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In this paper, a class of high-order central finite volume schemes is proposed for solving 
one- and two-dimensional hyperbolic conservation laws. Formulated on staggered meshes, 
the methods involve Hermite WENO (HWENO) spatial reconstructions, and Lax–Wendroff 
type discretizations or the natural continuous extension of Runge–Kutta methods in time. 
Differently from the central Hermite WENO methods we developed previously in Tao et 
al. (2015) [34], the spatial reconstructions, a core ingredient of the methods, are based 
on the zeroth-order and the first-order moments of the solution, and are implemented 
through a dimension-by-dimension strategy when the spatial dimension is higher than 
one. This leads to much simpler implementation of the methods in higher dimension and 
better cost efficiency. Meanwhile, the proposed methods have the attractive features of 
the general central Hermite WENO methods such as being compact in reconstruction and 
requiring neither flux splitting nor numerical fluxes, while being accurate and essentially 
non-oscillatory. A collection of one- and two-dimensional numerical examples is presented 
to demonstrate high resolution and robustness of the methods in capturing smooth and 
non-smooth solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with designing accurate and robust numerical methods for simulating hyperbolic conservation 
laws, namely{

ut + ∇ · f (u) = 0,

u(x,0) = u0(x),
(1.1)

with suitable initial and boundary conditions. Here (1.1) can be scalar or a system, and it is often nonlinear. Hyperbolic 
conservation laws arise in a wide range of applications in science and engineering, such as aerodynamics, meteorology 
and weather prediction, astrophysical modeling, multi-phase flow problems, and the study of explosion and blast waves. 
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In general the exact solutions of the nonlinear equations are not available, and discontinuity may appear in the solutions 
of such equations regardless of the smoothness of the initial and boundary data. Various numerical methods have been 
developed for solving hyperbolic conservation laws, such as finite difference methods [3,15,27], finite volume methods [9,
21,29,30], finite element type methods (including streamline diffusion methods [13,14] and discontinuous Galerkin methods 
[5–7]), and spectral methods [10,33] etc.

WENO (weighted essentially non-oscillatory) methods within finite difference or finite volume frameworks have made 
great success in simulating hyperbolic conservation laws with their excellent balance between accuracy and non-oscillatory 
property. The first WENO scheme was constructed by Liu, Osher and Chan [21] in 1994 as a third-order finite volume 
method for one space dimension. Ever since then, the methods have been further developed for higher dimensions and 
with better accuracy, and also regarding general strategies for smoothness indicators and nonlinear weights, as well as the 
techniques to handle negative linear weights etc. [3,9,12,15,19,26,30,31]. To improve its compactness while achieving high 
order accuracy, Hermite WENO (HWENO) methods are further developed [28,29,39]. Here not only the solution but also its 
first spatial derivative(s) are evolved in time, and they are used in the high-order spatial reconstructions. With the same 
stencil, HWENO reconstructions can achieve higher order accuracy than standard WENO reconstructions.

WENO reconstructions were originally used in upwind or Godunov methods setting. They were then integrated into the 
central framework [19,20,26], to further gain the advantages of central schemes, such as being free of numerical fluxes, 
relatively better stability, and no need for applying flux splitting etc. Compared to upwind type schemes, central schemes 
are also a class of effective schemes for hyperbolic conservation laws and they are relatively simpler. A second-order central 
scheme was first developed by Nessyahu and Tadmor [25] in 1990. Motivated by its simplicity and robustness, various 
high-order or semi-discrete versions of central schemes as well as their extensions to multiple dimensions were explored 
in [1,4,16,17,19,20,22,23,26]. Though it was observed that the local characteristic decomposition is not necessary for lower 
order central schemes, it has been shown [26] that such decomposition is still needed to control spurious oscillations when 
the accuracy order of the methods is higher.

In [34], we proposed high-order central HWENO (C-HWENO) schemes for solving the hyperbolic conservation laws in 
one and two space dimensions. The methods use HWENO reconstructions as spatial discretizations, and Lax–Wendroff type 
discretizations or the natural continuous extension of Runge–Kutta methods as time discretizations, in a central finite vol-
ume formulation on staggered meshes. Like all WENO-type methods, the C-HWENO methods are accurate and essentially 
non-oscillatory. Compared with WENO schemes, one major advantage of HWENO schemes is the compactness in the spatial 
reconstruction. Compared with the original HWENO schemes, the C-HWENO methods require neither flux splitting nor the 
use of numerical fluxes that are often exact or approximate Riemann solvers.

The work in this paper is a continuation of the development in [34], with the same focus on the design of C-HWENO 
methods on structured meshes for hyperbolic conservation laws. In [34], the HWENO reconstructions are based on the 
solution and its derivative(s), while in the present work, we propose new HWENO reconstructions which are based on 
the zeroth-order and the first-order moments of the solution. Using moments of the solution itself is not new in HWENO 
reconstruction, with examples including the limiting procedure for DG methods in [28,29], the hybrid RKDG-HWENO re-
construction in [2], and P N P M methods in [8,24]. One novel aspect of our current strategy is to involve all the first-order 
moments, including the mixed-type moment (see v wn

ij in Section 2.2), of the solution, when the spatial dimension is higher 
than one [38]. This is an analogue of the tenor-type or called Q -type finite elements in the setting of finite element meth-
ods. Working with such choice of the moments enables a dimension-by-dimension procedure for the reconstructions, a core 
ingredient of the proposed methods. The HWENO reconstructions proposed here for two dimensions essentially use sev-
eral one-dimensional reconstructions. This will improve the computational efficiency, as well as the ease of implementation 
in higher dimensions. Meanwhile, the proposed methods have the similar advantages as the C-HWENO methods in [34]. 
Like in [34], we apply in time the Lax–Wendroff type discretizations [11,18,27] and the natural continuous extension of 
Runge–Kutta methods [4,19,20,26,37].

The organization of this paper is as follows. In Section 2, we describe in detail the construction and implementation of 
the proposed C-HWENO schemes based on moments of the solution with Lax–Wendroff type time discretizations for the 
problem (1.1) in one and two dimensions. The two-dimensional spatial reconstructions are implemented in a dimension-by-
dimension fashion. In Section 3, we present the construction and implementation of the proposed C-HWENO schemes with 
the natural continuous extension of Runge–Kutta methods as time discretizations. The HWENO reconstructions in Section 2
and Section 3 are partially the same. In Section 4, extensive numerical examples are provided to demonstrate the perfor-
mance of the proposed schemes for smooth and nonsmooth examples in one and two dimensions. Concluding remarks are 
made in Section 5.

2. Central Hermite WENO schemes with Lax–Wendroff time discretization

In this section we describe in detail the construction and implementation of central HWENO schemes with fifth-order 
spatial reconstructions and Lax–Wendroff time discretizations for one- and two-dimensional scalar and system of conserva-
tion laws.



224 Z. Tao et al. / Journal of Computational Physics 318 (2016) 222–251
2.1. One-dimensional case

Consider the one-dimensional scalar conservation law{
ut + f (u)x = 0,

u(x,0) = u0(x).
(2.1)

The proposed numerical method will be defined on staggered meshes. For simplicity of presentation, uniform meshes are 
used with the mesh size �x. Each cell of the primal mesh is denoted as Ii = [xi−1/2, xi+1/2] with its cell center xi =
1
2 (xi−1/2 + xi+1/2); and each cell of the dual mesh is denoted as Ii+1/2 = [xi, xi+1] with its cell center xi+1/2 = 1

2 (xi + xi+1). 
It will be seen that the primal and the dual meshes will be used in a staggered fashion along the time direction in the 
proposed scheme.

Next we will proceed to derive our proposed method. In addition to the governing equation (2.1), we will also utilize the 
following equation,

ut
x − xc

�x
+ f (u)x

x − xc

�x
= 0, (2.2)

where xc is the center of the relevant mesh element. In particular, for a cell Ii from the primal mesh, we will take xc = xi ; 
for a cell Ii+1/2 from the dual mesh, we will take xc = xi+1/2. We now integrate (2.1) and (2.2) over Ii+1/2 ×[tn, tn+1], apply 
integration by parts, and get

1

�x

∫
Ii+1/2

u(x, tn+1)dx = 1

�x

∫
Ii+1/2

u(x, tn)dx − 1

�x

tn+1∫
tn

[ f (u(xi+1, t)) − f (u(xi, t))]dt, (2.3)

1

�x

∫
Ii+1/2

u(x, tn+1)
x − xi+1/2

�x
dx = 1

�x

∫
Ii+1/2

u(x, tn)
x − xi+1/2

�x
dx

− 1

�x

tn+1∫
tn

⎡
⎣1

2
[ f (u(xi+1, t)) + f (u(xi, t))] − 1

�x

xi+1∫
xi

f (u(x, t))dx

⎤
⎦dt. (2.4)

Here �t = tn+1 − tn is the time step.
Since our proposed method will be fifth-order accurate in space, we will approximate the line integral of f (u) in 

x-variable from (2.4) with the four-point Gauss–Lobatto quadrature formula, namely,

1

�x

xi+1∫
xi

f (u(x, t))dx ≈
4∑

l=1

ωl f (u(Gx
l , t)) (2.5)

where ω1 = ω4 = 1
12 and ω2 = ω3 = 5

12 are the quadrature weights and

Gx
1 = xi, Gx

2 = x
i+ 1

2 −
√

5
10

, Gx
3 = x

i+ 1
2 +

√
5

10
, Gx

4 = xi+1, (2.6)

are the quadrature points over the dual cell Ii+1/2. Here and below, xr with non-integer r should be understood as a natural 
linear interpolation of {xi}i with respect to the subindex. This similarly goes to yr . Associated with a cell Ii of the primal 
mesh, we define

Gx,i = {x
i− 1

2 +
√

5
10

, xi, x
i+ 1

2 −
√

5
10

}. (2.7)

We also let Gx = ∪iGx,i .
Let’s for the moment consider the problem (2.1) with u|Ii as a constant at tn , ∀i, for a reason which will become clear 

once the scheme is given. Under the assumption that the time step �t satisfies a CFL restriction �t ≤ Ccf l�x
max | f ′(u)| with some 

constant Ccf l , the discontinuities starting at tn from xi− 1
2

and xi+ 1
2

will not propagate to x∗ with x∗ ∈ Gx,i over a single time 
step �t , and therefore the solution of this problem restricted at x∗ with x∗ ∈ Gx,i, ∀i are smooth for t ∈ (tn, tn+1). Motivated 
by this, the flux function f (u(x∗, t)) in (2.3) and (2.4) (with the last term replaced by (2.5)) will be approximated by a 
temporal Taylor expansion at tn as follows,

f (u(x∗, t)) ≈ f (u(x∗, tn)) + (t − tn) ft(u(x∗, tn)) + (t − tn)2

ftt(u(x∗, tn)). (2.8)

2
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This corresponds to a third-order accuracy in time, and will be considered in the present work. In general, to achieve 
(k + 1)th-order accuracy in time, one would need to keep the first k time derivatives on the right-hand side of (2.8).

Using (2.8), the temporal integration of f (u) can be approximated straightforwardly,

1

�t

tn+1∫
tn

f (u(x∗, t))dt ≈ F (u(x∗, tn)), (2.9)

where

F (u) = f (u) + �t

2
ft(u) + �t2

6
ftt(u) = f (u) + �t

2
f ′(u)ut + �t2

6
( f ′′(u)(ut)

2 + f ′(u)utt). (2.10)

Following the idea of the Lax–Wendroff time discretization, the temporal derivative terms in (2.10) are further converted 
into spatial ones by repeatedly using the governing equation (2.1),

ut = − f (u)x = − f ′(u)ux, uxt = − f ′′(u)(ux)
2 − f ′(u)uxx,

utt = −( f ′(u)ut)x = − f ′′(u)uxut − f ′(u)uxt .
(2.11)

Now the functional F (u) in (2.10) should be understood as F =F(u, ux, uxx), though the notation F (u) will still be used for 
simplicity.

By combining (2.3)–(2.5) and (2.9)–(2.11), we are ready to present the proposed central scheme.

