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The relativistic hydrodynamics (RHD) equations have three crucial intrinsic physical constraints 
on the primitive variables: positivity of pressure and density, and subluminal fluid velocity. 
However, numerical simulations can violate these constraints, leading to nonphysical results or 
even simulation failure. Designing genuinely physical-constraint-preserving (PCP) schemes is very 
difficult, as the primitive variables cannot be explicitly reformulated using conservative variables 
due to relativistic effects. In this paper, we propose three efficient Newton–Raphson (NR) 
methods for robustly recovering primitive variables from conservative variables. Importantly, 
we rigorously prove that these NR methods are always convergent and PCP, meaning they 
preserve the physical constraints throughout the NR iterations. The discovery of these robust 
NR methods and their PCP convergence analyses are highly nontrivial and technical. Our NR 
methods are versatile and can be seamlessly incorporated into any RHD schemes that require the 
recovery of primitive variables. As an application, we apply them to design PCP finite volume 
Hermite weighted essentially non-oscillatory (HWENO) schemes for solving the RHD equations. 
Our PCP HWENO schemes incorporate high-order HWENO reconstruction, a PCP limiter, and 
strong-stability-preserving time discretization. We rigorously prove the PCP property of the fully 
discrete schemes using convex decomposition techniques. Moreover, we suggest the characteristic 
decomposition with rescaled eigenvectors and scale-invariant nonlinear weights to enhance the 
performance of the HWENO schemes in simulating large-scale RHD problems. Several demanding 
numerical tests are conducted to demonstrate the robustness, accuracy, and high resolution of the 
proposed PCP HWENO schemes and to validate the efficiency of our NR methods.
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1. Introduction

Relativistic fluid flows widely appear in many astrophysical phenomena, such as gamma-ray bursts, supernova explosions, ex-
tragalactic jets, and accretion onto black holes. When the velocity of fluid is close to the speed of light, the classic compressible 
Euler equations are no longer valid due to the relativistic effect. The governing equations of the 𝑑-dimensional special relativistic 
hydrodynamics (RHD) can be written into a system of conservation laws as follows

𝜕𝑼

𝜕𝑡
+

𝑑∑
𝑖=1

𝜕𝑭 𝑖 (𝑼 )
𝜕𝑥𝑖

= 𝟎, (1.1)

where the conservative vector and flux vectors are given by

𝑼 =
(
𝐷,𝑚1,… ,𝑚𝑑 ,𝐸

)⊤
, (1.2)

𝑭 𝑖 =
(
𝐷𝑣𝑖,𝑚1𝑣𝑖 + 𝑝𝛿1,𝑖,… ,𝑚𝑑𝑣𝑖 + 𝑝𝛿𝑑,𝑖,𝑚𝑖

)⊤
. (1.3)

The conservative variables 𝐷, 𝒎 = (𝑚1, … , 𝑚𝑑 ), and 𝐸 represent the mass density, the momentum vector, and the total energy, 
respectively. Let 𝑸 = (𝜌,𝒗, 𝑝)⊤ denote the primitive variable vector, where 𝒗 = (𝑣1, … , 𝑣𝑑 ) is the fluid velocity vector, and 𝜌, 𝑝
represent the rest-mass density and the kinetic pressure, respectively. Then 𝑼 can be calculated from 𝑸 by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐷 = 𝜌𝑊 ,

𝒎 =𝐷ℎ𝑊 𝒗,

𝐸 =𝐷ℎ𝑊 − 𝑝,

ℎ = 1 + 𝑒+ 𝑝

𝜌
,

𝑊 = 1∕
√
1 − |𝒗|2,

(1.4)

along with the ideal equation of state (EOS) considered in this paper:

𝑒 = 𝑝

(𝛾 − 1)𝜌
,

where 𝛾 ∈ (1,2] is the adiabatic index. In (1.4), the velocity is normalized such that the speed of light is 1, 𝑊 denotes the Lorentz 
factor, ℎ is the specific enthalphy, and 𝑒 represents the specific internal energy. As seen from (1.4) and (1.3), both the conservative 
vector 𝑼 and the flux 𝑭 𝑖 are explicit functions of 𝑸. However, neither 𝑭 𝑖 nor 𝑸 can be explicitly expressed by 𝑼 . In the computations, 
in order to evaluate 𝑭 𝑖(𝐔) and the eigenvalues/eigenvectors of its Jacobian matrix 𝜕𝑭 𝑖(𝐔)

𝜕𝑼
, we have to first recover the corresponding 

primitive variables 𝑸 from 𝐔. This recovery procedure is complicated and typically requires one to numerically solve nonlinear 
algebraic equations. Several recovery algorithms were proposed in the past decades. Most algorithms calculate one intermediate 
variable first and then compute other primitive variables using this intermediate variable. An algorithm based on the baryon number 
density as the intermediate variable was constructed in [6]. Several Newton–Raphson (NR) and analytical algorithms were proposed 
in [37] with a variety of intermediate variables such as the pressure, the velocity, and the Lorentz factor. In [38], three analytical 
algorithms were designed for recovering the primitive variables for three different EOS. However, the convergence of existing NR 
algorithms is not guaranteed in theory, while the analytical algorithms often suffer from low accuracy and high computational cost. 
Recently, three robust linearly convergent iterative recovery algorithms were studied in [4].

It is often extremely difficult to obtain the analytical solutions of the RHD system (1.1) due to the high nonlinearity. As a result, 
numerical simulation has become an effective and practical approach to study RHD. Various numerical methods have been developed 
for solving the RHD equations over the past few decades, including but not limited to finite difference methods [44,6,57,35,15,50], 
finite volume methods [28,42,1], discontinuous Galerkin (DG) methods [34,60,43,19], and so on. The interested readers are also 
referred to the review papers [11,25,26] for more related developments in this direction.

The RHD equations (1.1) are a nonlinear hyperbolic system of conservation laws, which can result in discontinuities in the entropy 
solution even with smooth initial conditions. As well-known, this type of equations are difficult to solve due to the possibility of 
generating numerical oscillations near the discontinuities. Series of high-order numerical schemes based on essentially non-oscillatory 
(ENO) and weighted ENO (WENO) methods have been developed for solving such hyperbolic conservation laws. The history of ENO 
and WENO schemes can be traced back to 1985, when Harten introduced the total variation diminishing (TVD) concept [12], which 
formed the basis of the ENO schemes [13,14]. In 1994, Liu, Osher, and Chan proposed the first WENO scheme [24]. Jiang and Shu 
then improved upon it by giving the framework for the design of the smooth indicators and nonlinear weights in 1996 [18]. This kind 
of nonlinear weights enable the attainment of uniformly higher-order accuracy in smooth solutions, while simultaneously avoiding 
the emergence of numerical oscillations in discontinuous solutions. Since then, a lot of researches have sprung up on WENO schemes, 
including but not limited to [16,21,39,3]. Recently, Zhu and Qiu [64] proposed a simpler WENO construction, which is a convex 
combination of a fourth-degree polynomial and two linear polynomials with any three positive linear weights that sum to one. To 
address the issue of wide stencils in WENO schemes, Qiu and Shu developed Hermite WENO (HWENO) schemes [32,33], which 
can achieve higher-order accuracy with the same reconstruction stencils as WENO schemes. To reduce computational cost in WENO 
reconstruction, several hybrid WENO schemes [5,22,63] have been proposed. These schemes use linear schemes directly in smooth 
2

regions while still utilizing WENO schemes in the discontinuous regions. Recently, Zhao, Chen, and Qiu proposed several new finite 
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volume HWENO schemes [61,62]. Among them, the hybrid HWENO schemes [62] incorporate the thoughts behind hybrid schemes 
and the limiters in DG methods, making this kind of schemes more efficient and easier to implement. Compared to traditional WENO 
schemes, the HWENO schemes possess several advantages, such as more compact stencils in reconstructions, smaller numerical errors 
in smooth regions, and occasionally, higher resolution for non-smooth solutions.

Although the WENO and HWENO schemes are stable in many numerical simulations, they are generally not physical-constraint-
preserving (PCP), namely, they do not always preserve the intrinsic physical constraints: for the RHD equations (1.1), such constraints 
include the positivity of pressure and rest-mass density, as well as the subluminal constraint on the fluid velocity. For the RHD 
equations (1.1), all the admissible states 𝑼 satisfying these constraints form the following set

0 = {𝑼 = (𝐷,𝒎,𝐸)⊤ ∶ 𝜌(𝑼 ) > 0, 𝑝(𝑼 ) > 0, |𝒗(𝑼 )| < 1
}
. (1.5)

In fact, preserving the numerical solutions in this set 0 is essential, because if any of these constraints are violated in the numerical 
computations, the corresponding discrete equations would become ill-posed and the simulation would break down. As we mentioned, 
in the RHD case, the primitive variables cannot be explicitly expressed by 𝑼 , so that the three functions 𝜌(𝑼 ), 𝑝(𝑼 ), and 𝒗(𝑼 ) in (1.5)
are implicit. This makes the study of PCP schemes for RHD nontrivial and more difficult than the non-relativistic hydrodynamics. In 
recent years, there are lots of efforts on developing high-order PCP or bound-preserving schemes for hyperbolic conservation laws via 
two types of limiters. The first type of limiter can be used in the finite volume and DG frameworks and was first proposed by Zhang 
and Shu to keep the maximum-principle-preserving property for scalar conservation laws [58] and the positivity-preserving property 
for the non-relativistic Euler equations [59]. The second type of limiter is a flux-correction limiter that modifies the high-order flux 
with a first-order PCP flux to obtain a new flux with high accuracy and PCP property; cf. [54,53,17]. The interested readers are 
referred to the reviews [55,40] for more related works.

The first PCP work on RHD was made in [50], which provided a rigorous proof for the PCP property of the local Lax–Friedrichs 
flux and proposed the PCP finite difference WENO schemes for RHD. The following explicit equivalent form of the admissible state 
set (1.5) was also proved in [50]

 =
{
𝑼 = (𝐷,𝒎,𝐸)⊤ ∶ 𝐷 > 0, 𝑔(𝑼 ) ∶=𝐸 −

√
𝐷2 + |𝒎|2 > 0

}
, (1.6)

where 𝑔(𝑼 ) is a concave function, and moreover,  = 0 is a convex set. Qin, Shu, and Yang developed a bound-preserving DG 
method for RHD in [31]. The PCP Lagrangian finite volume schemes were designed in [23]. A PCP central DG method was proposed 
for RHD with a general EOS in [51]. The framework for designing provably high-order PCP methods for general RHD was established 
in [45]. More recently, a minimum principle on specific entropy and high-order accurate invariant region preserving numerical 
methods were studied for RHD in [47]. A PCP finite volume WENO method was developed on unstructured meshes in [4], where 
three robust algorithms were also introduced for recovering the primitive variables. Besides, the PCP schemes were also studied for 
the relativistic magnetohydrodynamics (MHD) in [52,48]. Most notably, the theoretical analyses in [52,46] based on the geometric 
quasilinearization technique [49] revealed that the PCP property of MHD schemes is strongly connected with a discrete divergence-
free condition on the magnetic field. In addition, a flux limiter was proposed in [36] to preserve the positivity of rest-mass density, 
and a subluminal reconstruction technique was designed for relativistic MHD in [1]. As we have mentioned, neither the flux 𝑭 𝑖 nor 
𝑸 can be explicitly expressed by 𝑼 in the RHD case. In order to evaluate the flux and the eigenvalues/eigenvectors of its Jacobian 
matrix, we have to recover the primitive variables 𝑸 from 𝐔. This recovery procedure requires solving a nonlinear algebraic equation 
by some root-finding algorithms. Although the PCP property 𝑼 ∈  guarantees the existence and uniqueness of the corresponding 
physical primitive variables in theory [50], it however does not ensure the convergence of the root-finding algorithms, nor the 
physical constraints of the computed primitive variables obtained by the root-finding algorithms.

This paper aims to design genuinely PCP schemes. We first propose three efficient PCP NR methods for robustly recovering 
primitive variables from conservative variables. Importantly, we rigorously prove that these NR methods are always convergent and 
PCP, meaning they preserve the physical constraints throughout the NR iterations. The discovery of these robust NR methods and 
their PCP convergence analyses are highly nontrivial and become the most significant contribution of this work. In particular, our 
analyses involve careful and detailed investigations of the convexity/concavity structures of the iterative functions. The proposed 
NR methods are versatile and can be integrated with any RHD schemes requiring the recovery of primitive variables, including 
but not limited to TVD, WENO, HWENO, and DG schemes for RHD. As an application, we apply our NR methods to develop 
robust and efficient high-order PCP finite volume HWENO schemes for the RHD equations (1.1). Our approach builds upon the NR 
methods, the hybrid high-order HWENO reconstruction proposed in [62], a PCP limiter, and strong-stability-preserving Runge–Kutta 
method for time discretization. We rigorously prove the PCP property of our HWENO schemes under a CFL condition, by using 
the Lax–Friedrichs splitting property and convex decomposition techniques. Moreover, we suggest the rescaled eigenvectors for 
characteristic decomposition and the scale-invariant nonlinear weights to address the issue of numerical oscillations arising from the 
wide range of variable spans in the RHD equations and enhance the performance of the HWENO schemes in simulating large-scale 
RHD problems. We implement the proposed one-dimensional (1D) and two-dimensional (2D) PCP HWENO schemes, and provide 
extensive challenging numerical tests to demonstrate the robustness, accuracy, and high resolution of our PCP HWENO schemes and 
to validate the efficiency of our NR methods.

This paper is organized as follows. Section 2 proposes three efficient PCP convergent NR methods for recovering primitive 
variables and provides the theoretical analysis on their convergence and PCP property. Section 3 introduces the 1D PCP finite 
volume HWENO method for RHD and provides the theoretical analysis of the PCP property. Section 4 extends the method and 
3

analysis to the RHD systems in two dimensions and the cylindrical coordinates. Section 5 conducts several numerical experiments 
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to demonstrate the PCP property, accuracy, and effectiveness of the PCP HWENO schemes and NR methods. Section 6 gives the 
conclusion of this paper.

2. Efficient PCP convergent Newton–Raphson methods for recovering primitive variables

In sections 3 and 4, we will develop a PCP HWENO method that ensures the numerical solutions of the conservative variables 𝐔
in the admissible state set . According to the analysis in [50], when 𝑼 ∈ , the corresponding primitive variables 𝑸 = (𝜌, 𝒗, 𝑝)⊤ are 
uniquely determined and satisfy the physical constraints

𝜌 > 0, 𝑝 > 0, |𝒗| < 1. (2.1)

When computing the fluxes 𝑭 𝑖(𝑼 ) with the conservative vectors 𝑼 ∈ , it is necessary to recover the primitive variables 𝑸 =
(𝜌, 𝒗, 𝑝)⊤ from 𝑼 . This recovery procedure requires solving a nonlinear algebraic equation by some root-finding algorithms, because 
there is no explicit expressions for 𝑸 in terms of 𝑼 . In the past decades, many algorithms recovering the primitive variables were 
proposed; see [37] for a review.

The PCP property 𝑼 ∈  guarantees the uniqueness of the corresponding physical primitive variables in theory. However, it does 
not ensure the convergence of the root-finding algorithms, nor the physical constraints (2.1) for the primitive variables computed by 
the root-finding algorithms. We would like to seek iterative root-finding algorithms that are convergent and PCP, namely, preserve 
the physical constraints (2.1) during the iteration process. In particular, we are interested in recovering the pressure 𝑝(𝑼 ) first; once 
𝑝(𝑼 ) is recovered, the velocity vector and the density can be calculated sequentially as follows:

𝒗(𝑼 ) =𝒎∕(𝐸 + 𝑝(𝑼 )), 𝜌(𝑼 ) =𝐷
√
1 − |𝒗(𝑼 )|2. (2.2)

We observe that, for a given 𝑼 ∈  satisfying 𝐷 > 0 and 𝐸 >
√

𝐷2 + |𝒎|2, if the recovered 𝑝(𝑼 ) > 0, then the calculation (2.2) leads 
to |𝒗(𝑼 )| < 1 and 𝜌(𝑼 ) > 0. Hence we propose the following definitions.

Definition 2.1. Given 𝑼 ∈ , a pressure-recovering algorithm is called PCP, if all the approximate pressures in the iterative sequence {
𝑝𝑛

}
𝑛≥1 are always positive.

Definition 2.2. Given 𝑼 ∈ , a pressure-recovering algorithm is called convergent, if the iterative sequence 
{
𝑝𝑛

}
𝑛≥1 converges to 

the physical pressure 𝑝(𝑼 ), namely, lim
𝑛→+∞

𝑝𝑛 = 𝑝(𝑼 ).

In [4], three PCP convergent pressure-recovering algorithms were developed. Those algorithms are based on bisection, fixed-
point iteration, and a hybrid iteration combining them, respectively. Consequently, those algorithms in [4] have only a first order of 
linear convergence. In this section, we develop three faster pressure-recovering algorithms, which are Newton–Raphson (NR) method 
and have a convergence order of 2. Furthermore, we will rigorously prove that the three proposed NR methods are both PCP and 
convergent.

2.1. NR-I method: monotonically convergent PCP NR iteration

As shown in [50], the true physical pressure 𝑝(𝑼 ) corresponding to a conservative vector 𝑼 = (𝐷, 𝒎, 𝐸)⊤ satisfies the following 
nonlinear algebraic equation:

Φ(𝑝) ∶= 𝑝

𝛾 − 1
−𝐸 + |𝒎|2

𝐸 + 𝑝
+𝐷

√
1 − |𝒎|2

(𝐸 + 𝑝)2
= 0. (2.3)

When 𝑼 ∈ , we can show that the function Φ(𝑝) is strictly monotonically increasing with respect to 𝑝 ∈ [0, +∞). Moreover, Φ(0) < 0
and lim

𝑝→+∞
Φ(𝑝) = +∞. This yields the equation (2.3) admits a unique positive solution, which is the true physical pressure 𝑝(𝑼). In 

addition, the equation (2.3) implies that the true physical pressure 𝑝(𝑼 ) satisfies

𝑝

𝛾 − 1
−𝐸 + |𝒎|2

𝐸 + 𝑝
< 0. (2.4)

A natural idea is to directly solve equation (2.3) by using the NR method. Unfortunately, the numerical experiments in [4] indicate 
that the convergence of such a NR method requires a good initial guess, and the approximate pressure may become negative during 
the NR iterations.

In order to introduce our monotonically convergent NR method, we define

ℎ1(𝑝) ∶=
(|𝒎|2 + (𝐸 + 𝑝)

(
𝑝

𝛾 − 1
−𝐸

))2
, (2.5)

ℎ2(𝑝) ∶=𝐷2 ((𝐸 + 𝑝)2 − |𝒎|2) . (2.6)
4

After a simple transformation of (2.3), we obtain a quartic equation of 𝑝:
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Fig. 1. The graphs of ℎ1(𝑝), ℎ2(𝑝), and 𝜙(𝑝).

𝜙(𝑝) ∶= (𝛾 − 1)2
[
ℎ1(𝑝) − ℎ2(𝑝)

]
= 𝑐0 + 𝑐1𝑝+ 𝑐2𝑝

2 + 𝑐3𝑝
3 + 𝑝4 = 0 (2.7)

with ⎧⎪⎪⎨⎪⎪⎩

𝑐0 = (|𝒎|2 −𝐸2)(|𝒎|2 −𝐸2 +𝐷2)(𝛾 − 1)2,
𝑐1 = 2𝐸(2 − 𝛾)(|𝒎|2 −𝐸2)(𝛾 − 1) − 2𝐸𝐷2(𝛾 − 1)2,
𝑐2 =𝐸2(𝛾2 − 6𝛾 + 6) + 2|𝒎|2(𝛾 − 1) −𝐷2(𝛾 − 1)2,
𝑐3 = 2𝐸(2 − 𝛾).

(2.8)

The graphs of ℎ1(𝑝), ℎ2(𝑝), and 𝜙(𝑝) are shown in Fig. 1.
The transformation from (2.3) to (2.7) produces some additional (nonphysical) roots, which fail to meet the constraints 𝑝 > 0 and 

(2.4). In the following, we will prove that the minimum positive root of equation (2.7) corresponds to the physical pressure 𝑝(𝑼 ). 
Furthermore, we will propose a practical NR method that are highly efficient and can be proven to monotonically converge to the 
physical pressure 𝑝(𝑼 ).

Lemma 2.1. Given 𝑼 ∈ , we have 𝑐0 > 0, 𝑐1 < 0, and 𝑐3 ≥ 0. Furthermore, 𝑐3 = 0 if and only if 𝛾 = 2.

Proof. Since 𝐷 > 0, 𝐸 >
√

𝐷2 + |𝒎|2, and 𝛾 ∈ (1, 2], we have

(i) 𝑐0 = (𝐸2 − |𝒎|2)(𝐸2 −𝐷2 − |𝒎|2)(𝛾 − 1)2 > 0.
(ii) 𝑐1 = 2𝐸(2 − 𝛾)(|𝒎|2 −𝐸2)(𝛾 − 1) − 2𝐸𝐷2(𝛾 − 1)2 < −2𝐸𝐷2(𝛾 − 1)2 < 0.

(iii) 𝑐3 = 2𝐸(2 − 𝛾) ≥ 0, and the equality holds if and only if 𝛾 = 2. □

Lemma 2.2. Given 𝑼 ∈ , 𝜙(𝑝) has at least two different positive roots, which are located in the intervals (0, 𝑝𝑢
𝑏
) and (𝑝𝑢

𝑏
, +∞), respectively, 

where

𝑝𝑢
𝑏
∶= 1

2

(
𝐸(𝛾 − 2) +

√
𝐸2(2 − 𝛾)2 − 4(𝛾 − 1)(|𝒎|2 −𝐸2)

)
. (2.9)

Proof. Consider the quadratic function ℎ3(𝑝) = |𝒎|2 + (𝐸+𝑝) 
(

𝑝

𝛾−1 −𝐸
)

. Note that ℎ3(0) = |𝒎|2 −𝐸2 < 0, and ℎ′
3(𝑝) =

2𝑝
𝛾−1 +

2−𝛾

𝛾−1𝐸 >

0 when 𝑝 > 0. Thus ℎ3(𝑝) is strictly increasing on [0, +∞) and has only one positive root, which is exactly 𝑝𝑢
𝑏

defined in (2.9). Note 
that ℎ2(𝑝) is monotonically increasing when 𝑝 ≥ 0, which implies

ℎ2(𝑝) ≥ ℎ2(0) =𝐷2(𝐸2 − |𝒎|2) > 𝐷4 > 0, ∀𝑝 ≥ 0.

