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Abstract. In this paper, we design a new type of high order finite volume weighted essentially
nonoscillatory (WENO) schemes to solve hyperbolic conservation laws on triangular meshes. The
main advantages of these schemes are their compactness and robustness and that they could maintain
a good convergence property for some steady state problems. Compared with the classical finite
volume WENO schemes [C. Hu and C.-W. Shu, J. Comput. Phys., 150 (1999), pp. 97–127], the
optimal linear weights are independent of the topological structure of the triangular meshes and can
be any positive numbers with the one requirement that their summation is one. This is the first time
any high order accuracy with the usage of only five unequal sized stencils in a spatial reconstruction
methodology on triangular meshes has been obtained. Extensive numerical results are provided to
illustrate the good performance of such new finite volume WENO schemes.
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high order accuracy, steady state problem
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1. Introduction. In this paper, we study the high order finite volume numerical
methods for solving the nonlinear hyperbolic conservation laws,

(1.1)

{
ut + f(u)x + g(u)y = 0,
u(x, y, 0) = u0(x, y),

on triangular meshes. Essentially nonoscillatory (ENO) and weighted ENO (WENO)
schemes are high order numerical methods for solving (1.1). ENO schemes were de-
signed by Harten et al. [11, 23, 24]. The first WENO scheme was constructed by
Liu, Osher, and Chan [16] for a third order finite volume version. In 1996, the third
and fifth order finite difference WENO schemes were constructed by Jiang and Shu
[13] in multispace dimensions, with a general framework for the design of smoothness
indicators and nonlinear weights. Some classical finite volume WENO schemes on
structured and unstructured meshes were developed in [8, 12, 14, 18, 20]. Among
them, a key point in WENO schemes is a linear combination of lower order fluxes
or reconstructions to obtain a higher order approximation. Both ENO and WENO
schemes use the idea of adaptive stencils to automatically achieve high order accu-
racy and a nonoscillatory property near strong discontinuities. For the system case,
such as Euler equations, WENO schemes use the methodologies of the local char-
acteristic decompositions and flux splitting to avoid spurious oscillations near the
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shocks or contact discontinuities. Harten [9] first presented two-dimensional finite
volume ENO schemes. Then Casper [3] and Casper and Atkins [4] studied the finite
volume approach in developing multidimensional high order accurate ENO schemes
for hyperbolic conservation laws. The most important and main frameworks of two-
dimensional finite volume WENO schemes on triangular meshes were proposed by
Hu and Shu [12]. In their paper, they proposed a third order WENO scheme by
using a combination of nine linear polynomials and a fourth order WENO scheme
by using a combination of six quadratic polynomials, giving a new way of measuring
two-dimensional smoothness of numerical solutions which was different from the ex-
pressions specified in [1, 8]. But the skills of maintaining positive linear weights for
the third order and fourth order finite volume WENO schemes were too sophisticated
to be fulfilled and such circumstance resulted in the lack of engineering applications
as pointed out in [12]. Qiu and Shu [19] gave a framework of two-dimensional finite
volume WENO schemes on structured meshes, in which they expressed the construc-
tion principle of the linear weights in detail and the free parameters were determined
in a least squares sense. By doing so, the linear weights were unique and positive.
After the analysis of the finite volume WENO schemes in the literature, generally
speaking, there are two different kinds of finite volume WENO schemes: one type
includes the WENO schemes [6, 7, 8, 25] whose order of accuracy is not higher than
that of the reconstruction on each smaller spatial stencils. Their linear weights are
artificially set as any positive numbers on the condition that the summation is one for
sustaining the conservative property without needing to maintain the order accuracy,
except for keeping nonlinear stability and avoiding spurious oscillations robustly. As
stated in [6], Dumbser and Käser proposed the WENO schemes which did not suf-
fer from the problem of negative linear weights, since the linear weights were not
used to increase accuracy. They could get arbitrary high order schemes using deriva-
tives on triangular or tetrahedral cells with large-scale spatial stencils. The second
type includes the WENO schemes [12, 20, 28] whose order of accuracy is higher than
that of the reconstruction on each smaller stencils. This type of WENO scheme
that is more difficult to construct mainly originates in solving linear systems for get-
ting linear weights; however, they could have a more compact spatial stencil than
previous type of WENO schemes to achieve the same order accuracy in a smooth
region.

Based on these evaluations, new third order and fourth order finite volume WENO
schemes which have all the advantages and avoid the drawbacks of two different types
of WENO schemes are presented in this paper. Comparing with [6], we can use a more
compact spatial stencil to achieve the same order of accuracy in a smooth region. And
we can set the linear weights as any positive numbers requiring their summation is
one, in comparison with [12, 20, 28], where the linear weights for all reconstruction
points must be computed by solving a linear system without conserving the positive
property, and only the mostly near-uniform meshes can guarantee the linear weights
are positive as stated in [12]. The basic flowchart of the third order finite volume
WENO scheme is briefly narrated as follows. When constructing such a scheme, we
use a big central spatial stencil which contains at least six triangular cells including the
target cell to reconstruct a quadratic polynomial based on the conservative variables
defined on triangular cells and use four four-cell small stencils including the target cell
to reconstruct four linear polynomials in a least squares sense. Then the quadratic
polynomial is modified by the subtraction of four linear polynomials with suitable
parameters, so as to keep the third order approximations at any points inside the tar-
get cell in a smooth region [12, 22, 30, 31]. Hereafter, any positive linear weights are
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chosen on the condition that their summation is one. And we should keep a relative
equilibrium between the sharp shock transitions and spurious oscillations in the non-
smooth region. After computing the smoothness indicators and nonlinear weights,
together with the third order TVD Runge–Kutta time discretization method [23],
such a new WENO scheme is designed in both space and time. As analyzed in
[17], Liu and Zhang found that it was hard to design a robust WENO scheme when
facing distorted local mesh geometries or degenerate cases when the mesh quality
varied for complex domain geometry because the linear weights were greatly negative
or nonexistent. Following the works of Sonar [21], Harten and Chakravarthy [10],
and Vankeirsbilck [26], we find [12] violated the principles of the spatial stencil se-
lection algorithms. So a new layer of triangular cells was needed for constructing a
fourth order finite volume WENO scheme [33] and three six-cell spatial stencils were
added in the reconstruction procedures. The new fourth order finite volume WENO
scheme in comparison with [12, 33] offers compactness and robustness and needs
only five unequal sized spatial stencils for reconstructing unequal degree polynomials.
The reconstruction procedures are similar to the third order finite volume WENO
scheme.