(a.1) Suppose at t = tn , the approximations for the first two moments of the solution, denoted as {un
i } and {vn

i }, are available 
on the primal mesh, that is, ∀i,

un
i ≈ 1

�x

∫
Ii

u(x, tn)dx, vn
i ≈ 1

�x

∫
Ii

u(x, tn)
x − xi

�x
dx. (2.12)

Following a staggered central scheme strategy, we compute the first two moments of the solution with respect to the 
dual mesh at t = tn+1, denoted as un+1

i+1/2 and vn+1
i+1/2, as follows,

un+1
i+1/2 = un

i+1/2 − �t

�x
[F (u(xi+1, tn)) − F (u(xi, tn))], (2.13)

vn+1
i+1/2 = vn

i+1/2 − �t

�x

[
1

2
[F (u(xi+1, tn)) + F (u(xi, tn))] −

4∑
l=1

ωl F (u(Gx
l , tn))

]
. (2.14)

For simplicity of notation, we still use u in all the terms on the right-hand side, though u is no longer the exact 
solution, and will be reconstructed based on the given data.

(a.2) With un+1
i+1/2 and vn+1

i+1/2 being available for any i, we further compute the first two moments of the solution with 
respect to the primal mesh at t = tn+2, denoted as un+2

i and vn+2
i , as follows,

un+2
i = un+1

i − �t

�x
[F (u(xi+1/2, tn+1)) − F (u(xi−1/2, tn+1))],

vn+2
i = vn+1

i − �t

�x

[
1

2
[F (u(xi+1/2, tn+1)) + F (u(xi−1/2, tn+1))] −

4∑
l=1

ωl F (u(Ĝx
l , tn+1))

]
.

(a.3) Set n to be n + 2, and go to (a.1).

Here the Gauss–Lobatto quadrature points associated with Ii are Ĝx
1 = xi−1/2, Ĝx

2 = x
i−

√
5

10
, Ĝx

3 = x
i+

√
5

10
, and Ĝx

4 = xi+1/2. Note 
that the moments are defined and evolved in a staggered fashion with respect to the discrete time level n on two sets of 
meshes. The mesh switches back after two time steps.

To finalize the proposed scheme, one needs to reconstruct certain quantities in (a.1) and (a.2). With similarity, we will 
only focus on (a.1). In this step, to obtain the moments un+1

i+1/2 and vn+1
i+1/2 on the dual mesh at the next time tn+1 according 

to (2.13) and (2.14), one will need to reconstruct at the current time tn , ∀i,

(1) the moments un
i+1/2, vn

i+1/2 on the dual mesh;

(2) the point value of q(x∗, tn), where q = u, ux , or uxx , and x∗ ∈ Gx,i ,

based on the given data {un
i , v

n
i }i . Recall F =F(u, ux, uxx) depends on u and its derivatives ux , uxx .
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It is also useful to note that

un
i+1/2 ≈ 1

�x

xi+1∫
xi

u(x, tn)dx = 1

�x

xi+1/2∫
xi

u(x, tn)dx + 1

�x

xi+1∫
xi+1/2

u(x, tn)dx.

This implies that to approximate the moment un
i+1/2, one would want to get the half-cell moments: 1

�x

∫ xi+1/2
xi

u(x, tn)dx and 
1

�x

∫ xi+1
xi+1/2

u(x, tn)dx. This is likewise for the moment vn
i+1/2,

vn
i+1/2 ≈ 1

�x

xi+1/2∫
xi

u(x, tn)
x − xi+1/2

�x
dx + 1

�x

xi+1∫
xi+1/2

u(x, tn)
x − xi+1/2

�x
dx.

To reconstruct the half-cell moments and point values mentioned above, we propose a procedure by adapting the 
one-dimensional fifth-order accurate HWENO reconstruction of Qiu and Shu [28], where only the function values at the 
end points of each cell were reconstructed. This reconstruction is not only high-order accurate but also essentially non-
oscillatory. Compared with the standard WENO schemes, the stencils in the reconstruction are more compact. In the 
remaining part of this section, we will describe the reconstruction with great details through steps 1–5, where the re-
construction is based on the two moments {un

i , v
n
i }i on the primal mesh at t = tn . Since both the data before and after the 

reconstruction is at the same time level tn , the superscript n will be omitted below, together with the dependence on the 
time t of u and v .

Step 1. A HWENO reconstruction of 1
�x

∫ xi
xi−1/2

u(x)dx from the moments {ui, vi}i .

We first introduce three “small” stencils S0 = {Ii−1, Ii}, S1 = {Ii, Ii+1}, S2 = {Ii−1, Ii, Ii+1}, one “large” stencil T =
{S0, S1, S2} = S2, and reconstruct three quadratic Hermite polynomials p0(x), p1(x), p2(x) on S0, S1, S2, respectively, and 
one quartic Hermite polynomial Q (x) on T , satisfying the following conditions,

1

�x

∫
Ii+ j

p0(x)dx = ui+ j, j = −1,0,
1

�x

∫
Ii−1

p0(x)
x − xi−1

�x
dx = vi−1,

1

�x

∫
Ii+ j

p1(x)dx = ui+ j, j = 0,1,
1

�x

∫
Ii+1

p1(x)
x − xi+1

�x
dx = vi+1,

1

�x

∫
Ii+ j

p2(x)dx = ui+ j, j = −1,0,1,

1

�x

∫
Ii+ j

Q (x)dx = ui+ j, j = −1,0,1,
1

�x

∫
Ii+ j

Q (x)
x − xi+ j

�x
dx = vi+ j, j = −1,1.

(2.15)

To reconstruct 1
�x

∫ xi
xi−1/2

u(x)dx, we further compute the half-cell zeroth-order moments, which are also averages, of these 
polynomials over [xi−1/2, xi], and the results can be given explicitly in terms of the moments {ui, vi}i ,

1

�x

xi∫
xi−1/2

p0(x)dx = 1

4
ui−1 + 1

4
ui + 3

2
vi−1,

1

�x

xi∫
xi−1/2

p1(x)dx = 3

4
ui − 1

4
ui+1 + 3

2
vi+1,

1

�x

xi∫
xi−1/2

p2(x)dx = 1

16
ui−1 + 1

2
ui − 1

16
ui+1,

(2.16)

1

�x

xi∫
x

Q (x)dx = 121

1216
ui−1 + 1

2
ui − 121

1216
ui+1 + 135

304
vi−1 + 135

304
vi+1.
i−1/2
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Now one can find the linear weights, denoted as γ0, γ1 and γ2, such that

1

�x

xi∫
xi−1/2

Q (x)dx = 1

�x

2∑
j=0

γ j

xi∫
xi−1/2

p j(x)dx

holds when {ui, vi}i take arbitrary values over the stencil T . This requirement leads to

γ0 = 45

152
, γ1 = 45

152
, γ2 = 31

76
. (2.17)

With the linear weights, we combine the relatively lower order approximations, which are third-order accurate here, into a 
higher order approximation that is fifth-order accurate in our case.

An important ingredient of WENO-type methods for solving hyperbolic conservation laws with strong shocks or other 
discontinuities in the solutions is nonlinear weights, which are applied to control spurious oscillations. To obtain the non-
linear weights, we compute a smoothness indicator β j for each stencil S j ( j = 0, 1, 2), which measures how smooth the 
function p j(x) is in the target cell Ii . The smaller the smoothness indicator β j is, the smoother the function p j(x) is in the 
cell Ii . Following [15], the smoothness indicator β j is defined as below,

β j =
2∑

l=1

∫
Ii

�x2l−1(
∂ l

∂xl
p j(x))2dx, (2.18)

and it can be further given explicitly in terms of the moments of the solution for the convenience of the actual implemen-
tation,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β0 = 4(ui−1 − ui + 6vi−1)
2 + 13

3
(ui−1 − ui + 12vi−1)

2,

β1 = 4(ui − ui+1 + 6vi+1)
2 + 13

3
(ui − ui+1 + 12vi+1)

2,

β2 = 1

4
(ui−1 − ui+1)

2 + 13

12
(ui−1 − 2ui + ui+1)

2.

(2.19)

With the smoothness indicators {β j} j in (2.19) and the linear weights {γ j} j in (2.17), we can now compute the nonlinear 
weights ω j , j = 0, 1, 2,

ω j = ω j∑2
k=0 ωk

, where ωk = γk

(ε + βk)
2
, k = 0,1,2.

Here ε > 0 is a small constant to avoid the denominator to be zero. We use ε = 10−6 in all numerical examples in this 
paper.

Finally, a fifth-order HWENO approximation for 1
�x

∫ xi
xi−1/2

u(x)dx is given as

1

�x

xi∫
xi−1/2

u(x)dx ≈ 1

�x

2∑
j=0

ω j

xi∫
xi−1/2

p j(x)dx,

where 1
�x

∫ xi
xi−1/2

p j(x)dx, j = 0, 1, 2 are given in (2.16).

In the target cell Ii , the right half-cell average of u over [xi, xi+1/2] can be approximated based on the local conservation 
of u,

1

�x

xi+1/2∫
xi

u(x)dx ≈ ui − 1

�x

xi∫
xi−1/2

u(x)dx.

Step 2. A HWENO reconstruction of 1
�x

∫ xi
xi−1/2

u(x)
x−xi−1/2

�x dx from the moments {ui, vi}i .

In this step, the same stencils S0, S1, S2, T as in step 1 are used. We reconstruct three cubic Hermite polynomials 
p0(x), p1(x), p2(x) on S0, S1, S2, respectively, and one quintic Hermite polynomial Q (x) on T , satisfying
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1

�x

∫
Ii+ j

p0(x)dx = ui+ j,
1

�x

∫
Ii+ j

p0(x)
x − xi+ j

�x
dx = vi+ j, j = −1,0,

1

�x

∫
Ii+ j

p1(x)dx = ui+ j,
1

�x

∫
Ii+ j

p1(x)
x − xi+ j

�x
dx = vi+ j, j = 0,1,

1

�x

∫
Ii+ j

p2(x)dx = ui+ j, j = −1,0,1,
1

�x

∫
Ii

p2(x)
x − xi

�x
dx = vi,

1

�x

∫
Ii+ j

Q (x)dx = ui+ j,
1

�x

∫
Ii+ j

Q (x)
x − xi+ j

�x
dx = vi+ j, j = −1,0,1.

To reconstruct 1
�x

∫ xi
xi−1/2

u(x)
x−xi−1/2

�x dx, we further compute the half-cell first-order moments of these polynomials over 
[xi−1/2, xi], and the results can be given explicitly in terms of {ui, vi}i ,

1

�x

xi∫
xi−1/2

p0(x)
x − xi−1/2

�x
dx = − 1

64
ui−1 + 9

64
ui − 1

16
vi−1 − 3

8
vi,

1

�x

xi∫
xi−1/2

p1(x)
x − xi−1/2

�x
dx = 19

128
ui − 3

128
ui+1 − 5

64
vi + 7

64
vi+1,

1

�x

xi∫
xi−1/2

p2(x)
x − xi−1/2

�x
dx = − 7

2112
ui−1 + 25

192
ui − 1

528
ui+1 − 47

176
vi,

1

�x

xi∫
xi−1/2

Q (x)
x − xi−1/2

�x
dx = − 5

512
ui−1 + 71

512
ui − 1

256
ui+1 − 9

256
vi−1 − 77

256
vi + 1

64
vi+1.

Just as in step 1, we next want to obtain the nonlinear weights ω j , j = 0, 1, 2, with which, a HWENO reconstruction can 
be given for 1

�x

∫ xi
xi−1/2

u(x)
x−xi−1/2

�x dx. To achieve this, we first find the linear weights, denoted as γ ′
0, γ ′

1 and γ ′
2, such that

1

�x

xi∫
xi−1/2

Q (x)
x − xi−1/2

�x
dx = 1

�x

2∑
j=0

γ ′
j

xi∫
xi−1/2

p j(x)
x − xi−1/2

�x
dx

holds when {ui, vi}i take arbitrary values over the stencil T , and this leads to

γ ′
0 = 9

16
, γ ′

1 = 1

7
, γ ′

2 = 33

112
. (2.20)

We then compute the smoothness indicators β j, j = 0, 1, 2 as below

β j =
3∑

l=2

∫
Ii

�x2l−1(
∂ l

∂xl
p j(x))2dx.