Hence we have

𝜙(𝑝𝑢
𝑏
) = (𝛾 − 1)2(ℎ1(𝑝𝑢

𝑏
) − ℎ2(𝑝𝑢

𝑏
)) = (𝛾 − 1)2(ℎ2

3(𝑝
𝑢
𝑏
) − ℎ2(𝑝𝑢

𝑏
)) = −(𝛾 − 1)2ℎ2(𝑝𝑢

𝑏
) < 0.

Since 𝜙(0) = 𝑐0 > 0 and lim
𝑝→+∞

𝜙(𝑝) = +∞, according to the zero point theorem, we know that 𝜙(𝑝) has at least two different positive 
roots, which are located in the intervals (0, 𝑝𝑢

𝑏
) and (𝑝𝑢

𝑏
, +∞), respectively. The proof is completed. □

For convenience, we will count the number of roots by including the multiplicity of a repeated root, unless otherwise specified.
5

Lemma 2.3. If 𝜙(𝑝) has 4 real roots, then it has 2 negative roots.
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Proof. Assume the 4 real roots of 𝜙(𝑝) are 𝑝̂1 ≤ 𝑝̂2 ≤ 𝑝̂3 ≤ 𝑝̂4. According to Lemma 2.2, we have 𝑝̂4 > 𝑝̂3 > 0. Then it suffices to prove 
𝑝̂1 < 𝑝̂2 < 0. According to Vieta’s formulas, 𝑝̂1 + 𝑝̂2 + 𝑝̂3 + 𝑝̂4 = −𝑐3 ≤ 0 and 𝑝̂1𝑝̂2𝑝̂3𝑝̂4 = 𝑐0 > 0, we can conclude that 𝑝̂1 ≤ 𝑝̂2 < 0, which 
finishes the proof. □

With Lemmas 2.2 and 2.3, we immediately obtain the following theorem.

Theorem 2.1. The quartic polynomial 𝜙(𝑝) has either 2 different positive roots and 2 negative roots, or 2 different positive roots and 2 
complex roots.

Theorem 2.2. The smallest positive root of 𝜙(𝑝) is the unique positive root of equation (2.3), which is the physical pressure 𝑝(𝑼 ).

Proof. Denote the larger positive root of 𝜙(𝑝) as 𝑝𝑢
𝑎. The proof of Lemma 2.2 implies that 𝑝𝑢

𝑎 > 𝑝𝑢
𝑏
> 0. It suffices to prove that 

Φ(𝑝𝑢
𝑎) ≠ 0. Recall that ℎ3(𝑝) is strictly increasing in the interval [0, +∞). Therefore,

Φ(𝑝𝑢
𝑎) =

𝑝𝑢
𝑎

𝛾 − 1
−𝐸 + |𝒎|2

𝐸 + 𝑝𝑢
𝑎

+𝐷

√
1 − |𝒎|2

(𝐸 + 𝑝𝑢
𝑎)2

=
ℎ3(𝑝𝑢

𝑎)
𝐸 + 𝑝𝑢

𝑎

+𝐷

√
1 − |𝒎|2

(𝐸 + 𝑝𝑢
𝑎)2

>
ℎ3(𝑝𝑢

𝑏
)

𝐸 + 𝑝𝑢
𝑎

+𝐷

√
1 − |𝒎|2

(𝐸 + 𝑝𝑢
𝑎)2

=𝐷

√
1 − |𝒎|2

(𝐸 + 𝑝𝑢
𝑎)2

> 0,

which finishes the proof. □

The relative positions of 𝑝(𝑼 ), 𝑝𝑢
𝑎, and 𝑝𝑢

𝑏
are illustrated in Fig. 1.

Before giving our NR-I method, we present several lemmas, which are useful for establishing the convergence and PCP property 
of the NR-I method.

Lemma 2.4. Let {𝑝𝑛}𝑛≥0 denote the iteration sequence obtained using the NR method to solve an equation 𝑓 (𝑝) = 0. We assume that 𝑝∗ is a 
root of 𝑓 (𝑝) = 0. If 𝑝0 < 𝑝∗, 𝑓 ∈ 𝐶2[𝑝0, 𝑝∗), and one of the following two conditions holds for all 𝑝 ∈ [𝑝0, 𝑝∗):

(i) 𝑓 ′(𝑝) < 0, 𝑓 ′′(𝑝) ≥ 0,

(ii) 𝑓 ′(𝑝) > 0, 𝑓 ′′(𝑝) ≤ 0,

then the NR iteration sequence {𝑝𝑛}𝑛≥0 is monotonically increasing and converges to 𝑝∗.

Proof. We only show the proof under the condition (i), while the proof under condition (ii) is similar and thus omitted.
Firstly, we prove that {𝑝𝑛}𝑛≥0 is monotonically increasing and that 𝑝∗ is an upper bound of {𝑝𝑛}𝑛≥0. It suffices to prove that 

𝑝∗ − 𝑝𝑛+1 = 𝑝∗ − (𝑝𝑛 −
𝑓 (𝑝𝑛)
𝑓 ′(𝑝𝑛)

) ≥ 0 and 𝑝𝑛+1 − 𝑝𝑛 = − 𝑓 (𝑝𝑛)
𝑓 ′(𝑝𝑛)

> 0 if 𝑝0 ≤ 𝑝𝑛 < 𝑝∗. Under the condition (i), we have 𝑓 (𝑝𝑛) > 𝑓 (𝑝∗) = 0 and 

𝑓 ′(𝑝𝑛) < 0, so that 𝑝𝑛+1 − 𝑝𝑛 = − 𝑓 (𝑝𝑛)
𝑓 ′(𝑝𝑛)

> 0. Define 𝑓1(𝑝) ∶= 𝑝∗ − (𝑝 − 𝑓 (𝑝)
𝑓 ′(𝑝) ), then

𝑓 ′
1(𝑝) = −1 + 𝑓 ′(𝑝)2 − 𝑓 (𝑝)𝑓 ′′(𝑝)

𝑓 ′(𝑝)2
= −𝑓 (𝑝)𝑓 ′′(𝑝)

𝑓 ′(𝑝)2
≤ 0, ∀𝑝 ∈ [𝑝0, 𝑝∗).

Since 𝑓1(𝑝∗) = 0 and 𝑝𝑛 < 𝑝∗, we have

0 = 𝑓1(𝑝∗) ≤ 𝑓1(𝑝𝑛) = 𝑝∗ −
(
𝑝𝑛 −

𝑓 (𝑝𝑛)
𝑓 ′(𝑝𝑛)

)
= 𝑝∗ − 𝑝𝑛+1.

Secondly, we prove the convergence. Since {𝑝𝑛}𝑛≥0 is monotonically increasing and has an upper bound 𝑝∗, by the monotone 
convergence theorem, we know that the sequence {𝑝𝑛}𝑛≥0 has a limit 𝑝∗∗ ≤ 𝑝∗. Therefore,

0 = lim
𝑛→+∞

(𝑝𝑛+1 − 𝑝𝑛) = − lim
𝑛→+∞

𝑓 (𝑝𝑛)
𝑓 ′(𝑝𝑛)

= −
𝑓 (𝑝∗∗)
𝑓 ′(𝑝∗∗)

,

which implies 𝑓 (𝑝∗∗) = 0. Since 𝑝0 ≤ 𝑝∗∗ ≤ 𝑝∗ and 𝑓 (𝑝) > 0 when 𝑝 ∈ [𝑝0, 𝑝∗), we obtain 𝑝∗∗ = 𝑝∗. Hence lim
𝑛→+∞

𝑝𝑛 = 𝑝∗∗ = 𝑝∗. The 
proof is completed. □
6

Similarly, we have the following lemma.
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Lemma 2.5. Let {𝑝𝑛}𝑛≥0 denote the iteration sequence obtained using the NR method to solve an equation 𝑓 (𝑝) = 0. We assume that 𝑝∗ is a 
root of 𝑓 (𝑝) = 0. If 𝑝0 > 𝑝∗, 𝑓 ∈ 𝐶2(𝑝∗, 𝑝0], and one of the following two conditions holds for all 𝑝 ∈ (𝑝∗, 𝑝0]:

(i) 𝑓 ′(𝑝) < 0, 𝑓 ′′(𝑝) ≤ 0,

(ii) 𝑓 ′(𝑝) > 0, 𝑓 ′′(𝑝) ≥ 0,

the NR iteration sequence {𝑝𝑛}𝑛≥0 is monotonically decreasing and converges to 𝑝∗.

Theorem 2.3. If 𝜙′′(0) = 2𝑐2 > 0, then 𝜙′′(𝑝) > 0 and 𝜙′(𝑝) < 0 for all 𝑝 ∈ [0, 𝑝(𝑼 )).

Proof. Note that 𝜙′′(𝑝) = 12𝑝2 + 6𝑐3𝑝 + 2𝑐2 and 𝜙′′′(𝑝) = 24𝑝 + 6𝑐3. Because 𝑐3 ≥ 0, we have 𝜙′′′(𝑝) > 0 when 𝑝 > 0, which yields 
𝜙′′(𝑝) is strictly increasing in the interval [0, +∞). Since 𝜙′′(0) = 2𝑐2 > 0, we have 𝜙′′(𝑝) ≥ 𝜙′′(0) > 0 for all 𝑝 ∈ [0, 𝑝(𝑼 )) ⊂ [0, +∞).

We then show 𝜙′(𝑝) < 0 using proof by contradiction. Suppose that there exists 𝑝𝑎 ∈ [0, 𝑝(𝑼 )) such that 𝜙′(𝑝𝑎) ≥ 0. Because 𝜙′(0) =
𝑐1 < 0, there must exist 𝑝𝑏 ∈ (0, 𝑝𝑎] such that 𝜙′(𝑝𝑏) = 0 by the intermediate value theorem. Since 𝑝𝑢

𝑎 > 𝑝(𝑼 ) and 𝜙(𝑝(𝑼 )) = 𝜙(𝑝𝑢
𝑎) = 0, 

by Rolle’s theorem, there exists 𝑝𝑐 ∈ [𝑝(𝑼 ), 𝑝𝑢
𝑎], such that 𝜙′(𝑝𝑐) = 0. Therefore, 𝑝𝑏 ≤ 𝑝𝑎 < 𝑝(𝑼 ) ≤ 𝑝𝑐 . Since 𝜙′(𝑝𝑏) = 𝜙′(𝑝𝑐) = 0, there 

exists 𝑝𝑑 ∈ [𝑝𝑏, 𝑝𝑐] ⊂ [0, +∞), such that 𝜙′′(𝑝𝑑 ) = 0, which is contradictory to 𝜙′′(𝑝) > 0 for all 𝑝 ∈ [0, +∞). Thus, the assumption is 
incorrect, and we have 𝜙′(𝑝) < 0 for all 𝑝 ∈ [0, 𝑝(𝑼 )). The proof is completed. □

Theorem 2.4. If 𝜙′′(0) = 2𝑐2 ≤ 0, then the largest root of the quadratic polynomial 𝜙′′(𝑝), denoted by 𝑝𝑒, satisfies 𝑝𝑒 =
−3𝑐3+

√
9𝑐23−24𝑐2
12 ≥ 0. 

Furthermore, we have

(i) If 0 ≤ 𝑝𝑒 < 𝑝(𝑼 ), then 𝜙′′(𝑝) ≥ 0 and 𝜙′(𝑝) < 0 for all 𝑝 ∈ [𝑝𝑒, 𝑝(𝑼 )).
(ii) If 𝑝𝑒 > 𝑝(𝑼 ), then 𝜙′′(𝑝) ≤ 0 and 𝜙′(𝑝) < 0 for all 𝑝 ∈ (𝑝(𝑼 ), 𝑝𝑒].

Proof. Recall that 𝜙′′(𝑝) = 12𝑝2 + 6𝑐3𝑝 + 2𝑐2, and 𝜙′′′(𝑝) = 24𝑝 + 6𝑐3 > 0 when 𝑝 > 0, which yields 𝜙′′(𝑝) is strictly increasing in 

[0, +∞). Note that lim
𝑝→+∞

𝜙′′(𝑝) = +∞. If 𝜙′′(0) = 2𝑐2 ≤ 0, then by the intermediate value theorem, we know 𝑝𝑒 =
−3𝑐3+

√
9𝑐23−24𝑐2
12 ≥ 0.

We then prove the conclusions (i) and (ii) separately.

(i) It is obvious that 𝜙′′(𝑝) ≥ 0 when 𝑝 ≥ 𝑝𝑒. Suppose there exists 𝑝𝑎 ∈ [𝑝𝑒, 𝑝(𝑼 )) such that 𝜙′(𝑝𝑎) ≥ 0, then 𝜙′(𝑝) ≥ 0 for all 𝑝 ∈
[𝑝𝑎, 𝑝(𝑼 )) because 𝜙′′(𝑝) ≥ 0 for all 𝑝 ∈ [𝑝𝑒, 𝑝(𝑼 )). This means 𝜙′(𝑝) is monotonically increasing in [𝑝𝑎, 𝑝(𝑼 )), implying 𝜙(𝑝𝑎) ≤
𝜙(𝑝(𝑼 )) = 0. Since 𝜙(0) > 0, according to the intermediate value theorem, there exists 𝑝𝑏 ∈ (0, 𝑝𝑎] such that 𝜙(𝑝𝑏) = 0. This 
contradicts with the fact that 𝑝(𝑼 ) is the smallest positive root of 𝜙(𝑝). Thus, the assumption is incorrect, and we have 𝜙′(𝑝) < 0
for all 𝑝 ∈ [𝑝𝑒, 𝑝(𝑼 )).

(ii) Notice that 𝜙′′(𝑝) ≤ 0 for all 𝑝 ∈ (𝑝(𝑼 ), 𝑝𝑒] ⊂ [0, 𝑝𝑒]. Since 𝜙′(0) = 𝑎1 < 0 and 𝜙′′(𝑝) ≤ 0 when 𝑝 ∈ [0, 𝑝𝑒], we have 𝜙′(𝑝) ≤ 𝜙′(0) < 0
when 𝑝 ∈ [0, 𝑝𝑒] ⊃ (𝑝(𝑼 ), 𝑝𝑒].

The proof is completed. □

Inspired by Theorems 2.3 and 2.4 as well as Lemmas 2.4 and 2.5, we design the following NR method for recovering the pressure 
𝑝(𝐔) from the conservative vector 𝑼 .

Algorithm 2.1 (NR-I method). The NR iteration reads

𝑝𝑛+1 = 𝑝𝑛 −
𝜙(𝑝𝑛)
𝜙′(𝑝𝑛)

,

with 𝑝0 given by

𝑝0 =
⎧⎪⎨⎪⎩
0, if 𝑐2 > 0,
−3𝑐3+

√
9𝑐23−24𝑐2
12 , otherwise.

(2.10)

The specific expressions for 𝜙(𝑝) and 𝑐𝑖, 𝑖 = 2, 3, are given in (2.7) and (2.8).

Note that 𝑝0 ≥ 0 and 𝑝(𝑼 ) > 0. We immediately obtain the following conclusions from Theorems 2.3 and 2.4 as well as Lemmas 2.4
and 2.5.

Theorem 2.5. The iteration sequence {𝑝𝑛}𝑛≥0 generated by Algorithm 2.1 converges monotonically to 𝑝(𝑼 ). Furthermore, Algorithm 2.1 is 
7

PCP.
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Theorem 2.6. Algorithm 2.1 has a quadratic convergence.

Proof. Thanks to Theorems 2.1 and 2.2, we know that the physical pressure 𝑝(𝐔), as a root of 𝜙(𝑝), is not a repeated root, namely, 
its multiplicity is one. Therefore, as a NR iteration, Algorithm 2.1 has quadratic convergence. □

Remark 2.1. In practical computations, the Horner’s rule can be applied to efficiently evaluate the polynomials 𝜙(𝑝) and 𝜙′(𝑝).

Remark 2.2. When using the NR method to solve 𝜙(𝑝) = 0, oscillations may occur when the value of 𝜙(𝑝𝑛) is very close to zero; 
see [10]. Detecting the oscillations caused by round-off errors and then stopping the iteration are important to avoid unnecessary 
computational costs. Since Algorithm 2.1 has monotonic convergence (Theorem 2.5), it is reasonable to expect that oscillations occur 
when the theoretical monotonicity of the iteration sequence is lost due to round-off errors. Therefore, in addition to the standard 
stopping criterion |𝜙(𝑝𝑛)| < 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 (𝜖𝑡𝑎𝑟𝑔𝑒𝑡 denotes the target accuracy), we also include such oscillations as a termination criterion in 
our computations.

2.2. Analytical expression of 𝑝(𝑼 )

With Lemma 2.1 and Theorems 2.1–2.2, we can obtain the analytical expression of pressure 𝑝(𝑼 ) by using the Ferrari method.

Algorithm 2.2 (Analytical). 𝑝(𝑼 ) = 𝑀5−𝑐3−𝑀6
4 with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑀1 =
𝑐22 + 12𝑐0 − 3𝑐3𝑐1

9
,

𝑀2 =
27𝑐21 + 2𝑐32 + 27𝑐23𝑐0 − 72𝑐2𝑐0 − 9𝑐3𝑐2𝑐1

54
,

𝑀3 =
(
𝑀2 + (𝑀2

2 −𝑀3
1 )

1
2
) 1

3
,

𝑀4 =𝑀3 +
𝑀1
𝑀3

+
𝑐2
3
,

𝑀5 = (𝑐23 + 4(𝑀4 − 𝑐2))
1
2 ,

𝑀6 =
(
(𝑐3 −𝑀5)2 − 8

(
𝑀4 −

𝑐3𝑀4 − 2𝑐1
𝑀5

)) 1
2
,

where the specific expressions of 𝑐𝑘 (𝑘 = 0, 1, 2, 3) are given in (2.8). The function (⋅)
1
𝑛 (𝑛 = 2, 3) is a single-valued complex function 

defined as follows

(𝐴1 +𝐴2𝑖)
1
𝑛 =
(
𝐴

1
𝑛 cos 𝜃

𝑛

)
+
(
𝐴

1
𝑛 sin 𝜃

𝑛

)
𝑖, (2.11)

where 𝑖 =
√
−1 is the imaginary unit, 𝐴1, 𝐴2 ∈ℝ and

𝐴 =
√

𝐴2
1 +𝐴2

2, (2.12)

𝜃 = arctan
𝐴2
𝐴1

. (2.13)

It can be seen that 𝑝(𝑼 ) is essentially expressed explicitly in terms of 𝑼 . However, because the (⋅)
1
𝑛 operation (𝑛 = 2, 3) inherently 

includes trigonometric, inverse trigonometric, and cube root or square root operations, using Algorithm 2.2 to calculate 𝑝(𝑼 ) is very 
costly and sometimes of low accuracy. We will observe this fact and compare Algorithm 2.2 with our NR methods in the numerical 
experiments in Section 5.

2.3. NR-II method: robust PCP convergent NR iteration

To facilitate the algorithm design, we define

𝜓(𝑝) ∶= (𝐸 + 𝑝)Φ(𝑝) = |𝒎|2 + (𝐸 + 𝑝)
(

𝑝

𝛾 − 1
−𝐸

)
+𝐷
√
(𝐸 + 𝑝)2 − |𝒎|2 (2.14)

and transform the equation (2.3) into
8

𝜓(𝑝) = 0. (2.15)



Journal of Computational Physics 498 (2024) 112669C. Cai, J. Qiu and K. Wu

Fig. 2. Three possible cases of the concavity/convexity structure of 𝜓(𝑝).

In this subsection, we aim to study the NR iteration method solving the equation (2.15). In particular, we would like to find 
an appropriate initial value 𝑝0, such that the resulting NR method is PCP and provably convergent. Moreover, we hope that 𝑝0 is 
sufficiently close to 𝑝(𝑼 ) in order to reduce the number of iterations.

Define

𝑝𝑢
𝑐 ∶=

1
2

(
(𝛾 − 2)𝐸 +

√
(2 − 𝛾)2𝐸2 − 4(𝛾 − 1)

[
(|𝒎|2 −𝐸2) +𝐷

√
𝐸2 − |𝒎|2]) , (2.16)

which is the root of the following equation

ℎ1(𝑝𝑢
𝑐 ) = ℎ2(0). (2.17)

We observe that 𝑝𝑢
𝑐 is closer to 𝑝(𝑼 ) than 𝑝𝑢

𝑏
, as shown in the Fig. 1 and proven in Lemma 2.6.

Lemma 2.6. 𝑝(𝑼 ) < 𝑝𝑢
𝑐 < 𝑝𝑢

𝑏
< 𝑝𝑢

𝑎.

Proof. According Lemma 2.2 and Theorem 2.2, we obtain 0 < 𝑝(𝑼 ) < 𝑝𝑢
𝑏
< 𝑝𝑢

𝑎. Recalling that ℎ1(𝑝) is strictly decreasing in the 
interval (0, 𝑝𝑢

𝑏
) and ℎ2(𝑝) is strictly increasing in (0, 𝑝𝑢

𝑏
), we have

ℎ1(𝑝𝑢
𝑏
) = 0 < 𝐷2(𝐸2 − |𝒎|2) = ℎ2(0) < ℎ2(𝑝(𝑼 )) = ℎ1(𝑝(𝑼 )) < ℎ1(0).