The organization of the paper is as follows. In section 2, we emphasize the
principle of constructing the new third order and fourth order finite volume WENO
schemes in detail. In section 3, some numerical tests are presented to verify the
simplicity and efficiency of these new WENO schemes. Concluding remarks are given
in section 4.

2. Finite volume formulation for WENO schemes. We consider two-
dimensional conservation laws (1.1) on triangular meshes and integrate (1.1) over
the target cell 40 to obtain an integral formula as

(2.1)
dū0(t)

dt
= − 1

|40|

∫
∂40

F · ~nds,

where ū0(t) = 1
|40|

∫
40

u(x, y, t)dxdy, F = (f, g), ∂40 is the boundary of the target

cell40, |40| is the area of40, and ~n denotes the outward unit normal to the boundary
of 40. The line integrals in (2.1) are discretized by a two-point Gaussian integration
formula [12] on every edge (for example, for a line segment with two endpoints (x1, y1)

and (x2, y2), the two-point Gaussian quadrature points are (xG1
, yG1

) = (( 1
2 +
√
3
6 )x1+

( 1
2 −

√
3
6 )x2, (

1
2 +

√
3
6 )y1 + ( 1

2 −
√
3
6 )y2) and (xG2

, yG2
) = (( 1

2 −
√
3
6 )x1 + ( 1

2 +
√
3
6 )x2,

( 1
2 −

√
3
6 )y1 + ( 1

2 +
√
3
6 )y2), and the Gaussian quadrature weights are σ1 = σ2 = 1

2 ):

(2.2)

∫
∂40

F · ~nds ≈
3∑

``=1

|∂40`` |
2∑
`=1

σ`F (u(xG``` , yG``` , t)) · ~n``.

And F (u(xG``` , yG``` , t)) · ~n``, ` = 1, 2, `` = 1, 2, 3 are reformulated by numerical
fluxes such as the Lax–Friedrichs flux

F (u(xG``` , yG``` , t)) · ~n`` ≈
1

2

[
(F (u+(xG``` , yG``` , t)) + F (u−(xG``` , yG``` , t))) · ~n``

(2.3)

− α(u+(xG``` , yG``` , t)− u
−(xG``` , yG``` , t))

]
, ` = 1, 2, `` = 1, 2, 3,

where α is taken as an upper bound for the eigenvalues of the Jacobian in the ~n``
direction, u+ and u− are the approximations of the conservative values of u inside
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Fig. 2.1. The first type of spatial stencils with three sectorial regions. From left to right: T1,
T2, T3, T4, T5.

and outside of the target cell ∆0 (inside of the neighboring triangular cell) at different
Gaussian points, the reconstructions of u+ and u− will be described in the next
subsections, and |∂40`` |, `` = 1, 2, 3, are the length of the line segments. Then, (2.1)
is approximated by the semidiscrete finite volume formula, and we can write the
formula as

dū0(t)

dt
= L(u).(2.4)

2.1. Third order reconstruction. We then emphasize the spatial reconstruc-
tion procedures of a new third order finite volume WENO scheme on triangular meshes
as follows. For simplicity, the reconstruction stencils are relabeled in Figure 2.1.

The reconstruction of function u(x, y, t) at different Gaussian quadrature points
(xG``` , yG``` ), ` = 1, 2, `` = 1, 2, 3, on the boundaries of the target cell 40 is narrated
as follows. And we would like to omit the index of t in u(x, y, t) in the following if it
will not cause confusion.

Step 1.1. Select a big spatial stencil as T1 = {40, 41, 42, 43, 411, 412,
421, 422, 431, 432} (see Figure 2.1). Then we construct a quadratic polynomial

p1(x,y)∈span{1,
x−x0

|40|
1
2

, y−y0
|40|

1
2

, (x−x0)
2

|40| , (x−x0)(y−y0)
|40| , (y−y0)2

|40| } on T1 to obtain a third

order approximation of conservative variable u, in which (x0, y0) is the barycenter of
the target cell 40. Such a quadratic polynomial has the same cell average of u on
the target cell 40 and matches the cell averages of u on the other triangles in the set
T1 \ {40} in a least square sense [12]:

1

|40|

∫
40

p1(x, y)dxdy = ū0, min
∑
`∈A

(
1

|4`|

∫
4`
p1(x, y)dxdy − ū`

)2

,(2.5)

A = {1, 2, 3, 11, 12, 21, 22, 31, 32}.

Step 1.2. After connecting the barycenter of the target cell ∆0 with its three
vertices, we define three lines L1, L2, and L3 [17] (see Figure 2.1). These three
lines partition the field into three sectors. Every sectorial stencil consists of several
layers of neighboring cells of ∆0 and the barycenters of these cells fall inside the
sector. We need to reconstruct linear polynomials on such sectorial stencils [10, 21, 26].
Then we reconstruct four linear polynomials p`(x,y)∈span{1,

x−x0

|40|
1
2

, y−y0
|40|

1
2
}, ` = 2, . . . , 5

(three on sectorial stencils and one on central stencil, respectively), which satisfy
the cell average of the conservative variable u on the target cell 40 and match the
cell averages of u on the other triangles in a least square sense [12]. These four
polynomials p`(x, y), ` = 2, . . . , 5, are defined on small stencils T2 = {40, 41, 411,
412}, T3 = {40, 42, 421, 422}, T4 = {40, 43, 431, 432}, and T5 = {40, 41, 42,
43}, respectively. They satisfy
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1

|40|

∫
40

pκ(x, y)dxdy = ū0,min
∑
`∈Aκ

(
1

|4`|

∫
4`
pκ(x, y)dxdy − ū`

)2

,

(2.6)

κ = 2, . . . , 5;A2 = {1, 11, 12}, A3 = {2, 21, 22}, A4 = {3, 31, 32}, A5 = {1, 2, 3}.

