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In this paper, a new type of high-order finite volume and finite difference multi-resolution 
Hermite weighted essentially non-oscillatory (HWENO) schemes are designed for solving 
hyperbolic conservation laws on structured meshes. Here we only use the information 
defined on a hierarchy of nested central spatial stencils but do not introduce any equivalent 
multi-resolution representation, the terminology of multi-resolution HWENO follows that 
of the multi-resolution WENO schemes (Zhu and Shu, 2018) [29]. The main idea of our 
spatial reconstruction is derived from the original HWENO schemes (Qiu and Shu, 2004) 
[19], in which both the function and its first-order derivative values are evolved in time 
and used in the reconstruction. Our HWENO schemes use the same large stencils as the 
classical HWENO schemes which are narrower than the stencils of the classical WENO 
schemes for the same order of accuracy. Only the function values need to be reconstructed 
by our HWENO schemes, the first-order derivative values are obtained from the high-order 
linear polynomials directly. Furthermore, the linear weights of such HWENO schemes can 
be any positive numbers as long as their sum equals one, and there is no need to do any 
modification or positivity-preserving flux limiting in our numerical experiments. Extensive 
benchmark examples are performed to illustrate the robustness and good performance of 
such finite volume and finite difference HWENO schemes.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, a new type of high-order finite volume and finite difference multi-resolution Hermite weighted essentially 
non-oscillatory (HWENO) schemes are designed for solving the hyperbolic conservation laws

{
ut + ∇ · f (u) = 0,

u(x1, ..., xn,0) = u0(x1, ..., xn).
(1.1)
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Hyperbolic conservation laws can be used to model a wide variety of phenomena involving wave motion and the 
advection transport of substances. The problem is that it is quite difficult to solve these problems on both mathemat-
ical and numerical aspects, since discontinuities may appear in the solutions of these nonlinear equations even though 
the initial conditions are smooth enough. This is also why designing high-order and efficient approaches to solve these 
problems is of great importance and why more and more researchers are interested in it. Under this background, many 
numerical methods have emerged. Here, we would like to mention essentially non-oscillatory (ENO) [9,22,23], weighted 
essentially non-oscillatory (WENO) schemes [12,17] and Hermite weighted essentially non-oscillatory (HWENO) schemes 
[19,20,25,27,28], which work quite well to solve these problems with strong shocks or contact discontinuities.

In 1987, Harten et al. proposed a series of finite volume ENO schemes for one-dimensional problems in [9] based on the 
total variation diminishing (TVD) schemes in [8]. In 1988 and 1989, Shu and Osher presented a class of finite difference 
ENO schemes in [22,23], which are more efficient for multi-dimensional problems. The main idea of these ENO schemes 
is to choose the locally smoothest stencil automatically among all the central and biased spatial stencils to keep high-
order accuracy in smooth regions and to avoid oscillations near discontinuities. In 1994, Liu et al. proposed the first WENO 
schemes in [17], which use a nonlinear convex combination of all the candidate stencils instead of the locally smoothest 
stencil to improve the order of accuracy in smooth regions without destroying the non-oscillatory behavior near discon-
tinuities. In 1996, Jiang and Shu improved the WENO schemes to fifth order and designed general smoothness indicators 
and nonlinear weights in [12]. Thereafter, compact central WENO (CWENO) schemes in [7,13,14], monotonicity preserving 
WENO schemes in [3], optimized WENO schemes in [24], hybrid compact WENO schemes in [18], multi-domain hybrid 
spectral-WENO in [6], WENO-Z in [4], robust WENO schemes in [11], multi-resolution WENO schemes in [29,30], an effi-
cient class of WENO schemes with adaptive order for structured and unstructured meshes in [1,2] were developed. ENO and 
WENO schemes have the following advantages: uniform high-order accuracy in smooth regions including smooth extrema
and non-oscillatory behavior near discontinuities.

In 2004, based on the idea of WENO schemes, Qiu and Shu proposed a class of HWENO schemes on a finite volume for-
mulation for one-dimensional problems in [19] and then in 2005, they extended these HWENO schemes to two-dimensional 
problems in [20], where two different stencils were used to reconstruct the function and its first-order derivative values. 
However, the first HWENO schemes in [19,20] failed in simulating several severe problems stably, including the double 
Mach and the forward step problems. This is because the solutions of these nonlinear hyperbolic conservation laws con-
tain strong discontinuities, and their first-order derivative values may be very large near these discontinuities. If such large 
first-order derivative values are used straightforwardly, stability issues may arise. Thereafter, in 2008, Zhu and Qiu proposed 
a new procedure to reconstruct the first-order derivative values to solve this problem in [28], while in 2015 and 2016, Liu 
and Qiu also solved this problem by applying an additional positivity-preserving procedure in [15,16]. Then in 2020, Zhao 
et al. took the idea of the limiter for the discontinuous Galerkin (DG) method in [5] to modify the first-order moments 
near the discontinuities in [26], in which high-order linear approximation was used in smooth regions, while the first-order 
moments on the troubled-cells were modified with the HWENO reconstruction. Later, Zhao and Qiu improved the above 
hybrid HWENO scheme by using a nonlinear convex combination of a high-degree polynomial with several lower-degree 
polynomials, with the linear weights being any positive numbers as long as their sum equals one, in [27]. The main differ-
ence of HWENO schemes from WENO schemes is that both the function and its first-order derivative values are evolved in 
time and used in the reconstruction, not like the WENO schemes in which only the function values are evolved and used. 
This also allows the HWENO schemes to obtain the same order of accuracy as the WENO schemes with narrower stencils.

In this paper, following the idea of multi-resolution WENO schemes proposed by Zhu and Shu in [29,30], we present 
a new type of multi-resolution HWENO schemes. Comparing with the multi-resolution WENO schemes in [29,30], there 
are several features in common: the first is that we also use a hierarchy of central spatial stencils; the second is that 
the linear weights can also be any positive numbers as long as their sum equals one. There are also some differences: 
the first is that not only the function values but also its first-order derivative values are evolved and used, thus we can 
obtain higher order accuracy with the same number of cells in comparison with the multi-resolution WENO schemes; the 
second is that only the function values are reconstructed by the multi-resolution HWENO schemes, its first-order derivative 
values are reconstructed by the high-order linear approximation, which is also different from the previous HWENO schemes. 
Comparing with the HWENO schemes proposed before, our HWENO schemes do have a few other advantages: the first is 
that there is no need to modify the first-order derivative values of the target cell before the reconstruction or apply any 
positivity-preserving flux limiter, to run the numerical experiments with strong shocks stably, at least for the examples we 
have calculated; the second is that the CFL number can be taken to be 0.6 for both the one and two dimensional cases, 
while the CFL number is taken to be 0.2 in [15,16]. In the meantime, our HWENO schemes could also obtain the optimal 
high-order of accuracy in smooth regions and simultaneously keep sharp transitions with non-oscillatory performance near 
discontinuities.

The organization of this paper is as follows: In Section 2, at first, we will describe the reconstruction procedure of finite 
volume multi-resolution HWENO schemes for solving the conservation laws in one and two dimensions in detail. Then, we 
will describe the reconstruction procedure of finite difference multi-resolution HWENO schemes for solving the conservation 
laws in one and two dimensions in detail. In Section 3, we will propose a number of numerical examples to illustrate the 
accuracy and resolution of these HWENO schemes. Concluding remarks are given in Section 4.
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2. Multi-resolution HWENO schemes

In this section, we introduce the finite volume and finite difference multi-resolution HWENO schemes for solving the 
hyperbolic conservation laws in one and two dimensions in detail.