By the intermediate value theorem, there exists a unique point 𝑝𝑢
𝑐 ∈ (0, 𝑝𝑢

𝑏
) such that ℎ1(𝑝𝑢

𝑐 ) = ℎ2(0) and 𝑝(𝑼 ) < 𝑝𝑢
𝑐 < 𝑝𝑢

𝑏
. The expression 

(2.16) of 𝑝𝑢
𝑐 can be easily obtained by solving the equation ℎ1(𝑝𝑢

𝑐 ) = ℎ2(0). The proof is completed. □

Although 𝑝𝑢
𝑐 is close to 𝑝(𝑼 ), the NR method for solving the equation (2.15) with 𝑝0 = 𝑝𝑢

𝑐 is not always convergent and PCP. One 
can verify that

𝜓 ′(𝑝) = 2𝑝+ (2 − 𝛾)𝐸
𝛾 − 1

+ 𝐷(𝐸 + 𝑝)√
(𝐸 + 𝑝)2 − |𝒎|2 > 0, ∀𝑝 ≥ 0,

𝜓 ′′(𝑝) = 2
𝛾 − 1

− 𝐷|𝒎|2[
(𝐸 + 𝑝)2 − |𝒎|2] 32 ,

𝜓 ′′′(𝑝) > 0, ∀𝑝 ≥ 0, (2.18)

and lim
𝑝→+∞

𝜓 ′′(𝑝) = 2
𝛾−1 > 0. If 𝜓 ′′(0) ≥ 0, then (2.18) implies that 𝜓 ′′(𝑝) > 0 when 𝑝 > 0. If 𝜓 ′′(0) < 0, then because lim

𝑝→+∞
𝜓 ′′(𝑝) > 0, 

there exists a inflection point 𝑝𝑖𝑛 > 0 satisfying 𝜓 ′′(𝑝𝑖𝑛) = 0. Since 𝜓 ′′′(𝑝) > 0 when 𝑝 > 0, we can deduce that 𝜓 ′′(𝑝) > 0 on (𝑝𝑖𝑛, +∞)
and 𝜓 ′′(𝑝) < 0 on (0, 𝑝𝑖𝑛). Therefore, the concavity/convexity structure of the function 𝜓(𝑝) in [0, +∞) can only have three cases:

(a) 𝜓 ′′(𝑝) > 0 when 𝑝 > 0.
(b) There exists a inflection point 𝑝𝑖𝑛 ∈ (0, 𝑝(𝑼 )) satisfying 𝜓 ′′(𝑝𝑖𝑛) = 0. 𝜓 ′′(𝑝) > 0 on (𝑝𝑖𝑛, +∞), while 𝜓 ′′(𝑝) < 0 on (0, 𝑝𝑖𝑛).
(c) There exists a inflection point 𝑝𝑖𝑛 ≥ 𝑝(𝑼 ) satisfying 𝜓 ′′(𝑝𝑖𝑛) = 0. 𝜓 ′′(𝑝) > 0 on (𝑝𝑖𝑛, +∞), while 𝜓 ′′(𝑝) < 0 on (0, 𝑝𝑖𝑛).

The graphs of 𝜓(𝑝) are illustrated in Fig. 2 for Cases (a), (b), and (c), respectively.

Theorem 2.7. In Cases (a) and (b), the NR iteration for solving 𝜓(𝑝) = 0 always converges to 𝑝(𝑼 ) with any initial guess 𝑝0 ≥ 0. In Case 
(c), the NR iteration for solving 𝜓(𝑝) = 0 always converges to 𝑝(𝑼 ) with any initial guess 𝑝0 ∈ [0, 𝑝(𝑼 )], and if 𝑝0 > 𝑝(𝐔), then it may fail { }
9

to converge to 𝑝(𝑼 ). Furthermore, if the NR iteration fails to converge, then negative 𝑝𝑛 would appear in the iteration sequence 𝑝𝑛 𝑛≥0.
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Proof. We discuss the three cases in Fig. 2 separately.

(a) In this case, 𝜓 ′′(𝑝) > 0 when 𝑝 > 0.
(I) If 𝑝0 ∈ [𝑝(𝑼 ), +∞), then the iteration sequence 

{
𝑝𝑛

}
𝑛≥0 converges monotonically to 𝑝(𝑼 ) according to Lemma 2.5.

(II) If 𝑝0 ∈ [0, 𝑝(𝑼 )), then 𝑝1 = 𝑝0 −
𝜓(𝑝0)
𝜓 ′(𝑝0)

, 𝜓(𝑝1) > 𝜓(𝑝0) + (𝑝1 − 𝑝0)𝜓 ′(𝑝0) = 0. Thus 𝑝1 ∈ [𝑝(𝑼 ), +∞). Then, following the 
discussion of Case (I), the iteration sequence 

{
𝑝𝑛

}
𝑛≥1 converges monotonically to 𝑝(𝑼 ).

(b) In this case, 𝑝(𝑼 ) > 𝑝𝑖𝑛 > 0, where 𝜓 ′′(𝑝𝑖𝑛) = 0.
(I) If 𝑝0 ∈ [𝑝(𝑼 ), +∞), then the iteration sequence 

{
𝑝𝑛

}
𝑛≥0 converges monotonically to 𝑝(𝑼 ) according to Lemma 2.5.

(II) If 𝑝0 ∈ [𝑝𝑖𝑛, 𝑝(𝑼 )), then similarly to Case (a)(II), we have 𝑝1 ∈ [𝑝(𝑼 ), +∞), and the iteration sequence 
{
𝑝𝑛

}
𝑛≥1 converges 

monotonically to 𝑝(𝑼 ).
(III) If 𝑝0 ∈ [0, 𝑝𝑖𝑛), 𝑝1 = 𝑝0 −

𝜓(𝑝0)
𝜓 ′(𝑝0)

> 𝑝0. If 𝑝1 ≥ 𝑝𝑖𝑛, then the discussion returns to Cases (I) and (II). Thus we only need to discuss 
the case when 𝑝1 ∈ [0, 𝑝𝑖𝑛). By repeatedly following the aforementioned discussions, as long as 𝑝𝑛 ≥ 𝑝𝑖𝑛 appears in the iteration, 
we can return to the discussion of Case (I) or (II), and conclude that the NR method converges. It remains to discuss whether 
it is possible that 𝑝𝑛 < 𝑝𝑖𝑛 for all 𝑛 ≥ 0. Assume that such a situation occurs, then since 𝑝𝑛 < 𝑝𝑖𝑛 and 𝑝𝑛+1 > 𝑝𝑛, according to the 
monotone bounded convergence theorem, {𝑝𝑛}𝑛≥0 has a limit 𝑝∗ ∈ [0, 𝑝𝑖𝑛]. Therefore,

0 = lim
𝑛→+∞

(𝑝𝑛+1 − 𝑝𝑛) = − lim
𝑛→+∞

𝜓(𝑝𝑛)
𝜓 ′(𝑝𝑛)

= − 𝜓(𝑝∗)
𝜓 ′(𝑝∗)

,

which yields 𝜓(𝑝∗) = 0. This is contradictory to 𝑝∗ ∈ [0, 𝑝𝑖𝑛] and 𝑝𝑖𝑛 < 𝑝(𝑼 ) (note that 𝑝(𝑼 ) is the unique positive root of 𝜓(𝑝)). 
Hence, the assumption is incorrect, and there always exists a 𝑛 such that 𝑝𝑛 ≥ 𝑝𝑖𝑛. In short, the NR method always converges.

(c) In this case, 𝑝𝑖𝑛 ≥ 𝑝(𝑼 ) > 0 where 𝜓 ′′(𝑝𝑖𝑛) = 0.
(I) If 𝑝0 ∈ [0, 𝑝(𝑼 )], then the iteration sequence 

{
𝑝𝑛

}
𝑛≥0 converges monotonically to 𝑝(𝑼 ) according to Lemma 2.4.

(II) If 𝑝0 ∈ (𝑝(𝑼 ), 𝑝𝑖𝑛], then similar to Case (a)(II) and Case (b)(II), we have 𝑝1 ≤ 𝑝(𝑼 ). If 𝑝1 < 0, the convergence cannot be 
guaranteed. If 𝑝1 ≥ 0, then we return to the discussion of Case (I), and conclude that the iterative sequence converges to 𝑝(𝑼 ).
(III) If 𝑝0 ∈ (𝑝𝑖𝑛, +∞), similar to the discussion in Case (b)(III), we can use proof by contradiction to prove that there exists 
an iterative value 𝑝𝑛 belongs to the interval (−∞, 0), [0, 𝑝(𝑼 )], or (𝑝(𝑼 ), 𝑝𝑖𝑛). If 𝑝𝑛 ∈ (−∞, 0), then the convergence cannot be 
guaranteed. If 𝑝𝑛 ∈ [0, 𝑝(𝑼 )], then we return to the discussion of Case (c)(I) and conclude that the iterative sequence converges 
to 𝑝(𝑼 ). If 𝑝𝑛 ∈ (𝑝(𝑼 ), 𝑝𝑖𝑛], then we return to the discussion of Case (c)(II): the iteration sequence either converges to 𝑝(𝑼 ), or a 
negative value appears in the iterative sequence so that the convergence cannot be guaranteed.
In summary, in Case (c), the iteration sequence either remains non-negative and converges to 𝑝(𝑼 ), or a negative number appears 
in the iterative sequence so that the convergence cannot be guaranteed.

The proof is completed. □

As a direct consequence of Theorem 2.7, we have the following conclusion.

Theorem 2.8. The NR method with 𝑝0 = 0 for solving the equation 𝜓(𝑝) = 0 is always convergent and PCP.

Theorem 2.9. If

𝐷 <
𝐸2 − |𝒎|2

𝐸
, (2.19)

then the NR method for solving 𝜓(𝑝) = 0 with any initial guess 𝑝0 ≥ 0 is always PCP and convergent.

Proof. First, we prove the PCP property, namely, show that the iteration sequence 
{
𝑝𝑛

}
𝑛≥1 are always positive. Assume that 𝑝𝑛 ≥ 0, 

then it suffices to prove 𝑝𝑛+1 = 𝑝𝑛 −
𝜓(𝑝𝑛)
𝜓 ′(𝑝𝑛)

> 0. Recall that 𝜓 ′(𝑝) > 0 for all 𝑝 ∈ [0, +∞). Note that 𝑝𝑛 −
𝜓(𝑝𝑛)
𝜓 ′(𝑝𝑛)

> 0 is equivalent to

𝜓(𝑝𝑛) = (𝐸 + 𝑝𝑛)
(

𝑝𝑛

𝛾 − 1
−𝐸

)
+ |𝒎|2 +𝐷

√
(𝐸 + 𝑝𝑛)2 − |𝒎|2

<

(
2𝑝𝑛 + (2 − 𝛾)𝐸

𝛾 − 1
+

𝐷(𝐸 + 𝑝𝑛)√
(𝐸 + 𝑝𝑛)2 − |𝒎|2

)
𝑝𝑛 = 𝑝𝑛𝜓

′(𝑝𝑛),

which is equivalent to

𝐷(𝛾 − 1) <
𝑝2𝑛 − |𝒎|2(𝛾 − 1) +𝐸2(𝛾 − 1)

𝐸2−|𝒎|2+𝐸𝑝𝑛√ . (2.20)
10

(𝐸+𝑝𝑛)2−|𝒎|2



Journal of Computational Physics 498 (2024) 112669C. Cai, J. Qiu and K. Wu

Noting that 𝑝2𝑛 − |𝒎|2(𝛾 − 1) +𝐸2(𝛾 − 1) ≥ (𝛾 − 1)(𝐸2 − |𝒎|2) > 0, 𝐸2−|𝒎|2+𝐸𝑝𝑛√
(𝐸+𝑝𝑛)2−|𝒎|2 > 0, and

𝜕

𝜕𝑝

(
𝐸2 − |𝒎|2 +𝐸𝑝√
(𝐸 + 𝑝)2 − |𝒎|2

)
= |𝒎|2𝑝(

(𝐸 + 𝑝)2 − |𝒎|2) 32 > 0, ∀𝑝 ∈ (0,+∞),

we obtain

𝑝2𝑛 − |𝒎|2(𝛾 − 1) +𝐸2(𝛾 − 1)
𝐸2−|𝒎|2+𝐸𝑝𝑛√
(𝐸+𝑝𝑛)2−|𝒎|2

>
(𝛾 − 1)(𝐸2 − |𝒎|2)
lim

𝑝→+∞

(
𝐸2−|𝒎|2+𝐸𝑝√
(𝐸+𝑝)2−|𝒎|2

) = (𝛾 − 1)𝐸
2 − |𝒎|2

𝐸
.

Therefore, if 𝐷 <
𝐸2−|𝒎|2

𝐸
, then

𝐷(𝛾 − 1) < (𝛾 − 1)𝐸
2 − |𝒎|2

𝐸
<

𝑝2𝑛 − |𝒎|2(𝛾 − 1) +𝐸2(𝛾 − 1)
𝐸2−|𝒎|2+𝐸𝑝𝑛√
(𝐸+𝑝𝑛)2−|𝒎|2

,

which implies (2.20). Hence, 𝑝𝑛 ≥ 0 implies 𝑝𝑛+1 > 0. By induction, we know that the iteration sequence 
{
𝑝𝑛

}
𝑛≥1 are always positive. 

Thanks to Theorem 2.7, we know that the NR iteration converges. The proof is completed. □

Inspired by Theorems 2.8 and 2.9, we design the following algorithm.

Algorithm 2.3 (NR-II). The NR iteration reads

𝑝𝑛+1 = 𝑝𝑛 −
𝜓(𝑝𝑛)
𝜓 ′(𝑝𝑛)

with 𝑝0 given by

𝑝0 =

{
0, if 𝐷 ≥ 𝐸2−|𝒎|2

𝐸
,

𝑝𝑢
𝑐 , otherwise,

(2.21)

where the expression of 𝑝𝑢
𝑐 is given in (2.16) and the expression of 𝜓(𝑝) is given in (2.14).

Theorem 2.10. Algorithm 2.3 is always PCP and convergent. Furthermore, it has a quadratic convergence.

Proof. If 𝐷 ≥ 𝐸2−|𝒎|2
𝐸

, then 𝑝0 = 0, so that Algorithm 2.3 is PCP and convergent, according to Theorem 2.8. If 𝐷 <
𝐸2−|𝒎|2

𝐸
, then 

Theorem 2.9 implies that Algorithm 2.3 is PCP and convergent. Recalling that 𝜓 ′(𝑝) > 0 for all 𝑝 ∈ [0, +∞), we know that 𝑝(𝑼 ) is 
not a repeated root of 𝜓(𝑝) = 0. Therefore, the convergence rate of this NR method is quadratic. □

2.4. Hybrid NR method: hybrid PCP convergent NR iteration

We have proposed two NR methods for recovering primitive variables. Algorithm 2.1 is based on the NR iteration for the polyno-
mial 𝜙(𝑝). When the polynomial 𝜙(𝑝) is ill-conditioned, small perturbations in the coefficients 𝑐𝑖 (𝑖 = 0, 1, 2, 3) can lead to significant 
changes in the root of 𝜙(𝑝) = 0, which can result in a reduced accuracy of Algorithm 2.1. Nonetheless, since 𝜙(𝑝) is a polynomial, 
the computational cost of evaluating 𝜙(𝑝) and 𝜙′(𝑝) in each iteration of Algorithm 2.1 is relatively low. Moreover, the monotonic 
convergence of Algorithm 2.1 allows for a simpler and more effective stopping criterion, making it computationally faster (as we will 
show in Section 5). In contrast, Algorithm 2.3 requires taking a square root at each iteration to evaluate 𝜓(𝑝) and 𝜓 ′(𝑝), which leads 
to slower computation speed, but it does not suffer from the ill-conditioned issue and always provides higher accuracy.

In this subsection, we will propose a hybrid approach that switches to Algorithm 2.3 when 𝜙(𝑝) is ill-conditioned and to Algo-
rithm 2.1 when 𝜙(𝑝) is not ill-conditioned, to obtain a NR method that achieves both fast convergence and high accuracy.

The first problem is, how to detect ill condition of polynomials (2.7) efficiently and conveniently. In fact, a polynomial might be 
ill-conditioned when cluster roots occur [8]. In the following, we observe and prove that when 𝐷 or (𝛾 − 1) is very small, 𝑝𝑢

𝑎 will be 
very close to 𝑝(𝑼 ), which results in the polynomial 𝜙(𝑝) becoming ill-conditioned.

Lemma 2.7. For fixed 𝛾, 𝒎, and 𝐸, we have lim
𝐷→0+

|𝑝𝑢
𝑎 − 𝑝(𝑼 )| = 0.

Proof. Note that ℎ1(𝑝) = ℎ2
3(𝑝) is independent of 𝐷, and( )
11

lim
𝐷→0+

ℎ2(𝑝) = lim
𝐷→0+

𝐷2 (𝐸 + 𝑝)2 − |𝒎|2 = 0.



Journal of Computational Physics 498 (2024) 112669C. Cai, J. Qiu and K. Wu

Since 𝜙(𝑝) = (𝛾 −1)2
[
ℎ2
3(𝑝) − ℎ2(𝑝)

]
, when 𝐷 approaches zero, 𝑝𝑢

𝑎 and 𝑝(𝑼 ) approaches 𝑝𝑢
𝑏
, which is the unique positive root of ℎ3(𝑝)

as shown in the proof of Lemma 2.2. □

In practical computation, the ratio ℎ2(0)
ℎ1(0)

= 𝐷2

𝐸2−|𝒎|2 can be used to estimate whether 𝐷 is small enough to result in clustered roots. 

Note that 𝐸 >
√

𝐷2 + |𝒎|2, which implies 𝐷2

𝐸2−|𝒎|2 < 1.

Lemma 2.8. For fixed conservative quantities 𝐷, 𝒎, and 𝐸, we have lim
𝛾→1+

𝑝(𝑼 ) = lim
𝛾→1+

𝑝𝑢
𝑎 = 0, and lim

𝛾→1+
|𝑝𝑢

𝑎 − 𝑝(𝑼 )| = 0.

Proof. Consider ℎ4(𝑝) ∶= 𝑐1 + 𝑐2𝑝 + 𝑐3𝑝
2, where 𝑐1 < 0 and 𝑐3 > 0 when 𝛾 < 2 according to Lemma 2.1. If 𝛾 < 2, then ℎ4(𝑝) > 0 when 

𝑝 >
−𝑐2+

√
𝑐22−4𝑐1𝑐3
2𝑐3

. When 𝛾 < 1.2 < 3 −
√
3, we have

𝑐2 =𝐸2(𝛾2 − 6𝛾 + 6) + 2|𝒎|2(𝛾 − 1) −𝐷2(𝛾 − 1)2 > 0.24𝐸2 − 0.04𝐷2 > 0.2𝐸2 > 0,

which yields

−𝑐2 +
√

𝑐22 − 4𝑐1𝑐3
2𝑐3

=
−2𝑐1

𝑐2 +
√

𝑐22 − 4𝑐1𝑐3
< −

𝑐1
𝑐2

< −
𝑐1

0.2𝐸2 .

Thus, if 𝛾 < 1.2 and 𝑝 > − 𝑐1
0.2𝐸2 , then ℎ4(𝑝) > 0 and 𝜙(𝑝) = ℎ4(𝑝)𝑝 + 𝑐0 + 𝑝4 > 0, where we have used 𝑐0 > 0 proved in Lemma 2.1. 

Therefore,

0 < 𝑝(𝑼 ) < 𝑝𝑢
𝑎 < −

𝑐1
0.2𝐸2 = 10(𝛾 − 1)𝐸(2 − 𝛾)(𝐸2 − |𝒎|2) +𝐸𝐷2(𝛾 − 1)

𝐸2 ,

which implies lim
𝛾→1+

𝑝(𝑼 ) = lim
𝛾→1+

𝑝𝑢
𝑎 = 0. It follows that lim

𝛾→1+
|𝑝𝑢

𝑎 − 𝑝(𝑼 )| = 0. The proof is completed. □

By utilizing Lemmas 2.7 and 2.8, we can effectively detect the ill-conditioned problem: the polynomial 𝜙(𝑝) may be ill-conditioned 
if 𝛾 < 1 + 𝜖1 or 𝐷2

𝐸2−|𝒎|2 < 𝜖2, where 𝜖1 ∈ (0,1) and 𝜖2 ∈ (0,1) are two small positive numbers.

Remark 2.3. When 𝑝𝑢
𝑎 and 𝑝(𝐔) are in close proximity, the polynomial 𝜙(𝑝) tends to become ill-conditioned, thereby compromising 

the accuracy of Algorithm 2.1. On the other hand, Algorithm 2.3 demonstrates high accuracy and rapid convergence when 𝑝𝑢
𝑎 and 

𝑝(𝐔) are in close proximity. This is due to the fact that 𝑝𝑢
𝑐 is positioned between 𝑝(𝑈 ) and 𝑝𝑢

𝑎, resulting in the initial value 𝑝0 for 
Algorithm 2.3 that is often very close to the actual pressure 𝑝(𝑼 ) in such cases. In other words, Algorithm 2.3 exactly compensates 
for the limitations of Algorithm 2.1.

Based on the aforementioned discussions, we propose the following hybrid method.

Algorithm 2.4 (Hybrid NR).{
Adopt Algorithm 2.1, if 𝛾 ≥ 1 + 𝜖1 and 𝐷2

𝐸2−|𝒎|2 ≥ 𝜖2.

Adopt Algorithm 2.3, otherwise,
(2.22)

where 𝜖1 ∈ (0, 1) and 𝜖2 ∈ (0, 1) are two small positive numbers. In this paper, we set 𝜖1 = 0.01 and 𝜖2 = 10−4.

Remark 2.4. Since both the NR-I and NR-II methods are always PCP and convergent with quadratic convergence rate, the above 
hybrid NR method is also PCP and convergent with quadratic convergence rate.