Remark 1. We could also design three more compact linear polynomials defined
on different three-cell stencils (T2 = {40,41,42}, T3 = {40,42,43}, and T4 =
{40,43,41}) in comparison with the linear polynomials defined on four-cell smaller
stencils (see Figure 2.1). This reconstruction procedure violates the sectorial searching
principle [10, 21, 26], which means such stencils T`, ` = 2, 3, 4, are not sectorial stencils
because each barycenter of such triangles is not in the same sector, and it results in
large truncation errors, spurious oscillations, or instabilities. Based on such analysis
and the computation in the next section, we abandon the more compact three-cell
stencils and fall back on the usage of the wider scale four-cell stencils.

Step 1.3. Define the values of linear weights. With a similar idea proposed by
Levy, Puppo, and Russo [14, 15] for constructing CWENO schemes, we rewrite p1(x, y)
as

(2.7) p1(x, y) = γ1

(
1

γ1
p1(x, y)−

5∑
`=2

γ`
γ1
p`(x, y)

)
+

5∑
`=2

γ`p`(x, y).

Note that (2.7) holds true for any choice of γ`, ` = 1, . . . , 5, with γ1 6= 0. In this paper,

we would like to take positive linear weights with
∑5
`=1 γ` = 1 and confirm p1(x, y) is

the third order approximation to u(x, y, t). Following the practice in [6, 29, 30, 34],
for example, one type of such linear weights is defined as γ1 = 0.96 and γ2 = γ3 =
γ4 = γ5 = 0.01. However, some other robust WENO type schemes [6, 7, 8, 25] based
on the artificial definition of the linear weights often degrade their optimal numerical
accuracy.

Step 1.4. Compute the smoothness indicators, denoted by β`, ` = 1, . . . , 5, which
measure how smooth the functions p`(x, y), ` = 1, . . . , 5, are in the target cell 40.
The smaller these smoothness indicators, the smoother the functions are in the target
cell. We use the same recipe for the smoothness indicators as in [12, 13]:

(2.8) β` =

r∑
|l|=1

∫
40

|40||l|−1
(

∂|l|

∂xl1∂yl2
p`(x, y)

)2

dxdy, ` = 1, . . . , 5,

where l = (l1, l2), |l| = l1 + l2, and for ` = 1, r = 2; for ` = 2, . . . , 5, r = 1. We rewrite
the polynomials as

p`(x, y) =

r∑
|l|=0

(|∆0|)
|l|
2

l1!l2!
a
(`)
l1,l2

(
x− x0
|∆0|

1
2

)l1 (y − y0
|∆0|

1
2

)l2
, ` = 1, . . . , 5.(2.9)

Such coefficients a
(`)
l1,l2

of p`(x, y) are uniquely defined as solutions of the linear systems
from (2.5) to (2.6) and the polynomials satisfy the accuracy conditions u(x, y) −
p`(x, y) = O(|∆0|

|r|+1
2 ), ` = 1, . . . , 5, which were proved in [21]. So the smoothness

indicators in Taylor series at (x0, y0) are written as

(2.10) β1 =

∑
|l|=1

(
∂|l|

∂xl1∂yl2
u(x, y)|(x0,y0)

)2
 |40|(1 +O(|40|)) = O(|40|)
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and

β` =

∑
|l|=1

(
∂|l|

∂xl1∂yl2
u(x, y)|(x0,y0)

)2
 |40|(1 +O(|40|

1
2 )) = O(|40|), ` = 2, . . . , 5.

(2.11)

Step 1.5. Compute the nonlinear weights based on the linear weights and the
smoothness indicators. For instance, we use τ [30, 31] for unequal degree polynomials
defined on unequal sized spatial stencils which is simply defined as the absolute def-
erence between β`, ` = 1, . . . , 5, and is different from the formula specified in [2, 5] for
equal degree polynomials on equal sized spatial stencils. The difference expansions in
the Taylor series at (x0, y0) are

(2.12) β1 − β` = O(|40|
3
2 ), ` = 2, . . . , 5.

Then we get

(2.13) τ =

(
|β1 − β2|+ |β1 − β3|+ |β1 − β4|+ |β1 − β5|

4

)2

= O(|40|3).

So the associated nonlinear weights are defined as

(2.14) ω` =
ω̄`∑5

``=1 ω̄``
, ω̄` = γ`

(
1 +

τ

ε+ β`

)
, ` = 1, . . . , 5.

Here ε is a small positive number to avoid the denominator of (2.14) being zero. By
the implementation of (2.13) in the smooth region, they satisfy

(2.15)
τ

ε+ β`
= O(|40|2), ` = 1, . . . , 5,

on the condition that ε � β`. Therefore, the nonlinear weights ω`, ` = 1, . . . , 5,
satisfy the order accuracy condition ω` = γ` + O(|40|) [2, 5], providing the third
order accuracy to the WENO schemes specified in [13, 22]. We denote ε = 10−6 in
all simulations in this paper.

Step 1.6. The final reconstruction polynomial for the approximation of u(x, y) is
given as

(2.16) u(x, y) ≈ Q(x, y) = ω1

(
1

γ1
p1(x, y)−

5∑
κ=2

γκ
γ1
pκ(x, y)

)
+

5∑
κ=2

ωκpκ(x, y).