2.1. Finite volume multi-resolution HWENO schemes

2.1.1. One dimensional case
We first consider the hyperbolic conservation laws (1.1) in one dimension{

ut + f (u)x = 0,

u(x,0) = u0(x).
(2.1)

Let v = ux , and then from (2.1) and its spacial derivative, we obtain the following equations{
ut + f (u)x = 0, u(x,0) = u0(x),
vt + g(u, v)x = 0, v(x,0) = v0(x),

(2.2)

where g(u, v) = f ′(u)ux = f ′(u)v . For simplicity, we consider a uniform cell mesh {xi+1/2} with the uniform mesh size 
h = xi+1/2 − xi−1/2 and denote the cell by Ii = [xi−1/2, xi+1/2] and its center by xi = 1

2 (xi−1/2 + xi+1/2).
We denote the one-dimensional cell averages of u and v as{

ui(t) = 1
h

∫
Ii

u(x, t)dx,

vi(t) = 1
h

∫
Ii

v(x, t)dx,
(2.3)

then integrate (2.2) over the target cell Ii to obtain the integral formulation of the conservation laws⎧⎨
⎩

dui(t)
dt = − 1

h

(
f
(
u(xi+1/2, t)

)− f
(
u(xi−1/2, t)

))
,

dvi(t)
dt = − 1

h

(
g
(
u(xi+1/2, t), v(xi+1/2, t)

)− g
(
u(xi−1/2, t), v(xi−1/2, t)

))
.

(2.4)

We approximate (2.4) by the following semi-discrete conservative scheme{
dui(t)

dt = − 1
h ( f̂ i+1/2 − f̂ i−1/2),

dvi(t)
dt = − 1

h (ĝi+1/2 − ĝi−1/2),
(2.5)

where the numerical fluxes f̂ i+1/2 and ĝi+1/2 are defined by{
f̂ i+1/2 = f̂ (u−

i+1/2, u+
i+1/2),

ĝi+1/2 = ĝ(u−
i+1/2, u+

i+1/2; v−
i+1/2, v+

i+1/2),
(2.6)

where u±
i+1/2 and v±

i+1/2 are the numerical approximations to the point values of u(xi+1/2, t) and v(xi+1/2, t) respectively 
from left and right by the HWENO reconstruction procedure. We choose the Lax-Friedrichs fluxes, which are subject to the 
usual conditions for numerical fluxes, such as Lipschitz continuity and consistency with the physical fluxes⎧⎨

⎩
f̂ (a,b) = 1

2

[
f
(
a
)+ f

(
b
)− α

(
b − a

)]
,

ĝ(a,b; c,d) = 1
2

[
g
(
a, c
)+ g

(
b,d
)− α

(
d − c

)]
,

(2.7)

where α = max
u

| f ′(u)| over the whole range of u.

The most important part of the HWENO schemes is the spatial reconstruction of the point values {u±
i+1/2, v±

i+1/2} from 
the given cell-average values {ui, vi}, which should not only achieve high-order accuracy, but also maintain the essentially 
non-oscillatory property. The procedure of the reconstruction for the sixth-order case is summarized as follows:

1D reconstruction algorithm:
Step 1. Select a series of central spatial stencils and reconstruct different degree polynomials.
Step 1.1. Reconstruct a zeroth degree polynomial q1(x) which satisfies

1

h

∫
q1(x)dx = uk, k = i. (2.8)
Ik

3
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Step 1.2. Reconstruct a quadratic polynomial q2(x) which satisfies

1

h

∫
Ik

q2(x)dx = uk, k = i − 1, i, i + 1. (2.9)

Step 1.3. Reconstruct a cubic polynomial q3(x) which satisfies

1

h

∫
Ik

q3(x)dx = uk, k = i − 1, i, i + 1; 1

h

∫
Ikx

q′
3(x)dx = vkx , kx = i. (2.10)

Step 1.4. Reconstruct a quintic polynomial q4(x) which satisfies

1

h

∫
Ik

q4(x)dx = uk, k = i − 1, i, i + 1; 1

h

∫
Ikx

q′
4(x)dx = vkx , kx = i − 1, i, i + 1. (2.11)

Step 2. Obtain equivalent expressions for above reconstructed polynomials as shown in [29,30]. To keep consistent nota-
tion, we denote p1(x) = q1(x) and define

pl2(x) = 1

γl2,l2
ql2(x) −

l2−1∑
l=1

γl,l2

γl2,l2
pl(x), (2.12)

with 
∑l2

l=1 γl,l2 = 1, γl2,l2 �= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are the linear weights and are defined 
as

γl1,l2 = γ l1,l2∑l2
l=1 γ l,l2

; γ l1,l2 = 10l1−1; l1 = 1, ..., l2; l2 = 2,3,4. (2.13)

For example, we take γ 1,4 = 1, γ 2,4 = 10, γ 3,4 = 100 and γ 4,4 = 1000 for our sixth-order approximation. Correspondingly, 
we obtain γ1,4 = 1

1111 , γ2,4 = 10
1111 , γ3,4 = 100

1111 and γ4,4 = 1000
1111 . Putting these linear weights for our sixth-order approxima-

tion into (2.12), we obtain

p1(x) = q1(x),

p2(x) = 11

10
q2(x) − 1

10
q1(x),

p3(x) = 111

100
q3(x) − 11

100
q2(x),

p4(x) = 1111

1000
q4(x) − 111

1000
q3(x). (2.14)

Step 3. Compute the smoothness indicators βl2 , which measure how smooth the functions pl2 (x) are in the interval 
Ii = [xi−1/2, xi+1/2]:

βl2 =
κ∑

α=1

∫
Ii

h2α−1
(

dα pl2(x)

dxα

)2

dx, l2 = 2,3,4, (2.15)

where κ = 2, 3, 5 for l2 = 2, 3, 4. The only exception is β1, which is slightly magnified from zero to a positive value as 
follows:

First, take two stencils {Ii−1, Ii} and {Ii, Ii+1} and obtain their associated smoothness indicators

β1L = (ui − ui−1)
2, β1R = (ui+1 − ui)

2. (2.16)

Then, according to [29], we define the linear weights of these stencils as

γ 1L =
{

1, β1L ≥ β1R ,

10, otherwise,
γ 1R = 11 − γ 1L, (2.17)

γ1L = γ 1L , γ1R = 1 − γ1L . (2.18)

γ 1L + γ 1R

4
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Next, we calculate the non-linear weights of these stencils

ω1L = ω1L

ω1L + ω1R
, ω1R = ω1R

ω1L + ω1R
, (2.19)

ω1L = γ1L

(
1 + |β1R − β1L |2

β1L + ε

)
, ω1R = γ1R

(
1 + |β1R − β1L |2

β1R + ε

)
, (2.20)

where ε = 10−10 is a small positive number which is used to avoid the denominator of (2.20) to be zero.
Finally, we set

β1 =
(
ω1L
(
ui − ui−1

)+ ω1R
(
ui+1 − ui

))2
. (2.21)

Step 4. Compute the nonlinear weights based on the linear weights and the smoothness indicators. Here we adopt the 
idea of WENO-Z as shown in [4] with the quantity τ4 defined as the absolute difference among the smoothness indicators:

τ4 =
(∑3

l=1 |β4 − βl|
3

)2

, (2.22)

and we define the nonlinear weights as

ωl1,4 = ωl1,4∑4
l=1 ωl,4

, ωl1,4 = γl1,4

(
1 + τ4

βl1 + ε

)
, l1 = 1, ...,4, (2.23)

where ε = 10−10 in all the formulas.
Step 5. The new final reconstruction polynomials of ui(x) and vi(x) are defined as

ui(x) =
4∑

l=1

ωl,4 pl(x), vi(x) = q′
4(x). (2.24)

Remark 1. In Step 2 above, the choice of γ l1,l2 for l1 = 1, ..., l2 is not unique,that is to say, the choice of the linear weights 
γl1,l2 for l1 = 1, ..., l2 is also not unique. For example, we can also take γ l1,l2 = 1 for all l1 = 1, ..., l2, thus γl1,l2 = 1

l2
for all 

l1 = 1, ..., l2. But from our numerical experiments, we find that even though different choices of the linear weights do not 
affect the order of accuracy in the smooth regions, the bigger the linear weights for higher-degree polynomials, the steeper 
the shock transitions near the discontinuities. Of course, the gap between these linear weights should not be too large, 
otherwise it could become too close to the linear interpolation, which could cause oscillations. We must find a balance. Our 
choice above works well for all our numerical examples.

