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Abstract

In this paper, new finite difference Hermite weighted essentially non-oscillatory (HWENO)
schemes are designed for solving the Hamilton—Jacobi equations on structured meshes. The
crucial idea of the spatial reconstructions is borrowed from the original HWENO schemes
(Qiu and Shu in J Comput Phys 204:82-99, 2005), in which the function and its first deriva-
tive values are evolved in time and used in the reconstruction. Such new HWENO spatial
reconstructions with the application of three unequal-sized spatial stencils result in an impor-
tant innovation that we perform only spatial HWENO reconstructions for numerical fluxes
of function values and high-order linear reconstructions for numerical fluxes of derivatives,
which are different to other HWENO schemes. The new HWENO schemes could obtain
smaller errors with optimal high-order accuracy in smooth regions, and keep sharp transi-
tions and non-oscillatory property near discontinuities. Extensive benchmark examples are
performed to illustrate the good performance of such new finite difference HWENO schemes.
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1 Introduction

In this paper, new Hermite weighted essentially non-oscillatory (HWENO) schemes are
presented for solving the Hamilton—Jacobi equations

¢(x,0) = ¢o(x), (1.1)

{ ¢+ H(Vi9) =0,
in which x = (x1, ..., x,)! are n-spatial variables. Such Hamilton—Jacobi equations often
arise in the applications of image processing, geometric optics, material science, computer
vision, and so on [8,21,32]. Although the exact solution ¢ (xy, ..., x,, t) for simulating
(1.1) is continuous, its derivatives might contain discontinuities. Since it is well known that
many Hamilton—Jacobi equations are multi-solution equations, we should apply the physical
implications to obtain their viscosity solutions uniquely [1].

Because the Hamilton—Jacobi equations are of close relationship with the conservation
laws, we often solve the Hamilton—Jacobi equations with the aid of techniques developed for
the conservation laws. So the classical numerical schemes for simulating the conservation
laws can be directly adapted or with minor modifications for solving the Hamilton—Jacobi
equations. Crandall and Lion [10] proposed first-order monotone schemes and analyzed that
the schemes can converge to the viscosity solutions. Although such monotone schemes are
only first-order accuracy, they are the building blocks for designing higher order numerical
schemes. Following such principles, Osher et al. [24,25] designed some high-order accu-
rate essentially non-oscillatory (ENO) schemes for solving the Hamilton—Jacobi equations.
Lafon and Osher [17] constructed ENO schemes for solving the Hamilton—Jacobi equations
on unstructured meshes. Then Jiang and Peng [14] proposed classical high-order finite dif-
ference weighted ENO (WENO) schemes for solving the Hamilton—Jacobi equations on
structured meshes, which are excellent expanding application of the basic fifth-order finite
difference WENO schemes [15] for the conservation laws. Some high-order WENO schemes
etal. [15,20,26,38] were also designed for two-dimensional Hamilton—Jacobi equations with
the application of the nodal WENO-type algebraic polynomial interpolations on unstructured
meshes. Hermite WENO (HWENO) schemes [27,30,39,42] were proposed to use more com-
pact spatial stencils for obtaining the same order of accuracy in smooth regions. Bryson and
Levy [4] designed central schemes for solving the Hamilton—Jacobi equations. Above men-
tioned high-order schemes are mainly designed in the finite difference framework. And there
are many high-order schemes designed in the finite volume or discontinuous Galerkin (DG)
framework. These schemes can be defined on structured or unstructured meshes. A new
methodology of DG method for the conservation laws with modification to solve for the
Hamilton—Jacobi equations was proposed by Hu and Shu [13]. After that, Cheng and Shu [9]
designed direct DG methods for solving the Hamilton—Jacobi equations for ¢ (xy, ..., x,, 1)
with some remedy procedures originated from [13] in some extreme cases. Yan and Osher
[36] proposed a local DG method for directly solving the Hamilton—Jacobi equations with
auxiliary variables. And Qiu et al. [27-30,39,41] devoted their efforts to construct the com-
pact Hermite WENO schemes whose solutions and first-order derivative values are applied to
compute the conservation laws and the Hamilton—Jacobi equations successfully. Some clas-
sical HWENO schemes et al. [5,6,22,23,35,37] were also designed for solving the hyperbolic
conservation laws effectively. One major advantage of HWENO schemes superior to WENO
schemes is their compactness in spatial reconstruction procedures. We do remark that all
existing HWENO schemes are more costly in computation and storage than that of the same
order accurate WENO schemes with the same computational meshes, since the solution and
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its derivatives need to be stored and evolved in time. So our main objective is to propose a
new type of spatial reconstruction methodologies to remedy such drawback in this paper.