And the approximations can be given by

u−
(
xG``` , yG```

)
≈ Q

(
xG``` , yG```

)
, ` = 1, 2, `` = 1, 2, 3,(2.17)

at different Gaussian quadrature points on the boundaries of the target cell 40. As in
[31], it is easy to prove that Q(x, y) is the third order approximation to u(x, y) when
the solution is smooth.

Remark 2. By doing so, we only need to compute the nonlinear weights at all
Gaussian quadrature points for one time and the nonlinear weights specified in [12]
need to be computed for six times for all triangular cells in the computational field.
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Step 1.7. Then the third order TVD Runge–Kutta time discretization method [23]

(2.18)


u(1) = un +4tL(un),
u(2) = 3

4u
n + 1

4u
(1) + 1

44tL(u(1)),
un+1 = 1

3u
n + 2

3u
(2) + 2

34tL(u(2))

is used to solve (2.4). Finally, we could obtain a fully discrete scheme in both space
and time on triangular meshes.

Remark 3. If the triangular cells located inside the big central stencil T1 are less
than six because some cells merge with each other, we should use triangular cells in
the next layer to reconstruct the quadratic polynomial in a least square sense [12].
There are two major differences between the spatial reconstruction procedures for
the new third order finite volume WENO scheme and the classical third order finite
volume WENO scheme [12]. The first is that one big central stencil, three small biased
stencils, and one small central stencil are used in the paper, and one big central stencil
and nine small biased stencils are used in [12]. The second is that the linear weights are
independent of the meshes and can be any positive numbers with the only requirement
that their summation is one, while the linear weights are dependent of both the meshes
and where the value is reconstructed [12]. If the quadrature points are not chosen
properly or the geometry of the computational meshes is rigid, the linear weights in
[12] may become negative or even not exist at all [17, 20]. So the flowchart specified
here for narrating the new third finite volume WENO scheme is very simple and
robust in setting the linear weights at any quadrature points simultaneously keeping
the third order accuracy in a smooth region without adjusting many parameters in
constructing the numerical scheme.

2.2. Fourth order reconstruction. In this section, we only focus on the spatial
procedures of a new fourth order finite volume WENO scheme on triangular meshes
and other similar procedures are omitted for simplicity. The reconstruction of function
u(x, y, t) at different Gaussian quadrature points (xG``` , yG``` ), ` = 1, 2, `` = 1, 2, 3
on the boundaries of target cell 40 is narrated as follows.

Step 2.1. We first search the first neighboring triangles around the target cell
∆0, let ∆1, ∆2, ∆3 be its three neighboring triangles, and let ∆11,∆12 be the two
neighboring triangles (other than ∆0) of ∆1, and so on to form a big central spatial
stencil. Then we count the number of triangles in such stencil. If the number is 10
(see Figure 2.1), which means that there is no cell merged with the others, then we
switch to Step 2.1.1. If the number is less than 10, for example, Figure 2.2, such a
big stencil is not applicable for designing a fourth order spatial reconstruction, and
then we need to search new neighboring triangles of the stencil sequentially until we

0
1

2
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12

112121

21
22

212

221

32
321

122

111
(322)

(211)

(31)

(222)

(312)

(311)
0

1

11

12

0

2

21

22 0
3

32

(31)
22

0 3

1

2

Fig. 2.2. The second type of spatial stencils. From left to right: T1, T2, T3, T4, T5.
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find at least a 10-cell spatial stencil and form a new stencil containing more than 10
triangles and switch to Step 2.1.2.

Step 2.1.1. Select the big stencil as T1 = {40, 41, 42, 43, 411, 412, 421,
422, 431, 432} (see Figure 2.1). Then we construct a cubic polynomial p1(x, y) ∈
span{1, x−x0

|40|
1
2

, y−y0
|40|

1
2

, (x−x0)
2

|40| , (x−x0)(y−y0)
|40| , (y−y0)2

|40| , (x−x0)
3

|40|
3
2

, (x−x0)
2(y−y0)

|40|
3
2

, (x−x0)(y−y0)2

|40|
3
2

,

(y−y0)3

|40|
3
2
} on T1 to obtain a fourth order approximation of conservative variable u by

requiring that it has the same cell averages of u on the target cell 40 and the other
triangles:

1

|4`|

∫
4`
p1(x, y)dxdy = ū`, ` = {0, 1, 2, 3, 11, 12, 21, 22, 31, 32}.(2.19)

Step 2.1.2. For example, as shown in Figure 2.2, we select a big central spatial
stencil including at least 10 distinct triangles T1={40, 41, 42, 43, 411, 412, 421,
422, 431, 432, 4111, 4112, 4121, 4122, 4211, 4212, 4221, 4222, 4311, 4312, 4321,
4322}. Then we can construct a cubic polynomial p1(x, y) ∈ span{1, x−x0

|40|
1
2

, y−y0
|40|

1
2

,

(x−x0)
2

|40| , (x−x0)(y−y0)
|40| , (y−y0)2

|40| , (x−x0)
3

|40|
3
2

, (x−x0)
2(y−y0)

|40|
3
2

, (x−x0)(y−y0)2

|40|
3
2

, (y−y0)3

|40|
3
2
} on T1 to

obtain a fourth order approximation of conservative variable u by requiring that it
has the same cell average of u on the target cell 40 and matches the cell averages of
u on the other triangles in the set T1 \ {40} in a least square sense [12]:

1

|40|

∫
40

p1(x, y)dxdy = ū0, min
∑
`∈A

(
1

|4`|

∫
4`
p1(x, y)dxdy − ū`

)2

,

(2.20)

A={1, 2, 3, 11, 12, 21, 22, 31, 32, 111, 112, 121, 122, 211, 212, 221, 222, 311, 312, 321, 322}.

Step 2.2. Construct four linear polynomials p`(x, y) ∈ span{1, x−x0

|40|
1
2

, y−y0
|40|

1
2
},

` = 2, . . . , 5, which satisfy the cell average of the conservative variable u on the target
cell 40 and match the cell averages of u on the other triangles in a least square sense
[12]. They are identical to the formulas specified in Step 1.2.