Since we are reconstructing the first-order moment rather than the solution itself, the summation starts from the second 
derivative to the third derivative of the cubic polynomial p j(x). For the convenience of the actual implementation, the 
smoothness indicators {β j}2

j=0 can be further given in quadratic forms of the moments of the solution,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β0 = 1

4
(15ui−1 − 15ui + 66vi−1 + 114vi)

2 + 975

4
(ui−1 − ui + 6vi−1 + 6vi)

2,

β1 = 1

4
(15ui − 15ui+1 + 114vi + 66vi+1)

2 + 975

4
(ui − ui+1 + 6vi + 6vi+1)

2,

β2 = (ui−1 − 2ui + ui+1)
2 + 975

(ui−1 − ui+1 + 24vi)
2.

(2.21)
121
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With the smoothness indicators {β j} j in (2.21) and the linear weights {γ ′
j } j in (2.20), the nonlinear weights ω j , j =

0, 1, 2, can be computed,

ω j = ω j∑2
k=0 ωk

, where ωk = γ ′
k

(ε + βk)
2
, k = 0,1,2.

Finally, the HWENO approximation for 1
�x

∫ xi
xi−1/2

u(x)
x−xi−1/2

�x dx is given as

1

�x

xi∫
xi−1/2

u(x)
x − xi−1/2

�x
dx ≈ 1

�x

2∑
j=0

ω j

xi∫
xi−1/2

p j(x)
x − xi−1/2

�x
dx.

In the target cell Ii , the right half first-order moment 1
�x

∫ xi+1/2
xi

u(x)
x−xi+1/2

�x dx can be reconstructed similarly as the above 
procedure.

Step 3. A HWENO reconstruction of u(xi) from the moments {ui, vi}i .
In this step, the same stencils S0, S1, S2, T as in step 1 are used, together with the same constructed polynomials 

p0(x), p1(x), p2(x) and Q (x) in (2.15). The point value of these polynomials at xi can be expressed in terms of the moments,

p0(xi) = 1

12
ui−1 + 11

12
ui + vi−1,

p1(xi) = 11

12
ui + 1

12
ui+1 − vi+1,

p2(xi) = − 1

24
ui−1 + 13

12
ui − 1

24
ui+1,

Q (xi) = − 43

384
ui−1 + 235

192
ui − 43

384
ui+1 − 27

64
vi−1 + 27

64
vi+1.

The linear weights γ0, γ1, γ2 are chosen such that

Q (xi) =
2∑

j=0

γ j p j(xi)

holds when {ui, vi}i take arbitrary values over the stencil T , and this requirement leads to

γ0 = −27

64
, γ1 = −27

64
, γ2 = 59

32
. (2.22)

Note that two linear weights are negative in (2.22), and the corresponding WENO-type approximation with such weights 
can be unstable. To avoid this, we follow the splitting technique developed in [30] to handle negative weights in WENO 
schemes. More specifically, we split the linear weights into two groups

γ̃ +
j = 1

2
(γ j + 3|γ j|), γ̃ −

j = γ̃ +
j − γ j, j = 0,1,2,

which can be shown to satisfy

γ̃ +
j = 2γ j, γ̃ −

j = γ j, for γ j > 0; γ̃ +
j = −γ j, γ̃ −

j = −2γ j, for γ j < 0.

We further scale the terms by introducing

σ± =
2∑

j=0

γ̃ ±
j , γ ±

j = γ̃ ±
j /σ±, j = 0,1,2.

For the linear weights in (2.22), this gives

σ+ = 145

32
, σ− = 113

32
,

γ +
0 = 27

, γ +
1 = 27

, γ +
2 = 118

, γ −
0 = 27

, γ −
1 = 27

, γ −
2 = 59

.

290 290 145 113 113 113
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The HWENO reconstruction will be performed for each group by computing the nonlinear weights ω+
j and ω−

j , j = 0, 1, 2
separately, with the same smoothness indicators {β j} j as in (2.19),

ω±
j = ω±

j∑2
k=0 ω±

k

, where ω±
k = γ ±

k

(ε + βk)
2
, k = 0,1,2.

The final HWENO reconstruction of u(xi) is now taken as a combination of the reconstructions using the two groups of 
weights

u(xi) ≈ σ+
2∑

j=0

ω+
j p j(xi) − σ−

2∑
j=0

ω−
j p j(xi).

In the adopted technique to treat negative linear weights, the key is to ensure that every stencil has a significant repre-
sentation in both positive and negative weight groups. Within each group, one still follows the standard HWENO idea of 
redistributing the weights subject to a fixed sum according to the smoothness of the approximations.

The reconstructions of the other two point values u(x∗) with x∗ ∈ Gx,i are similar to the above procedure. Fortunately, 
the linear weights in the reconstruction of u at the other two points are all positive, based on which the nonlinear weights 
can be constructed directly without the splitting technique.

Step 4. A HWENO reconstruction of ux(xi) from the moments {ui, vi}i .
In this step, we use the same stencils S0, S1, S2, T and the same constructed polynomials p0(x), p1(x), p2(x), Q (x) as in 

step 2. The point values of the first derivative of these polynomials at xi can be expressed in terms of the moments,

p′
0(xi) = 1

�x
(−3

8
ui−1 + 3

8
ui − 9

4
vi−1 + 39

4
vi),

p′
1(xi) = 1

�x
(−3

8
ui + 3

8
ui+1 + 39

4
vi − 9

4
vi+1),

p′
2(xi) = 1

�x
(

3

44
ui−1 − 3

44
ui+1 + 150

11
vi),

Q ′(xi) = 1

�x
(

167

576
ui−1 − 167

576
ui+1 + 281

288
vi−1 + 2449

144
vi + 281

288
vi+1).

The linear weights γ ′
0, γ

′
1, γ

′
2 can be determined by requiring

Q ′(xi) =
2∑

j=0

γ ′
j p′

j(xi)

hold when {ui, vi}i take arbitrary values over the stencil T , and this leads to

γ ′
0 = −281

648
, γ ′

1 = −281

648
, γ ′

2 = 605

324
. (2.23)

There are two negative linear weights in (2.23). Following the procedure provided in step 3, we get

σ ′ + = 1491

324
, σ ′ − = 1167

324
,

γ ′+
0 = 281

2982
, γ ′+

1 = 281

2982
, γ ′+

2 = 1210

1491
, γ ′−

0 = 281

1167
, γ ′−

1 = 281

1167
, γ ′−

2 = 605

1167
.

The HWENO reconstruction will be performed for each group by computing the nonlinear weights ω+
j and ω−

j , j = 0, 1, 2
separately, with the same smoothness indicators {β j} j as in (2.21),

ω±
j = ω±

j∑2
k=0 ω±

k

, where ω±
k = γ ′±

k

(ε + βk)
2
, k = 0,1,2.

The final HWENO reconstruction of ux(xi) is now obtained as

ux(xi) ≈ σ ′ +
2∑

j=0

ω+
j p′

j(xi) − σ ′ −
2∑

j=0

ω−
j p′

j(xi).

The reconstructions of the other two point values ux(x∗) with x∗ ∈ Gx,i are similar to the above procedure, with the 
related linear weights being all positive.
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Step 5. A HWENO reconstruction of uxx(xi) from the moments {ui, vi}i .
In this step, we use the same stencils S0, S1, S2, T and the same constructed polynomials p0(x), p1(x), p2(x), Q (x) as in 

step 2. The point values of the second derivative of these polynomials at xi can be expressed in terms of the moments,

p′′
0(xi) = 1

�x2
(

15

2
ui−1 − 15

2
ui + 33vi−1 + 57vi),

p′′
1(xi) = 1

�x2
(−15

2
ui + 15

2
ui+1 − 57vi − 33vi+1),

p′′
2(xi) = 1

�x2
(ui−1 − 2ui + ui+1),

Q ′′(xi) = 1

�x2
(

23

8
ui−1 − 23

4
ui + 23

8
ui+1 + 45

4
vi−1 − 45

4
vi+1).

The linear weights γ ′′
0 , γ ′′

1 , γ ′′
2 are determined by requiring

Q ′′(xi) =
2∑

j=0

γ ′′
j p′′

j (xi)

hold when {ui, vi}i take arbitrary values over the stencil T , and this leads to

γ ′′
0 = 15

44
, γ ′′

1 = 15

44
, γ ′′

2 = 7

22
. (2.24)

We then compute the smoothness indicators β j, j = 0, 1, 2 as below

β j = �x5
∫
Ii

(
∂3

∂x3
p j(x))2dx.

Since we are reconstructing the second derivative rather than the solution itself, the smoothness indicator β j only depends 
on the third derivative of the cubic polynomial p j(x). For the convenience of the actual implementation, the smoothness 
indicators {β j}2

j=0 can be further given in terms of the moments,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β0 = 225(ui−1 − ui + 6(vi−1 + vi))
2,

β1 = 225(ui − ui+1 + 6(vi + vi+1))
2,

β2 = 900

121
(ui−1 − ui+1 + 24vi)

2.

(2.25)

With the smoothness indicators {β j} j in (2.25) and the linear weights in (2.24), we can compute the nonlinear weights ω j , 
j = 0, 1, 2,

ω j = ω j∑2
k=0 ωk

, where ωk = γ ′′
k

(ε + βk)
2
, k = 0,1,2.

The final HWENO reconstruction for uxx(xi) is now obtained as

uxx(xi) ≈
2∑

j=0

ω j p′′
j (xi).

The reconstructions of the other two point values uxx(x∗) with x∗ ∈ Gx,i are similar to the above procedure. Some 
negative linear weights will appear in these reconstructions, and the technique described in step 3 is adopted to treat the 
negative weights.

Remark 1. Following the current central scheme framework, in the equations (2.13) and (2.14) to update un+1
i+1/2 and vn+1

i+1/2, 
the flux functions F are evaluated at x∗ with x∗ ∈ Gx,i and the time tn . This requires the reconstructions of the point values 
of u, ux, uxx at x∗ based on moments {un

i , v
n
i }i at the same time level. Since all the related reconstructions (see steps 3–5) 

involve stencils including the cell Ii , and x∗ are interior points, these reconstructed point values are naturally single-valued. 
Therefore unlike in upwind type methods, there is no need to use numerical fluxes for F .

Remark 2. The scheme also works if a linear reconstruction is used in step 5, and this can reduce the computational cost. 
However, the reconstructions proposed in this paper lead to better numerical results for complex examples such as the 
forward step problem. One can refer to [35] for more details.
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Remark 3. In steps 2, 4, 5, if we instead use the same constructed quadratic Hermite polynomials p0(x), p1(x), p2(x) and a 
quartic Hermite polynomial Q (x) as in step 1, the resulting scheme works well for most examples without the degeneracy 
of the accuracy. Our numerical experiments, however, show that with the current reconstruction strategy which involves 
cubic Hermite polynomials p0(x), p1(x), p2(x) and a quintic Hermite polynomial Q (x) in steps 2, 4, 5, the scheme overall 
performs better. One can refer to [35] for more details.

Finally in this section, we will briefly discuss the system case. For the systems of conservation laws, such as the Euler 
equations of gas dynamics, each of the HWENO reconstructions in steps 1–5 can be performed for the unknown solution 
component by component. Alternatively this can be performed based on the local characteristic decomposition, which often 
provides better performance of the schemes yet computationally is more costly. In order to effectively control the spuri-
ous oscillations therefore to enhance the numerical stability while maintaining good computational efficiency, we follow 
the idea in [26,34]: we apply the local characteristic decomposition during the reconstructions of half-cell moments in 
steps 1–2 based on {ui, vi}i . All the remaining reconstructions, which are for point values, are still implemented through a 
componentwise procedure.

From the method formulation point of view, when one converts the second and higher order time derivatives to spatial 
derivatives in the system case, one needs to work with terms such as f ′(u) (a Jacobian matrix) and f ′′(u) (a 3D “matrix”, a 
tensor). This can become very involved. We have used MATLAB Symbolic Math Toolbox to assist with the derivation of the 
proposed methods.

2.2. Two-dimensional case

Consider the two-dimensional scalar conservation law{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y).
(2.26)

The proposed numerical method will be defined on staggered meshes. For simplicity of presentation, uniform meshes are 
used with the meshsizes �x in the x direction, and �y in the y direction. Each cell of the primal mesh is denoted as 
Ii j = [xi−1/2, xi+1/2] ×[y j−1/2, y j+1/2] with its cell center (xi, y j); and each cell of the dual mesh is denoted as Ii+1/2, j+1/2 =
[xi, xi+1] × [y j, y j+1] with its cell center (xi+1/2, y j+1/2).