If 𝛾 ≥ 1 + 𝜖1 and 𝐷2

𝐸2−|𝒎|2 ≥ 𝜖2, Algorithm 2.4 utilizes Algorithm 2.1, which exhibits fast convergence and high accuracy with low 

computational cost since the polynomial 𝜙(𝑥) is not ill-conditioned in this scenario. In contrast, when 𝛾 < 1 + 𝜖1 or 𝐷2

𝐸2−|𝒎|2 < 𝜖2, 
Algorithm 2.4 switches to Algorithm 2.3, and in this case, the initial value 𝑝0 of Algorithm 2.3 (defined in (2.21)) is typically in 
close proximity to the physical pressure 𝑝(𝑼 ) (as discussed in Remark 2.3), thus ensuring both fast convergence and high accuracy. 
Overall, the hybrid NR method effectively combines the advantages of both NR-I and NR-II methods and circumvents their individual 
12

limitations, thereby achieving both high accuracy and fast convergence, as confirmed by numerical tests in Section 5.
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3. One-dimensional PCP HWENO scheme

In this section, we present the PCP finite volume HWENO scheme for the 1D special RHD equations

𝜕𝑼

𝜕𝑡
+ 𝜕𝑭 (𝑼 )

𝜕𝑥
= 𝟎, (3.1)

where

𝑼 =
(
𝐷,𝑚1,𝐸

)⊤
, 𝑭 =

(
𝐷𝑣𝑖,𝑚1𝑣1 + 𝑝,𝑚1

)⊤
.

Divide the computational domain into 𝑁 uniform cells 𝐼𝑖 =
[
𝑥𝑖−1∕2, 𝑥𝑖+1∕2

]
, 1 ≤ 𝑖 ≤ 𝑁 , with the cell center 𝑥𝑖 =

1
2 (𝑥𝑖−1∕2 + 𝑥𝑖+1∕2). 

Let Δ𝑥 denote the mesh size 𝑥𝑖+1∕2 − 𝑥𝑖−1∕2.

3.1. 1D PCP finite volume HWENO scheme

In this subsection, we give the 1D finite volume PCP HWENO scheme. For the notational convenience, we denote 𝑥𝑖+𝑎 = 𝑥𝑖+𝑎Δ𝑥, 
where 𝑎 ∈ [−1

2 , 
1
2 ] is a real number.

The semi-discrete finite volume HWENO scheme for the RHD equations (3.1) is given by

d𝑼 𝑖(𝑡)
d𝑡

= −
𝑭̂ 𝑖+1∕2 − 𝑭̂ 𝑖−1∕2

Δ𝑥
=∶𝑈 (𝑼ℎ(𝑡), 𝑖), (3.2)

d𝑽 𝑖(𝑡)
d𝑡

= −
𝑭̂ 𝑖+1∕2 + 𝑭̂ 𝑖−1∕2

2Δ𝑥
+

𝑯 𝑖

Δ𝑥
=∶𝑉 (𝑼ℎ(𝑡), 𝑖), (3.3)

where

𝑼 𝑖 (𝑡)≈
1
Δ𝑥 ∫

𝐼𝑖

𝑼 (𝑥, 𝑡)d𝑥, 𝑽 𝑖 (𝑡)≈
1
Δ𝑥 ∫

𝐼𝑖

𝑼 (𝑥, 𝑡)
𝑥− 𝑥𝑖

Δ𝑥
d𝑥

denote the approximations to the zeroth and first order moments in 𝐼𝑖 , respectively,

𝑼ℎ(𝑡)={𝑼 𝑖 (𝑡)}𝑁𝑖=1 ∪ {𝑽 𝑖 (𝑡)}𝑁𝑖=1
denotes the set that contains all cells’ zeroth and first order moments, and

𝑯 𝑖 =
4∑

𝑙=1
𝜔̂𝓁𝑭 (𝑼 𝑖⊕𝑎𝓁

) ≈ 1
Δ𝑥 ∫

𝐼𝑖

𝑭 (𝑼 ) d𝑥

with 𝑼 𝑖⊕𝑎𝓁
denoting the approximation to 𝑼 (𝑥𝑖+𝑎𝓁

, 𝑡) within the cell 𝐼𝑖. Here the four-point Gauss–Lobatto quadrature is used with 
the quadrature weights and nodes given by

𝜔̂1 = 𝜔̂4 =
1
12

, 𝜔̂2 = 𝜔̂3 =
5
12

,

𝑥𝑖+𝑎𝓁
= 𝑥𝑖 + 𝑎𝓁Δ𝑥, {𝑎𝓁}4𝓁=1 =

{
−1
2
, −

√
5

10
,

√
5

10
,
1
2

}
.

In (3.2)–(3.3), 𝑭̂ 𝑖+1∕2 denotes the numerical flux at the cell interface point 𝑥𝑖+1∕2. In this paper, we employ the Lax–Friedrichs 
numerical flux1

𝑭̂ 𝑖+1∕2 =
1
2

(
𝑭 1

(
𝑼

𝑖⊕
1
2

)
+ 𝑭 1

(
𝑼

(𝑖+1)⊕
(
− 1

2

))− 𝛼

(
𝑼

(𝑖+1)⊕
(
− 1

2

) −𝑼
𝑖⊕

1
2

))
, (3.4)

which will be useful for achieving the PCP property of our HWENO scheme. Here 𝛼 is defined by

𝛼 =max
𝑖

max
{

𝜚1

(
𝑼

𝑖⊕
1
2

)
, 𝜚1

(
𝑼

(𝑖+1)⊕
(
− 1

2

))} ,

where 𝜚1(𝑼 ) denotes the spectral radius of the Jacobian matrix 𝜕𝑭 1(𝑼 )
𝜕𝑼

.

Remark 3.1. It should be pointed out that the symbol “⊕” in the subscript of 𝑼 𝑖⊕𝑎 with 𝑎 ∈ [−1
2 , 

1
2 ] is not a standard addition 

operation, but rather a symbol representing the position relative to the cell center 𝑥𝑖. For example, 𝑼
𝑖⊕

1
2

represents the approximate 
13

1 Another option is the Harten-Lax-van Leer (HLL) numerical flux, whose PCP property was proved in [4].
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value at the point 𝑥𝑖 +
1
2Δ𝑥 computed within the cell 𝐼𝑖, while 𝑼

(𝑖+1)⊕
(
− 1

2

) stands for the approximate value at the same point 

𝑥𝑖+1 −
1
2Δ𝑥 but computed within the cell 𝐼𝑖+1.

To compute 𝑈 (𝑼ℎ(𝑡), 𝑖) and 𝑉 (𝑼ℎ(𝑡), 𝑖) in (3.2)–(3.3), one needs to reconstruct the point values {𝑼 𝑖⊕𝑎𝓁
}4𝓁=1 by using {𝑼 𝑖}

and {𝑽 𝑖}. To facilitate the subsequent description, we first introduce two reconstruction operators 𝑴𝐿(⋅, ⋅, ⋅) and 𝑴𝐻 (⋅, ⋅, ⋅), before 
giving the detailed spatial reconstruction procedures of our 1D PCP finite volume HWENO scheme.

3.1.1. Linear reconstruction operator 𝑴𝐿

Let us reconstruct a quintic polynomial 𝑃0(𝑥) =
5∑

𝑙=0
𝑎0
𝑙

(
𝑥−𝑥𝑖

Δ𝑥

)𝑙
satisfying

1
Δ𝑥 ∫

𝐼𝑘

𝑃0 (𝑥) d𝑥 = 𝑢𝑘, 𝑘 = 𝑖, 𝑖± 1, (3.5)

1
Δ𝑥 ∫

𝐼𝑘

𝑃0 (𝑥)
𝑥− 𝑥𝑖

Δ𝑥
d𝑥 = 𝑣𝑘, 𝑘 = 𝑖, 𝑖± 1, (3.6)

where 𝑢𝑘 and 𝑣𝑘 are given real numbers. The six equations (3.5)–(3.6) form a linear algebraic system for the unknowns {𝑎0
𝑙
}5
𝑙=0. 

Solving the system gives the expressions of 𝑎0
𝑙
, which are the linear combinations of 𝑢𝑖, 𝑣𝑖, 𝑢𝑖±1, 𝑣𝑖±1 given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑎00 = − 43
384

𝑢𝑖−1 +
235
192

𝑢𝑖 −
43
384

𝑢𝑖+1 −
27
64

𝑣𝑖−1 +
27
64

𝑣𝑖+1,

𝑎01 =
167
576

𝑢𝑖−1 −
167
576

𝑢𝑖+1 +
281
288

𝑣𝑖−1 +
2449
144

𝑣𝑖 +
281
288

𝑣𝑖+1,

𝑎02 =
23
16

𝑢𝑖−1 −
23
8

𝑢𝑖 +
23
16

𝑢𝑖+1 +
45
8

𝑣𝑖−1 −
45
8

𝑣𝑖+1,

𝑎03 = −455
216

𝑢𝑖−1 +
455
216

𝑢𝑖+1 −
785
108

𝑣𝑖−1 −
1945
54

𝑣𝑖 −
785
108

𝑣𝑖+1,

𝑎04 = −5
8
𝑢𝑖−1 +

4
5
𝑢𝑖 −

5
8
𝑢𝑖+1 −

15
4

𝑣𝑖−1 +
15
4

𝑣𝑖+1,

𝑎05 =
35
36

𝑢𝑖−1 −
35
36

𝑢𝑖+1 +
77
18

𝑣𝑖−1 +
133
9

𝑣𝑖 +
77
18

𝑣𝑖+1.

Define 𝜂 = 𝑥−𝑥𝑖

Δ𝑥
and the operator

𝑀𝐿([𝑢𝑖−1 𝑢𝑖 𝑢𝑖+1], [𝑣𝑖−1 𝑣𝑖 𝑣𝑖+1], 𝜂) ∶= 𝑃0(𝑥(𝜂)) =
5∑

𝑙=0
𝑎0
𝑙
𝜂𝑙,

which is a mapping from ℝ1×3 × ℝ1×3 × ℝ to ℝ. Using this operator, it is easy to compute the value of 𝑃0(𝑥) = at 𝑥𝑖+𝜂 with 
𝑃0(𝑥𝑖+𝜂) =𝑀𝐿([𝑢𝑖−1 𝑢𝑖 𝑢𝑖+1], [𝑣𝑖−1 𝑣𝑖 𝑣𝑖+1], 𝜂). For example,

𝑃0(𝑥𝑖+1∕2) =𝑀𝐿([𝑢𝑖−1 𝑢𝑖 𝑢𝑖+1], [𝑣𝑖−1 𝑣𝑖 𝑣𝑖+1],
1
2
) = 13

108
𝑢𝑖−1 +

7
12

𝑢𝑖 +
8
27

𝑢𝑖+1 +
25
54

𝑣𝑖−1 +
241
54

𝑣𝑖 −
28
27

𝑣𝑖+1,

which is independent of the cell size Δ𝑥 and the cell center 𝑥𝑖.
The operator 𝑀𝐿 represents the reconstruction mapping for the scalar equation. In order to extend the reconstruction to the 1D 

RHD equations, we generalize the operator to vector cases component-wisely as follows

𝑴𝐿([𝑼 1 𝑼 2 𝑼 3], [𝑽 1 𝑽 2 𝑽 3], 𝜂) ∶=
⎛⎜⎜⎜⎝
𝑀𝐿([𝑈

(1)
1 𝑈

(1)
2 𝑈

(1)
3 ], [𝑉 (1)

1 𝑉
(1)
2 𝑉

(1)
3 ], 𝜂)

𝑀𝐿([𝑈
(2)
1 𝑈

(2)
2 𝑈

(2)
3 ], [𝑉 (2)

1 𝑉
(2)
2 𝑉

(2)
3 ], 𝜂)

𝑀𝐿([𝑈
(3)
1 𝑈

(3)
2 𝑈

(3)
3 ], [𝑉 (3)

1 𝑉
(3)
2 𝑉

(3)
3 ], 𝜂)

⎞⎟⎟⎟⎠ ,
where 𝑴𝐿 is the reconstruction operator from ℝ3×3 × ℝ3×3 × ℝ to ℝ3×1. It is worth pointing out that 𝑴𝐿(⋅, ⋅, 𝜂) is also a linear 
mapping for a fixed 𝜂.

3.1.2. HWENO reconstruction operator 𝑴𝐻

Consider two quadratic polynomials 𝑃1(𝑥) =
2∑

𝑙=0
𝑎1
𝑙

(
𝑥−𝑥𝑖

Δ𝑥

)𝑙
and 𝑃2(𝑥) =

2∑
𝑙=0

𝑎2
𝑙

(
𝑥−𝑥𝑖

Δ𝑥

)𝑙
satisfying

1
𝑃1 (𝑥)

𝑥− 𝑥𝑖 d𝑥 = 𝑣𝑖,
1

𝑃1 (𝑥) d𝑥 = 𝑢𝑘, 𝑘 = 𝑖, 𝑖− 1,
14

Δ𝑥 ∫
𝐼𝑖

Δ𝑥 Δ𝑥 ∫
𝐼𝑘
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1
Δ𝑥 ∫

𝐼𝑖

𝑃2 (𝑥)
𝑥− 𝑥𝑖

Δ𝑥
d𝑥 = 𝑣𝑖,

1
Δ𝑥 ∫

𝐼𝑘

𝑃2 (𝑥) d𝑥 = 𝑢𝑘, 𝑘 = 𝑖, 𝑖+ 1.

Similarly, we can obtain the expressions of 𝑎1
𝑙

and 𝑎2
𝑙
, which are also linear combinations of 𝑢𝑖, 𝑣𝑖, 𝑢𝑖±1, 𝑣𝑖±1, given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑎10 = − 1
12

𝑢𝑖−1 +
13
12

𝑢𝑖 − 𝑣𝑖,

𝑎11 = 12𝑣𝑖,

𝑎12 = 𝑢𝑖−1 − 𝑢𝑖 + 12𝑣𝑖,

𝑎20 =
13
12

𝑢𝑖 −
1
12

𝑢𝑖+1 + 𝑣𝑖,

𝑎21 = 12𝑣𝑖,

𝑎22 = −𝑢𝑖 + 𝑢𝑖+1 − 12𝑣𝑖.

Next, in order to measure the smoothness of the polynomial 𝑃𝑛 (𝑥) in the cell 𝐼𝑖, we calculate the smooth indicators, with the 
same definition as in [62],

𝛽𝑛 =
𝑟∑

𝛼=1
∫
𝐼𝑖

Δ𝑥2𝛼−1
(
d𝛼𝑃𝑛 (𝑥)
d𝑥𝛼

)2
d𝑥, 𝑛 = 0,1,2, (3.7)

where 𝑟 is the degree of the polynomials 𝑃𝑛(𝑥). The expressions of 𝛽𝑛 are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛽0 =
( 19
108

𝑢𝑖−1 −
19
108

𝑢𝑖+1 +
31
54

𝑣𝑖−1 −
241
27

𝑣𝑖 +
31
54

𝑣𝑖+1

)2
+
(9
4
𝑢𝑖−1 −

9
2
𝑢𝑖 +

9
4
𝑢𝑖+1+

15
2

𝑣𝑖−1 −
15
2

𝑣𝑖+1

)2
+
(70
9

𝑢𝑖−1 −
70
9

𝑢𝑖+1 +
200
9

𝑣𝑖−1 +
1280
9

𝑣𝑖 +
200
9

𝑣𝑖+1

)2
+

1
12

(5
2
𝑢𝑖−1 − 5𝑢𝑖 +

5
2
𝑢𝑖+1 + 9𝑣𝑖−1 − 9𝑣𝑖+1

)2
+ 1

12

(175
18

𝑢𝑖−1 −
175
18

𝑢𝑖+1 +
277
9

𝑣𝑖−1+

1546
9

𝑣𝑖 +
277
9

𝑣𝑖+1

)2
+ 1

180

(95
18

𝑢𝑖−1 −
95
18

𝑢𝑖+1 +
155
9

𝑣𝑖−1 +
830
9

𝑣𝑖 +
155
9

𝑣𝑖+1

)2
+

109341
175

(5
8
𝑢𝑖−1 −

5
4
𝑢𝑖 +

5
8
𝑢𝑖+1 +

15
4

𝑣𝑖−1 −
15
4

𝑣𝑖+1

)2
+ 27553933

1764

(35
36

𝑢𝑖−1 −
35
36

𝑢𝑖+1+

77
18

𝑣𝑖−1 +
133
9

𝑣𝑖 +
77
18

𝑣𝑖+1

)2
,

𝛽1 =144𝑣2𝑖 +
13
3
(𝑢𝑖−1 − 𝑢𝑖 + 12𝑣𝑖)2,

𝛽2 =144𝑣2𝑖 +
13
3
(𝑢𝑖 − 𝑢𝑖+1 + 12𝑣𝑖)2.

Then the HWENO reconstruction polynomial is defined by

𝑃𝐻 (𝑥) = 𝜔0

(
1
𝛾0

𝑃0 (𝑥) −
2∑

𝑛=1

𝛾𝑛
𝛾0

𝑃𝑛 (𝑥)

)
+

2∑
𝑛=1

𝜔𝑛𝑃𝑛 (𝑥) ,

where the nonlinear weights

𝜔𝑛 =
𝜔̄𝑛∑2

𝑘=0 𝜔̄𝑘

with 𝜔̄𝑛 = 𝛾𝑛

(
1 + 𝜏2

𝛽2𝑛 + 𝜖

)
, 𝑛 = 0,1,2, (3.8)

𝜏 ∶=
||𝛽0−𝛽1||+||𝛽0−𝛽2||

2 , and 𝜖 is a tiny positive number to avoid the denominator being zero. These nonlinear weights possess a 
“scale-invariant” property, which means that the nonlinear weights {𝜔𝑛} remain unchanged when {𝑢𝑖, 𝑣𝑖, 𝑢𝑖±1, 𝑣𝑖±1} are replaced 
by {𝜆𝑢𝑖, 𝜆𝑣𝑖, 𝜆𝑢𝑖±1, 𝜆𝑣𝑖±1} for any 𝜆 ≠ 0.

Let 𝜂 ∶= 𝑥−𝑥𝑖

Δ𝑥
. Define the operator

𝑀𝐻 ([𝑢𝑖−1 𝑢𝑖 𝑢𝑖+1], [𝑣𝑖−1 𝑣𝑖 𝑣𝑖+1], 𝜂) ∶= 𝑃𝐻 (𝑥(𝜂))

= 𝜔0

(
1
𝛾0

5∑
𝑙=0

𝑎0
𝑙
𝜂𝑙 −

2∑
𝑛=1

𝛾𝑛
𝛾0

5∑
𝑙=0

𝑎𝑛
𝑙
𝜂𝑙

)
+

2∑
𝑛=1

𝜔𝑛

5∑
𝑙=0

𝑎𝑛
𝑙
𝜂𝑙,

which is a mapping from ℝ1×3 × ℝ1×3 × ℝ to ℝ. It is easy to compute the value of 𝑃𝐻 (𝑥) at 𝑥𝑖+𝜂 with 𝑃𝐻 (𝑥𝑖+𝜂) =
𝑀𝐻 ([𝑢𝑖−1 𝑢𝑖 𝑢𝑖+1], [𝑣𝑖−1 𝑣𝑖 𝑣𝑖+1], 𝜂). We can generalize the scalar HWENO reconstruction operator 𝑀𝐻 to the vector cases in a 
15

component by component manner:
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𝑴𝐻 ([𝑼 1 𝑼 2 𝑼 3], [𝑽 1 𝑽 2 𝑽 3], 𝜂) ∶=
⎛⎜⎜⎜⎝
𝑀𝐻 ([𝑈 (1)

1 𝑈
(1)
2 𝑈

(1)
3 ], [𝑉 (1)

1 𝑉
(1)
2 𝑉

(1)
3 ], 𝜂)

𝑀𝐻 ([𝑈 (2)
1 𝑈

(2)
2 𝑈

(2)
3 ], [𝑉 (2)

1 𝑉
(2)
2 𝑉

(2)
3 ], 𝜂)

𝑀𝐻 ([𝑈 (3)
1 𝑈

(3)
2 𝑈

(3)
3 ], [𝑉 (3)

1 𝑉
(3)
2 𝑉

(3)
3 ], 𝜂)

⎞⎟⎟⎟⎠ ,
where 𝑈 (𝓁)

𝑖
is the 𝓁th component of 𝑼 𝑖, 𝑉

(𝓁)
𝑖

is the 𝓁th component of 𝑽 𝑖. Different from 𝑴𝐿, the operator 𝑴𝐻 (⋅, ⋅, 𝜂) is a nonlinear 
mapping for a fixed 𝜂.

Remark 3.2. When solving the relativistic hydrodynamics (RHD) equations, the wide range of variable scales arising from relativistic 
effects in the ultra-relativistic regime can significantly impact the effectiveness of shock capturing. As recently demonstrated in 
[4], using scale-invariant nonlinear weights can effectively suppress oscillations for simulating multiscale RHD problems. Based on 
numerical tests, we have also observed that adopting scale-invariant nonlinear weights (3.8) is vital not only for the RHD equations 
but also for controlling spurious oscillations for multi-scale problems of other hyperbolic equations, such as the Euler equations.

3.1.3. Detailed PCP HWENO reconstruction procedure

We are now in a position to present the detailed PCP HWENO reconstruction procedure of our 1D HWENO scheme.

Step 1. Use the KXRCF indicator [20] to identify the troubled cells where the solution may be discontinuous. Then modify the 
first-order moment in the troubled cells by using the HWENO limiter given in [62]. The adoption of the KXRCF indicator in 
HWENO schemes is motivated by [62], which demonstrated its efficacy in reducing computational costs. We observe that 
the nonlinear weights in the HWENO limiter are also necessary to be scale-invariant, thus we modify the nonlinear weights 

in the HWENO limiter [62] to 𝜔𝑙
𝑛 =

𝜔̄𝑙
𝑛∑2

𝑘=0 𝜔̄𝑙
𝑘

with 𝜔̄𝑙
𝑛 = 𝛾𝑛

(
1 +

𝜏2
𝑙
Δ𝑥(

𝛽𝑙
𝑛

)2+𝜖

)
, 𝑛 = 0, 1, 2.