Remark 4. To obtain a fourth order numerical approximation at any quadrature
points inside the target cell ∆0, we construct a cubic polynomial based on the big
central spatial stencil (the target cell ∆0 is on the center of the stencil) to cause fewer
truncation errors than on the big biased spatial stencil (the target cell ∆0 is not on the
center of the spatial stencil). In this new spatial reconstruction procedure, we do not
need to study all possible cases of such a spatial stencil (the big stencil T1 has nothing
to do with each of the small stencils T`, ` = 2, . . . , 5, because the linear weights in
this paper do not reveal the relationship between the polynomials defined on such
stencils at different quadrature points and are artificially set). On the contrary, it is
very crucial and needs to be discussed in detail for many WENO schemes [12, 20, 28].

Remark 5. We construct a cubic polynomial p1(x, y) by requiring that it have
the same cell averages on triangular cells including 40 and its neighboring three cells
and their next at least six neighboring cells in T1. If one cubic polynomial and nine
linear polynomials in [12] are reconstructed, the linear systems for solving the linear
weights at different quadrature points are grossly overdetermined and insoluble. So
the number of the spatial stencils used in designing the new fourth order finite volume
WENO scheme on triangular meshes is smaller. To remedy this drawback, Hu and
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Shu [12] used a cubic polynomial based on the cell averages defined on a 10-cell spatial
stencil and six quadratic polynomials based on the cell averages defined on six six-
cell smaller spatial stencils. Then they computed linear systems to obtain the linear
weights at different quadrature points. This procedure is very essential for the second
type of finite volume WENO schemes to obtain their optimal order of accuracy in a
smooth region on the condition that the meshes do not distort too much; otherwise, we
should apply the technique of treating negative linear weights in [20] or the technique
of achieving a robust unstructured finite volume WENO reconstruction on complex
mesh geometries [17].

Step 2.3. Set the linear weights.
Step 2.4. Compute the smoothness indicators β`, ` = 1, . . . , 5 [12, 13], by the

application of (2.8). Their expansions in Taylor series at (x0, y0) are

(2.21) β1 =

∑
|l|=1

(
∂|l|

∂xl1∂yl2
u(x, y)|(x0,y0)

)2
 |40|

(
1 +O

(
|40|

3
2

))
= O(|40|)

and (2.11).
Step 2.5. Compute the nonlinear weights based on the linear weights and the

smoothness indicators. For instance, we use τ [30, 31], which is simply defined as the
absolute deference between β1, β2, β3, β4, and β5, and the difference expansions in
the Taylor series at (x0, y0) are

(2.22) β1 − β` = O
(
|40|

3
2

)
, ` = 2, . . . , 5.

So it satisfies

τ =

(
|β1 − β2|+ |β1 − β3|+ |β1 − β4|+ |β1 − β5|

4

)2

= O(|40|3).(2.23)

Then the associate nonlinear weights are defined as that specified in Step 1.5. By the
performance of (2.23) in a smooth region, they satisfy

(2.24)
τ

ε+ β`
= O(|40|2), ` = 1, . . . , 5,

on the condition that ε � β`. Therefore, the nonlinear weights ω`, ` = 1, . . . , 5,
satisfy the order accuracy condition ω` = γ` + O(|40|

3
2 ) [2, 5], providing the fourth

order accuracy to the WENO scheme [13, 22].
Step 2.6. The new final reconstruction formulations of conservative values u(x, y, t)

at different Gaussian quadrature points (xG``` , yG``` ), ` = 1, 2, `` = 1, 2, 3, on the
boundaries of the target cell 40 are given by (2.16) and (2.17). As shown in (2.17),
we compute the nonlinear weights for all quadrature points only once in comparison
with six times in [12] for every target cell ∆0.

Step 2.7. Then the third order TVD Runge–Kutta time discretization method
[23] (2.18) is applied for solving the ODE (2.4) on triangular meshes.

Remark 6. In [21], Sonar pointed out the constructional principle of essentially
nonoscillatory finite volume approximations to compressible fluid dynamics on tri-
angular meshes. He gave a new narration of the applicable methodologies for the
stencil selection principle to recover polynomials of arbitrary degree. Harten and
Chakravarthy [10] proposed a sectorial search in order to keep the number of possi-
ble stencils small. Sectorial search was also used by Vankeirsbilck [26] in connection
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with a box method. So it is useful to search for a bigger spatial stencil including 16
triangular cells [33] and reconstruct a cubic polynomial in a least square sense and
9 quadratic polynomials, and calculate linear systems for solving linear weights at
different quadrature points. This analysis partly explains the truth about why there
is no fourth order WENO scheme for the simulation of a Mach 3 wind tunnel with a
step problem in [12] because of the violation of the associated principles. Generally
speaking, it is the first time for us to design a fourth order finite volume WENO
scheme by usage of the cell averages on only 10 distinct triangular cells (see Figure
2.1) to formulate five unequal degree polynomials for high order approximations at
any points inside the target cell robustly without taking into account the good or bad
quality of the triangular meshes.

3. Numerical results. In this section we provide numerical examples to demon-
strate the performance of the new third order and fourth order finite volume WENO
schemes on triangular meshes described in the previous section. For systems of the
compressible Euler equations, all of the reconstructions are performed in the local
characteristic directions to avoid spurious oscillations. The CFL number is 0.6. For
the temporal discretization, the third order TVD Runge–Kutta time discretization
method [23] is used here for all examples. Only for the accuracy tests, we set the

time step as ∆t = min`(|∆`|
1
2 )

κ
3 , and κ = 3 (for the third order WENO scheme) or

κ = 4 (for the fourth order WENO scheme) to confirm that spatial error dominates.
Otherwise, we recover κ = 3 for other examples in this paper. For the purpose of
evaluating whether the random choice of the linear weights would pollute the optimal
order of these new WENO schemes, we set four different types of linear weights in
the numerical accuracy cases as (1) γ1 = 0.96 and γ2 = γ3 = γ4 = γ5 = 0.01; (2)
γ1 = γ2 = γ3 = γ4 = γ5 = 0.2; (3) γ1 = 0.01 and γ2 = γ3 = γ4 = γ5 = 0.2475; (4)
γ1 = γ2 = γ3 = γ4 = 0.01 and γ5 = 0.96. Then we use the first two types of linear
weights from Examples 3.3 to 3.7 and apply the first type of linear weights for the
latter examples, unless specified otherwise.