We multiply x−xc
�x , y−yc

�y , and x−xc
�x

y−yc
�y , which are locally scaled linearly independent polynomials of total degree one, to 

(2.26), and obtain the equations for the first-order moments of the solution⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut
x − xc

�x
+ ( f (u)x + g(u)y)

x − xc

�x
= 0,

ut
y − yc

�y
+ ( f (u)x + g(u)y)

y − yc

�y
= 0,

ut
x − xc

�x

y − yc

�y
+ ( f (u)x + g(u)y)

x − xc

�x

y − yc

�y
= 0,

(2.27)

where (xc, yc) is the center of the relevant mesh element. In particular, for a cell Ii j from the primal mesh, we will take 
(xc, yc) = (xi, y j); and for a cell Ii+1/2, j+1/2 from the dual mesh, we will take (xc, yc) = (xi+1/2, y j+1/2).

Next we proceed to derive our proposed method by utilizing the governing equation (2.26) as well as the new equations 
in (2.27). We integrate these equations over Ii+1/2, j+1/2 × [tn, tn+1], apply integration by parts, and get

1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn+1)dxdy = 1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn)dxdy

− 1

�x�y

tn+1∫
tn

y j+1∫
y j

[ f (u(xi+1, y, t)) − f (u(xi, y, t))] dydt

− 1

�x�y

tn+1∫
tn

xi+1∫
xi

[
g(u(x, y j+1, t)) − g(u(x, y j, t))

]
dxdt, (2.28)

1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn+1)
x − xi+1/2

�x
dxdy = 1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn)
x − xi+1/2

�x
dxdy

− 1

2�x�y

tn+1∫
n

y j+1∫
y

[ f (u(xi+1, y, t)) + f (u(xi, y, t))] dydt
t j
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+ 1

�x2�y

tn+1∫
tn

xi+1∫
xi

y j+1∫
y j

f (u(x, y, t))dxdydt

− 1

�x�y

tn+1∫
tn

xi+1∫
xi

[
g(u(x, y j+1, t)) − g(u(x, y j, t))

] x − xi+1/2

�x
dxdt, (2.29)

1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn+1)
y − y j+1/2

�y
dxdy = 1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn)
y − y j+1/2

�y
dxdy

− 1

�x�y

tn+1∫
tn

y j+1∫
y j

[ f (u(xi+1, y, t)) − f (u(xi, y, t))]
y − y j+1/2

�y
dydt

− 1

2�x�y

tn+1∫
tn

xi+1∫
xi

[
g(u(x, y j+1, t)) + g(u(x, y j, t))

]
dxdt,

+ 1

�x�y2

tn+1∫
tn

xi+1∫
xi

y j+1∫
y j

g(u(x, y, t))dxdydt, (2.30)

1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn+1)
x − xi+1/2

�x

y − y j+1/2

�y
dxdy

= 1

�x�y

∫
Ii+1/2, j+1/2

u(x, y, tn)
x − xi+1/2

�x

y − y j+1/2

�y
dxdy

− 1

2�x�y

tn+1∫
tn

y j+1∫
y j

[ f (u(xi+1, y, t)) + f (u(xi, y, t))]
y − y j+1/2

�y
dydt

+ 1

�x2�y

tn+1∫
tn

xi+1∫
xi

y j+1∫
y j

f (u(x, y, t))
y − y j+1/2

�y
dxdydt

− 1

2�x�y

tn+1∫
tn

xi+1∫
xi

[
g(u(x, y j+1, t)) + g(u(x, y j, t))

] x − xi+1/2

�x
dxdt

+ 1

�x�y2

tn+1∫
tn

xi+1∫
xi

y j+1∫
y j

g(u(x, y, t))
x − xi+1/2

�x
dxdydt. (2.31)

Here �t = tn+1 − tn is the time step.
Just as in the one-dimensional case, we will approximate some spatial integral terms using numerical quadrature, and 

apply in time the Lax–Wendroff methodology. The resulted schemes will be fifth-order accurate in space and third-order 
in time, yet the ideas can be extended to general cases. To get the proposed method, for all the spatial integral terms 
involving f (u) and g(u) in (2.28)–(2.31), the one-dimensional four-point Gauss–Lobatto quadrature, or its tensor-version in 
two dimensions, will be used; In addition, if we assume the solution at tn is piecewise constant with respect to the primal 
mesh, and the time step �t satisfies the CFL restriction �t ≤ Ccf l

(max | f ′(u)|/�x+max |g′(u)|/�y)
with some constant Ccf l , one can 

then expect u(x∗, y∗, t) is smooth with respect to t ∈ (tn, tn+1) at a quadrature point (x∗, y∗) ∈ G . Here G denotes the 
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collection of Gauss–Lobatto quadrature points with respect to the dual mesh. In this case, the flux functions f (u(x∗, y∗, t))
and g(u(x∗, y∗, t)) in (2.28)–(2.31) can be approximated by a temporal Taylor expansion at tn as follows

f (u(x∗, y∗, t)) ≈ f (u(x∗, y∗, tn)) + (t − tn) ft(u(x∗, y∗, tn)) + (t − tn)2

2
ftt(u(x∗, y∗, tn)),

g(u(x∗, y∗, t)) ≈g(u(x∗, y∗, tn)) + (t − tn)gt(u(x∗, y∗, tn)) + (t − tn)2

2
gtt(u(x∗, y∗, tn)).

(2.32)

Finally all time derivatives in (2.32) will be converted to spatial derivatives by repeatedly using the governing equations.
By combining (2.28)–(2.31) and the above-mentioned strategies in space and time, we are ready to present the proposed 

central scheme,

(b.1) Suppose at t = tn , the approximations for all the zeroth-order and the first-order moments of the solution, denoted as 
un

ij, v
n
i j, w

n
ij, v wn

ij , are available on the primal meshes, that is, ∀i, j,

un
ij ≈ 1

�x�y

∫
Ii j

u(x, y, tn)dxdy, vn
i j ≈ 1

�x�y

∫
Ii j

u(x, y, tn)
x − xi

�x
dxdy,

wn
ij ≈ 1

�x�y

∫
Ii j

u(x, y, tn)
y − y j

�y
dxdy, v wn

ij ≈ 1

�x�y

∫
Ii j

u(x, y, tn)
x − xi

�x

y − y j

�y
dxdy.

(2.33)

Following a staggered central scheme strategy, we compute the zeroth-order and the first-order moments of the solu-
tion with respect to the dual mesh at t = tn+1, denoted as un+1

i+1/2, j+1/2, vn+1
i+1/2, j+1/2, wn+1

i+1/2, j+1/2 and v wn+1
i+1/2, j+1/2, 

as follows,

un+1
i+1/2, j+1/2 = un

i+1/2, j+1/2 − �t

�x

4∑
s=1

ωs
[

F (u(xi+1,G y
s , tn)) − F (u(xi,G y

s , tn))
]

− �t

�y

4∑
l=1

ωl
[
G(u(Gx

l , y j+1, tn)) − G(u(Gx
l , y j, tn))

]
, (2.34)

vn+1
i+1/2, j+1/2 = vn

i+1/2, j+1/2 − �t

2�x

4∑
s=1

ωs
[

F (u(xi+1,G y
s , tn)) + F (u(xi,G y

s , tn))
]

+ �t

�x

4∑
l=1

4∑
s=1

ωlωs F (u(Gx
l ,G y

s , tn))

− �t

�y

4∑
l=1

ωl
[
G(u(Gx

l , y j+1, tn)) − G(u(Gx
l , y j, tn))

] Gx
l − xi+1/2

�x
, (2.35)

wn+1
i+1/2, j+1/2 = wn

i+1/2, j+1/2 − �t

�x

4∑
s=1

ωs
[

F (u(xi+1,G y
s , tn)) − F (u(xi,G y

s , tn))
] G y

s − y j+1/2

�y

− �t

2�y

4∑
l=1

ωl
[
G(u(Gx

l , y j+1, tn)) + G(u(Gx
l , y j, tn))

]

+ �t

�y

4∑
l=1

4∑
s=1

ωlωsG(u(Gx
l ,G y

s , tn)), (2.36)

and

v wn+1
i+1/2, j+1/2 = v wn

i+1/2, j+1/2 − �t

2�x

4∑
s=1

ωs
[

F (u(xi+1,G y
s , tn)) + F (u(xi,G y

s , tn))
] G y

s − y j+1/2

�y

+ �t

�x

4∑ 4∑
ωlωs F (u(Gx

l ,G y
s , tn))

G y
s − y j+1/2

�y

l=1 s=1
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− �t

2�y

4∑
l=1

ωl
[
G(u(Gx

l , y j+1, tn)) + G(u(Gx
l , y j, tn))

] Gx
l − xi+1/2

�x

+ �t

�y

4∑
l=1

4∑
s=1

ωlωsG(u(Gx
l ,G y

s , tn))
Gx

l − xi+1/2

�x
. (2.37)

Here

F (u) = f (u) + �t

2
ft(u) + �t2

6
ftt(u) = f (u) + �t

2
f ′(u)ut + �t2

6
( f ′′(u)(ut)

2 + f ′(u)utt),

G(u) =g(u) + �t

2
gt(u) + �t2

6
gtt(u) = g(u) + �t

2
g′(u)ut + �t2

6
(g′′(u)(ut)

2 + g′(u)utt),

(2.38)

with all the time derivatives of u converted to the spatial ones according to the following

ut = − f (u)x − g(u)y = −( f ′(u)ux + g′(u)u y),

uxt = − ( f ′′(u)u2
x + f ′(u)uxx + g′′(u)uxu y + g′(u)uxy),

u yt = − ( f ′′(u)u yux + f ′(u)uxy + g′′(u)u2
y + g′(u)u yy),

utt = − ( f ′(u)ut)x − (g′(u)ut)y = −( f ′′(u)uxut + f ′(u)uxt + g′′(u)u yut + g′(u)u yt).

Again, the notation u is no longer the exact solution, and its relevant values will be reconstructed. G y
s , s = 1, 2, 3, 4

are the counterpart of (2.6) in y-direction.
(b.2) With un+1

i+1/2, j+1/2, vn+1
i+1/2, j+1/2, wn+1

i+1/2, j+1/2 and v wn+1
i+1/2, j+1/2 being available for any i, j, we further compute all the 

zeroth-order and the first-order moments of the solution with respect to the primal mesh at t = tn+2, denoted as 
un+2

i j , vn+2
i j , wn+2

i j and v wn+2
i j . The formulations are omitted here for simplicity.

(b.3) Set n to be n + 2, and go to (b.1).

Note that the mesh switches back after two time steps.
To finalize the proposed scheme, one needs to reconstruct certain quantities in (b.1) and (b.2). With similarity, we will 

only focus on (b.1). In this step, to obtain the moments un+1
i+1/2, j+1/2, vn+1

i+1/2, j+1/2, wn+1
i+1/2, j+1/2 and v wn+1

i+1/2, j+1/2 on the 
dual mesh at the next time tn+1 based on (2.34)–(2.37), one will need to reconstruct at the current time tn , ∀i, j,

(1) the moments un
i+1/2, j+1/2, vn

i+1/2, j+1/2, wn
i+1/2, j+1/2 and v wn

i+1/2, j+1/2 on the dual mesh;
(2) the point value of q(x∗, y∗, tn), where q = u, ux, u y, uxx, uxy or u yy , and they are the functions F and G in (2.38) actually 

depend on. Here (x∗, y∗) ∈ G is some interior point with respect to the primal mesh, coming from the Gauss–Lobatto 
quadrature nodes on the dual mesh.

In the same spirit as in one dimension, to obtain the cell average un
i+1/2, j+1/2, ∀i, j, one would want to get the following 

four quarter-cell averages

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j

u(x, y, tn)dxdy,
1

�x�y

xi+1∫
xi+1/2

y j+1/2∫
y j

u(x, y, tn)dxdy,

1

�x�y

xi+1/2∫
xi

y j+1∫
y j+1/2

u(x, y, tn)dxdy,
1

�x�y

xi+1∫
xi+1/2

y j+1∫
y j+1/2

u(x, y, tn)dxdy.