This paper is mainly based on [27,30,39] and is of interest to study the high-order simula-
tion methods for the Hamilton—Jacobi equations with some developments. It obeys the basic
reconstruction principles of HWENO schemes in [28,29] and is a direct extension of [44]
from the finite difference WENO framework to finite difference HWENO framework. Here
we emphasize that the new HWENO schemes are very efficient and could keep good conver-
gence property, since spatial HWENO reconstructions and high-order linear reconstructions
are also used in this paper. But the spatial HWENO reconstructions are used all the way in any
other HWENO schemes [5,6,22,23,27-30,35,37,39,41]. And it is also shown that the new
HWENO schemes could efficiently get smaller truncation errors in all accuracy test cases
in comparison with that specified in [30,39]. Generally speaking, we mention a few features
and advantages of such new HWENO schemes: the linear weights can be set as any positive
numbers on condition that their sum is one; they can be easily extended to multi-dimensions;
the HWENO spatial reconstructions with three unequal-sized spatial stencils and high-order
linear reconstructions are applied here, which are very different to other HWENO schemes
[27,30,39].

The organization of this paper is as follows. In Sect. 2, we review and construct new finite
difference HWENO schemes in detail for solving the Hamilton—Jacobi equations in one and
two dimensions. Extensive numerical results are proposed in Sect. 3 to illustrate the simplicity,
accuracy, and efficiency of these new spatial reconstruction procedures. Concluding remarks
are given in Sect. 4.

2 The Design of New Finite Difference HWENO Scheme

In this section, we give new finite difference HWENO schemes for solving the Hamilton—
Jacobi equations in one and two dimensions in detail.

2.1 One-Dimensional Finite Difference HWENO Scheme

The governing equation (1.1) is studied in one dimension. For simplicity, we assume that the

grid points {x;} are uniform with x; 1 — x; = h, and cell I; = [x; — h/2, x; 4+ h/2]. Define

u(x,t) = ¢, (x, t) and take into account the first-order derivative of (1.1) in one dimension,
the conservation laws are obtained as

u; + Hw), =0,

{u(x,O) = up(x). 2D

We define ¢;(t) = ¢(x;,t) and u;(t) = ¢.(x;, 1), and we have the following system of
equations:

400 = —H(u(xi. 1)), 02
du;(t) _ _H . N
ar = 1(u(xi, 1)uy |x:x,~'
We replace H (u(x;, t)) by the numerical flux H; which is defined as
~ Taul _
H =H ( S ) — L —up). (2.3)
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In (2.2), Hi(u(x, 1)) = ‘2—2’. For stability, we also split H; (u(x;, t)) into a positive part and a
negative part locally, denoted by Hi’ ; and H, ;, respectively, and approximate u, by upwind
method. Then (2.2) is approximated by

dlf’:(l) _—
{ dudz(t) H1+z Ui ™ Hf,i”ﬁ,r @9
In which
and

A u; tu; u;+ut
HlJ,ri:%<H1( s >+|H1<’;'>I>, (2.6)

where ujE and u . are the left and right limits of the point values of u(x;, t) and u, (x;, 1),
respecuvely For s1mphclty, the variable ¢ is omitted in the following, if it does not cause
confusion. The method of lines ODE (2.4) is rewritten as

%w(t) = L(w). 2.7)

Then a third-order TVD Runge-Kutta time discretization method [34]

w® = w" + ArL(w"),
w® = 32w + Tw® 4 AL wM), (2.8)
wtl = %w” + %w(z) + %AtL(w(z)),

is applied to solve for (2.7) and obtain fully discrete scheme both in space and time.