Remark 2. In Step 3 above, the definition of β1 is quite different from the other βl ’s. This is because if we use the 
same method to define β1 as other βl ’s, it would be zero. Even though this does not affect the order of accuracy in the 
smooth regions, it does lead to more smeared discontinuity transitions, especially when the problem contains strong shocks 
or contact discontinuities. Therefore, we magnify β1 from zero to a positive value (dictated by the smoothness in the target 
cell together with one of its neighboring cells) and this works well in our numerical experiments.

Remark 3. In Step 4 above, through a series of Taylor expansion analyses, we can verify that β4 − βl = O (h3) for l < 4, 
thus τ4 = O (h6) and

u(x) − ui(x) = u(x) −
4∑

l=1

ωl,4 pl(x)

= u(x)

[
1 +

4∑
l=1

(ωl,4 − γl,4)

]
−
[

4∑
l=1

(ωl,4 − γl,4)pl(x) +
4∑

l=1

γl,4 pl(x)

]

=
[

u(x) −
4∑

l=1

γl,4 pl(x)

]
+

4∑
l=1

(ωl,4 − γl,4)
(

u
(
x
)− pl

(
x
))

= O (h6) + O (h6) ∗ O (h)

= O (h6).

(2.25)

According to above Taylor expansion analyses, we find that setting the power of τ4 as 2 is enough to ensure the expected 
accuracy in the smooth regions. There is no need to set it to be 3 as was done in [29].
5
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Remark 4. In Step 5 above, it is easy to see that if we take ωl,4 = γl,4 for l = 1, ..., 4 in (2.24), then ui(x) = q4(x). This 
fact is important to maintain the order of accuracy. For v(x), only the first-order derivative of the highest-degree polynomial 
q4(x) is used, which is easy to apply and saves the cost of calculating the nonlinear weights. The reason that we compute 
the first derivative vi(x) directly from q4(x) without any limiter is that only the information defined on a hierarchy of 
nested central spatial stencils is used to reconstruct ui(x) and the information of the first derivative is not used at all in the 
stencils of the first two layers. Thus even if there is an oscillation associated with vi (x), its effect on the oscillation in ui(x)
is minimal.

After all these point values on the cell boundaries are obtained, we put them into (2.6). Then we write the semi-discrete 
scheme (2.5) as an ordinary differential equation system

Ut = L(U ), (2.26)

and discretize (2.26) by a third-order TVD (total variation diminishing) Runge-Kutta method in time

⎧⎨
⎩

U (1) = Un + 	tL(Un),

U (2) = 3
4 Un + 1

4 U (1) + 1
4 	tL(U (1)),

Un+1 = 1
3 Un + 2

3 U (2) + 2
3 	tL(U (2)),

(2.27)

to obtain a fully discrete scheme.

2.1.2. Two dimensional case
We then consider the hyperbolic conservation laws (1.1) in two dimensions

{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y).
(2.28)

Let v = ux, w = u y , and then from (2.28) and its spacial derivatives, we obtain the following equations

⎧⎨
⎩

ut + f (u)x + g(u)y = 0, u(x, y,0) = u0(x, y),

vt + p(u, v)x + r(u, v)y = 0, v(x, y,0) = v0(x, y),

wt + q(u, w)x + s(u, w)y = 0, w(x, y,0) = w0(x, y),

(2.29)

where

p(u, v) = f ′(u)ux = f ′(u)v, r(u, v) = g′(u)ux = g′(u)v,

q(u, w) = f ′(u)u y = f ′(u)w, s(u, w) = g′(u)u y = g′(u)w.

For simplicity, we consider a uniform cell mesh {(xi+1/2, y j+1/2)} with the uniform mesh size h = xi+1/2 − xi−1/2 =
y j+1/2 − y j−1/2 and denote the cell by Ii j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] and its center by (xi, y j) =

(
1
2

(
xi−1/2 +

xi+1/2
)
, 12
(

y j−1/2 + y j+1/2
))

.

We denote the two-dimensional cell averages of u, v and w as

⎧⎪⎪⎨
⎪⎪⎩

ũi j(t) = 1
h2

∫
Ii j

u(x, y, t)dxdy,

ṽ i j(t) = 1
h2

∫
Ii j

v(x, y, t)dxdy,

w̃i j(t) = 1
h2

∫
Ii j

w(x, y, t)dxdy.

(2.30)

Integrating (2.29) over the target cell Ii j to obtain the integral formulation of the conservation laws

dũi j(t)

dt
= − 1

h2

[ y j+1/2∫
y j−1/2

f
(

u
(
xi+1/2, y, t

))
dy −

y j+1/2∫
y j−1/2

f
(

u
(
xi−1/2, y, t

))
dy+

xi+1/2∫
x

g
(

u
(
x, y j+1/2, t

))
dx −

xi+1/2∫
x

g
(

u
(
x, y j−1/2, t

))
dx

]
,

i−1/2 i−1/2

6
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dṽi j(t)

dt
= − 1

h2

[ y j+1/2∫
y j−1/2

p
(

u
(
xi+1/2, y, t

)
, v
(
xi+1/2, y, t

))
dy−

y j+1/2∫
y j−1/2

p
(

u
(
xi−1/2, y, t

)
, v
(
xi−1/2, y, t

))
dy+

xi+1/2∫
xi−1/2

r
(

u
(
x, y j+1/2, t

)
, v
(
x, y j+1/2, t

))
dx−

xi+1/2∫
xi−1/2

r
(

u
(
x, y j−1/2, t

)
, v
(
x, y j−1/2, t

))
dx

]
,

dw̃ij(t)

dt
= − 1

h2

[ y j+1/2∫
y j−1/2

q
(

u
(
xi+1/2, y, t

)
, w
(
xi+1/2, y, t

))
dy−

y j+1/2∫
y j−1/2

q
(

u
(
xi−1/2, y, t

)
, w
(
xi−1/2, y, t

))
dy+

xi+1/2∫
xi−1/2

s
(

u
(
x, y j+1/2, t

)
, w
(
x, y j+1/2, t

))
dx−

xi+1/2∫
xi−1/2

s
(

u
(
x, y j−1/2, t

)
, w
(
x, y j−1/2, t

))
dx

]
.

(2.31)

We then approximate (2.31) by the following semi-discrete conservative scheme

⎧⎪⎪⎨
⎪⎪⎩

dũi j(t)
dt = − 1

h ( f̂ i+1/2, j − f̂ i−1/2, j) − 1
h (ĝi, j+1/2 − ĝi, j−1/2),

dṽi j(t)
dt = − 1

h (p̂i+1/2, j − p̂i−1/2, j) − 1
h (r̂i, j+1/2 − r̂i, j−1/2),

dw̃i j(t)
dt = − 1

h (q̂i+1/2, j − q̂i−1/2, j) − 1
h (ŝi, j+1/2 − ŝi, j−1/2),

(2.32)

where the numerical fluxes { f̂ i±1/2, j, p̂i±1/2, j, ̂qi±1/2, j} in the x-direction are defined as

⎧⎪⎨
⎪⎩

f̂ i±1/2, j =∑κ
l=1 
l f̂ (u−

i±1/2, j+σl
, u+

i±1/2, j+σl
),

p̂i±1/2, j =∑κ
l=1 
l p̂(u−

i±1/2, j+σl
, u+

i±1/2, j+σl
; v−

i±1/2, j+σl
, v+

i±1/2, j+σl
),

q̂i±1/2, j =∑κ
l=1 
lq̂(u−

i±1/2, j+σl
, u+

i±1/2, j+σl
; w−

i±1/2, j+σl
, w+

i±1/2, j+σl
),

(2.33)

which approximate the integrations of { f (u), p(u, v), q(u, w)} in the y-direction along x = xi±1/2 respectively. The numerical 
fluxes {ĝi, j±1/2, ̂ri, j±1/2, ̂si, j±1/2} in the y-direction are defined in the same way, which approximate the integrations of 
{g(u), r(u, v), s(u, w)} in the x-direction along y = y j±1/2 respectively. Here 
l and σl are the weights and nodes of the κ-

point Gaussian quadrature in the cell 
[− 1

2 , 1
2

]
. The numerical fluxes f̂ (a, b), p̂(a, b; c, d), q̂(a, b; c, d) and ĝ(a, b), r̂(a, b; c, d), 