(2.39)

This similarly goes to all the first-order moments.
To reconstruct the quarter-cell moments and point values mentioned above, we propose a dimension-by-dimension 

procedure and apply the one-dimensional fifth-order accurate HWENO reconstruction in Section 2.1 multiple times. The 
dimension-by-dimension reconstruction greatly improves the ease of the implementation in high dimensions. Such treat-
ment is possible in our proposed work mainly due to the inclusion of the mixed moment v wn

ij which was introduced in 
[38]. Without such term, accurate and stable reconstructions can still be formulated, yet they would need to be imple-
mented in a truly two dimensional fashion. In the remaining of this section, we will describe the reconstruction in details 
through steps 1–5, where the reconstruction is based on the moments {un

ij, v
n
i j, w

n
ij, v wn

ij}i j on the primal mesh at t = tn , 
and is accomplished by applying the one-dimensional fifth-order reconstruction in Section 2.1. The superscript n will be 
omitted, together with the dependence on the time t of all the involved functions.
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Step 1. Along x direction, based on {uij, vij}i j , we reconstruct

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)dxdy,
1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j−1/2

u(x, y)dxdy,

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)
x − xi−1/2

�x
dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j−1/2

u(x, y)
x − xi+1/2

�x
dxdy,

1

�y

y j+1/2∫
y j−1/2

p(x∗, y)dy, p = u, ux, uxx, x∗ ∈ Gx,i .

Step 2. Along x direction, based on {wij, v wij}i j , we reconstruct

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)
y − y j

�y
dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j−1/2

u(x, y)
y − y j

�y
dxdy,

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)
x − xi−1/2

�x

y − y j

�y
dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j−1/2

u(x, y)
x − xi+1/2

�x

y − y j

�y
dxdy,

1

�y

y j+1/2∫
y j−1/2

p(x∗, y)
y − y j

�y
dy, p = u, ux, uxx, x∗ ∈ Gx,i .

Step 3. Along y direction, based on

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)dxdy,
1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)
y − y j

�y
dxdy

with all i, j, we reconstruct

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�x�y

xi∫
xi−1/2

y j∫
y j−1/2

u(x, y)dxdy,
1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j

u(x, y)dxdy,

1

�x�y

xi∫
xi−1/2

y j∫
y j−1/2

u(x, y)
y − y j−1/2

�y
dxdy,

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j

u(x, y)
y − y j+1/2

�y
dxdy.

Similarly, based on

1

�x�y

xi+1/2∫
x

y j+1/2∫
y

u(x, y)dxdy,
1

�x�y

xi+1/2∫
x

y j+1/2∫
y

u(x, y)
y − y j

�y
dxdy
i j−1/2 i j−1/2
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with all i, j, we reconstruct⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�x�y

xi+1/2∫
xi

y j∫
y j−1/2

u(x, y)dxdy,
1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j

u(x, y)dxdy,

1

�x�y

xi+1/2∫
xi

y j∫
y j−1/2

u(x, y)
y − y j−1/2

�y
dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j

u(x, y)
y − y j+1/2

�y
dxdy.

Step 4. Along y direction, based on

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)
x − xi−1/2

�x
dxdy,

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j−1/2

u(x, y)
x − xi−1/2

�x

y − y j

�y
dxdy

with all i, j, we reconstruct⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�x�y

xi∫
xi−1/2

y j∫
y j−1/2

u(x, y)
x − xi−1/2

�x
dxdy,

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j

u(x, y)
x − xi−1/2

�x
dxdy,

1

�x�y

xi∫
xi−1/2

y j∫
y j−1/2

u(x, y)
x − xi−1/2

�x

y − y j−1/2

�y
dxdy,

1

�x�y

xi∫
xi−1/2

y j+1/2∫
y j

u(x, y)
x − xi−1/2

�x

y − y j+1/2

�y
dxdy.

Similarly, based on

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j−1/2

u(x, y)
x − xi+1/2

�x
dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j−1/2

u(x, y)
x − xi+1/2

�x

y − y j

�y
dxdy

with all i, j, we reconstruct⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�x�y

xi+1/2∫
xi

y j∫
y j−1/2

u(x, y)
x − xi+1/2

�x
dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j

u(x, y)
x − xi+1/2

�x
dxdy,

1

�x�y

xi+1/2∫
xi

y j∫
y j−1/2

u(x, y)
x − xi+1/2

�x

y − y j−1/2

�y
dxdy,

1

�x�y

xi+1/2∫
xi

y j+1/2∫
y j

u(x, y)
x − xi+1/2

�x

y − y j+1/2

�y
dxdy.

Step 5. Along y direction, based on

1

�y

y j+1/2∫
y j−1/2

p(x∗, y)dy,
1

�y

y j+1/2∫
y j−1/2

p(x∗, y)
y − y j

�y
dy, p = u, ux, uxx, x∗ ∈ Gx,i

with all i, j, we reconstruct

q(x∗, y∗), q = u, ux, u y, uxx, uxy, u yy, (x∗, y∗) ∈ G.

Remark 4. Similarly as in the one-dimensional case (see also Remark 1), with the current central scheme framework, there 
is no need to use numerical fluxes for F and G as in upwind type schemes.
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Finally in this section, we briefly discuss the system case. Just as in one dimension, to reduce the spurious oscillations 
and enhance the numerical stability, meanwhile to maintain good computational efficiency, we apply the local charac-
teristic decomposition dimension-by-dimension during the reconstructions of the quarter-cell moments for u based on 
{uij, vij, wij, v wij}i j . The reconstructions of the point values are still implemented through a componentwise procedure. 
Again to assist with the derivation of the proposed methods, MATLAB Symbolic Math Toolbox is used.

3. Central Hermite WENO schemes with natural continuous extension of Runge–Kutta time discretization

Alternative to the Lax–Wendroff strategy in Section 2, we apply in this section the natural continuous extension of 
Runge–Kutta (NCE-RK) time discretizations, to combine with a central HWENO spatial discretizations in the framework of 
staggered meshes. The use of NCE-RK methods permits one to compute accurate approximations for the intermediate value 
of a solution to an ODE based on standard RK methods with slight increase of the computational cost. Note that a standard 
RK method in general only provides accurate approximations for the solution at discrete time tn for any n.

Below we will describe a fourth-order NCE-RK method which is used in this paper. For more details about such time 
discretizations, one can refer to [4,37]. Consider a scalar or a system of ODE problem{

y′(t) = H(t, y(t)),

y(t0) = y0,
(3.1)

and suppose yn is a given approximation to y(tn). One can then approximate y(tn+1) at tn+1 = tn + �t by yn+1 with a 
standard four-stage fourth-order RK scheme as follows.

yn+1 = yn + �t
4∑

i=1

bi K (i), (3.2)

where K (i) is an RK flux determined by

K (i) = H(tn + ci�t, Y (i)) with Y (i) = yn + ci�t K (i−1), i = 1,2,3,4, (3.3)

and K (0) = 0. In addition, b1 = b4 = 1
6 , b2 = b3 = 1

3 , and c1 = 0, c2 = c3 = 1
2 , c4 = 1.

A natural continuous extension of the RK scheme (3.2)–(3.3) further provides an approximation for y(t) (and also its 
derivatives) with the same accuracy when t ∈ [tn, tn+1]. This approximation is given specifically by

s(t)|t=tn+θ�t := yn + �t
4∑

i=1

Bi(θ)K (i), 0 ≤ θ ≤ 1,

where

B1(θ) = 2(1 − 4b1)θ
3 + 3(3b1 − 1)θ2 + θ,

Bi(θ) = 4(3ci − 2)biθ
3 + 3(3 − 4ci)biθ

2, i = 2,3,4.

s(t) not only satisfies s(tn) = yn , s(tn+1) = yn+1, but also has the following approximation properties,

max
tn≤t≤tn+�t

|y(l)(t) − s(l)(t)| = O (�t4−l), 0 ≤ l ≤ 4.

3.1. One-dimensional case

We use the same notation for the staggered meshes and the moments of a function as in Section 2.1. Though the 
discussion below focuses on one time step from t = tn to t = tn+1, one would want to keep in mind that the overall 
algorithm is still based on staggered meshes, and it switches back and forth between the primal and dual meshes.

To derive our scheme, we follow the initial presentation in Section 2.1 all the way till equation (2.5), with one line 
integral of f (u) in x-variable approximated by numerical quadrature in (2.5). Using a similar argument in Section 2.1, under 
suitable assumption on the time step �t , f (u(x∗, t)) can be regarded to be smooth for t ∈ (tn, tn+1) when x∗ ∈ Gx . Now to 
discretize in time, we will adopt NCE-RK approach here instead of the Lax–Wendroff methodology presented in Section 2.1. 
To this end, we apply a three-point Gaussian quadrature formula and approximate the temporal integral terms in (2.3) and 
(2.4) according to the following

tn+1∫
tn

f (u(x∗, t))dt ≈ �t
3∑

m=1

αm f (u(x∗, tn + �tθm)). (3.4)

Here α1 = α3 = 5 , α2 = 4 are the quadrature weights, and θ1 = 1 −
√

15 , θ2 = 1 , θ3 = 1 +
√

15 are the quadrature points.
18 9 2 10 2 2 10
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Fig. 1. One-dimensional Gauss–Lobatto points in the cells {Ii−1/2, Ii+1/2}.

With this new treatment in time, we are ready to present the proposed scheme from tn to tn+1, a counterpart of step 
(a.1) in Section 2.1.

(a′ .1) Suppose at t = tn , the approximations for the first two moments of the solution, denoted as {un
i } and {vn

i }, are available 
on the primal mesh ∀i, see (2.12). Following a staggered central scheme strategy, we compute the first two moments 
of the solution with respect to the dual mesh at t = tn+1, denoted as un+1

i+1/2 and vn+1
i+1/2, as follows,

un+1
i+1/2 = un

i+1/2 − �t

�x

3∑
m=1

αm
[

f (u(xi+1, t)) − f (u(xi, t))
]|t=tn+�tθm , (3.5)

vn+1
i+1/2 = vn

i+1/2 − �t

�x

3∑
m=1

αm
[1

2
f (u(xi+1, t)) + 1

2
f (u(xi, t)) −

4∑
l=1

ωl f (u(Gx
l , t))

]|t=tn+�tθm . (3.6)

Again, the notation u is no longer for the exact solution, but to be reconstructed.

Based on (3.5)–(3.6), to compute the moments at t = tn+1, namely, {un+1
i+1/2}i and {vn+1

i+1/2}i , with respect to the dual mesh, 
one would need to accurately approximate the following quantities

un
i+1/2, vn

i+1/2,∀i, u(x∗, tn + �tθm),m = 1,2,3, x∗ ∈ Gx. (3.7)

Recall at tn , {un
i , v

n
i }i are available. To reconstruct the staggered moments {un

i+1/2}i and {vn
i+1/2}i associated with the dual 

mesh in (3.7), one can apply the fifth-order HWENO procedure described in Section 2.1.
To approximate the point values u(x∗, tn + �tθm), m = 1, 2, 3, x∗ ∈ Gx in (3.7), we will apply the fourth-order NCE-RK 

method to an auxiliary ODE problem (3.1) starting from t = tn , where y(t) in (3.1) is the collection of u(x∗, t), ∀x∗ ∈ Gx , and 
−H(t, y) in (3.1) is a vector-valued functional which reconstructs fx(u(x∗, t)), ∀x∗ ∈ Gx , based on y(t), and is denoted as 
R(y(t)). That is, H(t, y(t)) = −R(y(t)). To complete the description of this ODE problem, hence the strategy to approximate 
the point values u(x∗, tn + �tθm) in (3.7), two more ingredients are needed. One is the initial value f (u(x∗, tn)), namely, 
u(x∗, tn), ∀x∗ ∈ Gx , and it can be reconstructed with the fifth-order HWENO procedure based on the given moments {un

i , v
n
i }i

as discussed in step 3 of Section 2.1. The other ingredient is the functional R(y(t)), which will be specified in the remaining 
of this subsection.