Since the reconstructlon procedure is the key component, we will reconstruct the point
values {u } and {u ;} from {¢; } and {u;}, respectively. The reconstruction procedure should
obtain high-order accurate in smooth regions and keep essentially non-oscillatory property
in non-smooth regions. This reconstruction procedure is outlined for the fifth-order case in
the following.

Algorithm 1 The procedure to reconstruct {u; }.

Step 1 Select a big central spatial stencil 71 = {x;_2, x;—1, X, X;+1}, Which is a combi-
nation of four points. Then we construct a Hermite quintic polynomial p; (x) satisfying

pi(xj))=¢;,j=i—-2,i—1,i,i+1, 2.9)
and
pPi(xj)=uj, j=i—1i+1. (2.10)
Its first-order derivative function at x; is
18¢i—1 + ¢i—2 — 9¢i — 10¢i+1 + Shu;—1 + 3huit
18h

pixi) =— 2.11)

Step 2 Select two smaller biased spatial stencils 75 = {xj_2,x;—-1,x;} and T3 =
{xi_1, xi, xj+1}, which are combinations of three points, respectively. Then we construct
two quadratic polynomials p,(x) and p3(x) satisfying

p2(xj) =), j=i—2,i— 1.1, (2.12)
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and

p3(xj))=¢;, j=i—1,i,i+1. (2.13)
Their first-order derivative functions at x; are
—4¢i—1 + ¢i—2 + 3p;

H(x;) = , 2.14
Pz(x) h ( )
and b1+ b
, —®i—1 i+1
)=\ 2.15
p3(xi) o (2.15)

Remark 1 Comparing with [30,39], we select one big central stencil 77 and two smaller
biased stencils 7> and T3 for constructing three polynomials. Only three nodal point values
of ¢ are used to obtain quadratic polynomials p>(x) and p3(x) with respect to the target point
xi, which means no point values of the derivative values of ¢ are introduced in comparison
with that in [27,30,39]. By performing such new HWENO spatial reconstruction procedures,
it is the first time that we apply the information of ¢ and u to get high-order approximation
in smooth regions and only apply the information of ¢ without introducing any u to keep
essentially non-oscillatory property in non-smooth regions.

Step 3 With the similar idea of proposed by Levy etal. [18,19] for central WENO schemes,
we rewrite p/ (x;) as

PiGi) =n ( i) Z " i) ) + prg(xz (2.16)

Clearly, (2.16) holds for arbitrary y; # 0, we would like to take positive linear weights
Y1, ¥2, and y3 on condition that Z?:l ye=1. Following the practice in [12,40,42,43,45], for
example, we set one type of the linear weights as y; = 0.98 and y,=y3=0.01 in this paper.
Step 4 Compute the smoothness indicators 8, which measure how smooth the functions
p,,(x) are near the target point x;. The smaller these smoothness indicators, the smoother the
functions are near the target point. We use the similar recipe for the smoothness indicators

as in [2,15,38]:
ﬁn_Z/lﬂ‘* 3<d p"(x)) dx,n=1,2,3. 2.17)

r equals five for n = 1 and r equals two for n = 2, 3, respectively.

Step 5 Compute the nonlinear weights based on the linear weights and the smoothness
indicators. For instance, as shown in [3,7,11], we use new t which is simply defined as the
absolute difference between S, 2, and f3. So the associated difference expansions in Taylor
series at x; are

2
_ (Iﬂl — Bl 42- 181 —/33|) — 005, 2.18)
@ - T _
wn:m» Wp = Yn (1+8+,3n>’ n=17273. (2.19)

Here ¢ is a small positive number to avoid the denominator to become zero. It is easy to

verify
T

e+ P

=0h"Y,n=1,2,3, (2.20)
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under the condition ¢ < fB,,. Therefore, the nonlinear weights w,, satisfy the order accuracy
conditions w, = y, + o (") 3,71, providing the formal fifth-order accuracy to the WENO
scheme in [14,15,33]. We take ¢ = 107 in our computation.