Example 3.1. We solve the following Burgers’ equation in two dimensions:

(3.1) µt +

(
µ2

2

)
x

+

(
µ2

2

)
y

= 0, (x, y) ∈ [−2, 2]× [−2, 2],

with the initial condition µ(x, y, 0) = 0.5 + sin(π(x + y)/2) and periodic boundary
conditions in both directions. We compute the solution up to t = 0.5/π. For this test
case, two types of the computational meshes denoted as mesh I (boundary points are
uniformly distributed) and mesh II (boundary points are not uniformly distributed)
are used. The samples of these meshes are shown in Figure 3.1. The errors and
numerical orders of accuracy for the third order and fourth order finite volume WENO
schemes are shown in Figure 3.2. The new finite volume WENO schemes can keep
the designed order of accuracy with different sets of linear weights in this classical
scalar nonlinear accuracy test case.

Example 3.2. We solve the two-dimensional Euler equations

∂

∂t


ρ
ρµ
ρν
E

+
∂

∂x


ρµ

ρµ2 + p
ρµν

µ(E + p)

+
∂

∂y


ρν
ρνµ

ρν2 + p
ν(E + p)

 = 0, (x, y) ∈ [0, 2]× [0, 2],

(3.2)
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0
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X
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-2

-1

0

1

2

Fig. 3.1. Burgers’ equation. Sample mesh I (left), where mesh points are uniformly distributed
on the boundary. Sample mesh II (right), where mesh points are not uniformly distributed on the
boundary.

where ρ is density; µ and ν are the velocities in the x and y directions, respectively; E
is total energy; and p is pressure, which is related to the total energy by E = p/(γ−1)
+ 1

2ρ(µ2+ν2) with γ = 1.4. The initial conditions are ρ(x, y, 0) = 1+0.2 sin(π(x+y)),
µ(x, y, 0) = 0.5, ν(x, y, 0) = 0.5, and p(x, y, 0) = 1. Periodic boundary conditions are
applied in both directions. The exact solution is ρ(x, y, t) = 1 + 0.2 sin(π(x+ y − t)).
The solution is computed up to t = 2. For this test case, the sample meshes are
similar to Figure 3.1 except for a different computational domain. The errors and
numerical orders of the WENO schemes are shown in Figure 3.3. We can see that
these schemes could keep the theoretical order of accuracy with different artificially
chosen linear weights.

Remark 7. The finite volume WENO schemes obtain high order accuracy in the
smooth region with different types of linear weights. We observe the WENO schemes
with the first type of linear weights could get least L1 and L∞ truncation errors for
such examples.

Example 3.3. We solve the two-dimensional Euler equations (3.2) with the Rie-
mann initial condition for the Lax problem:

(3.3) (ρ, µ, ν, p)T =

{
(0.445, 0.698, 0, 3.528)T , x ∈ [−0.5, 0),
(0.5, 0, 0, 0.571)T , x ∈ [0, 0.5].

The final time is t = 0.16. The computational domain is [−0.5, 0.5] × [−5∆x, 5∆x]
which is with a triangulation of 101 vertices in the x direction and 11 vertices in the y
direction. The periodic boundary condition is applied in the y direction. The results
and zoomed-in pictures for two different schemes are shown in Figure 3.4. We observe
that the computational results obtained by the associated WENO schemes are good.

Example 3.4. We solve the two dimensional Euler equations (3.2) with Riemann
initial condition for the Sod problem:

(3.4) (ρ, µ, ν, p)T =

{
(1, 0, 0, 2.5)T , x ∈ [−5, 0),
(0.125, 0, 0, 0.25)T , x ∈ [0, 5].
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Fig. 3.2. Burgers’ equation. T= 0.5
π

. From left to right: L1 error, L∞ error. Number signs and
a solid line denote the results of WENO schemes with different linear weights (1), (2), (3), and (4).
From top to bottom: the third order WENO scheme with and without uniformly distributed mesh
points on the boundary, and the fourth order WENO scheme with and without uniformly distributed
mesh points on the boundary.D
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Fig. 3.3. Two-dimensional Euler equations. T = 2. From left to right: L1 error, L∞ error.
Number signs and a solid line denote the results of WENO schemes with different linear weights (1),
(2), (3), and (4). From top to bottom: the third order WENO scheme with and without uniformly
distributed mesh points on the boundary, and the fourth order WENO scheme with and without
uniformly distributed mesh points on the boundary.D
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Fig. 3.4. The Lax problem. T = 0.16. From left to right: density; density zoomed in; three-
dimensional density surface. Solid line: the exact solution; squares: the results of WENO schemes.
From top to bottom: the third order WENO (1) scheme; the third order WENO (2) scheme; the
fourth order WENO (1) scheme; the fourth order WENO (2) scheme. The mesh points on the
boundary are uniformly distributed with cell length h = 1/100.
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The final time is t = 2. The computational domain is [−5, 5] × [−5∆x, 5∆x] which
is with a triangulation of 101 vertices in the x direction and 11 vertices in the y di-
rection. The periodic boundary condition is applied in the y direction. The results
and zoomed-in pictures for associated schemes are shown in Figure 3.5. The numer-
ical results computed by the WENO schemes are good for this one-dimensional test
example.