To reconstruct fx(u(x∗, t)), ∀x∗ ∈ Gx based on u(x∗, t), ∀x∗ ∈ Gx , we propose a fifth-order accurate WENO reconstruction. 
Though a HWENO reconstruction can also be formulated, the WENO reconstruction proposed here has much better cost 
efficiency without increasing the stencil. For any given i, consider all the Gauss–Lobatto quadrature points in the cell Ii−1/2, 
relabeled as p1, · · · , p4, namely

p1 = xi−1, p2 = x
i− 1

2 −
√

5
10

, p3 = x
i− 1

2 +
√

5
10

, p4 = xi . (3.8)

With (mirror) symmetry, we only present the reconstruction of fx(u(x∗, t)), with x∗ = p3 and p4. For the reconstruction, we 
will also use the neighboring Gauss–Lobatto points from Ii+1/2, given as

p4 = xi, p5 = x
i+ 1

2 −
√

5
10

, p6 = x
i+ 1

2 +
√

5
10

, p7 = xi+1. (3.9)

Note that the points p1, · · · , p7 are interior points with respect to the primal mesh, see Fig. 1. In the next two steps, we 
will reconstruct fx(u(x∗, t)) with x∗ = p3 and p4, respectively, based on u(x∗, t), with x∗ = p1, · · · , p6. As some shorthand 
notation, we write f (u(ps, t)) = f s , and fx(u(ps, t)) = fx(ps).

Step 1: A WENO reconstruction of fx(p3) from the point values f s , s = 1, · · · , 5.
We first introduce three “small” stencils Sl = {pl+1, pl+2, pl+3}, l = 0, 1, 2, one “large” stencil T = {S0, S1, S2}, and recon-

struct three quadratic polynomials q0(x), q1(x), q2(x) and one quartic polynomial Q (x) such that

ql(pl+ j) = fl+ j, l = 0,1,2, j = 1,2,3, Q (p j) = f j, j = 1,2,3,4,5.

The point values of the first derivative of these polynomials at p3 can be expressed in terms of the point values of the 
function f ,
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q′
0(p3) =

√
5

2�x

[
2 f1 − (3 + √

5) f2 + (1 + √
5) f3

]
,

q′
1(p3) =

√
5

2�x

[
(−3 + √

5) f2 + (1 − √
5) f3 + 2 f4

]
,

q′
2(p3) = 5 + √

5

4�x
[−3 f3 + 4 f4 − f5] ,

Q ′(p3) = − 1

88�x

[
(48 − 32

√
5) f1 + (−88 + 88

√
5) f2 + (110 + 22

√
5) f3 − (88 + 88

√
5) f4 + (18 + 10

√
5) f5

]
.

The linear weights γ ′
0, γ

′
1, γ

′
2 can be determined by requiring

Q ′(p3) =
2∑

j=0

γ ′
jq

′
j(p3)

hold when { f s, s = 1, · · · , 5} take arbitrary values, and this leads to

γ ′
0 = 20 − 6

√
5

55
, γ ′

1 = 30 + 2
√

5

55
, γ ′

2 = 5 + 4
√

5

55
. (3.10)

We then compute the smoothness indicators β j, j = 0, 1, 2 as below

β j = �x3
∫
Ii

(
∂2

∂x2
q j(x))2dx. (3.11)

Since we are reconstructing the first derivative of the function f , the smoothness indicator β j only depends on the second 
derivative of the quadratic polynomial q j(x). For the convenience of the actual implementation, the smoothness indicators 
{β j}2

j=0 can be further given in terms of the point values of function f ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β0 = 25
[
−2 f1 + (1 + √

5) f2 + (1 − √
5) f3

]2
,

β1 = 25
[
(−1 + √

5) f2 − (1 + √
5) f3 + 2 f4

]2
,

β2 = 25

4
(3 + √

5)2( f3 − 2 f4 + f5)
2.

(3.12)

With the smoothness indicators {β j} j in (3.12) and the linear weights in (3.10), we can compute the nonlinear weights ω j , 
j = 0, 1, 2,

ω j = ω j∑2
k=0 ωk

, where ωk = γ ′
k

(ε + βk)
2
, k = 0,1,2.

The positive parameter ε is taken to be 10−6 in our actual simulation in this paper.
The final WENO reconstruction for fx(p3) is now obtained as

fx(p3) ≈
2∑

j=0

ω jq
′
j(p3).

Step 2: A WENO reconstruction of fx(p4) from the point values f s , s = 2, · · · , 6.
We first introduce three “small” stencils Sl = {pl+2, pl+3, pl+4}, l = 0, 1, 2, one “large” stencil T = {S0, S1, S2}, and recon-

struct three quadratic polynomials q0(x), q1(x), q2(x) and one quartic polynomial Q (x) such that

ql(pl+ j) = fl+ j, l = 0,1,2, j = 2,3,4, Q (p j) = f j, j = 2,3,4,5,6.

The point values of the first derivative of these polynomials at p4 can be expressed in terms of the point values of the 
function f ,
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q′
0(p4) = 1

2�x

[
(−5 + 3

√
5) f2 − (5 + 3

√
5) f3 + 10 f4

]
,

q′
1(p4) = 1

4�x

[
−(5 + √

5) f3 + (5 + √
5) f5

]
,

q′
2(p4) = 1

2�x

[
−10 f4 + (5 + 3

√
5) f5 + (5 − 3

√
5) f6

]
,

Q ′(p4) = 1

2�x

[
(−2 + √

5) f2 − (2 + √
5) f3 + (2 + √

5) f5 + (2 − √
5) f6

]
.

The linear weights γ ′
0, γ

′
1, γ

′
2 can be determined by requiring

Q ′(p4) =
2∑

j=0

γ ′
j q

′
j(p4)

hold when { f s, s = 2, · · · , 6} take arbitrary values, and this leads to

γ ′
0 = 5 − √

5

20
, γ ′

1 = 5 + √
5

10
, γ ′

2 = 5 − √
5

20
. (3.13)

We then compute the smoothness indicators β j , j = 0, 1, 2 as in (3.11) and they can be further given in terms of the point 
values of function f ,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β0 = 25
[
(−1 + √

5) f2 − (1 + √
5) f3 + 2 f4

]2
,

β1 = 25

4
(3 + √

5)2( f3 − 2 f4 + f5)
2,

β2 = 25
[
−2 f4 + (1 + √

5) f5 + (1 − √
5) f6

]2
.

(3.14)

With the smoothness indicators {β j} j in (3.14) and the linear weights in (3.13), we can compute the nonlinear weights ω j , 
j = 0, 1, 2,

ω j = ω j∑2
k=0 ωk

, where ωk = γ ′
k

(ε + βk)
2
, k = 0,1,2.

The final WENO reconstruction for fx(p4) is now obtained as

fx(p4) ≈
2∑

j=0

ω jq
′
j(p4).

3.2. Two-dimensional case

In two dimensions, we use the same notation for the staggered meshes and the moments of a function as in Section 2.2. 
The discussion will just focus on the algorithm over one time step. To obtain the proposed method, we start with equa-
tions (2.28)–(2.31), and approximate those spatial integral terms involving f (u) and g(u) using one-dimensional four-point 
Gauss–Lobatto quadrature, or its tensor-version in two dimensions. In time, we approximate the temporal integrals according 
to (3.4). This will lead us to the proposed scheme from tn to tn+1, a counterpart of (b.1) in Section 2.2.

(b′ .1) Suppose at t = tn , the approximations for all the zeroth-order and the first-order moments of the solution, denoted as 
un

ij, v
n
i j, w

n
ij, v wn

ij , ∀i, j, are available on the primal meshes, see (2.33). Following a staggered central scheme strategy, 
we compute the zeroth-order and the first-order moments of the solution with respect to the dual mesh at t = tn+1, 
denoted as un+1

i+1/2, j+1/2, vn+1
i+1/2, j+1/2, wn+1

i+1/2, j+1/2 and v wn+1
i+1/2, j+1/2, as follows,

un+1
i+1/2, j+1/2 = un

i+1/2, j+1/2 − �t

�x

3∑
m=1

4∑
s=1

αmωs
[

f (u(xi+1,G y
s , t)) − f (u(xi,G y

s , t))
]|t=tn+�tθm

− �t

�y

3∑
m=1

4∑
l=1

αmωl
[

g(u(Gx
l , y j+1, t)) − g(u(Gx

l , y j, t))
]|t=tn+�tθm , (3.15)
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vn+1
i+1/2, j+1/2 = vn

i+1/2, j+1/2 − �t

2�x

3∑
m=1

4∑
s=1

αmωs
[

f (u(xi+1,G y
s , t)) + f (u(xi,G y

s , t))
]|t=tn+�tθm

+ �t

�x

3∑
m=1

4∑
l=1

4∑
s=1

αmωlωs f (u(Gx
l ,G y

s , tn + �tθm)) (3.16)

− �t

�y

3∑
m=1

4∑
l=1

αmωl
[

g(u(Gx
l , y j+1, t)) − g(u(Gx

l , y j, t))
]|t=tn+�tθm

Gx
l − xi+1/2

�x
,

wn+1
i+1/2, j+1/2 = wn

i+1/2, j+1/2 − �t

�x

3∑
m=1

4∑
s=1

αmωs
[

f (u(xi+1,G y
s , t)) − f (u(xi,G y

s , t))
]|t=tn+�tθm

G y
s − y j+1/2

�y

− �t

2�y

3∑
m=1

4∑
l=1

αmωl
[

g(u(Gx
l , y j+1, t)) + g(u(Gx

l , y j, t))
]|t=tn+�tθm

+ �t

�y

3∑
m=1

4∑
l=1

4∑
s=1

αmωlωs g(u(Gx
l ,G y

s , tn + �tθm)), (3.17)

and

v wn+1
i+1/2, j+1/2 = v wn

i+1/2, j+1/2

− �t

2�x

3∑
m=1

4∑
s=1

αmωs
[

f (u(xi+1,G y
s , t)) + f (u(xi,G y

s , t))
]|t=tn+�tθm

G y
s − y j+1/2

�y

+ �t

�x

3∑
m=1

4∑
l=1

4∑
s=1

αmωlωs f (u(Gx
l ,G y

s , tn + �tθm))
G y

s − y j+1/2

�y

− �t

2�y

3∑
m=1

4∑
l=1

αmωl
[

g(u(Gx
l , y j+1, t)) + g(u(Gx

l , y j, t))
]|t=tn+�tθm

Gx
l − xi+1/2

�x

+ �t

�y

3∑
m=1

4∑
l=1

4∑
s=1

αmωlωs g(u(Gx
l ,G y

s , tn + �tθm))
Gx

l − xi+1/2

�x
. (3.18)

Based on (3.15)–(3.18), to compute the moments at t = tn+1, namely

{un+1
i+1/2, j+1/2, vn+1

i+1/2, j+1/2, wn+1
i+1/2, j+1/2, v wn+1

i+1/2, j+1/2}i j,

with respect to the dual mesh, one would need to accurately approximate the following quantities

pn
i+1/2, j+1/2,∀i, j,with p = u, v, w, v w, u(x∗, y∗, tn + �tθm),m = 1,2,3,and (x∗, y∗) ∈ G. (3.19)

Recall at tn , {un
ij, v

n
i j, w

n
ij, v wn

ij}i j are available. To reconstruct the staggered moments {un
i+1/2, j+1/2, vn

i+1/2, j+1/2, wn
i+1/2, j+1/2, 

v wn
i+1/2, j+1/2}i j in (3.19), one can apply the same fifth-order HWENO procedure described in Section 2.2.
To approximate the point values u(x∗, y∗, tn + �tθm) with (x∗, y∗) ∈ G , m = 1, 2, 3 in (3.19), we will apply the fourth-

order NCE-RK method to an auxiliary ODE problem (3.1) starting from t = tn , where y(t) in (3.1) is the collection 
of u(x∗, y∗, t), ∀(x∗, y∗) ∈ G , and −H(t, y) in (3.1) is a vector valued functional which reconstructs fx(u(x∗, y∗, t)) +
g y(u(x∗, y∗, t)), ∀(x∗, y∗) ∈ G , based on y(t), and is denoted as R(y(t)). That is, H(t, y(t)) = −R(y(t)). To complete the 
description of this ODE problem, hence the strategy to approximate the point values u(x∗, y∗, tn +�tθm) in (3.19), two more 
ingredients are needed. One is the initial values f (u(x∗, y∗, tn)) and g(u(x∗, y∗, tn)), namely, u(x∗, y∗, tn), ∀(x∗, y∗) ∈ G , and 
it can be reconstructed with the fifth-order HWENO procedure based on the given moments {un

ij , vn
i j , wn

ij , v wn
ij}i j on the 

primal mesh as presented in Section 2.2. The other ingredient is the functional R(y(t)), which will be specified in the 
remaining of this subsection.