Step 6 The final nonlinear HWENO reconstruction of u;  is defined by a convex combi-
nation of three reconstructed polynomial approximations

u; = ( pl(xl Z ve pf(xl ) + Za)gpg(x, (2.21)

The reconstruction to ul+ is mirror symmetric with respect to x; of the above procedure.

Remark 2 The terms on the right hand side of (2.21) serve a very crucial role in this paper. Our
primary objective is to use a high-degree polynomial to obtain a high-order approximation
in smooth regions and use the HWENO procedures to rely on linear polynomials to keep
essentially non-oscillatory property near discontinuities. The total number of polynomials is
no more than that of the same order finite difference HWENO schemes [39], and the choice
of the linear weights is flexible.

Then we reconstruct the approximations of u ; with the high-order linear reconstructions
instead of the HWENO reconstructions from the left and right sides of the point x;.

Algorithm 2 The procedure to reconstruct {u, ;)

We select a big spatial stencil Q = {x;_2, x;_1, X, X;+1}, which is a combination of four
points. Then we construct a Hermite sixth degree polynomial g (x) satisfying

qxj)=¢j, j=1i— Ji+ 1, (2.22)
and

q'(xj))=uj, j=i—1,i,i+1 (2.23)
Its second-order derivative function at x; is explicitly formulated as

Gi—2 + 54¢i—1 — 81¢p; +26¢;+1 + 18hu;—1 + 18hu; — 6hu;4y

Ty —
q (xl) - 18]’12

(2.24)

Its linear reconstruction of u;i is defined as
U, = q" (x). (2.25)

Associated linear reconstruction to u;: ; 1s mirror symmetric with respect to x; of the above
procedure.

Remark 3 Generally speaking, we design Algorithm 1 by borrowing the original idea
proposed in [30] using the information defined on nodal points to obtain a fifth-order approx-
imation at the target point in smooth regions. When there is a discontinuity within the spatial
stencil 77, the information of the high-order polynomial defined on the 77 is effectively
abandoned for the nonlinear weight @ would be small, and the approximation order will
automatically switch to second by using the information of the low order polynomial either
p2 or p3. We directly use high-order linear approximation to the second derivative of ¢, and
in [30,39] the high order HWENO approximation is used for the second derivative of ¢.
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2.2 Two-Dimensional Finite Difference HWENO Scheme

The governing equation (1.1) can be extended to two-dimensional case again. We also define
u = ¢, and v = ¢y, and the first-order derivatives of (1.1) are taken as

ur + Hi(u, viux + Hy(u, v)vy =0, (2.26)

and
v + Hy(u, v)uy + Hy(u, v)vy = 0. (2.27)

We define Hi(u, v) = Bu A and Hy(u, v) = 7 . The semidiscrete form in two dimensions is

d
PiD i, v, 0, 000, v, 1),
du- -(t)
ld? = —Hy(u(x;, yj, ), v(x;, yj, Dux (x;, yj, 1) — Hp(ux;, yj, 1), v(x;, yj, Hvx (i, ¥, 1),
dv; (1)
S = = Hy (u(x, ), 0,0, vy, D)y (xi, ¥, 1) — Hy(xi, yj, 1), v(xi, yj, Doy (x;, ¥, 1),
(2.28)
Then (2.28) is approximated by
d i 'y
¢[1;(f) s i
duj j(t) _ + - ot 2 AU
J dt() - Hl i j%xi,j Hl iU T Hz»l»]vxvlvj’ (2.29)
v; — +
di Hl,w”y»l»/ Hz:; i~ Hai vy