ŝ(a, b; c, d) are defined to be the Lax-Friedrichs fluxes as defined in (2.7). u±
i±1/2, j+σl

, v±
i±1/2, j+σl

, w±
i±1/2, j+σl

and u±
i+σl, j±1/2, 

v±
i+σl, j±1/2, w±

i+σl, j±1/2 are the reconstructed approximations of u(x±
i±1/2, y j+σl , t), v(x±

i±1/2, y j+σl , t), w(x±
i±1/2, y j+σl , t) and 

u(xi+σl , y
±
j±1/2, t), v(xi+σl , y

±
j±1/2, t), w(xi+σl , y

±
j±1/2, t) with suitable order of accuracy.

The most important part of the HWENO schemes is still the spatial reconstruction of the point values {u±
i±1/2, j+σl

, 
v±

i±1/2, j+σl
, w±

i±1/2, j+σl
; u±

i+σl, j±1/2, v±
i+σl, j±1/2, w±

i+σl, j±1/2} from the given cell-average values {ũi j , ṽ i j , w̃i j } which should 
not only achieve high-order of accuracy, but also maintain the essentially non-oscillatory property. The procedure of the 
reconstruction for the sixth-order accuracy case is summarized as follows.
7
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2D reconstruction algorithm:

7 8 9 j + 1
4 5 6 j
1 2 3 j − 1

i − 1 i i + 1
The big stencil and its new labels.

Step 1. Select a series of central spatial stencils and reconstruct different degree polynomials.
Step 1.1. Reconstruct a zeroth degree polynomial q1(x, y) which satisfies

1

h2

∫
Ik

q1(x, y)dxdy = ũk, k = 5. (2.34)

Step 1.2. Reconstruct a quadratic polynomial q2(x, y) which satisfies

1

h2

∫
Ik

q2(x, y)dxdy = ũk, k = 1, ...,9. (2.35)

Step 1.3. Reconstruct a cubic polynomial q3(x, y) which satisfies

1

h2

∫
Ik

q3(x, y)dxdy = ũk, k = 1, ...,9;

1

h2

∫
Ikx

∂q3(x, y)

∂x
dxdy = ṽkx , kx = 5;

1

h2

∫
Iky

∂q3(x, y)

∂ y
dxdy = w̃ky , ky = 5. (2.36)

Step 1.4. Reconstruct a quintic polynomial q4(x, y) which satisfies

1

h2

∫
Ik

q4(x, y)dxdy = ũk, k = 1, ...,9;

1

h2

∫
Ikx

∂q4(x, y)

∂x
dxdy = ṽkx , kx = 1,3,4,5,6,7,9;

1

h2

∫
Iky

∂q4(x, y)

∂ y
dxdy = w̃ky , ky = 1,2,3,5,7,8,9. (2.37)

Note that for above quadratic polynomial q2(x, y), cubic polynomial q3(x, y) and quintic polynomial q4(x, y), they all 
have the same cell average as u on the target cell Ii j (to ensure conservation) and match the other conditions in a least 
square sense as described in [10].

Step 2. Obtain equivalent expressions for the above reconstructed polynomials as shown in [29,30]. To keep consistent 
notation, we denote p1(x, y) = q1(x, y) and define

pl2(x, y) = 1

γl2,l2
ql2(x, y) −

l2−1∑
l=1

γl,l2

γl2,l2
pl(x, y), (2.38)

with 
∑l2

l=1 γl,l2 = 1, γl2,l2 �= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are still the linear weights and are 
defined as (2.13). Putting these linear weights into (2.38), we can also obtain

p1(x, y) = q1(x, y),

p2(x, y) = 11

10
q2(x, y) − 1

10
q1(x, y),

p3(x, y) = 111
q3(x, y) − 11

q2(x, y),

100 100

8
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p4(x, y) = 1111

1000
q4(x, y) − 111

1000
q3(x, y). (2.39)

Step 3. Compute the smoothness indicators βl2 , which measure how smooth the functions pl2 (x, y) are in the cell Ii j =
[xi−1/2, xi+1/2] × [y j−1/2, y j+1/2]:

βl2 =
κ∑

|α|=1

∫
Ii j

|Ii j ||α|−1
(

∂ |α|

∂xαx∂ yαy
pl2(x, y)

)2

dxdy, l2 = 2,3,4, (2.40)

where α = (αx, αy), |α| = αx + αy and κ = 2, 3, 5 for l2 = 2, 3, 4. The only exception is β1, which is slightly magnified from 
zero to a positive value as follows:

First, take four stencils {Ii−1, j , Ii, j , Ii, j+1}, {Ii+1, j , Ii, j , Ii, j+1}, {Ii+1, j , Ii, j , Ii, j−1} and {Ii−1, j , Ii, j , Ii, j−1} and construct 
four linear polynomials p1k(x, y) for k = 1, 2, 3, 4 which satisfy

1

h2

∫
Ik

q11(x, y)dxdy = ũk, k = 4,5,8;

1

h2

∫
Ik

q12(x, y)dxdy = ũk, k = 5,6,8;

1

h2

∫
Ik

q13(x, y)dxdy = ũk, k = 2,5,6;

1

h2

∫
Ik

q14(x, y)dxdy = ũk, k = 2,4,5. (2.41)

Their associated smoothness indicators are

β11 = (−ũi−1, j + ũi, j)
2 + (ũi, j+1 − ũi, j)

2,

β12 = (ũi+1, j − ũi, j)
2 + (ũi, j+1 − ũi, j)

2,

β13 = (ũi+1, j − ũi, j)
2 + (−ũi, j−1 + ũi, j)

2,

β14 = (−ũi−1, j + ũi, j)
2 + (−ũi, j−1 + ũi, j)

2. (2.42)

Then, according to [30], define the linear weights of these stencils as

γ 1k = 1, γ1k = γ 1k∑4
l=1 γ 1l

= 1

4
, k = 1,2,3,4. (2.43)

The nonlinear weights of these stencils are calculated as

ω1k = ω1k∑4
l=1 ω1l

, ω1k = γ1k

(
1 + τ1

β1k + ε

)
, k = 1,2,3,4, (2.44)

where the quantity τ1 is defined as the absolute difference among these smoothness indicators:

τ1 =
(∑

k �=l |β1k − β1l|
6

)2

, (2.45)

and as before ε = 10−10.
Finally, we set

β1 =
∑

|α|=1

|Ii j ||α|
(

∂ |α|

∂xαx∂ yαy

4∑
l=1

ω1l p1l(x, y)

)2

, (2.46)

where α = (αx, αy), |α| = αx + αy .
Step 4. Compute the nonlinear weights based on the linear weights and the smoothness indicators. Here we still adopt 

the idea of WENO-Z with the quantity τ4 defined as the absolute difference among the smoothness indicators:

τ4 =
(∑3

l=1 |β4 − βl|
3

)2

, (2.47)
9
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and we define the non-linear weights as

ωl1,4 = ωl1,4∑4
l=1 ωl,4

, ωl1,4 = γl1,4

(
1 + τ4

βl1 + ε

)
, l1 = 1, ...,4, (2.48)

where ε = 10−10 in all the formulas.
Step 5. The new final reconstruction polynomials of uij(x, y), vij(x, y) and wij(x, y) are defined as

uij(x, y) =
4∑

l=1

ωl,4 pl(x, y),

vij(x, y) = ∂

∂x
q4(x, y), wij(x, y) = ∂

∂ y
q4(x, y). (2.49)

Remark 5. In Step 2 above, in comparison to the classical finite volume HWENO schemes in which the linear weights for HWENO 
reconstruction are dependent on the quadrature points, we use only one set of the linear weights for the HWENO reconstruction at all 
Gaussian quadrature points in this paper, thus we can reduce the cost of the spatial reconstruction procedure.