Example 3.5. A higher order scheme would show its advantage when the solution
contains both shocks and complex smooth region structures. A typical example for
this is the problem of shock interaction with entropy waves [22]. We solve the Euler
equations (3.2) with a moving Mach = 3 shock interacting with sine waves in density
in the x direction: (ρ, µ, ν, p)T = (3.857143, 2.629369, 0, 10.333333)T for x ∈ [−5,−4);
(ρ, µ, ν, p)T = (1 + 0.2 sin(5x), 0, 0, 1)T for x ∈ [−4, 5]. The computational domain is
[−5, 5]× [−5∆x, 5∆x] which is with a triangulation of 401 vertices in the x direction
and 11 vertices in the y direction. The periodic boundary condition is applied in
the y direction. The computed density ρ is plotted at t = 1.8 against the referenced
“exact” solution which is a converged solution computed by the finite difference fifth
order WENO scheme [13] with 2000 grid points in Figure 3.6. The new type of finite
volume WENO schemes could get good resolution for this benchmark example.

Example 3.6. We now consider the interaction of two blast waves. The initial
conditions are

(3.5) (ρ, µ, ν, p)T =

 (1, 0, 0, 103)T , 0 < x < 0.1,
(1, 0, 0, 10−2)T , 0.1 < x < 0.9,
(1, 0, 0, 102)T , 0.9 < x < 1.

The computed density ρ is plotted at t = 0.038 against the reference “exact” solution
which is a converged solution computed by the finite difference fifth order WENO
scheme [13] with 2000 grid points. The computational domain is [0, 1]× [−5∆x, 5∆x]
which is with a triangulation of 401 vertices in the x direction and 11 vertices in
the y direction. The periodic boundary condition is applied in the y direction. The
results and zoomed-in pictures for different schemes are shown in Figure 3.7. The
new WENO schemes could get good performance as before.

Example 3.7. We solve the same two-dimensional Burgers’ equation (3.1) with
the same initial condition µ(x, y, 0) = 0.5 + sin(π(x + y)/2), except that the results
are plotted at t = 1.5/π when a shock has already appeared in the computational
domain. The solutions are shown in Figures 3.8 and 3.9. We can see that the new
schemes give nonoscillatory shock transitions nearby discontinuities sharply without
considering the mesh’s geometry which is crucial to confine associated nonnegative
linear weights [20].

Remark 8. The finite volume WENO schemes could obtain sharp shock transi-
tions with different types of linear weights. But we also find the schemes with the
first type of linear weights could get better numerical resolutions. Thereafter, we only
simulate the latter examples by the application of the new WENO schemes with the
first type of linear weights for simplicity.

Example 3.8. Double Mach reflection problem. This model problem is originally
from [27]. We solve the Euler equations (3.2) in a computational field [0, 4] × [0, 1].
The reflection boundary condition is used at the wall, which for the rest of the bottom
boundary (the part from x = 0 to x = 1

6 ), the exact postshock condition is imposed.
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Fig. 3.5. The Sod problem. T = 2. From left to right: density; density zoomed in; three-
dimensional density surface. Solid line: the exact solution; squares: the results of WENO schemes.
From top to bottom: the third order WENO (1) scheme; the third order WENO (2) scheme; the
fourth order WENO (1) scheme; the fourth order WENO (2) scheme. The mesh points on the
boundary are uniformly distributed with cell length h = 1/100.
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Fig. 3.6. The shock density wave interaction problem. T = 1.8. From left to right: density;
density zoomed in; three-dimensional density surface. Solid line: the exact solution; squares: the
results of WENO schemes. From top to bottom: the third order WENO (1) scheme; the third order
WENO (2) scheme; the fourth order WENO (1) scheme; the fourth order WENO (2) scheme. The
mesh points on the boundary are uniformly distributed with cell length h = 1/400.
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Fig. 3.7. The blast wave problem. T = 0.038. From left to right: density; density zoomed
in; three-dimensional density surface. Solid line: the exact solution; squares: the results of WENO
schemes. From top to bottom: the third order WENO (1) scheme; the third order WENO (2) scheme;
the fourth order WENO (1) scheme; the fourth order WENO (2) scheme. The mesh points on the
boundary are uniformly distributed with cell length h = 1/400.
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Fig. 3.8. Burgers’ equation. T = 1.5/π. The surface of the solution. Left: the third order
WENO (1) scheme; right: the fourth order WENO (1) scheme. The mesh points on the boundary
are uniformly distributed with cell length h = 4/20.
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Fig. 3.9. Burgers’ equation. T = 1.5/π. The surface of the solution. Left: the third order
WENO (2) scheme; right: the fourth order WENO (2) scheme. The mesh points on the boundary
are uniformly distributed with cell length h = 4/20.

At the top boundary is the exact motion of the Mach 10 shock. The numerical results
are shown at t = 0.2. Two different orders of finite volume WENO schemes are used
in this numerical experiment. A sample mesh coarser than what is used is shown in
Figure 3.10. The computing mesh has 392693 points and 708576 cells inside of the
field. And 12 cells among the total 708576 cells (the percentage is 0.00169%) are
needed to use three layers of the cells for the lack of 10 distinct triangular cells by
applying two layers in designing the fourth order WENO scheme. The simulation
results are shown in Figure 3.11. The zoomed-in pictures around the double Mach
stem to show more details are given in Figure 3.12. We could get perfect results once
again.