Where H is Lipschitz continuous monotone fluxes consistent with H (u v) and the simple
+ ~ 4ot
Lax—Friedrichs flux (2.3) is apphed in two dimensions. H 1i,j = Hi (5= t ’ . U”’ ZU"’ ) and
Lt vy . i
Hz,i,j = Hz(%, v’ff”) H] and H2 are the negative and positive parts of Hj
and H», which are defined as H]_l j = é(Hl ij — [Hii D, H1+l i= é(Hl i j + |Hii i,
- + o+

H2l[ 2(Hz, J'_|H211|) and H 21/ 2(H2, ,+|H21 1), respectively. ul U Uy s
vf i uyil P and v=. . are the fifth-order accurate approximations from different directions
to the nodal values of u(x;, yj,t), vix;, y’it) uy(Xi, yj, 1), vx(xi, yj, 1), uy(x;, yj, t), and
vy (x;, yj, 1), respectively. The values of u; i and v, i joandu, o and v, o are designed by
the one-dimensional procedures of Algorzthm 1 and Algorzthm 2, respectlvely, with the index
ul, u vl v

yi.j V.i,j _ xi,j .’C,l._]
5 and vF, . = 72 . The

for the other dimension frozen. We define uy ; ; = i

reconstruction procedures of {u}i,i j} and {v;E ; j} are narrated in detail as follows.

Algorithm 3 The procedure to reconstruct {u, . .} and {v

VilsJ J”J}

Select a big spatial stencil T = {(x;j4¢, yjre)}, € = =2,...,2,and €& = =2,...,2,
which is a combination of twenty-five points. Then we could construct a polynomial p(x, y) €
span{l, (), G502, C5P0% CPhHh G707 G5, G 5, (5 5707,
CFHEED, CFHEEDY CFHEFD, G504 G20, (59 EDA
CFO2 T, G2 DY (025D, (5503 G503 G0, 79 (D)%,
(x X,) (} YJ)3 (xhX,)?:(‘ YJ)4 (Xhixl) (y YJ)5 (Xhixl)4 ()5’17)61)4() YJ) (XhiX,)4(Y_th.)2,
(x x,)4()’ )’1)3 (xhx,)4(y )1)4 (xhx,)4() )/)5 (xhx,)s (x x,)s(y )’1) (x x,)s(yh)’j)Z,
(

TS (PN (25 (XN ) satisfying

Xk, Y1) = Gk 1,
k,D)=G+L,j+e0), 6=—2,...,2, LL=-2,...,2, (2.30)
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/
Py Xk, y1) = ug.1,
(kD)= (i —2,j+L0), 06=-2,...2, (2.3D)
and /
py(xk’ yl) = Vg1,
kD)= (+0j—2), =-2,...,2 (2.32)
Then associated linear reconstruction of {u; i,j} is
Uy i~ Py ), (2.33)
and the linear reconstruction of {v_; j} is
U SNET N (2.34)

The reconstruction for {u;r ; i} is mirror symmetric of that for {u;i j} withrespect to (x;, y;),
()

and the reconstruction for {v’; j

(xi, y}), respectively.

} is mirror symmetric of that for {v; i j} with respect to

Remark 4 Following above mentioned procedure, in comparison with finite difference
HWENO schemes [39], the main advantages of the new finite difference HWENO schemes
are their new spatial reconstruction procedures, which could apply arbitrary positive linear
weights with a minor restriction and without degrading numerical accuracy in smooth regions
and suppress spurious oscillations in non-smooth regions via applying new nonlinear weights
other than that specified in [30,39].

3 Numerical Tests

In this section, we set CFL number as 0.6, denote new finite difference HWENO schemes as
HWENO-ZQ schemes, denote classical HWENO schemes of Zheng et al. [39] as HWENO-
ZSQ schemes, and denote classical HWENO schemes of Qiu and Shu [30] as HWENO-QS
schemes. For the purpose of testing whether the random choice of the positive linear weights
would degrade the optimal fifth-order accuracy of HWENO-ZQ schemes or not, we set differ-
ent types of the linear weights in one-dimensional and two-dimensional accuracy test cases as:
(1) y1=0.98and y» =y3=0.01; (2) y1 =y2=y3=1.0/3.0; (3) y1 =0.01 and y» =y3=0.495. And
the linear weights are recovered as type (1) for other numerical examples, unless specified
otherwise.