Just as what we did for the one dimensional case, after all these Gaussian quadrature point values on the boundaries 
are obtained, we put them into (2.33). Then we write the semi-discrete scheme (2.32) as an ordinary differential equation 
system (2.26) and discretize it by the third-order TVD Runge-Kutta method (2.27) in time to obtain a fully discrete scheme.

2.2. Finite difference multi-resolution HWENO schemes

2.2.1. One dimensional case
We now design the finite difference multi-resolution HWENO schemes for one dimensional hyperbolic conservation laws 

(2.1). We discrete the computational domain as before and approximate (2.2) by conservative finite difference schemes{
dui(t)

dt = − 1
h ( f̂ i+1/2 − f̂ i−1/2),

dvi(t)
dt = − 1

h (ĝi+1/2 − ĝi−1/2),
(2.50)

where ui(t) and vi(t) are the numerical approximations to the point values u(xi, t) and v(xi, t) respectively, and the nu-
merical fluxes{

f̂ i+1/2 = f̂ (ui−r, ..., ui+s),

ĝi+1/2 = ĝ(ui−r, ..., ui+s; vi−r, ..., vi+s),
(2.51)

satisfy the general conditions, such as Lipschitz continuity and consistency with the physical fluxes.
To maintain stability, we also need to consider the upwind property of the scheme. Thus, we split the fluxes f (u) and 

g(u, v) into two parts{
f (u) = f +(u) + f −(u), d

du f +(u) ≥ 0, d
du f −(u) ≤ 0,

g(u, v) = g+(u, v) + g−(u, v), d
dv g+(u, v) ≥ 0, d

dv g−(u, v) ≤ 0,
(2.52)

where⎧⎨
⎩

f ±(u) = 1
2

(
f
(
u
)± αu

)
,

g±(u, v) = 1
2

(
g
(
u, v

)± αv
)
,

(2.53)

with α = max
u

| f ′(u)| over the whole range of u. Take ui = f +(ui), vi = g+(ui, vi), and repeat the 1D reconstruction algo-

rithm in Section 2.1.1 to obtain f̂ +
i+1/2 = u−

i+1/2, ĝ+
i+1/2 = v−

i+1/2. Likewise, take ui = f −(ui), vi = g−(ui, vi), and repeat the 
1D reconstruction algorithm in Section 2.1.1 to obtain f̂ −

i+1/2 = u+
i+1/2, ĝ−

i+1/2 = v+
i+1/2. Then the numerical fluxes are given 

by {
f̂ i+1/2 = f̂ +

i+1/2 + f̂ −
i+1/2,

ĝi+1/2 = ĝ+
i+1/2 + ĝ−

i+1/2.
(2.54)

After all these numerical fluxes on the cell boundaries are obtained,we discretize the ordinary differential equation 
system (2.26) of the semi-discrete scheme (2.50) by the third-order TVD Runge-Kutta method (2.27) to advance in time.
10
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2.2.2. Two dimensional case
While the finite difference scheme has comparable cost and performance as the finite volume scheme in one dimension, 

in two dimensions the finite difference scheme is simpler and more cost-effective than the finite volume scheme, as we can 
perform differentiations dimension by dimension, but integrals must be performed in two dimensional cells. To be more 
specific, we describe in detail the design of the finite difference multi-resolution HWENO schemes for two dimensional 
hyperbolic conservation laws (2.28). With the same discretization of the computational domain as before, we approximate 
(2.29) by⎧⎪⎨

⎪⎩
duij(t)

dt = − 1
h ( f̂ i+1/2, j − f̂ i−1/2, j) − 1

h (ĝi, j+1/2 − ĝi, j−1/2),
dvij(t)

dt = − 1
h (p̂i+1/2, j − p̂i−1/2, j) − 1

h (r̂i, j+1/2 − r̂i, j−1/2),
dwij(t)

dt = − 1
h (q̂i+1/2, j − q̂i−1/2, j) − 1

h (ŝi, j+1/2 − ŝi, j−1/2),

(2.55)

where uij(t), vij(t) and wij(t) are the numerical approximations to the point values u(xi, y j, t), v(xi, y j, t) and w(xi, y j, t)
respectively and the numerical fluxes f̂ i±1/2, j , p̂i±1/2, j , ĝi, j±1/2 and ŝi, j±1/2 are reconstructed by the method straight-
forwardly extended from the one-dimensional method in a dimension-by-dimension manner. The only exception is the 
reconstruction of q̂i±1/2, j and r̂i, j±1/2 for the mixed derivative quantities f (u)yx and g(u)xy respectively.

2D reconstruction algorithm of the mixed derivative quantities:
Step 1. Flux splitting.
Firstly, split the fluxes into two parts{

q(u, w) = q+(u, w) + q−(u, w), d
dw q+(u, w) ≥ 0, d

dw q−(u, w) ≤ 0,

r(u, v) = r+(u, v) + r−(u, v), d
dv r+(u, v) ≥ 0, d

dv r−(u, v) ≤ 0,
(2.56)

where⎧⎨
⎩

q±(u, w) = 1
2

(
q
(
u, w

)± αw
)
,

r±(u, v) = 1
2

(
r
(
u, v

)± αv
)
,

(2.57)

where α = max
u

| f ′(u)| over the whole range of u.

Step 2. Reconstruction of {q̂±
i+1/2, j , r̂

±
i, j+1/2}.

Secondly, choose a stencil {Ii−1, j, Ii, j, Ii+1, j} at y = y j and interpolate a quadratic polynomial Q (x) which satisfies

1

h

∫
Ik, j

Q (x)dx = q+
k, j, k = i − 1, i, i + 1, (2.58)

then the approximation of q+(xi+1/2, y j) is

q̂+
i+1/2, j ≈ Q (x−

i+1/2) = −1

6
q+

i−1, j + 5

6
q+

i, j + 1

3
q+

i+1, j. (2.59)

As for q̂−
i+1/2, j , the reconstruction procedure is mirror symmetric with respect to xi+1/2 of that for q̂+

i+1/2, j above

q̂−
i+1/2, j ≈ Q (x+

i+1/2) = 1

3
q−

i, j + 5

6
q−

i+1, j − 1

6
q−

i+2, j. (2.60)

The reconstruction of r̂±
i, j+1/2 in the y-direction is similar.

Step 3. Calculation of the numerical fluxes.
Finally, we obtain the numerical fluxes q̂i+1/2, j and r̂i, j+1/2 as{

q̂i+1/2, j = q̂+
i+1/2, j + q̂−

i+1/2, j,

r̂i, j+1/2 = r̂+
i, j+1/2 + r̂−

i, j+1/2.
(2.61)

Remark 6. We would like to mention that we have tried many methods to treat the mixed derivatives, but have en-
countered a common difficulty that they are all unstable except for the method described above. A significant drawback of 
the method described above is that the accuracy is now limited to fourth order. It would be interesting to obtain a stable 
sixth-order discretization for these mixed derivatives in the finite difference setting.

Remark 7. For the systems, the reconstruction is performed in the local characteristic directions to avoid oscillations near 
the discontinuities, see [21] for details.

Finally just as what we did for the one dimensional case, after all these numerical fluxes on the cell boundaries are 
obtained,we discretize the ordinary differential equation system (2.26) of the semi-discrete scheme (2.55) by the third-order 
TVD Runge-Kutta method (2.27) to advance in time.
11
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Table 3.1
μt +

(
μ2

2

)
x

= 0. The initial condition μ(x, 0) = 0.5 + sin(πx). Periodic boundary condition. T = 0.5/π . 
HWENO6-FV and HWENO6-FD schemes. L1 and L∞ .

