 (Shu–Osher problem). Density. The moving mesh solution with N = 400
is compared with the uniform mesh solutions with N = 400, N = 600, and N = 800.

Table 2

(Shu–Osher problem) L1 errors of density for uniform and moving meshes.

N 200 300 400 600 800
Uniform mesh 8.65E-02 4.50E-02 2.55E-02 2.51E-02 1.87E-02
Moving mesh 4.10E-02 2.21E-02 2.00E-02 1.38E-02 1.06E-02

that the L1 error is smaller than that obtained by uniform mesh with N = 600 and
comparable to that with N = 800.

5. Concluding remarks. In the previous sections we have developed and im-
plemented a moving mesh WENO scheme for solving one-dimensional conservation
laws on moving meshes. It is a nontrivial combination of the WENO scheme and
an adaptive moving mesh strategy. Like many other high order schemes, the scheme
requires the mesh to be sufficiently smooth to achieve the designed order of accuracy.
To improve the smoothness of the mesh, we have employed the commonly used ap-
proach of smoothing the monitor function with a low-pass filter (cf. (2.21)) and a not
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Fig. 16. Example 4.6 (blast-wave problem). The trajectories of a moving mesh with N = 200
are plotted.

(a) MM N = 200, UM N = 200
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(d) MM N = 200, UM N = 400
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(e) Close view of (d) near x = 0.725
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(f) Close view of (d) near x = 0.825
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Fig. 17. Example 4.6 (blast-wave problem). Density. The moving mesh solution with N = 200
is compared with the uniform mesh solutions with N = 200 and N = 400.
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(a) MM N = 400, UM N = 400
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(b) Close view of (a) near x = 0.725
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(c) Close view of (a) near x = 0.825
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(d) MM N = 400, UM N = 800
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Fig. 18. Example 4.6 (blast-wave problem). Density. The moving mesh solution with N = 400
is compared with the uniform mesh solutions with N = 400 and N = 800.

Table 3

(Blast-wave problem) L1 errors of density for uniform and moving meshes.

N 200 300 400 600 800
Uniform mesh 2.08E-01 1.33E-01 1.05E-01 8.47E-02 6.67E-02
Moving mesh 1.39E-01 9.59E-02 7.42E-02 4.82E-02 3.56E-02

so commonly used approach of directly smoothing the mesh with least squares fit-
ting. Numerical results have demonstrated that the combination of these approaches
is effective in improving the smoothness of the mesh.

It has also been shown that the transformation relation J = xξ has to be ap-
proximated sufficiently accurately in order for the scheme to maintain the designed
accuracy. This can be done using a high order finite difference approximation or the
so-called GCL approach with which a geometric conservation law is used to update J
at the new time step. In the mean time, it has been shown that the GCL satisfaction
is not necessary nor sufficient for the scheme to maintain the designed accuracy and
stability, but it does improve accuracy.

More importantly, we have shown that the mesh movement can cause the moving
mesh WENO scheme to become unconditionally unstable. A simple strategy has been
proposed to restrict the movement of the mesh. Numerical results have demonstrated
that the strategy can recover the stability of the scheme while maintaining a reasonable
level of mesh adaptivity.

The moving mesh WENO method has been applied to a number of examples with
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discontinuities. For scalar conservation laws such as Example 4.1–4.3 and systems of
conservation laws such as Example 4.4, the moving mesh method produces a compa-
rable solution as the uniform mesh WENO scheme using about four times as many
mesh points. For more difficult systems of conservation laws such as the Shu–Osher
(Example 4.5) and blast-wave (Example 4.6) problems, the ratio of the numbers of
moving mesh points and uniform mesh points required to achieve the same level of
accuracy is approximately 1:1.5.

Finally, it is worth pointing out that the basic idea of the moving mesh WENO
scheme can be applied to problems in two and three dimensions. Indeed, the general-
ization of the scheme to two-dimensional Euler equations and other physical systems
is underway.
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