Example 3.9. A Mach 3 wind tunnel with a step. This model problem is also
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Fig. 3.10. Double Mach reflection problem. Sample mesh.
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Fig. 3.11. Double Mach reflection problem. 30 equally spaced density contours from 1.5 to 22.7.
Top: the third order WENO (1) scheme; bottom: the fourth order WENO (1) scheme. The mesh
points on the boundary are uniformly distributed with cell length h = 1/320.

originally from [27]. The setup of the problem is as follows. The wind tunnel
is 1 length unit wide and 3 length units long. The step is 0.2 length units high
and is located 0.6 length units from the left-hand end of the tunnel. The prob-
lem is initialized by a right-going Mach 3 flow. Reflective boundary conditions are
applied along the wall of the tunnel and inflow/outflow boundary conditions are
applied at the entrance/exit. There is a singularity at the corner of the step. How-
ever, we do not modify our schemes or refine the mesh near the corner, in order
to test the performance of our schemes for such singularity. The results are shown
at t = 4. A sample mesh coarser than what is used is shown in Figure 3.13. The
computing mesh has 108331 points and 149864 cells inside the field. And 44 cells
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Fig. 3.12. Double Mach reflection problem. Zoomed-in pictures around the Mach stem. 30
equally spaced density contours from 1.5 to 22.7. Left: the third order WENO (1) scheme; right: the
fourth order WENO (1) scheme. The mesh points on the boundary are uniformly distributed with
cell length h = 1/320.
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Fig. 3.13. Forward step problem. Sample mesh.

among the total cells (the percentage is 0.029%) are needed to use three layers of
the neighboring cells to propose the fourth order WENO scheme. Then the results
of 30 equally spaced density contours from 0.32 to 6.15 computed by the third or-
der and fourth order WENO schemes are shown in Figure 3.14. We can clearly
observe that the fourth order scheme gives better resolution than the third order
scheme, especially for the resolution of the physical instability and roll-up of the
contact line.

Example 3.10. We consider inviscid Euler transonic flow past a single NACA0012
airfoil configuration [21] with Mach number M∞ = 0.8 and angle of attack α = 1.25◦

and with M∞ = 0.85 and angle of attack α = 1◦. The computational domain is
[−15, 15]× [−15, 15]. The computational mesh used in the example is shown in Figure
3.15, which consists of 9340 triangles, and the minimum and maximum diameters of
the circumcircle of all triangles are 0.0031 and 1.4188, respectively. The new WENO
schemes are used in the simulations. Of the total 9340 cells, 336 (the percentage is
3.59%) are needed to use three layers of triangular cells to propose the fourth order
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Fig. 3.14. Forward step problem. 30 equally spaced density contours from 0.32 to 6.15. Top:
the third order WENO (1) scheme; bottom: the fourth order WENO (1) scheme. The mesh points
on the boundary are uniformly distributed with cell length h = 1/160.

Fig. 3.15. NACA0012 airfoil sample mesh. From left to right: the whole region, zoomed-in
figure near airfoil.

WENO scheme. Mach number and pressure distributions are shown in Figure 3.16.
The reductions of density residual as a function of the number of iterations are shown
in Figures 3.17 and 3.18, respectively. We can see that the fourth order WENO scheme
has better resolution than the third order one and both of them could maintain a good
convergence property for this problem.D
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Fig. 3.16. NACA0012 airfoil. From top to bottom: M∞ = 0.8, angle of attack α = 1.25◦,
pressure distribution; M∞ = 0.85, angle of attack α = 1◦, pressure distribution; M∞ = 0.8, angle of
attack α = 1.25◦, 30 equally spaced mach number contours from 0.172 to 1.325; M∞ = 0.85, angle
of attack α = 1◦, 30 equally spaced mach number contours from 0.158 to 1.357. Left: the third order
WENO (1) scheme; right: the fourth order WENO (1) scheme.
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Fig. 3.17. NACA0012 airfoil. M∞ = 0.8, angle of attack α = 1.25◦. Reduction of density
residual as a function of the number of iterations. Left: the third order WENO (1) scheme; right:
the fourth order WENO (1) scheme.
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Fig. 3.18. NACA0012 airfoil. M∞ = 0.85, angle of attack α = 1◦. Reduction of density
residual as a function of the number of iterations. Left: the third order WENO (1) scheme; right:
the fourth order WENO (1) scheme.

4. Concluding remarks. In this paper we investigate using a new type of third
order and fourth order finite volume WENO schemes on triangular meshes. The main
advantages of the new WENO schemes are their easy implementation on unstructured
meshes, their compact property, the application of only 5 unequal sized spatial stencils
for spatial reconstructions of different order WENO schemes in comparison with 10
stencils for the third order WENO scheme and 7 stencils for the fourth order WENO
scheme [12], and that they could obtain high order accuracy in a smooth region
simultaneously maintaining sharp shock transitions without redundantly considering
the quality of the computational meshes. It is easy to get one big central stencil
and four small biased/central stencils containing enough triangular cells. Then we
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use the information defined on associated five unequal sized stencils to construct a
quadratic/cubic polynomial and four linear polynomials in a least square sense and
modify the quadratic/cubic polynomial by subtracting four linear polynomials with
suitable positive constants for canceling the lower degree polynomials’ contributions
in the smooth region. By doing so, we could decrease the effectiveness of distorted
geometries of the meshes and reduce the difficulty in calculating the linear systems for
solving the optimal linear weights at different Gaussian quadrature points by means of
designing a new linear weights choice principle. It is the first time that we can design
any high order finite volume WENO schemes with the application of only five unequal
sized spatial stencils on triangular meshes. Such a methodology is also applicable to
constructing a third order finite volume WENO scheme with fewer spatial stencils
on tetrahedral meshes [32]. Generally speaking, it is a promising method that could
be extended to perform adaptive calculations, moving mesh simulations, arbitrary
Lagrangian–Eulerian methods, and so on.

REFERENCES

[1] R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: Analysis and
implementation, J. Comput. Phys., 114 (1993), pp. 45–58.

[2] R. Borges, M. Carmona, B. Costa, and W. S. Don, An improved weighted essentially
non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227 (2008),
pp. 3191–3211.

[3] J. Casper, Finite-volume implementation of high-order essentially nonoscillatory schemes in
two dimensions, AIAA J., 30 (1992), pp. 2829–2835.

[4] J. Casper and H.-L. Atkins, A finite-volume high-order ENO scheme for two-dimensional
hyperbolic systems, J. Comput. Phys., 106 (1993), pp. 62–76.

[5] M. Castro, B. Costa, and W. S. Don, High order weighted essentially non-oscillatory
WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys., 230 (2011),
pp. 1766–1792.
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