To reconstruct fx(u(x∗, y∗, t)), g y(u(x∗, y∗, t)), ∀(x∗, y∗) ∈ G based on u(x∗, y∗, t), ∀(x∗, y∗) ∈ G , we propose a 
dimension-by-dimension procedure. From all the Gauss–Lobatto quadrature nodes G with respect to the dual mesh, we 
relabel those located in the cell Ii j as p1 , · · · , p9 , which are all interior nodes (also see Fig. 2).
i, j i, j
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Fig. 2. Two-dimensional Gauss–Lobatto quadrature nodes in G located within Ii j .

p1
i, j = (x

i− 1
2 +

√
5

10
, y

j− 1
2 +

√
5

10
), p2

i, j = (xi, y
j− 1

2 +
√

5
10

), p3
i, j = (x

i+ 1
2 −

√
5

10
, y

j− 1
2 +

√
5

10
),

p4
i, j = (x

i− 1
2 +

√
5

10
, y j), p5

i, j = (xi, y j), p6
i, j = (x

i+ 1
2 −

√
5

10
, y j),

p7
i, j = (x

i− 1
2 +

√
5

10
, y

j+ 1
2 −

√
5

10
), p8

i, j = (xi, y
j+ 1

2 −
√

5
10

), p9
i, j = (x

i+ 1
2 −

√
5

10
, y

j+ 1
2 −

√
5

10
).

Now using the one-dimensional fifth-order accurate WENO reconstruction in Section 3.1, along x-direction,

• we reconstruct { fx(u(p1
i, j)), fx(u(p2

i, j)), fx(u(p3
i, j))}i j based on

{
f (u(p2

i−1, j)), f (u(p3
i−1, j)), f (u(p1

i, j)), f (u(p2
i, j)), f (u(p3

i, j)), f (u(p1
i+1, j)), f (u(p2

i+1, j))
}

;
• we reconstruct { fx(u(p4

i, j)), fx(u(p5
i, j)), fx(u(p6

i, j))}i j based on

{
f (u(p5

i−1, j)), f (u(p6
i−1, j)), f (u(p4

i, j)), f (u(p5
i, j)), f (u(p6

i, j)), f (u(p4
i+1, j)), f (u(p5

i+1, j))
}

;
• and we reconstruct { fx(u(p7

i, j)), fx(u(p8
i, j)), fx(u(p9

i, j))}i j based on

{
f (u(p8

i−1, j)), f (u(p9
i−1, j)), f (u(p7

i, j)), f (u(p8
i, j)), f (u(p9

i, j)), f (u(p7
i+1, j)), f (u(p8

i+1, j))
}

.

Here and below the dependance on t is omitted in u. Along y-direction,

• we reconstruct {g y(u(p1
i, j)), g y(u(p4

i, j)), g y(u(p7
i, j))}i j based on

{
g(u(p4

i, j−1)), g(u(p7
i, j−1)), g(u(p1

i, j)), g(u(p4
i, j)), g(u(p7

i, j)), g(u(p1
i, j+1)), g(u(p4

i, j+1))
}

;
• we reconstruct {g y(u(p2

i, j)), g y(u(p5
i, j)), g y(u(p8

i, j))}i j based on

{
g(u(p5

i, j−1)), g(u(p8
i, j−1)), g(u(p2

i, j)), g(u(p5
i, j)), g(u(p8

i, j)), g(u(p2
i, j+1)), g(u(p5

i, j+1))
}

;
• and we reconstruct {g y(u(p3

i, j)), g y(u(p6
i, j)), g y(u(p9

i, j))}i j based on

{
g(u(p6

i, j−1)), g(u(p9
i, j−1)), g(u(p3

i, j)), g(u(p6
i, j)), g(u(p9

i, j)), g(u(p3
i, j+1)), g(u(p6

i, j+1))
}

.

The algorithms presented in this and previous subsections can be extended to the system of conservation laws, see also 
Section 2.

4. Numerical examples

In this section, we will present a set of numerical experiments to illustrate the high-order accuracy and the robustness 
of the proposed methods to simulate one- and two-dimensional scalar or a system of hyperbolic conservation laws. The 
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Table 1
Burgers’ equation ut + (u2/2)x = 0, with u(x, 0) = 0.5 + sin(πx), and a periodic boundary condition. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 0.5/π . 
L1 and L∞ errors and orders of accuracy.

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.11E−02 3.05E−02 1.09E−02 3.20E−02
20 1.57E−03 2.82 1.12E−02 1.45 1.56E−03 2.81 1.11E−02 1.53
40 9.91E−05 3.99 9.12E−04 3.62 9.58E−05 4.02 9.05E−04 3.62
80 4.41E−06 4.49 3.82E−05 4.58 4.29E−06 4.48 3.67E−05 4.63

160 1.72E−07 4.68 1.82E−06 4.39 1.68E−07 4.67 1.70E−06 4.43
320 4.91E−09 5.13 6.02E−08 4.92 4.92E−09 5.10 5.80E−08 4.87
640 1.48E−10 5.05 1.12E−09 5.75 1.20E−10 5.36 1.22E−09 5.57

solutions can be either smooth or non-smooth. The numerical results are obtained by the proposed fifth-order central 
HWENO scheme with the third-order Lax–Wendroff method (C-HWENO5-LW3) or with the fourth-order NCE-RK method 
(C-HWENO5-NCERK4) in time for both one and two dimensions. Uniform meshes with N elements and Nx × N y elements 
are used in one and two dimensions, respectively.

The time step �t is dynamically chosen. In particular, in one-dimensional scalar case, we take

�t = Ccf l
�x

max | f ′(u)| ,
and in two-dimensional scalar case, we have

�t = Ccf l

(max | f ′(u)|/�x + max |g′(u)|/�y)
.

The CFL number Ccf l is taken as 0.25 for one-dimensional tests, and 0.2 for two-dimensional ones except for some accuracy 
tests when the time step needs to be adjusted properly to ensure the spatial errors dominate. In the system case, | f ′(u)|
and |g′(u)| above are replaced by the eigenvalue of the Jacobian of f (u) and g(u), respectively, with the largest absolute 
value.

4.1. Accuracy tests with smooth solutions

We first validate the accuracy of the proposed schemes when the solutions are smooth. The conservation laws can be 
scalar, or system in one and two dimensions.

Example 4.1. We consider the one-dimensional Burgers’ equation, which is scalar and nonlinear,

ut + (
u2

2
)x = 0 (4.1)

with the initial condition u(x, 0) = 0.5 + sin(πx), and a 2-periodic boundary condition. We take the CFL number Ccf l = 0.1. 
When t = 0.5/π , the solution is still smooth, and the L1 and L∞ errors and numerical orders of accuracy are presented 
in Table 1 for C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. We can see that both schemes achieve their designed 
fifth-order accuracy with comparable errors. Compared with the numerical results by the C-HWENO scheme previously 
proposed in [34], the numerical solution by the newly proposed scheme in this paper has smaller errors on the same 
computational mesh.

Example 4.2. We consider the one-dimensional nonlinear system of Euler equations

ut + f (u)x = 0 (4.2)

with

u = (ρ,ρv, E)T , f (u) = (ρv,ρv2 + p, v(E + p))T .

Here ρ is the density, v is the velocity, E is the total energy, p is the pressure which is related to the conservative quantities 
through the relation E = p

γ −1 + 1
2 ρv2, and γ = 1.4. The initial condition is set to be ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, 

p(x, 0) = 1, with a 2-periodic boundary condition. The exact solution is ρ(x, t) = 1 + 0.2 sin(π(x − t)), v(x, t) = 1, and 
p(x, t) = 1. We compute the solution up to t = 2 with the CFL number Ccf l = 0.1. The L1 and L∞ errors and numerical 
orders of accuracy for the density ρ are shown in Table 2 for C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both 
schemes achieve their designed fifth-order accuracy with comparable errors. Again compared with the numerical results by 
the C-HWENO scheme previously proposed in [34], the numerical solution by the newly proposed scheme in this paper has 
smaller errors on the same computational mesh.
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Table 2
Euler equations, with ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1, and periodic boundary conditions. C-HWENO5-LW3 and C-HWENO5-NCERK4. t = 2. 
L1 and L∞ errors and orders of accuracy of density ρ .

N C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 1.55E−02 2.37E−02 1.53E−02 2.34E−02
20 7.27E−04 4.41 1.15E−03 4.37 7.20E−04 4.41 1.14E−03 4.35
40 2.25E−05 5.01 4.13E−05 4.80 2.22E−05 5.02 4.08E−05 4.80
80 7.01E−07 5.00 1.36E−06 4.92 6.90E−07 5.01 1.34E−06 4.93

160 2.20E−08 4.99 4.16E−08 5.03 2.16E−08 5.00 4.08E−08 5.04
320 6.82E−10 5.01 1.18E−09 5.14 6.53E−10 5.05 1.13E−09 5.17
640 2.02E−11 5.08 3.33E−11 5.15 1.75E−11 5.22 2.96E−11 5.26

Table 3
Burgers’ equation ut + (u2/2)x + (u2/2)y = 0, with u(x, y, 0) = 0.5 + sin(π(x + y)/2), and periodic boundary conditions. C-HWENO5-LW3 and C-
HWENO5-NCERK4. t = 0.5/π . L1 and L∞ errors and orders of accuracy.

Nx × N y C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 2.11E−02 5.83E−02 2.11E−02 5.84E−02
20 × 20 2.09E−03 3.34 1.39E−02 2.07 2.08E−03 3.34 1.39E−02 2.07
40 × 40 1.87E−04 3.48 1.45E−03 3.26 1.86E−04 3.48 1.44E−03 3.27
80 × 80 8.39E−06 4.48 7.48E−05 4.28 8.29E−06 4.49 7.48E−05 4.27
160 × 160 3.16E−07 4.73 2.64E−06 4.82 3.15E−07 4.72 2.60E−06 4.85
320 × 320 8.64E−09 5.19 7.87E−08 5.07 8.72E−09 5.17 7.78E−08 5.06
640 × 640 2.39E−10 5.18 2.31E−09 5.09 2.21E−10 5.30 2.44E−09 4.99

Example 4.3. We consider the nonlinear Burgers’ equation in two dimensions

ut + (
u2

2
)x + (

u2

2
)y = 0 (4.3)

with the initial condition u(x, y, 0) = 0.5 + sin(π(x + y)/2), and a 4-periodic boundary condition in each direction. When 
t = 0.5/π the solution is still smooth. The CFL number is taken as Ccf l = 0.1 and the L1 and L∞ errors and numerical 
orders of accuracy are presented in Table 3 for C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both schemes achieve 
their designed fifth-order accuracy with comparable errors. Again compared with the numerical results by the C-HWENO 
scheme previously proposed in [34], the numerical solution by the newly proposed scheme in this paper has smaller errors 
on the same computational mesh.

Example 4.4. We here consider the nonlinear system of Euler equations in two dimensions

Ut + f (U )x + g(U )y = 0 (4.4)

with

U = (ρ,ρu,ρv, E)T , f (U ) = (ρu,ρu2 + p,ρuv, u(E + p))T ,

g(U ) = (ρv,ρuv,ρv2 + p, v(E + p))T .

Here ρ is the density, (u, v)T is the velocity, E is the total energy, p is the pressure which is related to the conservative 
quantities through the relation E = p

γ −1 + 1
2 ρ(u2 + v2), and γ = 1.4. The initial condition is set to be ρ(x, y, 0) = 1 +

0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1, with a 2-periodic boundary condition in each direction. 
The exact solution is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − (u + v)t)), u(x, y, t) = 0.7, v(x, y, t) = 0.3, and p(x, y, t) = 1. We 
compute the solution up to t = 2 with the CFL number Ccf l = 0.1. The L1 and L∞ errors and numerical orders of accuracy 
of density ρ are reported in Table 4 for C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes. Both schemes achieve their 
designed fifth-order accuracy with comparable errors. Again compared with the numerical results by the C-HWENO scheme 
previously proposed in [34], the numerical solution by the newly proposed scheme in this paper has smaller errors on the 
same computational mesh.

4.2. Test cases with non-smooth solutions

We now test the performance of the proposed methods in terms of their resolution and non-oscillatory property when 
solving problems with non-smooth features, such as shocks, rarefaction, or contact discontinuity, in their solutions.