Step 2. Reconstruct the point values of the solution at the four Gauss–Lobatto points.
• If cell 𝐼𝑖 is not a troubled cell, employ the linear reconstruction:

𝑼∗
𝑖⊕𝑎𝓁

=𝑴𝐿

([
𝑼 𝑖−1 𝑼 𝑖 𝑼 𝑖+1

]
,
[
𝑽 𝑖−1 𝑽 𝑖 𝑽 𝑖+1

]
, 𝑎𝓁

)
, 𝓁 ∈ {1,2,3,4} .

• If 𝐼𝑖 is a troubled cell, use the HWENO reconstruction.
(i) Perform HWENO reconstruction in a component-by-component fashion for the second and third Gauss-Lobatto points:

𝑼∗
𝑖⊕𝑎𝓁

=𝑴𝐻

([
𝑼 𝑖−1 𝑼 𝑖 𝑼 𝑖+1

]
,
[
𝑽 𝑖−1 𝑽 𝑖 𝑽 𝑖+1

]
, 𝑎𝓁

)
, 𝓁 ∈ {2,3} .

(ii) Perform HWENO reconstruction based on characteristic decomposition for the cell interface points:

𝑼∗
𝑖⊕
(
± 1

2

) =𝑹
𝑖± 1

2
𝑴𝐻

(
𝑹−1

𝑖± 1
2

[
𝑼 𝑖−1 𝑼 𝑖 𝑼 𝑖+1

]
,𝑹−1

𝑖± 1
2

[
𝑽 𝑖−1 𝑽 𝑖 𝑽 𝑖+1

]
,±1

2

)
,

where 𝑹−1
𝑖+1∕2 and 𝑹𝑖+1∕2 are taken as left and right eigenvector matrices of the Roe matrix [9] at 𝑥𝑖+1∕2. The eigenvector 

matrices and fluxes are computed by using the primitive variables, which are recovered by using the proposed NR methods.
Step 3. Perform the PCP limiter on the reconstructed point values {𝑼∗

𝑖⊕𝑎𝓁
}4𝓁=1 as follows. Define 𝑼∗

𝑖⊕𝑎𝓁
=∶ (𝐷∗

𝑖⊕𝑎𝓁
, (𝑚1)∗𝑖⊕𝑎𝓁

, 𝐸∗
𝑖⊕𝑎𝓁

)⊤

and the first component of 𝑼 𝑖 as 𝐷𝑖.
• Modify the mass density to enforce its positivity via

𝐷̃𝑖⊕𝑎𝓁
= 𝜃𝐷(𝐷∗

𝑖⊕𝑎𝓁
−𝐷𝑖) +𝐷𝑖 with 𝜃𝐷 =min

{||||| 𝐷𝑖 − 𝜖𝐷

𝐷𝑖 −𝐷min

||||| ,1
}

,

𝐷min = min
⎧⎪⎨⎪⎩min

𝓁
{𝐷∗

𝑖⊕𝑎𝓁
},

𝐷𝑖 − 𝜔̂1𝑼
∗
𝑖⊕
(
− 1

2

)− 𝜔̂4𝑼
∗
𝑖⊕

1
2

1 − 2𝜔̂1

⎫⎪⎬⎪⎭ ,

where 𝜖𝐷 =min
𝑖

{
10−13,𝐷𝑖

}
is a small positive number introduced to avoid the effect of round-off errors.

• Define 𝑼̃ 𝑖⊕𝑎𝓁
= (𝐷̃𝑖⊕𝑎𝓁

, (𝑚1)∗𝑖⊕𝑎𝓁
, 𝐸∗

𝑖⊕𝑎𝓁
)⊤. Enforce the positivity of 𝑔(𝑼 ) by

𝑼 𝑖⊕𝑎𝓁
= 𝜃𝑔(𝑼̃ 𝑖⊕𝑎𝓁

−𝑼 𝑖) +𝑼 𝑖 with 𝜃𝑔 =min

{||||||
𝑔(𝑼 𝑖) − 𝜖𝑔

𝑔(𝑼 𝑖) − 𝑔min

|||||| ,1
}

, (3.9)

𝑔min = min
⎧⎪⎨⎪min

𝓁
𝑔(𝑼̃

∗
𝑖⊕𝑎𝓁

), 𝑔
⎛⎜⎜⎜
𝑼 𝑖 − 𝜔̂1𝑼̃

∗
𝑖⊕
(
− 1

2

) − 𝜔̂4𝑼̃
∗
𝑖⊕

1
2

1 − 2𝜔̂1

⎞⎟⎟⎟
⎫⎪⎬⎪ ,
16

⎩ ⎝ ⎠⎭
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where 𝜖𝑔 =min
𝑖

{
10−13, 𝑔(𝑼 𝑖)

}
.

Remark 3.3. The characteristic decomposition is very important for the HWENO reconstruction for the cell interface points. 
However, the wide range of characteristic variable scales resulting from relativistic effects can lead to large numerical errors in 
characteristic decomposition, especially in challenging test problems, where this problem is particularly severe in the HWENO 
scheme. To mitigate this issue, we propose to rescale the characteristic vectors. Let (𝒓, 𝒍) be a pair of right and left eigenvectors of the 
Jacobian matrix 𝜕𝑭

𝜕𝑼
, then (𝑐𝒓, 𝒍∕𝑐) is also a pair of eigenvectors, where 𝑐 ≠ 0. We consider the following two rescaling approaches:

(i) (Unitization) Unitize the left eigenvectors with 𝑐 = |𝒍|. However, this method may result in extremely large values of |𝑐𝒓|.
(ii) (Matching) Matching the norms between 𝑐𝒓 and 𝒍∕𝑐 with 𝑐 =

√|𝒍||𝒓| , such that |𝒍|∕𝑐 = 𝑐 |𝒓|.
In Section 5, we will present a numerical example to demonstrate the necessity of rescaling eigenvectors and compare the effective-
ness of these two approaches. The results show that the “matching” approach is superior to the “unitization” approach.

Remark 3.4. As demonstrated in Section 2, the algorithms recovering primitive variables from 𝑼 are convergent only when 𝑼 ∈ . 
Therefore, for the RHD equations, the pointwise PCP property at a given point is necessary whenever the fluxes are computed at 
that point. This differs from the Euler equations [59]. For this reason, we employ the PCP limiting procedures for the reconstructed 
values at the inner Gauss–Lobatto points 𝑼 𝑖+𝑎𝓁

(𝓁 = 2, 3) in Step 3.

3.1.4. Time discretization

To obtain a fully discrete scheme, we use the strong-stability-preserving (SSP) Runge–Kutta methods to further discretize the 
semi-discrete scheme (3.2)–(3.3) in time. For example, the third-order SSP Runge–Kutta method reads

𝑾
(1)
𝑖 =𝑾

𝑛

𝑖 +Δ𝑡𝑊 (𝑼 𝑛
ℎ
, 𝑖),

𝑾
(2)
𝑖 = 3

4
𝑾

𝑛

𝑖 +
1
4

(
𝑾

(1)
𝑖 +Δ𝑡𝑊 (𝑼 (1)

ℎ
, 𝑖)
)
,

𝑾
𝑛+1
𝑖 = 1

3
𝑾

𝑛

𝑖 +
2
3

(
𝑾

(2)
𝑖 +Δ𝑡𝑊 (𝑼 (2)

ℎ
, 𝑖)
)
,

(3.10)

where the symbol “𝑾 ” can be replaced with “𝑼” or “𝑽 ”.

3.2. Rigorous analysis of PCP property

In this subsection, we present a rigorous analysis of PCP property of the proposed HWENO scheme.
First, we recall the following Lax–Friedrichs splitting property, which was proved for the RHD equations in [50].

Lemma 3.1. If 𝑼 ∈ , then

𝑭
±
𝓁 (𝑼 , 𝛼) ∶=𝑼 ± 𝛼−1𝑭 𝓁(𝑼 ) ∈ 

for any 𝛼 ≥ 𝜚𝓁(𝑼 ), 𝓁 = 1, … , 𝑑.

Similar to [4, Proposition 3.1], we can prove that the PCP limited point values (3.9) satisfy the following property.

Lemma 3.2. If 𝑼 𝑖 ∈ , then the PCP limited point values (3.9) satisfy

𝑼 𝑖⊕𝑎𝓁
∈ , ∀𝓁 ∈ {1,2,3,4}, 𝚷𝑖 ∶=

1
1 − 2𝜔̂1

(
𝑼 𝑖 − 𝜔̂1𝑼 𝑖⊕

(
− 1

2

) − 𝜔̂4𝑼 𝑖⊕
1
2

)
∈ . (3.11)

Based on the above two lemmas, we are now ready to show the PCP property of the proposed HWENO scheme.

Theorem 3.1. Consider the proposed 1D HWENO scheme (3.2)–(3.3) with the Lax–Friedrichs flux (3.4). If 𝑼 𝑖 ∈  for all 𝑖, then the updated 
cell averages

𝑼 𝑖 +Δ𝑡𝑈 (𝑼ℎ(𝑡), 𝑖) ∈ , ∀𝑖 (3.12)

under the CFL condition

𝜔̂ Δ𝑥
17

Δ𝑡 ≤ 1
𝛼

. (3.13)
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Proof. Based on (3.11), we have the following convex decomposition for the cell average:

𝑼 𝑖 = (1 − 2𝜔̂1)𝚷𝑖 + 𝜔̂1𝑼 𝑖⊕
(
− 1

2

) + 𝜔̂1𝑼 𝑖⊕
1
2

with 𝚷𝑖 ∈ , 𝑼
𝑖⊕
(
− 1

2

) ∈ , and 𝑼
𝑖⊕

1
2
∈ . It follows that

𝑼 𝑖 +Δ𝑡𝑈 (𝑼ℎ(𝑡), 𝑖) =𝑼 𝑖 −
Δ𝑡

Δ𝑥

(
𝑭̂ 𝑖+1∕2 − 𝑭̂ 𝑖−1∕2

)
= (1 − 2𝜔̂1)𝚷𝑖 + 𝜔̂1𝑼 𝑖⊕

(
− 1

2

) + 𝜔̂1𝑼 𝑖⊕
1
2

− Δ𝑡

2Δ𝑥

{[
𝑭 1

(
𝑼

𝑖⊕
1
2

)
+𝑭 1

(
𝑼

(𝑖+1)⊕
(
− 1

2

))− 𝛼

(
𝑼

(𝑖+1)⊕
(
− 1

2

)−𝑼
𝑖⊕

1
2

)]
−
[
𝑭 1

(
𝑼

𝑖⊕
(
− 1

2

))+𝑭 1

(
𝑼 (𝑖−1)⊕ 1

2

)
−𝛼

(
𝑼

𝑖⊕
(
− 1

2

)−𝑼 (𝑖−1)⊕ 1
2

)]}
= (1 − 2𝜔̂1)𝚷𝑖 +

(
𝜔̂1 −

𝛼Δ𝑡

Δ𝑥

)
𝑼

𝑖⊕
(
− 1

2

) + (𝜔̂1 −
𝛼Δ𝑡

Δ𝑥

)
𝑼

𝑖⊕
1
2

+ 𝛼Δ𝑡

2Δ𝑥

[
𝑭 −

1 (𝑼 (𝑖+1)⊕
(
− 1

2

), 𝛼) + 𝑭 −
1 (𝑼 𝑖⊕

1
2
, 𝛼)
]

+ 𝛼Δ𝑡

2Δ𝑥

[
𝑭 +

1 (𝑼 (𝑖−1)⊕ 1
2
, 𝛼) + 𝑭 +

1 (𝑼 𝑖⊕
(
− 1

2

), 𝛼)].
Under the CFL condition (3.13), 𝑼 𝑖 +Δ𝑡𝑈 (𝑼ℎ(𝑡), 𝑖) has been reformulated into a convex combination form. Thanks to Lemma 3.1
and the convexity of , we have 𝑼 𝑖 +Δ𝑡𝑈 (𝑼ℎ(𝑡), 𝑖) ∈  for all 𝑖. The proof is completed. □

Theorem 3.1 implies that the proposed HWENO scheme is PCP if the forward Euler method is used for time discretization. Since 
the SSP Runge–Kutta method (3.10) is formally a convex combination of forward Euler, the PCP property remains valid for the fully 
discrete HWENO scheme (3.10), due to the convexity of .

4. Two-dimensional PCP HWENO scheme

In this section, we present the PCP finite volume HWENO scheme for the 2D special RHD equations

𝜕𝑼

𝜕𝑡
+

𝜕𝑭 1(𝑼 )
𝜕𝑥

+
𝜕𝑭 2(𝑼 )

𝜕𝑦
= 𝟎, (4.1)

where

𝑼 =
(
𝐷,𝑚1,𝑚2,𝐸

)⊤
, 𝑭 1 =

(
𝐷𝑣1,𝑚1𝑣1 + 𝑝,𝑚2𝑣1,𝑚1

)⊤
, 𝑭 2 =

(
𝐷𝑣2,𝑚1𝑣2 + 𝑝,𝑚2𝑣2 + 𝑝,𝑚2

)⊤
.

Divide the computational domain into 𝑁𝑥 × 𝑁𝑦 uniform cells 𝐼𝑖,𝑗 =
[
𝑥𝑖−1∕2, 𝑥𝑖+1∕2

]
×
[
𝑦𝑗−1∕2, 𝑦𝑗+1∕2

]
, 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦, with 

the cell center (𝑥𝑖, 𝑦𝑗 ) =
(

𝑥𝑖−1∕2+𝑥𝑖+1∕2
2 ,

𝑦𝑗−1∕2+𝑦𝑗+1∕2
2

)
. Let Δ𝑥 = 𝑥𝑖+1∕2 − 𝑥𝑖−1∕2 and Δ𝑦 = 𝑦𝑗+1∕2 − 𝑦𝑗−1∕2 denote the spatial step-sizes 

in the 𝑥- and 𝑦-directions, respectively.

4.1. 2D PCP finite volume HWENO scheme

In this subsection, we give the 2D finite volume PCP HWENO scheme. For the notational convenience, we denote 𝑥𝑖+𝑎 = 𝑥𝑖 + 𝑎Δ𝑥

and 𝑦𝑗+𝑏 = 𝑦𝑗 + 𝑏Δ𝑥, where 𝑎 ∈ [−1
2 , 

1
2 ] and 𝑏 ∈ [−1

2 , 
1
2 ] are real numbers.

The semi-discrete finite volume HWENO scheme for the RHD equations (4.1) is given by

d𝑼 𝑖,𝑗 (𝑡)
d𝑡

=− 1
Δ𝑥

3∑
𝓁=1

𝜔𝓁

(
𝑭̂

1
𝑖+ 1

2 ,𝑗+𝑏𝓁
− 𝑭̂

1
𝑖− 1

2 ,𝑗+𝑏𝓁

)
− 1

Δ𝑦

3∑
𝓁=1

𝜔𝓁

(
𝑭̂

2
𝑖+𝑏𝓁 ,𝑗+

1
2
− 𝑭̂

2
𝑖+𝑏𝓁 ,𝑗−

1
2

)
∶=𝑈 (𝑼ℎ(𝑡), 𝑖, 𝑗), (4.2)

d𝑽 𝑖,𝑗 (𝑡)
d𝑡

=− 1
2Δ𝑥

3∑
𝓁=1

𝜔𝓁

(
𝑭̂

1
𝑖+ 1

2 ,𝑗+𝑏𝓁
+ 𝑭̂

1
𝑖− 1

2 ,𝑗+𝑏𝓁

)
− 1

Δ𝑦

3∑
𝓁=1

𝜔𝓁𝑏𝓁

(
𝑭̂

2
𝑖+𝑏𝓁 ,𝑗+

1
2
− 𝑭̂

2
𝑖+𝑏𝓁 ,𝑗−

1
2

)
+ 1

Δ𝑥

3∑
𝑘=1

3∑
𝓁=1

𝜔𝑘𝜔𝓁𝑭 1

(
𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)
∶= 𝑉 (𝑼ℎ(𝑡), 𝑖, 𝑗), (4.3)

d𝑾 𝑖,𝑗 (𝑡) 1
3∑ (

̂ 1 ̂ 1
) 1

3∑ (
̂ 2 ̂ 2

)

18

d𝑡
=−

Δ𝑥
𝓁=1

𝜔𝓁𝑏𝓁 𝑭
𝑖+ 1

2 ,𝑗+𝑏𝓁
− 𝑭

𝑖− 1
2 ,𝑗+𝑏𝓁

−
2Δ𝑦

𝓁=1
𝜔𝓁 𝑭

𝑖+𝑏𝓁 ,𝑗+
1
2
+ 𝑭

𝑖+𝑏𝓁 ,𝑗−
1
2
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+ 1
Δ𝑦

3∑
𝑘=1

3∑
𝓁=1

𝜔𝑘𝜔𝓁𝑭 2

(
𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)
∶=𝑊 (𝑼ℎ(𝑡), 𝑖, 𝑗), (4.4)

where

𝑼 𝑖,𝑗 (𝑡) ≈
1

Δ𝑥Δ𝑦 ∫
𝐼𝑖,𝑗

𝑼 (𝑥, 𝑦, 𝑡) d𝑥d𝑦

denotes the approximation to the zeroth order moment in 𝐼𝑖,𝑗 ,

𝑽 𝑖,𝑗 (𝑡) ≈
1

Δ𝑥Δ𝑦 ∫
𝐼𝑖,𝑗

𝑼 (𝑥, 𝑦, 𝑡)
𝑥− 𝑥𝑖

Δ𝑥
d𝑥d𝑦,

𝑾 𝑖,𝑗 (𝑡) ≈
1

Δ𝑥Δ𝑦 ∫
𝐼𝑖,𝑗

𝑼 (𝑥, 𝑦, 𝑡)
𝑦− 𝑦𝑗

Δ𝑥
d𝑥d𝑦,

denote the approximations to the first order moments in the 𝑥- and 𝑦-directions in 𝐼𝑖,𝑗 , respectively,

𝑼ℎ(𝑡)∶={𝑼 𝑖,𝑗 (𝑡)}1≤𝑖≤𝑁𝑥,1≤𝑗≤𝑁𝑦
∪ {𝑽 𝑖,𝑗 (𝑡)}1≤𝑖≤𝑁𝑥,1≤𝑗≤𝑁𝑦

∪ {𝑾 𝑖,𝑗 (𝑡)}1≤𝑖≤𝑁𝑥,1≤𝑗≤𝑁𝑦

denotes the set that contains all cells’ zeroth and first order moments, and 𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
denotes the approximation to 𝑼

(
𝑥𝑖+𝑏𝓁

, 𝑦𝑗+𝑏𝑘
, 𝑡
)

within the cell 𝐼𝑖,𝑗 . Here we follow [62] and use the three-point Gauss quadrature with the quadrature weights and nodes given by

𝜔1 = 𝜔3 =
5
18

, 𝜔2 =
4
9
,

{𝑏𝓁}3𝓁=1 =

{
−
√
15
10

, 0,
√
15
10

}
.

In (4.2)–(4.4), 𝑭̂ 1
𝑖+ 1

2 ,𝑗+𝑏𝓁
and 𝑭̂ 2

𝑖+𝑏𝓁 ,𝑗+
1
2

denote the numerical flux at the cell interface points (𝑥
𝑖+ 1

2
, 𝑦𝑗+𝑏𝓁

) and (𝑥𝑖+𝑏𝓁
, 𝑦

𝑗+ 1
2
), respec-

tively. In this paper, we employ the Lax–Friedrichs numerical fluxes

⎧⎪⎪⎨⎪⎪⎩
𝑭̂

1
𝑖+ 1

2 ,𝑗+𝑏𝓁
= 1

2

(
𝑭 1

(
𝑼

𝑖⊕
1
2 ,𝑗⊕𝑏𝓁

)
+𝑭 1

(
𝑼

(𝑖+1)⊕
(
− 1

2

)
,𝑗⊕𝑏𝓁

)
−𝛼1

(
𝑼

(𝑖+1)⊕
(
− 1

2

)
,𝑗⊕𝑏𝓁

−𝑼
𝑖⊕

1
2 ,𝑗⊕𝑏𝓁

))
,

𝑭̂
2
𝑖+𝑏𝓁 ,𝑗+

1
2
= 1

2

(
𝑭 2

(
𝑼

𝑖⊕𝑏𝓁 ,𝑗⊕
1
2

)
+𝑭 2

(
𝑼

𝑖⊕𝑏𝓁 ,(𝑗+1)⊕
(
− 1

2

))−𝛼2

(
𝑼

𝑖⊕𝑏𝓁 ,(𝑗+1)⊕
(
− 1

2

)−𝑼
𝑖⊕𝑏𝓁 ,𝑗⊕

1
2

))
,

(4.5)

which will be useful for achieving the PCP property of our HWENO scheme. Here

⎧⎪⎪⎨⎪⎪⎩
𝛼1 = max

𝑖,𝑗,𝓁

{
max

{
𝜚1

(
𝑼

𝑖⊕
1
2 ,𝑗⊕𝑏𝓁

)
, 𝜚1

(
𝑼

(𝑖+1)⊕
(
− 1

2

)
,𝑗⊕𝑏𝓁

)}}
,

𝛼2 = max
𝑖,𝑗,𝓁

{
max

{
𝜚2

(
𝑼

𝑖⊕𝑏𝓁 ,𝑗⊕
1
2

)
, 𝜚2

(
𝑼

𝑖⊕𝑏𝓁 ,(𝑗+1)⊕
(
− 1

2

))}} ,

(4.6)

with 𝜚1 (𝑼 ) and 𝜚2 (𝑼 ) denoting the spectral radius of the Jacobian matrices 𝜕𝑭 1(𝑼 )
𝜕𝑼

and 𝜕𝑭 2(𝑼 )
𝜕𝑼

, respectively.