HWENO6-FV scheme HWENO6-FD scheme

Grid points L1 error order L∞ error order L1 error order L∞ error order
100 9.87E-09 1.34E-07 8.18E-09 1.05E-07
120 3.21E-09 6.16 4.72E-08 5.73 2.34E-09 6.88 3.69E-08 5.72
140 1.29E-09 5.91 1.93E-08 5.79 8.41E-10 6.63 1.17E-08 7.43
160 5.71E-10 6.11 8.88E-09 5.83 3.55E-10 6.47 5.41E-09 5.79
180 2.84E-10 5.92 4.46E-09 5.86 1.68E-10 6.35 2.71E-09 5.87
200 1.52E-10 5.92 2.40E-09 5.88 8.76E-11 6.17 1.45E-09 5.91

Fig. 3.1. 1D-Burgers’ equation. T = 1.5/π . Left: the numerical and exact solutions; right: the numerical and exact solutions zoomed in. Solid line: the exact 
solution; triangles: the result of HWENO6-FV scheme; squares: the result of HWENO6-FD scheme. Number of cells: 200.

3. Numerical tests

In this section, we present a number of typical experiments to test the performances of the finite volume and finite 
difference multi-resolution HWENO schemes which are termed as HWENOκ-FV and HWENOκ-FD respectively where κ is 
the order of the scheme. For all the numerical tests in this paper, the third-order Runge-Kutta method (2.27) is used in 
time, and the CFL number is set as 0.6 for all the one and two dimensional cases, except for the accuracy tests where a 
suitably reduced time step is used to guarantee the dominance of the spatial error. As mentioned before, we take the linear 
weights as γ 1,4 = 1, γ 2,4 = 10, γ 3,4 = 100 and γ 4,4 = 1000 for both the finite volume and finite difference schemes in the 
one and two dimensions in this paper.

Example 3.1. First, we solve the following one-dimensional nonlinear scalar Burgers’ equation:

μt +
(

μ2

2

)
x
= 0, 0 < x < 2, (3.1)

with the initial condition μ(x, 0) = 0.5 + sin(πx) and periodic boundary condition. When t = 0.5/π , the solution is still 
smooth, and the corresponding errors and orders by HWENO6-FV and HWENO6-FD schemes are listed in Table 3.1. When 
t = 1.5/π , the solution is discontinuous, and the corresponding numerical solutions obtained by HWENO6-FV and HWENO6-
FD schemes are plotted in Fig. 3.1 against the reference exact solution.

Example 3.2. Next, we solve the following two-dimensional nonlinear scalar Burgers’ equation:

μt +
(

μ2

2

)
x
+
(

μ2

2

)
y
= 0, 0 < x, y < 4, (3.2)

with the initial condition μ(x, y, 0) = 0.5 + sin
(
π(x + y)/2

)
and periodic boundary condition. When t = 0.5/π , the solution 

is still smooth, and the corresponding errors and orders by HWENO6-FV and HWENO4-FD schemes are listed in Table 3.2. 
When t = 1.5/π , the solution is discontinuous, and the corresponding numerical solutions at x = y obtained by HWENO6-FV 
and HWENO4-FD schemes are plotted in Fig. 3.2 against the reference exact solution.
12
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Table 3.2
μt +

(
μ2

2

)
x
+
(

μ2

2

)
y

= 0. The initial condition μ(x, y, 0) = 0.5 + sin
(
π(x + y)/2

)
. Periodic boundary con-

dition. T = 0.5/π . HWENO6-FV and HWENO4-FD schemes. L1 and L∞ .

HWENO6-FV scheme HWENO4-FD scheme

Grid points L1 error order L∞ error order L1 error order L∞ error order
100 × 100 1.01E-07 1.49E-06 1.45E-06 1.42E-05
120 × 120 3.68E-08 5.53 5.57E-07 5.38 6.97E-07 4.00 7.15E-06 3.76
140 × 140 1.54E-08 5.65 2.38E-07 5.51 3.77E-07 3.99 3.93E-06 3.88
160 × 160 7.13E-09 5.78 1.13E-07 5.60 2.20E-07 4.03 2.31E-06 3.99
180 × 180 3.67E-09 5.65 5.79E-08 5.66 1.36E-07 4.05 1.43E-06 4.05
200 × 200 2.00E-09 5.76 3.17E-08 5.71 8.89E-08 4.07 9.37E-07 4.03

Fig. 3.2. 2D-Burgers’ equation. T = 1.5/π . Left: the numerical and exact solutions at x = y; right: the numerical and exact solutions at x = y zoomed in. 
Solid line: the exact solution; triangles: the result of HWENO6-FV scheme; squares: the result of HWENO4-FD scheme. Number of cells: 200×200.

Example 3.3. Then, we solve the following one-dimensional compressible Euler equations:

∂

∂t

⎛
⎝ ρ

ρμ
E

⎞
⎠+ ∂

∂x

⎛
⎝ ρμ

ρμ2 + p
μ(E + p)

⎞
⎠= 0, 0 < x < 2π, (3.3)

where ρ is the density, μ is the velocity, E is the total energy and p is the pressure. The initial conditions are

ρ(x,0) = 1+0.2 sin(x)
2
√

3
, μ(x,0) = √

γ ρ(x,0), p(x,0) = ρ(x,0)γ . (3.4)

The boundary conditions are periodic. Under above initial conditions, boundary conditions and special choice of the param-
eter γ = 3, we can prove that 2

√
3ρ(x, t) is the exact solution of the following Burgers’ equation:{

μt +
(

μ2

2

)
x
= 0, 0 < x < 2π,

μ(x,0) = 1 + 0.2 sin(x),
(3.5)

and the corresponding velocity and pressure satisfy

μ(x, t) = √
γ ρ(x, t), p(x, t) = ρ(x, t)γ . (3.6)

It is easy to verify that the solution of the above Burgers’ equation is smooth until time T = 5. We compute the solution up 
to T = 3, and the corresponding errors and orders by HWENO6-FV and HWENO6-FD schemes are listed in Table 3.3.

Example 3.4. Next, we solve the following two-dimensional compressible Euler equations:

∂

∂t

⎛
⎜⎜⎝

ρ
ρμ
ρν
E

⎞
⎟⎟⎠+ ∂

∂x

⎛
⎜⎜⎝

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎞
⎟⎟⎠+ ∂

∂ y

⎛
⎜⎜⎝

ρν
ρμν

ρν2 + p
ν(E + p)

⎞
⎟⎟⎠= 0, 0 < x, y < 4π, (3.7)
13
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Table 3.3
1D-Euler equations: The initial condition ρ(x, 0) = 1+0.2 sin(x)

2
√

3
, μ(x, 0) = √

γρ(x, 0) and p(x, 0) = ρ(x, 0)γ . 
Periodic boundary condition. T = 3. HWENO6-FV and HWENO6-FD schemes. L1 and L∞ .

HWENO6-FV scheme HWENO6-FD scheme

Grid points L1 error order L∞ error order L1 error order L∞ error order
100 3.20E-08 7.37E-07 3.36E-08 7.87E-07
120 1.15E-08 5.63 2.67E-07 5.57 1.19E-08 5.69 2.84E-07 5.58
140 4.85E-09 5.59 1.21E-07 5.13 5.06E-09 5.54 1.26E-07 5.27
160 2.28E-09 5.66 5.48E-08 5.93 2.36E-09 5.72 5.75E-08 5.89
180 1.17E-09 5.65 2.97E-08 5.21 1.20E-09 5.70 3.06E-08 5.35
200 6.35E-10 5.81 1.56E-08 6.08 6.51E-10 5.84 1.63E-08 6.00

Table 3.4

2D-Euler equations: The initial condition ρ(x, y, 0) = 1+0.2 sin(
x+y

2 )√
6

, μ(x, y, 0) = ν(x, y, 0) =
√

γ
2 ρ(x, y, 0)

and p(x, y, 0) = ρ(x, y, 0)γ . Periodic boundary condition. T = 3. HWENO6-FV and HWENO4-FD schemes. 
L1 and L∞ .