Example 4.5. We consider the same one-dimensional nonlinear Burgers’ equation (4.1) as in Example 4.1 with the same 
initial and boundary conditions, except that we now present the numerical solutions at t = 1.5/π after a shock forms. In 
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Table 4
Euler equations, with ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1, and periodic boundary conditions. C-HWENO5-LW3 
and C-HWENO5-NCERK4. t = 2. L1 and L∞ errors and orders of accuracy of density ρ .

Nx × N y C-HWENO5-LW3 C-HWENO5-NCERK4

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 × 10 4.13E−02 6.26E−02 4.13E−02 6.26E−02
20 × 20 2.20E−03 4.23 3.02E−03 4.37 2.20E−03 4.23 3.02E−03 4.37
40 × 40 7.33E−05 4.91 1.17E−04 4.69 7.32E−05 4.91 1.17E−04 4.69
80 × 80 2.25E−06 5.03 3.98E−06 4.88 2.25E−06 5.02 3.98E−06 4.88

160 × 160 6.85E−08 5.04 1.20E−07 5.05 6.83E−08 5.04 1.20E−07 5.05
320 × 320 1.95E−09 5.13 3.20E−09 5.23 1.94E−09 5.14 3.19E−09 5.23
640 × 640 4.68E−11 5.38 7.99E−11 5.32 4.61E−11 5.39 7.85E−11 5.34

Fig. 3. Burgers’ equation in one dimension. u(x, 0) = 0.5 + sin(πx). t = 1.5/π and N = 80. Solid line: exact solution; square: C-HWENO5-LW3; plus: 
C-HWENO5-NCERK4.

Fig. 3, the solutions of C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes are plotted, together with the exact solution. 
The mesh is uniform with N = 80 elements. We can see that both schemes lead to non-oscillatory shock transitions in the 
solutions.

Example 4.6. We here consider a one-dimensional nonlinear non-convex scalar Buckley–Leverett problem

ut +
(

4u2

4u2 + (1 − u)2

)
x
= 0 (4.5)

with the initial condition: u = 1 when − 1
2 ≤ x ≤ 0 and u = 0 elsewhere. The computational domain is [−1, 1], with constant 

boundary conditions applied to both ends. The solution is computed up to t = 0.4. The exact solution contains shock, 
rarefaction, and a contact discontinuity. We remark that some high-order schemes may fail to converge to the correct 
entropy solution for this problem. In Fig. 4, the solutions of C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes are shown 
with N = 80 mesh elements, together with the exact solution. One can see both schemes capture the correct entropy 
solution well, with good resolutions for all the major features in the solution.

Example 4.7. We solve the one-dimensional Euler equations (4.2) with a Riemann initial condition for the Lax problem

(ρ, v, p) = (0.445,0.698,3.528) for x ≤ 0, (ρ, v, p) = (0.5,0,0.571) for x > 0.

The computational domain is [−5, 5], with inflow/outflow boundary conditions applied to left/right ends. The schemes 
are run up to t = 1.3. In Fig. 5, we plot the computed density ρ with N = 200 mesh elements by C-HWENO5-LW3 and 
C-HWENO5-NCERK4 schemes, together with the exact solution. One can see that both schemes render equally good non-
oscillatory shock transitions for this problem.

Example 4.8. The non-smooth examples we have presented so far contain simple smooth regions in the solutions, for 
which capturing the shock sharply with non-oscillatory transitions is the main focus and usually a good second-order 
non-oscillatory scheme would give satisfactory results. The examples presented here are mainly to demonstrate the non-
oscillatory properties of the proposed high-order schemes. A high-order scheme would be more advantageous when the 
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Fig. 4. The Buckley–Leverett problem. t = 0.4 and N = 80. Solid line: exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4.

Fig. 5. The Lax problem. t = 1.3 and N = 200. Density ρ . Solid line: exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4.

solution contains both shocks and complex smooth structures. One such example is the Shu–Osher problem, which de-
scribes shock interacting with entropy waves [32]. This example is modeled by the one-dimensional Euler equations (4.2)
with a moving Mach-3 shock interacting with sine waves in density, i.e. initially

(ρ, v, p) = (3.857143,2.629369,10.333333) for x < −4,

(ρ, v, p) = (1 + σ sin 5x,0,1) for x ≥ −4.

The computational domain is [−5, 5], and the boundary conditions are taken to be the same as the initial data. Here we 
take σ = 0.2. In Fig. 6, we plot the computed density ρ at t = 1.8 by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes 
with N = 400 mesh elements, together with a reference solution obtained by the fifth-order finite difference WENO scheme 
[15] with 16000 grid points, we further zoom in the oscillatory region of the solution between x = 0.5 and x = 2.5. One can 
see that this example very well demonstrates the good resolution of the proposed methods to resolve smooth features in 
the solution as well as the non-oscillatory nature of the methods to capture discontinuities.

Example 4.9. We here consider the interaction of blast waves, modeled by the one-dimensional Euler equations (4.2) with 
the initial condition

(ρ, v, p) = (1,0,1000) for 0 ≤ x < 0.1,

(ρ, v, p) = (1,0,0.01) for 0.1 ≤ x < 0.9,

(ρ, v, p) = (1,0,100) for 0.9 ≤ x.

The computational domain is [0, 1], with reflecting boundary conditions applied to both ends, see [11,36]. In Fig. 7, we plot 
the computed density ρ at t = 0.038 by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes with N = 800 mesh elements, 
together with a reference solution obtained by the fifth-order finite difference WENO scheme [15] with 16000 grid points. 
We can see that both schemes give equally good resolution for this problem.
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Fig. 6. The shock density wave interaction problem. t = 1.8 and N = 400. Density ρ . Solid line: reference solution; square: C-HWENO5-LW3; plus: 
C-HWENO5-NCERK4.

Fig. 7. The interaction of blast waves problem. t = 0.038 and N = 800. Density ρ . Solid line: reference solution; square: C-HWENO5-LW3; plus: 
C-HWENO5-NCERK4.

Example 4.10. We solve the same two-dimensional Burgers’ equation (4.3) as in Example 4.3 with the same initial and 
boundary conditions, except that we now present the numerical solutions at t = 1.5/π after a shock forms. In Fig. 8, we 
plot a slice of the computed solution at x = y on a 80 × 80 mesh by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes, 
together with the exact solution. The surfaces of the solutions computed by C-HWENO5-LW3 and C-HWENO5-NCERK4 
schemes are also shown. Both schemes render good non-oscillatory shock transitions for this problem.

Example 4.11. We here consider the example of double Mach reflection, which is originally from [36] and modeled by the 
two-dimensional Euler equations (4.4). The computational domain is [0, 4] × [0, 1]. The reflecting wall lies at the bottom, 
starting from x = 1

6 . Initially a right-moving Mach-10 shock is positioned at x = 1
6 , y = 0 and makes a 60◦ angle with x-axis. 

For the bottom boundary, the exact post-shock condition is imposed for the part from x = 0 to x = 1
6 , and a reflective 

boundary condition is used for the rest. At the top boundary, the flow values are set to describe the exact motion of a 
Mach-10 shock. Post-shock and pre-shock conditions are imposed for the left and right boundary conditions, respectively. 
We compute up to t = 0.2. We use four different uniform meshes, with 240 × 60, 480 × 120, 960 × 240, 1920 × 480 mesh 
elements. We only show the results with 1920 × 480 mesh elements to save space. In Fig. 9, the density contour plots are 
presented in the region of [0, 3] × [0, 1] by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes, respectively. Both schemes 
show good resolution to approximate the solution with comparable results. All contour plots are with 30 equally-spaced 
contour lines for the density from 1.5 to 22.7.

Example 4.12. Our final example is about a Mach-3 wind tunnel with a step. It is from [36] and modeled by the two-
dimensional Euler equations (4.4). The setup of the problem is as follows. The wind tunnel is 1 length unit wide and 3 
length units long. The step is 0.2 length units high and is located 0.6 length units from the left end of the tunnel. The 
problem is initialized by a right-going Mach-3 flow. Reflective boundary conditions are applied along the walls of the tun-
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Fig. 8. Burgers’ equation in two dimensions. u(x, y, 0) = 0.5 + sin(π(x + y)/2). t = 1.5/π and Nx × N y = 80 × 80. A slide of the solution (left) at x = y, 
solid line: exact solution; square: C-HWENO5-LW3; plus: C-HWENO5-NCERK4. The surface of solution computed by C-HWENO5-LW3 (middle) and C-
HWENO5-NCERK4 (right).

Fig. 9. Double Mach reflection problem. t = 0.2 and Nx × N y = 1920 × 480. C-HWENO5-LW3 (top) and C-HWENO5-NCERK4 (bottom). 30 equally spaced 
density contours from 1.5 to 22.7.

nel, and inflow/outflow boundary conditions are applied at the entrance/exit. The corner of the step is a singular point and 
we treat it as the same way as in [36], which is based on the assumption of a nearly steady flow in the region near the 
corner. We compute up to t = 4. We use four different uniform meshes, with 120 ×40, 240 ×80, 480 ×160, 960 ×320 mesh 
elements. Again, we only show the results with 960 ×320 mesh elements to save space. In Fig. 10, the density contour plots 
are presented by C-HWENO5-LW3 and C-HWENO5-NCERK4 schemes, respectively. Both schemes show good resolution to 
approximate the solution with comparable results. All contour plots are with 30 equally-spaced contour lines for the density 
from 0.32 to 6.15.

We want to point out that for both Example 4.11 and Example 4.12, the proposed methods in this paper produce less 
oscillatory numerical solutions than our previously developed methods in [34] when the meshes are very refined, implying 
the new methods here have better numerical robustness.

We also compare the computational times of the previous C-HWENO methods in [34] and the newly proposed C-HWENO 
methods when they are applied to three two-dimensional examples. In Table 5, the computational times are presented 
for Example 4.4 (two-dimensional Euler equations with smooth solution) with 160 × 160 mesh elements, Example 4.11
(double Mach reflection problem) with 960 × 240 mesh elements, and Example 4.12 (forward step problem) with 480 × 160
mesh elements, respectively. One can observe from this experiment that the new methods proposed in this paper are 
computationally more efficient.
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Fig. 10. Forward step problem. t = 4 and Nx × N y = 960 ×320. C-HWENO5-LW3 (top) and C-HWENO5-NCERK4 (bottom). 30 equally spaced density contours 
from 0.32 to 6.15.

Table 5
The computational times (in seconds) of the C-HWENO methods in [34] and the new C-HWENO methods in this paper for three two-dimensional examples.

Problem C-HWENO methods in [34] New C-HWENO methods

Lax–Wendroff NCE of RK Lax–Wendroff NCE of RK

Example 4.4 5431 6856 3323 2941
Example 4.11 153 384 159 950 79 681 61 901
Example 4.12 163 829 171 102 86 065 70 985

5. Concluding remarks

In this paper, we design a new class of high-order central Hermite WENO schemes for solving one- and two-dimensional 
hyperbolic conservation laws. The methods use Hermite WENO reconstruction based on moments of the solution to dis-
cretize in space, and Lax–Wendroff type methods or the natural continuous extension of Runge–Kutta methods as time 
discretizations, in a central finite volume framework on staggered meshes. Our schemes evolve in time the moments of the 
solution rather than the solution and its derivative(s) as in [34] for the spatial reconstruction. As central HWENO schemes, 
our proposed methods have the advantages of being compact in reconstruction and requiring no flux splitting or numerical 
fluxes. In the system case, local characteristic decomposition is applied in the reconstruction of half-cell (or quarter-cell) mo-
ments to achieve better non-oscillatory properties of the schemes, meanwhile maintaining good computational efficiency. 
Instead of working with staggered meshes, the proposed spatial reconstructions can also be applied to the central finite 
volume schemes defined on two overlapping meshes [23].

The Hermite WENO reconstruction examined in this paper, that involves zeroth-order and first-order moments of the 
solution, requires more storage than the regular WENO reconstruction. One major advantage of our schemes is that the 
two-dimensional HWENO spatial reconstruction can be implemented through a dimension-by-dimension strategy, while 
the reconstruction in [34] is truly two-dimensional. In other words, our proposed HWENO spatial reconstructions in one 
dimension can be employed directly in two or higher dimensions, and this leads to an easier multidimensional simulation. 
On the other hand, the dimension-by-dimension procedure can not be extended to unstructured meshes.
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