To compute 𝑈 (𝑼ℎ(𝑡), 𝑖), 𝑉 (𝑼ℎ(𝑡), 𝑖) and 𝑊 (𝑼ℎ(𝑡), 𝑖) in (4.2)–(4.4), one needs to reconstruct point values {𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
}3𝓁,𝑘=1, 

{𝑼
𝑖⊕𝑏𝓁 ,𝑗⊕

(
± 1

2

)}3𝓁=1 and {𝑼
𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

}3𝓁=1 by using {𝑼 𝑖,𝑗} and {𝑽 𝑖,𝑗}.

For simplicity, denote 𝑼 𝑖,𝑗,𝑟 as the zeroth-order moment in 𝐼𝑟
𝑖,𝑗

(see Fig. 3), and 𝑽 𝑖,𝑗,𝑟, 𝑾 𝑖,𝑗,𝑟 as the first-order moments in 
𝑥-direction and 𝑦-direction in 𝐼𝑟

𝑖,𝑗
. Define

𝑼𝑆
𝑖,𝑗 =

[
𝑼 𝑖,𝑗,1 … 𝑼 𝑖,𝑗,9

]
,

𝑽 𝑆
𝑖,𝑗 =

[
𝑽 𝑖,𝑗,2 𝑽 𝑖,𝑗,4 𝑽 𝑖,𝑗,5 𝑽 𝑖,𝑗,6 𝑽 𝑖,𝑗,8

]
,

𝑾 𝑆
𝑖,𝑗 =

[
𝑾 𝑖,𝑗,2 𝑾 𝑖,𝑗,4 𝑾 𝑖,𝑗,5 𝑾 𝑖,𝑗,6 𝑾 𝑖,𝑗,8

]
.

The 2D HWENO reconstruction procedure is also based on two operators 𝑴𝐿 and 𝑴𝐻 , which are introduced in Appendices A
19

and B for better readability. The detailed PCP HWENO reconstruction procedure of our 2D HWENO scheme is summarized as follows:
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𝐼1
𝑖,𝑗

𝐼2
𝑖,𝑗 𝐼3

𝑖,𝑗

𝐼4
𝑖,𝑗 𝐼5

𝑖,𝑗
𝐼6
𝑖,𝑗

𝐼7
𝑖,𝑗 𝐼8

𝑖,𝑗 𝐼9
𝑖,𝑗

𝑥𝑖−3∕2 𝑥𝑖−1∕2 𝑥𝑖+1∕2 𝑥𝑖+3∕2

𝑦𝑗−3∕2

𝑦𝑗−1∕2

𝑦𝑗+1∕2

𝑦𝑗+3∕2

Fig. 3. Renumbering of cell 𝐼𝑖,𝑗 and its adjacent cells.

Step 1. Use the KXRCF indicator [20] dimension-by-dimension to identify the troubled cells. A cell is regarded as a troubled cell 
as long as it is identified as troubled cell in either 𝑥-direction or 𝑦-direction. Then modify the first-order moments in the 
troubled cells by using the HWENO limiter given in [62].

Step 2. Reconstruct the point values {𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
}3𝓁,𝑘=1, {𝑼

𝑖⊕𝑏𝓁 ,𝑗⊕
(
± 1

2

)}3𝓁=1 and {𝑼
𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

}3𝓁=1.

• Employ the linear reconstruction for the inner Gaussian points {𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
}3𝓁,𝑘=1:

𝑼∗
𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

=𝑴𝐿

(
𝑼𝑆

𝑖,𝑗 ,𝑽
𝑆
𝑖,𝑗 ,𝑾

𝑆
𝑖,𝑗 , 𝑏𝓁 , 𝑏𝑘

)
, ∀𝓁, 𝑘 ∈ {1,2,3} .

• Reconstruction for the cell interface points {𝑼
𝑖⊕𝑏𝓁 ,𝑗⊕

(
± 1

2

)}3𝓁=1 and {𝑼
𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

}3𝓁=1.

(i) If 𝐼𝑖,𝑗 is not a troubled cell, perform linear reconstruction for the cell interface points:

𝑼∗
𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

=𝑴𝐿

(
𝑼𝑆

𝑖,𝑗 ,𝑽
𝑆
𝑖,𝑗 ,𝑾

𝑆
𝑖,𝑗 ,±

1
2
, 𝑏𝓁

)
, ∀𝓁 ∈ {1,2,3} ,

𝑼∗
𝑖⊕𝑏𝓁 ,𝑗⊕

(
± 1

2

) =𝑴𝐿

(
𝑼𝑆

𝑖,𝑗 ,𝑽
𝑆
𝑖,𝑗 ,𝑾

𝑆
𝑖,𝑗 , 𝑏𝓁 ,±

1
2

)
, ∀𝓁 ∈ {1,2,3} .

(ii) If 𝐼𝑖,𝑗 is a troubled cell, perform HWENO reconstruction based on characteristic decomposition for the cell interface 
points:

𝑼∗
𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

=𝑹1
𝑖± 1

2 ,𝑗
𝑴𝐻

((
𝑹1

𝑖± 1
2 ,𝑗

)−1
𝑼𝑆

𝑖,𝑗 ,

(
𝑹1

𝑖± 1
2 ,𝑗

)−1
𝑽 𝑆

𝑖,𝑗 ,

(
𝑹1

𝑖± 1
2 ,𝑗

)−1
𝑾 𝑆

𝑖,𝑗 ,±
1
2
, 𝑏𝓁

)
,

𝑼∗
𝑖⊕𝑏𝓁 ,𝑗⊕

(
± 1

2

) =𝑹2
𝑖,𝑗± 1

2
𝑴𝐻

((
𝑹2

𝑖,𝑗± 1
2

)−1
𝑼𝑆

𝑖,𝑗 ,

(
𝑹2

𝑖,𝑗± 1
2

)−1
𝑽 𝑆

𝑖,𝑗 ,

(
𝑹2

𝑖,𝑗± 1
2

)−1
𝑾 𝑆

𝑖,𝑗 , 𝑏𝓁 ,±
1
2

)
,

for all 𝓁 ∈ {1,2,3}. 
(
𝑹1

𝑖+ 1
2 ,𝑗

)−1
and 𝑹1

𝑖+ 1
2 ,𝑗

are taken as left and right eigenvector matrices of 𝑨1

(
𝑼 𝑖,𝑗 ,𝑼 𝑖+1,𝑗

)
, which 

is the Roe matrix [9] associated with 𝜕𝑭 1
𝜕𝑼

, 
(
𝑹2

𝑖,𝑗+ 1
2

)−1
and 𝑹2

𝑖,𝑗+ 1
2

are taken as left and right eigenvector matrices of 

𝑨2

(
𝑼 𝑖,𝑗 ,𝑼 𝑖,𝑗+1

)
, which is the Roe matrix associated with 𝜕𝑭 2

𝜕𝑼
. The eigenvector matrices and fluxes are computed by 

using the primitive variables, which are recovered by using the proposed NR methods.
Step 3. Perform the PCP limiter on the reconstructed point values {𝑼∗

𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
}3𝓁,𝑘=1, {𝑼∗

𝑖⊕
(
±1
2

)
,𝑗⊕𝑏𝓁

}3𝓁=1, and {𝑼∗
𝑖⊕𝑏𝓁 ,𝑗⊕

(
±1
2

)}3𝓁=1 as 

follows. Define Θ ∶= {(𝑏𝓁 , 𝑏𝑘)}3𝓁,𝑘=1 ∪ {(± 1
2 , 𝑏𝓁)}

3
𝓁=1 ∪ {(𝑏𝓁 , ±

1
2 )}

3
𝓁=1 and

𝑼∗
𝑖⊕𝑎,𝑗⊕𝑏

= [𝐷∗
𝑖⊕𝑎,𝑗⊕𝑏

(𝑚1)∗𝑖⊕𝑎,𝑗⊕𝑏
(𝑚2)∗𝑖⊕𝑎,𝑗⊕𝑏

𝐸∗
𝑖⊕𝑎,𝑗⊕𝑏

]⊤, ∀(𝑎, 𝑏) ∈ Θ.

Denote the first component of 𝑼 𝑖,𝑗 as 𝐷𝑖,𝑗 . Let

𝜇1 =
𝜆1𝛼1

𝜆1𝛼1 + 𝜆2𝛼2
, 𝜇2 =

𝜆2𝛼2
𝜆1𝛼1 + 𝜆2𝛼2)
20

with 𝜆1 = Δ𝑡∕Δ𝑥, 𝜆2 = Δ𝑡∕Δ𝑦.
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• Modify the mass density to enforce its positivity via

𝐷̃𝑖⊕𝑎,𝑗⊕𝑏 = 𝜃𝐷(𝐷∗
𝑖⊕𝑎,𝑗⊕𝑏

−𝐷𝑖,𝑗 ) +𝐷𝑖,𝑗 with 𝜃𝐷 =min

{||||||
𝐷𝑖,𝑗 − 𝜖𝐷

𝐷𝑖,𝑗 −𝐷min

|||||| ,1
}

,

𝐷min = min

{
min
𝓁

{
𝐷∗

𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

}
,min

𝓁

{
𝐷∗

𝑖⊕𝑏𝓁 ,𝑗⊕
(
± 1

2

)
}

,min
𝓁,𝑘

{
𝐷∗

𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

}
, 𝐷̂𝑖,𝑗

}
,

𝐷̂𝑖,𝑗 ∶=
1

1 − 2𝜔̂1

(
𝐷𝑖,𝑗−

3∑
𝓁=1

𝜔𝓁𝜔̂1

[
𝜇1

(
𝐷∗

𝑖⊕
1
2 ,𝑗⊕𝑏𝓁

+𝐷∗
𝑖⊕
(
− 1

2

)
,𝑗⊕𝑏𝓁

)
+𝜇2

(
𝐷∗

𝑖⊕𝑏𝓁 ,𝑗⊕
1
2
+𝐷∗

𝑖⊕𝑏𝓁 ,𝑗⊕
(
− 1

2

)
)])

,

where 𝜖𝐷 =min
𝑖,𝑗

{
10−13,𝐷𝑖,𝑗

}
is a small positive number introduced to avoid the effect of round-off errors.

• Define 𝑼̃ 𝑖⊕𝑎,𝑗⊕𝑏 = [𝐷̃𝑖⊕𝑎,𝑗⊕𝑏 (𝑚1)∗𝑖⊕𝑎,𝑗⊕𝑏
(𝑚2)∗𝑖⊕𝑎,𝑗⊕𝑏

𝐸∗
𝑖⊕𝑎,𝑗⊕𝑏

]⊤ for all (𝑎, 𝑏) ∈Θ. Enforce the positivity of 𝑔(𝑼 ) by

𝑼 𝑖⊕𝑎,𝑗⊕𝑏 = 𝜃𝑔(𝑼̃ 𝑖+𝑎,𝑗+𝑏 −𝑼 𝑖,𝑗 ) +𝑼 𝑖,𝑗 with 𝜃𝑔 =min

{||||||
𝑔(𝑼 𝑖,𝑗 ) − 𝜖𝑔

𝑔(𝑼 𝑖,𝑗 ) − 𝑔min

|||||| ,1
}

, (4.7)

𝑔min=min
{
min
𝓁

{
𝑔(𝑼̃

𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

)
}

,min
𝓁

{
𝑔(𝑼̃

𝑖⊕𝑏𝓁 ,𝑗⊕
(
± 1

2

))},min
𝓁,𝑘

{
𝑔(𝑼̃ 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)
}
, 𝑔(𝚷̃𝑖,𝑗 )

}
,

𝚷̃𝑖,𝑗 ∶=
1

1 − 2𝜔̂1

(
𝑼 𝑖,𝑗−

3∑
𝓁=1

𝜔𝓁𝜔̂1

[
𝜇1

(
𝑼̃

𝑖⊕
1
2 ,𝑗⊕𝑏𝓁

+ 𝑼̃
𝑖⊕
(
− 1

2

)
,𝑗⊕𝑏𝓁

)
+𝜇2

(
𝑼̃

𝑖⊕𝑏𝓁 ,𝑗⊕
1
2
+ 𝑼̃

𝑖⊕𝑏𝓁 ,𝑗⊕
(
− 1

2

))]) ,

where 𝜖𝑔 =min
𝑖,𝑗

{
10−13, 𝑔(𝑼 𝑖,𝑗 )

}
.

4.2. Rigorous analysis of PCP property

In this subsection, we present a rigorous analysis of PCP property of the proposed 2D HWENO scheme.
Similar to [4, Proposition 3.1], we can prove that the PCP limited point values (4.7) satisfy the following property.

Lemma 4.1. If 𝑼 𝑖,𝑗 ∈ , then:

(1) 𝑼
𝑖⊕
(
± 1

2

)
,𝑗⊕𝑏𝓁

∈ , 𝑼
𝑖⊕𝑏𝓁 ,𝑗⊕

(
± 1

2

) ∈  and 𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
∈  for all 𝓁, 𝑘 ∈ {1, 2, 3}.

(2) 𝚷𝑖,𝑗 ∈ , where

𝚷𝑖,𝑗 ∶=
1

1 − 2𝜔̂1

(
𝑼 𝑖,𝑗−

3∑
𝛽=1

𝜔𝛽𝜔̂1

[
𝜇1

(
𝑼

𝑖⊕
1
2 ,𝑗⊕𝑏𝛽

+𝑼
𝑖⊕
(
− 1

2

)
,𝑗⊕𝑏𝛽

)
+𝜇2

(
𝑼

𝑖⊕𝑏𝛽 ,𝑗⊕
1
2
+𝑼

𝑖⊕𝑏𝛽 ,𝑗⊕
(
− 1

2

))]) . (4.8)

Base on the Lemmas 3.1 and 4.1, we are now ready to show the PCP property of the proposed 2D HWENO scheme.

Theorem 4.1. Consider the proposed 2D HWENO scheme (4.2)–(4.4) with the Lax–Friedrichs flux (4.5). If 𝑼 𝑖,𝑗 ∈  for all 𝑖, 𝑗, then the 
updated cell averages

𝑼 𝑖,𝑗 +Δ𝑡𝑈 (𝑼ℎ(𝑡), 𝑖, 𝑗) ∈ , ∀𝑖, 𝑗 (4.9)

under the CFL condition

Δ𝑡 ≤ 𝜔̂1
𝛼1∕Δ𝑥+ 𝛼2∕Δ𝑦

. (4.10)

Proof. Based on (4.8), we have the following convex decomposition for the cell average:

𝑼 𝑖,𝑗=(1−2𝜔̂1)𝚷𝑖,𝑗 +
3∑

𝛽=1
𝜔𝛽𝜔̂1

[
𝜇1

(
𝑼

𝑖⊕
1
2 ,𝑗⊕𝑏𝛽

+𝑼
𝑖⊕
(
− 1

2

)
,𝑗⊕𝑏𝛽

)
+𝜇2

(
𝑼

𝑖⊕𝑏𝛽 ,𝑗⊕
1
2
+𝑼

𝑖⊕𝑏𝛽 ,𝑗⊕
(
− 1

2

))]
( ) ( )
21

with 𝚷𝑖,𝑗 ∈ , 𝑼
𝑖⊕ ±1

2 ,𝑗⊕𝑏𝓁
∈ , 𝑼

𝑖⊕𝑏𝓁 ,𝑗⊕ ±1
2
∈ , and 𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

∈  for all 𝓁, 𝑘 ∈ {1, 2, 3}. It follows that
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𝑼 𝑖,𝑗 +Δ𝑡𝑈 (𝑼ℎ(𝑡), 𝑖, 𝑗)

=(1 − 2𝜔̂1)𝚷𝑖,𝑗 +
3∑

𝓁=1
𝜔𝓁𝜔̂1

[
𝜇1

(
𝑼

𝑖⊕
1
2 ,𝑗⊕𝑏𝓁

+𝑼
𝑖⊕
(
−1
2

)
,𝑗⊕𝑏𝓁

)
+𝜇2

(
𝑼

𝑖⊕𝑏𝓁 ,𝑗⊕
1
2
+𝑼

𝑖⊕𝑏𝓁 ,𝑗⊕
(
−1
2

))]

− Δ𝑡

Δ𝑥

3∑
𝓁=1

𝜔𝓁

(
𝑭̂

1
𝑖+ 1

2 ,𝑗+𝑏𝓁
− 𝑭̂

1
𝑖− 1

2 ,𝑗+𝑏𝓁

)
− Δ𝑡

Δ𝑦

3∑
𝓁=1

𝜔𝓁

(
𝑭̂

2
𝑖+𝑏𝓁 ,𝑗+

1
2
− 𝑭̂

2
𝑖+𝑏𝓁 ,𝑗−

1
2

)
=(1 − 2𝜔̂1)𝚷𝑖,𝑗 + 𝜇1

3∑
𝓁=1

𝜔𝓁𝜔̂1

[(
1 −

𝜆1𝛼1
𝜇1𝜔̂1

)
(𝑼

𝑖⊕
(
−1
2

)
,𝑗⊕𝑏𝓁

+𝑼
𝑖⊕

1
2 ,𝑗⊕𝑏𝓁

)+

𝜆1𝛼1
2𝜇1𝜔̂1

(
𝑭 +

1 (𝑼 (𝑖−1)⊕ 1
2 ,𝑗⊕𝑏𝓁

,𝛼1)+𝑭+
1 (𝑼 𝑖⊕

(
−1
2

)
,𝑗⊕𝑏𝓁

,𝛼1)+𝑭 −
1 (𝑼 𝑖⊕

1
2 ,𝑗⊕𝑏𝓁

,𝛼1)+𝑭 −
1 (𝑼 (𝑖+1)⊕

(
−1
2

)
,𝑗⊕𝑏𝓁

,𝛼1)
)]

+ 𝜇2

3∑
𝓁=1

𝜔𝓁𝜔̂1

[(
1 −

𝜆2𝛼2
𝜇2𝜔̂1

)
(𝑼

𝑖⊕𝑏𝓁 ,𝑗⊕
(
−1
2

)+𝑼
𝑖⊕𝑏𝓁 ,𝑗⊕

1
2
)+

𝜆2𝛼2
2𝜇2𝜔̂1

(
𝑭 +

2 (𝑼 𝑖⊕𝑏𝓁 ,(𝑗−1)⊕
1
2
,𝛼2)+𝑭+

2 (𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕
(
−1
2

),𝛼2)+𝑭 −
2 (𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕

1
2
,𝛼2)+𝑭 −

2 (𝑼 𝑖⊕𝑏𝓁 ,(𝑗+1)⊕
(
−1
2

),𝛼2)
)]

.

Under the CFL condition (4.10), 𝑼 𝑖,𝑗 +Δ𝑡𝑈 (𝑼ℎ(𝑡), 𝑖, 𝑗) has been reformulated into a convex combination form. Thanks to Lemma 3.1
and the convexity of , we obtain (4.9). The proof is completed. □

Theorem 4.1 implies that the proposed 2D HWENO scheme is PCP if the forward Euler method is used for time discretization. 
Since the SSP Runge–Kutta method (3.10) is formally a convex combination of forward Euler, the PCP property remains valid for the 
fully discrete HWENO scheme, due to the convexity of .

4.3. Application to axisymmetric RHD equations in cylindrical coordinates

In this subsection, we present the HWENO scheme for the axisymmetric RHD equations in cylindrical coordinates (𝑟, 𝑧), which 
can be written as

𝜕𝑼

𝜕𝑡
+

𝜕𝑭 1(𝑼 )
𝜕𝑟

+
𝜕𝑭 2(𝑼 )

𝜕𝑧
= 𝑺(𝑼 , 𝑟),

where the definition of fluxes 𝑭 1 and 𝑭 2 are the same as (1.3), and the source term

𝑺(𝑼 , 𝑟) = −1
𝑟
(𝐷𝑣1,𝑚1𝑣1,𝑚2𝑣1,𝑚1)⊤.

The semi-discrete HWENO scheme for axisymmetric RHD equations reads

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d𝑼 𝑖,𝑗

d𝑡
=𝑈 (𝑼ℎ(𝑡), 𝑖, 𝑗) +𝑺 𝑖,𝑗 ,

d𝑽 𝑖,𝑗

d𝑡
=𝑉 (𝑼ℎ(𝑡), 𝑖, 𝑗) +𝑺

1
𝑖,𝑗 ,

d𝑾 𝑖,𝑗

d𝑡
=𝑊 (𝑼ℎ(𝑡), 𝑖, 𝑗) +𝑺

2
𝑖,𝑗 ,

(4.11)

where

𝑺 𝑖,𝑗 ∶=
3∑

𝓁=1

3∑
𝑘=1

𝜔𝓁𝜔𝑘𝑺

(
𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)
,

𝑺
1
𝑖,𝑗 ∶=

3∑
𝓁=1

3∑
𝑘=1

𝜔𝓁𝜔𝑘𝑏𝓁𝑺
(
𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)
,

𝑺
2
𝑖,𝑗 ∶=

3∑
𝓁=1

3∑
𝑘=1

𝜔𝓁𝜔𝑘𝑏𝑘𝑺
(
𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)
are the numerical approximations to ∫

𝐼𝑖,𝑗
𝑺(𝑼 , 𝑟)d𝑟d𝑧, ∫

𝐼𝑖,𝑗
𝑺(𝑼 , 𝑟) 𝑟−𝑟𝑖

Δ𝑟
d𝑟d𝑧, and ∫

𝐼𝑖,𝑗
𝑺(𝑼 , 𝑟) 𝑧−𝑧𝑗

Δ𝑧
d𝑟d𝑧, respectively. The definitions of 

spatial operators 𝑈 , 𝑉 and 𝑊 are the same as (4.2)–(4.4) (with the variables 𝑥, 𝑦 replaced by 𝑟, 𝑧).
22

To analysis the PCP property of the scheme (4.11), we recall the following lemma proposed in [50, Section 3.2]:
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Lemma 4.2. If 𝑼 ∈ , then 𝑼 +Δ𝑡𝑺(𝑼 , 𝑟) ∈  under the time step restriction

𝑣1Δ𝑡 ≤ 𝑟𝑔(𝑼 )
𝑝+ 𝑔(𝑼 )

.