HWENO6-FV scheme HWENO4-FD scheme

Grid points L1 error order L∞ error order L1 error order L∞ error order
100 × 100 7.24E-07 1.45E-05 7.27E-06 1.05E-04
120 × 120 2.90E-07 5.01 6.35E-06 4.54 3.71E-06 3.69 5.83E-05 3.24
140 × 140 1.29E-07 5.26 2.98E-06 4.91 2.10E-06 3.71 3.38E-05 3.54
160 × 160 6.28E-08 5.40 1.46E-06 5.36 1.27E-06 3.76 2.08E-05 3.62
180 × 180 3.41E-08 5.19 8.21E-07 4.86 8.11E-07 3.81 1.37E-05 3.58
200 × 200 1.94E-08 5.37 4.56E-07 5.58 5.43E-07 3.81 9.15E-06 3.81

where ρ is the density, μ is the velocity in the x-direction, ν is the velocity in the y-direction, E is the total energy and p
is the pressure. The initial conditions are

ρ(x, y,0) = 1+0.2 sin(
x+y

2 )√
6

, μ(x, y,0) = ν(x, y,0) =
√

γ
2 ρ(x, y,0), p(x, y,0) = ρ(x, y,0)γ . (3.8)

The boundary conditions are periodic in both directions. Under above initial conditions, boundary conditions and special 
choice of the parameter γ = 3, we can prove that 

√
6ρ(x, y, t) is the exact solution of the following Burgers’ equation:{

μt +
(

μ2

2

)
x
+
(

μ2

2

)
y
= 0, 0 < x, y < 4π,

μ(x, y,0) = 1 + 0.2 sin(
x+y

2 ),
(3.9)

and the corresponding velocity and pressure satisfy

μ(x, y, t) = ν(x, y, t) =
√

γ
2 ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ . (3.10)

It is easy to verify that the solution of the above Burgers’ equation is smooth until time T = 5. We compute the solution up 
to T = 3, and the corresponding errors and orders by HWENO6-FV and HWENO4-FD schemes are listed in Table 3.4.

Example 3.5. Consider the isentropic vortex problem [21] for the two-dimensional compressible Euler equations (3.7). The 
mean flow is ρ = p = u = v = 1. We add an isentropic vortex perturbation centered at (x0, y0) in (u, v) and T = p/ρ , with 
no perturbation in S = p/ργ to the mean flow,

(δu, δv) = ε

2π
e0.5(1−r2)(− ȳ, x̄), δT = (γ − 1)ε2

8γπ2
e1−r2

(3.11)

where (x̄, ȳ) = (x − x0, y − y0), r2 = x̄2 + ȳ2. The exact solution is the passive convection of the vortex with the mean 
velocity. The domain is taken as [−10, 10] × [−10, 10] and (x0, y0) = (0, 0). The boundary conditions are periodic in both 
directions. We set γ = 1.4 and the vortex strength ε = 1.0.

We compute the solution up to T = 5, and the corresponding errors and orders by HWENO6-FV and HWENO4-FD 
schemes are listed in Table 3.5.

Comment: According to the results listed in above five tables Table 3.1, Table 3.2, Table 3.3, Table 3.4 and Table 3.5, we 
can see that both the finite volume and finite difference HWENO schemes achieve their designed order of accuracy and 
that the errors of the finite volume schemes are bigger than those of the finite difference schemes on the same meshes for 
Example 3.1, while Example 3.3 shows the opposite result. From Fig. 3.1 and Fig. 3.2, we can observe that both the finite 
volume and finite difference HWENO schemes work well in comparison with the exact solutions and there is not much 
difference between these two schemes.
14
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Table 3.5

The isentropic vortex problem: The initial condition ρ(x, y, 0) = (1 − (γ−1)ε2

8γπ2 e1−r2
)

1
γ −1

, 
(μ(x, y, 0), ν(x, y, 0)) = 1 + ε

2π e0.5(1−r2)(− ȳ, ̄x) and p(x, y, 0) = ρ(x, y, 0)γ . Periodic boundary con-
dition. T = 5. HWENO6-FV and HWENO4-FD schemes. L1 and L∞ .

HWENO6-FV scheme HWENO4-FD scheme

Grid points L1 error order L∞ error order L1 error order L∞ error order
100 × 100 2.98E-07 3.05E-05 6.80E-06 2.58E-04
120 × 120 1.17E-07 5.13 1.22E-05 5.04 3.56E-06 3.55 1.50E-04 2.95
140 × 140 5.21E-08 5.26 5.33E-06 5.36 2.09E-06 3.46 8.71E-05 3.54
160 × 160 2.56E-08 5.32 2.57E-06 5.46 1.31E-06 3.52 5.37E-05 3.62
180 × 180 1.36E-08 5.39 1.36E-06 5.38 8.60E-07 3.54 3.53E-05 3.56
200 × 200 7.67E-09 5.41 7.57E-07 5.59 5.91E-07 3.56 2.40E-05 3.66

Fig. 3.3. The Buckley-Leverett problem. T = 0.4. Left: the numerical and exact solutions; right: the numerical and exact solutions zoomed in. Solid line: the 
exact solution; triangles: the result of HWENO6-FV scheme; squares: the result of HWENO6-FD scheme. Number of cells: 200.

Example 3.6. The Buckley-Leverett problem: one-dimensional nonlinear non-convex scalar Buckley-Leverett problem:

μt +
(

4μ2

4μ2 + (1 − μ)2

)
x
= 0, −1 < x < 1, (3.12)

with the initial condition:

μ =
{

1, −0.5 < x < 0,

0, elsewhere.
(3.13)

We present the computed solutions obtained by HWENO6-FV and HWENO6-FD schemes at T = 0.4 in Fig. 3.3 against 
the reference exact solution. The exact solution is a shock-rarefaction-contact discontinuity mixture and some high-order 
schemes may fail to converge to the correct entropy solution for this problem. From Fig. 3.3, we can observe that both the 
finite volume and finite difference HWENO schemes could converge to the right solution and gain good resolution.

Example 3.7. The Lax problem: one-dimensional compressible Euler equations (3.3) with the Riemann initial condition:

(ρ,μ, p)T =
{

(0.445,0.698,3.528)T , −0.5 < x < 0,

(0.5,0,0.571)T , 0 < x < 0.5.
(3.14)

We present the computed density ρ obtained by HWENO6-FV and HWENO6-FD schemes at T = 0.16 in Fig. 3.4 against the 
reference exact solution.

Example 3.8. The shock density wave interaction problem: one-dimensional compressible Euler equations (3.3) with a mov-
ing Mach=3 shock interaction with sine waves in density:

(ρ,μ, p)T =
{

(3.857143,2.629369,10.333333)T , −5 < x < −4,(
1 + 0.2 sin(5x),0,1

)T
, −4 < x < 5.

(3.15)
15
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Fig. 3.4. The Lax problem. T = 0.16. Left: density; right: density zoomed in. Solid line: the exact solution; triangles: the result of HWENO6-FV scheme; 
squares: the result of HWENO6-FD scheme. Number of cells: 200.

Fig. 3.5. The shock density wave interaction problem. T = 1.8. Left: density; right: density zoomed in. Solid line: the exact solution; triangles: the result of 
HWENO6-FV scheme; squares: the result of HWENO6-FD scheme. Number of cells: 400.

We present the computed density ρ obtained by HWENO6-FV and HWENO6-FD schemes at T = 1.8 in Fig. 3.5 against the 
reference “exact” solution which is a converged solution computed by the fifth-order finite difference WENO scheme [12]
with 8000 grid points.

Example 3.9. The blast wave problem: one-dimensional compressible Euler equations (3.3) with the initial condition:

(ρ,μ, p)T =
⎧⎨
⎩

(1,0,103)T , 0 < x < 0.1,

(1,0,10−2)T , 0.1 < x < 0.9,

(1,0,102)T , 0.9 < x < 1.

(3.16)

We present the computed density ρ obtained by HWENO6-FV and HWENO6-FD schemes at T = 0.038 in Fig. 3.6 against 
the reference “exact” solution which is a converged solution computed by the fifth-order finite difference WENO scheme 
[12] with 16000 grid points.

Example 3.10. The Lax problem: two-dimensional compressible Euler equations (3.7) with the Riemann initial condition:

(ρ,μ,ν, p)T =
{

(0.445,0.698,0,3.528)T , −0.5 < x′ < 0,

(0.5,0,0,0.571)T , 0 < x′ < 0.5,
(3.17)
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Fig. 3.6. The blast wave problem. T = 0.038. Left: density; right: density zoomed in. Solid line: the exact solution; triangles: the result of HWENO6-FV 
scheme; squares: the result of HWENO6-FD scheme. Number of cells: 800.

Fig. 3.7. The Lax problem. T = 0.16. Left: density cut along y = x; right: density zoomed in. Solid line: the exact solution; triangles: the result of HWENO6-
FV scheme; squares: the result of HWENO4-FD scheme. Number of cells: 142×142 (The grid is selected in this way to compare with the corresponding 
one-dimensional case, since there is a factor of 

√
2 adjustment to achieve effectively equivalent mesh sizes in 1D and in 2D along the diagonal line).

where x′ denotes the x-axis of the new rectangular coordinate system which is obtained by rotating the original rectangular 
coordinate system counterclockwise by 45 degrees. The similar one-dimensional boundary condition is applied in the x′-
direction. Since the velocity is zero in the y′-direction, all the variables have the same value along y′ = constant . We present 
the computed density ρ obtained by HWENO6-FV and HWENO4-FD schemes at T = 0.16 along y = x in Fig. 3.7 against the 
reference exact solution.

Example 3.11. The shock density wave interaction problem: two-dimensional compressible Euler equations (3.7) with a 
moving Mach=3 shock interaction with sine waves in density:

(ρ,μ,ν, p)T =
{

(3.857143,2.629369,0,10.333333)T , −5 < x′ < −4,(
1 + 0.2 sin(5x′),0,0,1

)T
, −4 < x′ < 5,

(3.18)

where x′ denotes the x-axis of the new rectangular coordinate system which is obtained by rotating the original rectangular 
coordinate system counterclockwise by 45 degrees. The similar one-dimensional boundary condition is applied in the x′-
direction. Since the velocity is zero in the y′-direction, all the variables have the same value along y′ = constant . We present 
the computed density ρ obtained by HWENO6-FV and HWENO4-FD schemes at T = 1.8 along y = x in Fig. 3.8 against the 
reference “exact” solution which is a converged solution computed by the fifth-order finite difference WENO scheme [12]
with 8000 grid points.
17



Fig. 3.8. The shock density wave interaction problem. T = 1.8. Left: density cut along y = x; right: density zoomed in. Solid line: the exact solution; 
triangles: the result of HWENO6-FV scheme; squares: the result of HWENO4-FD scheme. Number of cells: 283×283 (The grid is selected in this way to 
compare with the corresponding one-dimensional case, since there is a factor of 

√
2 adjustment to achieve effectively equivalent mesh sizes in 1D and in 

2D along the diagonal line).

Example 3.12. Double Mach reflection problem: two-dimensional compressible Euler equations (3.7) in a computational 
domain [0, 4] × [0, 1] with a reflection wall lying at the bottom of the domain starting from x = 1

6 , y = 0, making a 60◦
angle with the x-axis. For the bottom of the domain, the reflection boundary condition is used at the reflection wall, and 
the exact post-shock condition is imposed at the rest of the bottom boundary (the part from x = 0 to x = 1

6 ). For the top 
of the domain, the boundary is the exact motion of the Mach 10 shock with γ = 1.4. We present the computed density ρ
obtained by HWENO6-FV and HWENO4-FD schemes at t = 0.2 in the region of [0, 3] × [0, 1] in Fig. 3.9 and the blow-up 
region around the double Mach stem in Fig. 3.10.

Example 3.13. Forward step problem: two-dimensional compressible Euler equations (3.7) in a Mach 3 wind tunnel with 
a step. The wind tunnel is one length unit wide and three length units long with a 0.2 length units high step located 0.6 
length units from the left-side end of the tunnel. The problem is initialized by a right-going Mach 3 flow at the beginning. 
The reflection boundary condition is used along the wall of the tunnel, the inflow boundary condition is imposed at the 
entrance, and the outflow boundary condition is imposed at the exit. We present the computed density ρ obtained by 
HWENO6-FV and HWENO4-FD schemes at t = 4 in the region of [0, 3] × [0, 1] in Fig. 3.11.

Comment: From above eight examples, we can see that both the finite volume and finite difference HWENO schemes work 
well in comparison with their “exact” solutions. Furthermore, there is not much difference between these two schemes 
for Example 3.6 and Example 3.7, while the finite volume HWENO schemes have better resolutions and sharper shock 
transitions than the finite difference HWENO schemes on the same meshes for the other examples except Example 3.10 and 
Example 3.13. This might be due to the fact that very global Lax-Friedrichs flux splitting (where α is chosen as a scalar 
for all components and all cells) is used in the finite difference scheme, causing larger numerical viscosity than the finite 
volume scheme. Also, for the two dimensional case, an extra obvious reason is that the finite volume HWENO scheme has 
a higher order of accuracy. We note that for Example 3.10 and Example 3.13, the result of the finite difference HWENO 
scheme is actually better than that of the finite volume scheme, the reason of this is not clear.

4. Concluding remarks

In this paper, we have designed a new type of finite volume and finite difference multi-resolution HWENO schemes for 
solving the hyperbolic conservation laws in one and two dimensional cases on structured meshes. In comparison with the 
classical HWENO schemes, the new features of these HWENO schemes are their simplicity since we only need to perform 
the spatial HWENO reconstruction for the function values but perform high-order linear reconstruction for its first-order 
derivative values and hierarchical structure in obtaining increasingly higher order of accuracy with unequal sized hierarchical 
central spatial stencils. These HWENO schemes are achieved by artificially setting positive linear weights as long as their 
sum equals one, calculating smoothness indicators, designing new nonlinear weights, and then obtaining a nonlinear convex 
combination of all the candidate polynomials. The features which are attractive include that there is no need to modify 
the first-order derivative values of the target cell before the reconstruction; no need to apply any positivity-preserving flux 
limiter for simulations with strong shocks, at least for the examples we have calculated in this paper; and that the CFL 
number can be taken to be 0.6 for both the one and two dimensional cases, which is an improvement from 0.2 in [15,16]. 
J. Li, C.-W. Shu and J. Qiu Journal of Computational Physics 446 (2021) 110653
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Fig. 3.9. Double Mach reflection problem. T = 0.2. 30 equally spaced density contours from 1.5 to 22.7. Top: HWENO6-FV; bottom: HWENO4-FD. Number 
of cells: 1600×400 in the region of [0, 4] × [0, 1].

Fig. 3.10. Double Mach reflection problem. T = 0.2. 30 equally spaced density contours from 1.5 to 22.7, zoom-in pictures around the Mach stem. Left: 
HWENO6-FV; right: HWENO4-FD. Number of cells: 1600×400 in the region of [0, 4] × [0, 1].
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Fig. 3.11. Forward step problem. T = 4. 30 equally spaced density contours from 0.32 to 6.15. Top: HWENO6-FV; bottom: HWENO4-FD. Number of cells: 
600 × 200 in the region of [0, 3] × [0, 1].

In comparison with the multi-resolution WENO schemes, our major advantage is the compactness in the reconstruction. The 
framework of this multi-resolution HWENO spatial reconstruction procedure would be particularly efficient and simple on 
unstructured meshes, the study of which is our ongoing work.
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