Assume 𝛽 is a positive number, then we have

𝑼 𝑖,𝑗 +Δ𝑡(𝑈 (𝑼ℎ(𝑡), 𝑖, 𝑗) +𝑺 𝑖,𝑗 )

=(1 − 𝛽)(𝑼 𝑖,𝑗 +
Δ𝑡

1 − 𝛽
𝑈 (𝑼 (𝑡), 𝑖, 𝑗)) + 𝛽(𝑼 𝑖,𝑗 +

Δ𝑡

𝛽
𝑺 𝑖,𝑗 )

=(1 − 𝛽)
(
𝑼 𝑖,𝑗 +

Δ𝑡

1 − 𝛽
𝑈 (𝑼 (𝑡), 𝑖, 𝑗)

)
+ 𝛽

( 3∑
𝓁=1

3∑
𝑘=1

𝜔𝓁𝜔𝑘

(
𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

+ Δ𝑡

𝛽
𝑺

(
𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)))
.

By using Theorem 4.1, Lemma 4.1, Lemma 4.2, and the convexity of , one can deduce that the HWENO scheme (4.11) preserves

𝑼 𝑖,𝑗 +Δ𝑡(𝑈 (𝑼ℎ(𝑡), 𝑖, 𝑗) +𝑺 𝑖,𝑗 ) ∈ 
under the time step restriction

Δ𝑡

1 − 𝛽
≤ 𝜔̂1

𝛼1∕Δ𝑥+ 𝛼2∕Δ𝑦
, 𝑣1(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)Δ𝑡

𝛽
≤ (𝑟𝑖 + 𝑏𝓁Δ𝑟)𝑔(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)(
𝑝(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

) + 𝑔(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
)
) . (4.12)

Taking a special 𝛽 leads to the following time step restriction

Δ𝑡 ≤ 𝛽𝐴𝑠,

where

𝐴𝑠 =min
𝑖,𝑗

⎧⎪⎨⎪⎩ min
(𝓁,𝑘)∈Λ𝑖𝑗

⎧⎪⎨⎪⎩
(𝑟𝑖 + 𝑏𝓁Δ𝑟)𝑔(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)(
𝑝(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

) + 𝑔(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘
)
)
𝑣1(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

)

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ ,

𝛽 =
𝜔̂1

𝜔̂1 +𝐴𝑠

(
𝛼1∕Δ𝑥+ 𝛼2∕Δ𝑦

) , Λ𝑖𝑗 ∶=
{
(𝓁, 𝑘) ∶ 𝑣1(𝑼 𝑖⊕𝑏𝓁 ,𝑗⊕𝑏𝑘

) > 0
}

.

Again, the PCP property remains valid for the fully discrete HWENO scheme if the SSP Runge–Kutta method is used for time 
discretization.

5. Numerical tests

This section will conduct several ultra-relativistic numerical experiments, to demonstrate the accuracy, robustness, and effec-
tiveness of the proposed PCP finite volume HWENO schemes and NR methods. The CFL number is set as 0.6, and unless otherwise 
specified, the adiabatic index 𝛾 is set as 5∕3. We will compare the proposed NR methods with several other primitive variables 
recovery algorithms in Examples 5.1 and 5.10. In the other examples, we only present the results obtained by using our preferred 
hybrid NR method due to its superior efficacy.

5.1. Numerical experiments on primitive variables recovery algorithms

We conduct several tests to evaluate the accuracy and efficiency of the three proposed quadratically convergent PCP primitive 
variable recovering algorithms (the target accuracy 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 is set as 10−14), by comparing them with three existing algorithms from 
the literature, including the hybrid linearly convergent PCP algorithm introduced in [4] (hereafter termed “Hybrid-linear”), the NR 
algorithm proposed by Mignone, Plewa, and Bodo in [29] (which we denote as “MPB-NR”), and the velocity-proxy-based recovery 
algorithm from [37] (which we refer to as “Vel-Proxy”). All the tests are implemented in C++ with double precision and performed 
with one core on the same Windows environment with 13th Gen Intel(R) Core(TM) i9-13900HX2.20 GHz.

Example 5.1 (Random tests). Three sets of random tests are provided to validate the accuracy and efficiency of our NR methods 
presented in Section 2. Let 𝑈𝚛𝚊𝚗𝚍 denote the uniform random variables independently generated in [0, 1].

The first set of random primitive variables are generated by

⎧⎪⎪⎨⎪
𝜌 = 1000𝑈𝚛𝚊𝚗𝚍 + 10−10,
𝑣 = 1.99999𝑈𝚛𝚊𝚗𝚍 − 1.99999∕2,
𝑝 = 10𝑈𝚛𝚊𝚗𝚍 + 10−10,

(5.1)
23

⎪⎩𝛾 = 1 +𝑈𝚛𝚊𝚗𝚍.
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Table 1

The first set of random tests: CPU time, maximum relative errors, average relative errors, average iterations, algorithm 
failure counts, and negative pressure counts in 108 independent random experiments.

algorithms total time (s) max error average error average iteration negative number failures

Hybrid-linear 107.806 7.52E-07 2.22E-13 15.2606 0 0
NR-I 9.522 3.26E-07 1.51E-13 4.3830 0 0
NR-II 11.293 4.26E-07 1.62E-13 3.8089 0 0
Hybrid NR 9.033 3.26E-07 1.51E-13 4.3448 0 0
Analytical 32.861 7.42E-00 3.12E-07 - 0 0
Vel-Proxy 11.686 6.70E-07 1.74E-13 4.50908 0 0
MPB-NR 42.056 3.26E-07 1.65E-13 4.1707 0 0

Table 2

The second set of random tests: CPU time, maximum relative errors, average relative errors, average iterations, algorithm 
failure counts, and negative pressure counts in 108 independent random experiments.

algorithms total time (s) max error average error average iteration negative number failures

Hybrid-linear 123.606 3.25E-02 4.04E-10 17.8687 0 0
NR-I 19.631 2.83E-06 5.99E-13 11.0891 0 0
NR-II 11.455 4.75E-09 5.20E-15 3.5914 0 0
Hybrid NR 12.342 4.75E-09 5.52E-15 4.65143 0 0
Analytical 32.423 9.11E-00 2.71E-07 - 0 0
Vel-Proxy 11.599 5.42E-09 7.26E-15 4.50908 0 0
MPB-NR 42.662 4.75E-09 5.32E-15 4.2800 0 0

The second set of random tests involve low density and low pressure:

⎧⎪⎪⎨⎪⎪⎩
𝜌 = 10−3𝑈𝚛𝚊𝚗𝚍 + 10−10,
𝑣 = 1.99999𝑈𝚛𝚊𝚗𝚍 − 1.99999∕2,
𝑝 = 0.1𝑈𝚛𝚊𝚗𝚍 + 10−10,
𝛾 = 1 +𝑈𝚛𝚊𝚗𝚍.

(5.2)

In the last set of random tests, velocity approaches the speed of light, density is small and 𝛾 = 2:

⎧⎪⎪⎨⎪⎪⎩
𝜌 = 10−4,
𝑣 = 1 − 10−8 − 10−6𝑈𝚛𝚊𝚗𝚍,

𝑝 = 500𝑈𝚛𝚊𝚗𝚍 + 500,
𝛾 = 2.

(5.3)

In our experimental setup, we generate primitive variables randomly and use them to calculate the corresponding conservative 
variables 𝑼 through (1.4). We then apply the primitive variables recovery algorithms to recompute the primitive variables from 
𝑼 . The selection of an initial value for the MPB-NR method [29] is important but currently lacks both theoretical and empirical 
guidance. Therefore, in our experiments, we introduce a 20% random perturbation to the exact pressure 𝑝 to serve as our initial 
guess. The results of our tests, which consist of 108 independent random experiments, are presented in Tables 1–3. These tables 
provide information on the total CPU time in seconds, maximum relative errors in 𝑝, average relative errors in 𝑝, average iteration 
numbers, algorithm failure counts, and total numbers of negative 𝑝 appearing in iterations. We observe that no negative pressure 
is produced in our three NR methods, confirming their robustness and PCP property. For the second test reported in Table 2, it is 
seen that the NR-I method may encounter the ill-posed problem discussed in Section 2.4 and takes higher CPU time compared to the 
NR-II, hybrid NR, and Vel-Proxy methods. The experimental results indicate that the proposed hybrid NR method overall exhibits 
superior performance in terms of speed, robustness, efficiency, and accuracy across all tests.

5.2. One-dimensional examples

Example 5.2 (1D accuracy test). This is an ultra-relativistic smooth problem that serves the purpose of testing the accuracy of the 1D 
PCP HWENO scheme. The initial condition is given as

𝑸(𝑥,0) = (1 + 0.99999 sin(𝑥),0.9999,0.0001)𝑇 , 𝑥 ∈ [0,2𝜋).

Due to the low density, large velocity close to the speed of light, and low pressure, this test is challenging, and the PCP limiting 
produce is necessary for successful simulation. We use the PCP HWENO scheme and the finite volume WENO scheme [65] with the 
PCP limiter to simulate this problem on the mesh of 𝑁 uniform cells with 𝑁 ∈ {30, 60, 90, … , 180}. Table 4 lists the numerical errors 
24

in the mass density 𝐷 and the convergence rates in 𝐿1, 𝐿2 and 𝐿∞ norms at time 𝑡 = 2𝜋. We also provide the CPU time and the 
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Table 3

The third set of random tests: CPU time, maximum relative errors, average relative errors, average iterations, algorithm 
failure counts, and negative pressure counts in 108 independent random experiments.

algorithms total time (s) max error average error average iteration negative number failures

Hybrid-linear 359.914 4.70E-01 2.64E-03 72.3186 0 0
NR-I 11.090 4.70E-01 2.64E-03 5.2111 0 0
NR-II 19.224 4.70E-01 2.64E-03 7.3604 0 0
Hybrid NR 18.778 4.70E-01 2.64E-03 7.3604 0 0
Analytical 32.472 4.70E-01 2.64E-03 - 0 0
Vel-Proxy 50.511 7.63E-01 3.69E-03 26.9903 0 0
MPB-NR 62.754 4.70E-01 2.64E-03 6.3865 4535 4535

Table 4

Example 5.2: CPU time in seconds, the percentage of PCP limited cells, the numerical errors of mass density in 𝐿1, 𝐿2 , 
and 𝐿∞ norms, and the corresponding convergence rates.

Scheme 𝑁 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order Limited cells CPU time

HWENO 30 3.56E-01 - 7.14E-01 - 2.35E-00 - 7.6% 6.4E-02s
60 8.40E-06 15.37 2.85E-05 14.61 1.82E-04 13.66 1.6% 3.2E-01s
90 1.11E-07 10.68 1.23E-07 13.43 1.74E-07 17.15 0% 9.7E-01s
120 1.97E-08 6.00 2.19E-08 6.00 3.10E-08 6.00 0% 2.1E-00s
150 5.17E-09 5.99 5.75E-09 5.99 8.21E-09 5.95 0% 4.0E-00s
180 1.74E-09 5.97 1.94E-09 5.97 2.82E-09 5.86 0% 6.9E-00s

WENO 30 8.09E-03 - 1.29E-02 - 4.75E-02 - 34.9% 5.2E-02s
60 2.26E-04 5.16 4.67E-04 4.79 2.08E-03 4.52 21.1% 2.6E-01s
90 2.01E-05 5.97 3.82E-05 6.17 2.29E-04 5.44 8.7% 7.4E-01s
120 2.79E-06 6.86 3.10E-06 8.73 4.38E-06 13.75 0% 1.6E-00s
150 9.15E-07 5.00 1.02E-06 5.00 1.44E-06 5.00 0% 3.0E-00s
180 3.68E-07 5.00 4.08E-07 5.00 5.78E-07 5.00 0% 5.0E-00s

percentage of PCP limited cells in Table 4. Attributed to the use of derivative data in the reconstruction, the 1D PCP HWENO scheme 
achieves sixth-order convergence rate, which is higher than the fifth-order convergence rate of the WENO scheme. While HWENO’s 
CPU time is slightly higher than WENO’s on the same meshes, the improved accuracy implies that, in terms of overall efficiency, 
HWENO outperforms WENO.

Example 5.3 (1D Riemann problem). The initial conditions of this problem [4] are given by

𝑸(𝑥,0) =

{
(10−2,0,1)⊤, 𝑥 ≤ 0.5,
(10−2,0,10−2)⊤, 𝑥 > 0.5.

(5.4)

The initial discontinuity results in a rarefaction wave, a right-moving contact discontinuity, and a right-moving shock wave. This 
Riemann problem is used to validate the importance and effectiveness of using scale-invariant nonlinear weights for controlling 
spurious oscillations. Fig. 4 presents the numerical results at 𝑡 = 0.45, obtained by the PCP HWENO scheme using the scale-invariant 
and non-scale-invariant nonlinear weights, with 400 uniform cells in the computational domain [0, 1]. We see that the waves are well 
captured using our scale-invariant nonlinear weights, while the numerical solution obtained using the non-scale-invariant nonlinear 
weights [61] exhibits notable overshoots and undershoots near the contact discontinuity.

Example 5.4 (Quasi-1D Riemann problem). This example is proposed in [56], and its initial conditions are given by

𝑸(𝑥, 𝑦,0) =

{
(1,0.8,0,1000)⊤, 𝑥 ≤ 0,
(1,0,0.999,0.01)⊤, 𝑥 > 0.

(5.5)

Due to the inclusion of tangential velocity, the velocity components are coupled through the Lorentz factor, leading to effects that are 
not presented in the non-relativistic hydrodynamics. For our simulation, we employ the 2D PCP HWENO scheme on a mesh of 400×5 
uniform cells in the computational domain [−0.5, 0.5] × [− 1

160 , 
1
160 ], with Δ𝑥 =Δ𝑦 = 1

400 . Fig. 5 presents the numerical solution along 
the line 𝑦 = 0 at 𝑡 = 0.4. We observe that our PCP HWENO scheme remains robust and accurately captures the wave structures against 
the exact solution. We also notice that for this challenging test, the PCP limiter is necessary for successful simulation. If the PCP 
limiter is turned off, the simulation will fail immediately during the first time step due to nonphysical solutions. The PCP limited 
cells along 𝑦 = 0 from 𝑡 = 0 to 𝑡 = 0.4 are also displayed in Fig. 5.

Example 5.5 (Shock heating problem). This example simulates the shock heating problem, has become a standard test for evaluating 
the ability of numerical schemes to handle strong shocks without generating excessive postshock oscillations. The initial data in the 
25

computational domain [0,1] is given as
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Fig. 4. Example 5.3. The numerical solution (symbols “◦”) and exact solution (solid lines) of density 𝜌 obtained using our scale-invariant nonlinear weights and the 
nonlinear weights proposed in [61].

Fig. 5. Example 5.3. The numerical solution (symbols “◦”) and exact solution (solid lines) of density 𝜌, velocity 𝑣1, and tangential velocity 𝑣2 along the line 𝑦 = 0. 
26

The PCP limited cells along 𝑦 = 0 over time 𝑡 ∈ [0, 0.4] are also displayed.
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Fig. 6. Example 5.5. The numerical solution (symbols “◦”) and exact solution (solid lines) of density 𝜌, velocity 𝑣1, and pressure 𝑝 at 𝑡 = 2 as well as the PCP limited 
cells over time.

𝑸(𝑥,0) =
(
1,1 − 10−10, 10

−4

3

)⊤

, (5.6)

and the adiabatic index is take as 𝛾 = 4∕3. The proposed model involves a scenario in which a gas with rightward velocity close 
to the speed of light collides with a wall. Upon impact, the kinetic energy of the gas is converted into internal energy, resulting in 
compression and heating. As a result of this process, a strong shock wave is generated, which propagates towards the left at a velocity 
of 𝑣𝑠 = (𝛾 − 1)𝑊0|𝑣0|∕(𝑊0 + 1). Here, 𝑣0 = 1 − 10−10 represents the initial velocity of the gas, while 𝑊0 denotes the corresponding 
Lorentz factor. The gas behind the shock wave comes to a rest and possesses a specific internal energy of 𝑊0 − 1, as deduced through 
energy conservation across the wave. The compression ratio across the shock is given by 𝜎 = (𝛾 + 1)∕(𝛾 − 1) + (𝛾∕(𝛾 − 1))(𝑊0 − 1).

To evaluate the necessity of the PCP limiter, we perform the simulation without using this limiter and observe that the code 
breaks down after only one time step. We then apply the PCP limiter and plot the results at time 𝑡 = 2 in Fig. 6, which also displays 
the cells where the PCP limiter is activated from 𝑡 = 0 to 2. We observe that the PCP limiter is only activated in a few cells near the 
moving shock.

5.3. Two-dimensional examples

Example 5.6 (2D smooth problem). This example considers a 2D smooth problem in the domain Ω = [0, 2∕
√
3] × [0, 2] with the initial 
27

data
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Table 5

Example 5.6: Numerical errors in 𝐿1, 𝐿2 and 𝐿∞ norms and the corresponding convergence rates.

𝑁 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order percentage of PCP limited cells

30 1.44E-03 - 4.14E-03 - 2.46E-02 - 12.72%
60 4.53E-06 8.31 1.79E-05 7.86 1.30E-04 7.56 0.59%
90 1.18E-10 26.02 1.32E-10 29.15 1.86E-10 33.19 0%
120 2.54E-11 5.35 2.83E-11 5.35 4.00E-11 5.34 0%
150 7.97E-12 5.20 8.85E-12 5.20 1.27E-11 5.14 0%
180 3.16E-12 5.08 3.51E-12 5.08 5.25E-12 4.85 0%

Fig. 7. Example 5.7. The contours of the density logarithm ln𝜌 with 25 equally spaced contour lines from -6 to 1.9 within the domain [0, 1]2 and the PCP limited cells 
at 𝑡 = 0.4.

𝑸 =

(
1 + 0.999 sin[2𝜋(𝑥 cos𝛼 + 𝑦 sin𝛼)], 0.9√

2
,
0.9√
2
,0.01

)⊤

, (5.7)

where 𝛼 = 𝜋∕6. Due to the low density, large velocity close to the speed of light, and low pressure, the PCP limiting produce is 
necessary for successful simulation of this problem. The simulations are performed on the meshes of 𝑁 ×𝑁 uniform cells with varied 
𝑁 ∈ {30, 60, 90, … , 180}. Table 5 lists the numerical errors of the mass density 𝐷 and the convergence rates in 𝐿1, 𝐿2 and 𝐿∞ norms 
at time 𝑡 = 0.05. The results indicate that the 2D PCP HWENO scheme achieves fifth-order accuracy, which is not destroyed by the 
PCP limiter.

Example 5.7 (2D Riemann problem I). The use of 2D Riemann problems as benchmark tests has become widespread to evaluate 
the ability of a scheme to capture complex 2D relativistic wave configurations. Both this and the next tests simulate 2D Riemann 
problems of the ideal relativistic fluid within the domain [−0.5, 0.5]2 , which is divided into 400 × 400 uniform cells.

The initial conditions for this test are defined as follows:

𝑸(𝑥, 𝑦,0) =

⎧⎪⎪⎨⎪⎪⎩
(0.1,0,0,0.01)⊤, 𝑥 > 0, 𝑦 > 0,
(0.1,0.99,0,1)⊤, 𝑥 < 0, 𝑦 > 0,
(0.5,0,0,1)⊤, 𝑥 < 0, 𝑦 < 0,
(0.1,0,0.99,1)⊤, 𝑥 > 0, 𝑦 < 0.

Fig. 7 gives the contour of the density logarithm ln𝜌 and the cells where the PCP limiter is activated at 𝑡 = 0.4. It is shown in the 
figure that the initial discontinuities in the four regions cause two reflected curved shock waves and a complex mushroom structure. 
The details in structure are consistent with those reported in previous works [50,4]. We observe that there are only a few PCP limited 
28

cells near the two reflected curved shocks.
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Fig. 8. Example 5.8: The contours of the density logarithm ln𝜌 and the PCP limited cells at 𝑡 = 0.4. Twenty-five equally spaced contour lines from −8 to 1.3.

Example 5.8 (2D Riemann problem II). This example investigates a more ultra-relativistic 2D Riemann problem, which was first 
proposed in [50]. The initial conditions are defined as

𝑸(𝑥, 𝑦,0) =

⎧⎪⎪⎨⎪⎪⎩
(0.1,0,0,20)⊤, 𝑥 > 0, 𝑦 > 0,
(0.00414329639576,0.9946418833556542,0,0.05)⊤, 𝑥 < 0, 𝑦 > 0,
(0.01,0,0,0.05)⊤, 𝑥 < 0, 𝑦 < 0,
(0.00414329639576,0,0.9946418833556542,0.05)⊤, 𝑥 > 0, 𝑦 < 0.

In this problem, the maximum initial velocity of fluid is larger than that in 2D Riemann problem I. We use the proposed PCP HWENO 
scheme to simulate the problem on a mesh of 800 × 800 uniform cells. Furthermore, we utilize this problem to demonstrate the 
importance of rescaling eigenvectors in characteristic decomposition. We compare two rescaling approaches discussed in Remark 3.3.

Fig. 8 shows the contours of the density logarithm ln𝜌 at 𝑡 = 0.4, obtained by our PCP HWENO scheme using three different 
29

methods: the “unitization” rescaling approach, the “matching” rescaling approach, and no rescaling. As we can see, the “matching” 
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rescaling approach exhibits the best performance, while the numerical solutions computed using the “unitization” rescaling approach 
and without rescaling exhibit serious oscillations.

Example 5.9 (Shock-vortex interaction problems). This example studies the interaction of a vortex with a shock. Pao and Salas [30]
were the first to show this problem computationally in the non-relativistic case, while the special RHD case was studied in [1,7]. In 
our case, we have set the velocity magnitude of the vortex as 𝑤 = 0.9 and the adiabatic index 𝛾 as 1.4. The initial rest-mass density 
and pressure are given by

𝜌(𝑥, 𝑦) = (1 − 𝛼𝑒1−𝑟2 )
1

𝛾−1 , 𝑝 = 𝜌𝛾

where

𝛼 =
(𝛾 − 1)∕𝛾

8𝜋2 𝜖2, 𝑟 =
√

𝑥20 + 𝑦20,

and 𝜖 represents the vortex strength. Using the Lorentz transformation, we can deduce that

𝑥0 = 𝑥𝑊𝑤, 𝑦0 = 𝑦, 𝑊𝑤 = 1√
1 −𝑤2

.

The initial velocities are given by

𝑣1 =
𝑣01 −𝑤

1 − 𝑣01𝑤
, 𝑣2 =

𝑣02

𝑊𝑤(1 − 𝑣01𝑤)
,

where

(𝑣01, 𝑣
0
2) = (−𝑦0, 𝑥0)𝑓, 𝑓 =

√
𝛽

1 + 𝛽𝑟2
, 𝛽 = 2𝛾𝛼𝑒1−𝑟2

2𝛾 − 1 − 𝛾𝛼𝑒1−𝑟2
.

The computation domain is [−17,3] × [−5,5], which is divided into 800 × 400 uniform cells. The initial vortex is centered at (0, 0), 
and there is a shock at 𝑥 = −6 that far away from the vortex. The initial data in 𝑥 > 6 can be calculated by the vortex condition 
above, and the post-shock state in 𝑥 < 6 is given by

𝑸(𝑥, 𝑦,0) = (4.891497310766981,−0.388882958251919,0,11.894863258311670)⊤.

We apply inflow and outflow boundary conditions at the right and left boundaries of the domain, respectively, and reflection 
boundary conditions are applied on the bottom and top boundaries.

We test our scheme in two different vortex strengths:

• A mild vortex with 𝜖 = 5 as in [7].
• A demanding vortex with 𝜖 = 10.0828 as in [4]. In this case, the minimum rest-mass density and pressure are 7.8337 × 10−15

and 1.7847 × 10−20, respectively. We observe that the HWENO code without the PCP limiter cannot run this challenging test for 
even one time step, demonstrating the importance of the PCP limiter.

Figs. 9 and 10 show the schlieren images of log10(1 + |∇𝜌|) and |∇𝑝|. The subtle structures in our results are in good agreement with 
those reported in [7,4], validating the effectiveness of our proposed PCP HWENO schemes in capturing complex waves and shocks.

Example 5.10 (Axisymmetric relativistic jets). This test simulates a relativistic jet by solving the RHD equations in cylindrical coor-
dinates (see Section 4.3 for details). Relativistic jet flows have been extensively investigated by many researchers [27,50,57,31,4]. 
The computational domain consists of a 2D cylindrical box with dimensions of (0 ≤ 𝑟 ≤ 15, 0 ≤ 𝑧 ≤ 45), which is discretized into 
375 × 1125 uniform cells. The initial conditions in the computational domain are given by

𝑸(𝑟, 𝑧,0) = (1,0,0,1.70303 × 10−4)⊤.

The relativistic jet beam has a velocity 𝑣𝑏 = 0.99, density 𝜌𝑏 = 0.01, and pressure 𝑝𝑏 = 1.70303 × 10−4. The jet is injected through 
the inlet part (𝑟 ≤ 1) of the low-𝑧 boundary. At the symmetric axis 𝑟 = 0, we use reflection conditions, and at the other parts of the 
boundaries, we impose outflow boundary conditions. It is worth noting that simulating such jets successfully is challenging because 
they typically involve ultra-relativistic regions, strong relativistic shock waves, shear flows, and interface instabilities.

We simulate this problem utilizing the PCP HWENO scheme combined with seven different primitive-variables-recovery algo-
rithms to compare their efficiency and robustness. Table 6 summarizes the execution outcomes (either success or failure), total 
simulation time, and the time each algorithm uses for recovering primitive variables during the simulation. Due to the absence of 
both theoretical and empirical guidance on selecting a good initial value for the MPB-NR method [29], we adopt the pressure 𝑝 from 
the last prior time step in the same cells as our initial value, as suggested by [41]. It is observed that the MPB-NR method fails to 
converge when the simulation reaches 𝑡 = 0.472757, while all other algorithms successfully recover the primitive variables through-
30

out the simulation. This indicates that, even with the incorporation of the PCP limiter, a robust algorithm for recovering primitive 
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Fig. 9. Example 5.9 with the mild vortex: The schlieren images of log10(1 + |∇𝜌|) from 0 to 1 and schlieren images of |∇𝑝| from 0 to 20.

Fig. 10. Example 5.9 with the demanding vortex: the schlieren images of log10(1 + |∇𝜌|) from 0 to 1 and schlieren images of |∇𝑝| from 0 to 20.

variables remains crucial to fully guarantee the PCP property. Otherwise, the computations would still fail due to the recovery of 
nonphysical primitive variables. Table 6 also reveals that among the six successful algorithms, the analytical algorithm exhibits the 
lowest computational efficiency. In contrast, the hybrid NR and NR-I methods stand out in terms of efficiency, reducing CPU time by 
approximately 10% to 40%. Consequently, our NR-I and Hybrid NR algorithms demonstrate high efficiency and stability in this test. 
Given the consistent outperformance of the hybrid NR method in accuracy, as demonstrated in Table 2, we recommend employing 
the proposed hybrid NR approach for recovering primitive variables.

Fig. 11 presents the schlieren images of the density logarithm ln𝜌 along with the PCP limited cells, obtained using our PCP 
31

HWENO scheme with the hybrid NR method at 𝑡 = 60, 80, 100. The images clearly demonstrate the formation of a bow shock by 
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Table 6

Performance of different primitive recovery algorithms for Example 5.10: Execution status, total simulation time, and 
primitive variables recovery time.

NR-I NR-II Hybrid NR Hybrid-linear Analytical Vel-Proxy MPB-NR

Status Success Success Success Success Success Success Failure
Total time 95h59m 99h39m 96h1m 125h34m 157h3m 104h44m –
Recovery time 37h16m 41h15m 37h33m 67h13m 98h10m 46h23m –

Fig. 11. Example 5.10: The schlieren images of the density logarithm ln𝜌 and the PCP limited cells.

the moving jet. The discontinuity between the jet material and the initial static material gives rise to Kelvin–Helmholtz instabilities. 
These results agree well with those reported in previous studies [27,50,57,4]. One can see that the PCP limiter is necessary in this 
32

challenging test, while only a small portion of cells is limited during the simulations.
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6. Conclusion

Designing genuinely PCP schemes is a challenging task, as relativistic effects make it difficult to reformulate primitive variables 
explicitly using conservative variables. This paper proposed three efficient NR methods for robustly recovering primitive variables 
from conservative variables, and we exemplified their applications to develop PCP finite volume HWENO schemes for relativistic 
hydrodynamics. Our rigorous analysis demonstrated that these NR methods are always convergent and PCP, meaning that they 
preserve the physical constraints throughout the NR iterations. The discovery of these robust NR methods and their convergence 
analysis are very nontrivial. The presented PCP HWENO schemes were built on the NR methods, high-order HWENO reconstruction, 
a PCP limiter, and strong-stability-preserving time discretization. We rigorously demonstrated the PCP property of our schemes using 
convex decomposition techniques. In addition, we proposed the characteristic decomposition approach with rescaled eigenvectors 
and scale-invariant nonlinear weights to improve the performance of the HWENO schemes in simulating large-scale RHD problems. 
Several challenging numerical examples were provided to evaluate the robustness, accuracy, and high resolution of our PCP HWENO 
schemes and to demonstrate the efficiency of the proposed NR methods.

Indeed, the proposed NR methods are versatile and can be integrated with any RHD schemes requiring the recovery of primitive 
variables. By stating that our three convergent NR methods are “efficient”, we are not implying that the other methods are “ineffi-
cient”. In fact, based on our numerical tests, the Vel-Proxy method [37] is also an efficient approach, but there is yet no rigorous 
proof for its convergence and PCP property.
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Appendix A. 2D Linear reconstruction operator 𝑴𝑳

For convenience, we number the night cells around the cell 𝐼𝑖,𝑗 , as shown in Fig. 3. We denote 𝜉(𝑥) = 𝑥−𝑥𝑖

Δ𝑥
, 𝜂(𝑦) = 𝑦−𝑦𝑗

Δ𝑦
. Let us 

reconstruct a quartic polynomial 𝑃0(𝑥, 𝑦) =
4−𝑟∑
𝑠=0

4∑
𝑟=0

𝑎0𝑠,𝑟𝜉(𝑥)
𝑠𝜂(𝑦)𝑟 satisfying

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
Δ𝑥Δ𝑦 ∫

𝐼𝑘
𝑖,𝑗

𝑃0(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢𝑘, 𝑘 = 1,… ,9,

1
Δ𝑥Δ𝑦 ∫

𝐼5
𝑖,𝑗

𝑃0(𝑥, 𝑦)
𝑥− 𝑥𝑖

Δ𝑥
𝑑𝑥𝑑𝑦 = 𝑣5,

1
Δ𝑥Δ𝑦 ∫

𝐼5
𝑖,𝑗

𝑃0(𝑥, 𝑦)
𝑦− 𝑦𝑗

Δ𝑦
𝑑𝑥𝑑𝑦 =𝑤5

(A.1)

and minimizing√√√√√√√√ ∑
𝑘=2,4,6,8

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

1
Δ𝑥Δ𝑦 ∫

𝐼𝑘
𝑖,𝑗

𝑃0(𝑥, 𝑦)
𝑥− 𝑥𝑖

Δ𝑥
𝑑𝑥𝑑𝑦−𝑣𝑘

⎞⎟⎟⎟⎠
2

+
⎛⎜⎜⎜⎝

1
Δ𝑥Δ𝑦 ∫

𝐼𝑘
𝑖,𝑗

𝑃0(𝑥, 𝑦)
𝑦− 𝑦𝑗

Δ𝑦
𝑑𝑥𝑑𝑦−𝑤𝑘

⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎦, (A.2)

where 𝑢𝑘, 𝑣𝑘, 𝑤𝑘 are any given real numbers. The conditions (A.1)–(A.2) form a constrained least squares problem for the unknowns {
𝑎0𝑠,𝑟

}4

𝑠,𝑟=0
. Solving this problem with the nullspace method (see [2, Section 5.1.3] for details) gives the expressions of {𝑎0𝑠,𝑟}, which 
33

are the linear combinations of
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⎡⎢⎢⎣
𝑢7 𝑢8 𝑢9
𝑢4 𝑢5 𝑢6
𝑢1 𝑢2 𝑢3

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

𝑣8
𝑣4 𝑣5 𝑣6

𝑣2

⎤⎥⎥⎦ , and
⎡⎢⎢⎣

𝑤8
𝑤4 𝑤5 𝑤6

𝑤2

⎤⎥⎥⎦ .
In order to save space, we here omit the specific expressions of 𝑎0𝑠,𝑟. Define the operator

𝑀𝐿([𝑢1,… , 𝑢9], [𝑣2 𝑣4 𝑣5 𝑣6 𝑣8], [𝑤2 𝑤4 𝑤5 𝑤6 𝑤8], 𝜉, 𝜂) ∶= 𝑃0(𝑥(𝜉), 𝑦(𝜂)) =
4−𝑟∑
𝑠=0

4∑
𝑟=0

𝑎0𝑠,𝑟𝜉
𝑠𝜂𝑟

which is a mapping from ℝ1×9 ×ℝ1×5 ×ℝ1×5 ×ℝ ×ℝ to ℝ. Using this operator, it is convenient to compute the value of 𝑃0(𝑥, 𝑦) at 
(𝑥𝑖+𝜉 , 𝑦𝑗+𝜂) with

𝑃0(𝑥𝑖+𝜉 , 𝑦𝑗+𝜂) =𝑀𝐿([𝑢1,… , 𝑢9], [𝑣2 𝑣4 𝑣5 𝑣6 𝑣8], [𝑤2 𝑤4 𝑤5 𝑤6 𝑤8], 𝜉, 𝜂).

The operator 𝑀𝐿 represents the reconstruction mapping for the scalar equation. In order to extend the reconstruction to the 2D 
RHD equations, we generalize it to vector cases component-wisely as follows

𝑴𝐿

([
𝑼 1,… ,𝑼 9

]
,
[
𝑽 2 𝑽 4 𝑽 5 𝑽 6 𝑽 8

]
,
[
𝑾 2 𝑾 4 𝑾 5 𝑾 6 𝑾 8

]
, 𝜉, 𝜂
)

∶=

⎛⎜⎜⎜⎜⎜⎜⎝

𝑀𝐿

([
𝑈

(1)
1 ,… ,𝑈

(1)
9

]
,
[
𝑉

(1)
2 𝑉

(1)
4 𝑉

(1)
5 𝑉

(1)
6 𝑉

(1)
8

]
,
[
𝑊

(1)
2 𝑊

(1)
4 𝑊

(1)
5 𝑊

(1)
6 𝑊

(1)
8

]
, 𝜉, 𝜂
)

𝑀𝐿

([
𝑈

(2)
1 ,… ,𝑈

(2)
9

]
,
[
𝑉

(2)
2 𝑉

(2)
4 𝑉

(2)
5 𝑉

(2)
6 𝑉

(2)
8

]
,
[
𝑊

(2)
2 𝑊

(2)
4 𝑊

(2)
5 𝑊

(2)
6 𝑊

(2)
8

]
, 𝜉, 𝜂
)

𝑀𝐿

([
𝑈

(3)
1 ,… ,𝑈

(3)
9

]
,
[
𝑉

(3)
2 𝑉

(3)
4 𝑉

(3)
5 𝑉

(3)
6 𝑉

(3)
8

]
,
[
𝑊

(3)
2 𝑊

(3)
4 𝑊

(3)
5 𝑊

(3)
6 𝑊

(3)
8

]
, 𝜉, 𝜂
)

𝑀𝐿

([
𝑈

(4)
1 ,… ,𝑈

(4)
9

]
,
[
𝑉

(4)
2 𝑉

(4)
4 𝑉

(4)
5 𝑉

(4)
6 𝑉

(4)
8

]
,
[
𝑊

(4)
2 𝑊

(4)
4 𝑊

(4)
5 𝑊

(4)
6 𝑊

(4)
8

]
, 𝜉, 𝜂
)
⎞⎟⎟⎟⎟⎟⎟⎠
,

where 𝑴𝐿 is the reconstruction operator from ℝ4×9 ×ℝ4×5 ×ℝ4×5 ×ℝ ×ℝ to ℝ4×1. It is worth pointing out that 𝑴𝐿(⋅, ⋅, ⋅, 𝜉, 𝜂) is a 
linear mapping for fixed 𝜉 and 𝜂,

Appendix B. 2D HWENO reconstruction operator 𝑴𝑯

Reconstruct four quadratic polynomials 𝑃𝑛(𝑥, 𝑦) ∶=
2−𝑟∑
𝑠=0

2∑
𝑟=0

𝑎𝑟
𝑠,𝑟𝜉(𝑥)

𝑠𝜂(𝑦)𝑟 (𝑟 = 1, 2, 3, 4) satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Δ𝑥Δ𝑦 ∫

𝐼𝑘
𝑖,𝑗

𝑃1(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢𝑘, 𝑘 = 1,2,4,5,

1
Δ𝑥Δ𝑦 ∫

𝐼𝑘
𝑖,𝑗

𝑃2(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢𝑘, 𝑘 = 2,3,5,6,

1
Δ𝑥Δ𝑦 ∫

𝐼𝑘
𝑖,𝑗

𝑃3(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢𝑘, 𝑘 = 4,5,7,8,

1
Δ𝑥Δ𝑦 ∫

𝐼𝑘
𝑖,𝑗

𝑃4(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢𝑘, 𝑘 = 5,6,8,9,

1
Δ𝑥Δ𝑦 ∫

𝐼5
𝑖,𝑗

𝑃𝑛(𝑥, 𝑦)
𝑥− 𝑥𝑖

Δ𝑥
𝑑𝑥𝑑𝑦 = 𝑣5, 𝑛 = 1,2,3,4,

1
Δ𝑥Δ𝑦 ∫

𝐼5
𝑖,𝑗

𝑃𝑛(𝑥, 𝑦)
𝑦− 𝑦𝑗

Δ𝑦
𝑑𝑥𝑑𝑦 =𝑤5, 𝑛 = 1,2,3,4.

(B.1)

Similarly, we can obtain the expressions of 𝑎𝑛
𝑠,𝑟 (𝑛 = 1, 2, 3, 4, 𝑠, 𝑟 = 1, 2), which are linear combinations of

⎡⎢⎢⎣
𝑢7 𝑢8 𝑢9
𝑢4 𝑢5 𝑢6
𝑢1 𝑢2 𝑢3

⎤⎥⎥⎦ , 𝑣5, and 𝑤5.

Next, in order to measure the smoothness of the polynomial 𝑃𝑛 (𝑥, 𝑦) in the cell 𝐼𝑖,𝑗 , we calculate the smooth indicators, with the 
same definition as in [62],

𝛽𝑛 =
𝑟∑ |𝐼𝑖,𝑗 ||𝑙|−1 (

𝜕|𝑙|
𝑙 𝑙

𝑃𝑛(𝑥, 𝑦)
)2

d𝑥d𝑦, 𝑛 = 0,… ,4,
34

|𝑙|=1 ∫
𝐼𝑖,𝑗

𝜕𝑥 1𝜕𝑦 2
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where 𝑟 is the degree of the polynomials 𝑃𝑛(𝑥, 𝑦). Then the HWENO reconstruction polynomial is defined by

𝑃𝐻 (𝑥, 𝑦) = 𝜔0

(
1
𝛾0

𝑃0 (𝑥, 𝑦) −
4∑

𝑛=1

𝛾𝑛
𝛾0

𝑃𝑛 (𝑥, 𝑦)

)
+

4∑
𝑛=1

𝜔𝑛𝑃𝑛 (𝑥, 𝑦) ,

where the nonlinear weights

𝜔𝑛 =
𝜔̄𝑛∑4

𝑘=0 𝜔̄𝑘

with 𝜔̄𝑛 = 𝛾𝑛

(
1 + 𝜏2(

𝛽𝑛

)2 + 𝜖

)
, 𝑛 = 0,… ,4, (B.2)

and 𝜏 ∶=
(∑4

𝑛=0 |𝛽0−𝛽𝑛|
4

)
. Similar to the 1D case, these nonlinear weights possess the “scaling-invariant” property.

Define the operator

𝑀𝐻 ([𝑢1,… , 𝑢9], [𝑣2 𝑣4 𝑣5 𝑣6 𝑣8], [𝑤2 𝑤4 𝑤5 𝑤6 𝑤8], 𝜉, 𝜂) ∶= 𝑃𝐻 (𝑥(𝜉), 𝑦(𝜂)),

which is a mapping from ℝ1×9 ×ℝ1×5 ×ℝ1×5 ×ℝ ×ℝ to ℝ. It is easy to compute the value of 𝑃𝐻 (𝑥, 𝑦) at (𝑥𝑖+𝜉 , 𝑦𝑗+𝜂) with

𝑃𝐻 (𝑥𝑖+𝜉 , 𝑦𝑗+𝜂) =𝑀𝐻 ([𝑢1,… , 𝑢9], [𝑣2 𝑣4 𝑣5 𝑣6 𝑣8], [𝑤2 𝑤4 𝑤5 𝑤6 𝑤8], 𝜉, 𝜂).

We can generalize the scalar HWENO reconstruction operator 𝑀𝐻 to the vector cases in a component by component manner:

𝑴𝐻

([
𝑼 1,… ,𝑼 9

]
,
[
𝑽 2 𝑽 4 𝑽 5 𝑽 6 𝑽 8

]
,
[
𝑾 2 𝑾 4 𝑾 5 𝑾 6 𝑾 8

]
, 𝜉, 𝜂
)

∶=

⎛⎜⎜⎜⎜⎜⎜⎝

𝑀𝐻

([
𝑈

(1)
1 ,… ,𝑈

(1)
9

]
,
[
𝑉

(1)
2 𝑉

(1)
4 𝑉

(1)
5 𝑉

(1)
6 𝑉

(1)
8

]
,
[
𝑊

(1)
2 𝑊

(1)
4 𝑊

(1)
5 𝑊

(1)
6 𝑊

(1)
8

]
, 𝜉, 𝜂
)

𝑀𝐻

([
𝑈

(2)
1 ,… ,𝑈

(2)
9

]
,
[
𝑉

(2)
2 𝑉

(2)
4 𝑉

(2)
5 𝑉

(2)
6 𝑉

(2)
8

]
,
[
𝑊

(2)
2 𝑊

(2)
4 𝑊

(2)
5 𝑊

(2)
6 𝑊

(2)
8

]
, 𝜉, 𝜂
)

𝑀𝐻

([
𝑈

(3)
1 ,… ,𝑈

(3)
9

]
,
[
𝑉

(3)
2 𝑉

(3)
4 𝑉

(3)
5 𝑉

(3)
6 𝑉

(3)
8

]
,
[
𝑊

(3)
2 𝑊

(3)
4 𝑊

(3)
5 𝑊

(3)
6 𝑊

(3)
8

]
, 𝜉, 𝜂
)

𝑀𝐻

([
𝑈

(4)
1 ,… ,𝑈

(4)
9

]
,
[
𝑉

(4)
2 𝑉

(4)
4 𝑉

(4)
5 𝑉

(4)
6 𝑉

(4)
8

]
,
[
𝑊

(4)
2 𝑊

(4)
4 𝑊

(4)
5 𝑊

(4)
6 𝑊

(4)
8

]
, 𝜉, 𝜂
)
⎞⎟⎟⎟⎟⎟⎟⎠
,

where 𝑈 (𝓁)
𝑖,𝑗

is the 𝓁th component of 𝑼 𝑖,𝑗 , 𝑉
(𝓁)
𝑖,𝑗

is the 𝓁th component of 𝑽 𝑖,𝑗 , 𝑊
(𝓁)
𝑖,𝑗

is the 𝓁th component of 𝑾 𝑖,𝑗 . Different from 𝑴𝐿, 
the operator 𝑴𝐻 (⋅, … , ⋅, 𝜉, 𝜂) is a nonlinear mapping for fixed 𝜉 and 𝜂.
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