Example 3.1 We solve the following nonlinear one-dimensional Hamilton—Jacobi equation:
¢y —cos(py+1)=0, —1<x <1, 3.1

with the initial condition ¢ (x, 0) = — cos(xx) and periodic boundary conditions. We com-
pute the result up to r = 0.5/72. The errors and numerical orders of accuracy are shown in
Table 1. The errors and numerical orders of accuracy by the classical HWENO-ZSQ scheme
and HWENO-QS scheme are shown in the same table for the purpose of obtaining good
comparison. Figure 1 shows that HWENO-ZQ scheme needs less CPU time than that of
HWENO-ZSQ scheme and HWENO-QS scheme to obtain the same quantities of L! and
L errors, so HWENO-ZQ scheme is more efficient than other two HWENO schemes in
this one-dimensional test case. And it is observed that HWENO-ZQ scheme, HWENO-ZSQ
scheme, and HWENO-QS scheme could achieve their designed order of accuracy in smooth
regions.
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Table 1 ¢; — cos(¢px + 1) = 0. ¢(x, 0) = — cos(rx)

Grid points L' error Order L°° error Order L error Order L error Order
HWENO-ZQ (1) scheme HWENO-ZQ (2) scheme
100 2.64E-8 3.90E-7 4.61E-8 5.35E-7
120 1.03E-8 5.16 1.62E-7 4.80 1.40E-8 6.52 1.62E-7 6.56
140 4.84E-9 4.90 7.38E-8 5.12 5.80E-9 5.73 7.38E-8 5.10
160 2.54E-9 4.84 3.88E-8 4.81 2.79E-9 5.49 3.83E-8 4.92
180 1.40E-9 5.02 2.17E-8 4.93 1.49E-9 5.28 2.15E-8 4.90
HWENO-ZQ (3) scheme
100 5.58E-8 7.86E-7
120 1.59E-8 6.88 2.28E-7 6.78
140 6.30E-9 6.01 7.39E-8 7.32
160 2.92E-9 5.77 3.80E-8 4.98
180 1.54E-9 5.40 2.13E-8 4.88
HWENO-ZSQ scheme HWENO-QS scheme
100 2.73E-8 2.49E-7 9.70E-8 2.81E-6
120 1.17E-8 4.66 1.52E-7 4.55 4.28E-8 4.48 1.32E-6 4.14
140 5.30E-9 5.14 9.41E-8 3.12 2.06E-8 4.75 6.69E-7 442
160 2.64E-9 5.20 5.49E-8 4.04 1.06E-8 4.94 3.59E-7 4.65
180 1.49E-9 4.89 3.18E-8 4.64 5.81E-9 5.15 2.03E-7 4.85
Periodic boundary conditions. 7 = 0.5 /7T2
7F [
F 55}
75k ’g s
o I T L
g 8 ’_ -E -6.5 r
2 iy f
2 | g 1
ol g
85F [
| 75k
L . . 1 . . . . 1 [ . . . 1 . . . . 1
-1.5 -1 -1.5 -1
Log10(CPU time (sec)) Log10(CPU time (sec))
Fig.1 ¢ —cos(¢px +1) = 0. ¢(x, 0) = — cos(rrx). Computing time and error. Number signs and a solid line

denote the results of HWENO-ZQ scheme with different linear weights (1), (2), and (3); circles and a solid
line denote the results of HWENO-ZSQ scheme; squares and a solid line denote the results of HWENO-QS
scheme

Example 3.2 We solve two-dimensional Burgers’ equation:

&1

L @ +4;y + 1)?

=0, -2<x,y <2,

(3.2)
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(Px+¢y+D>2

Table2 ¢+ ——%—— =0.¢(x, y,0) = —cos(x (x +y)/2). Periodic boundary conditions. 7 = 0.5/712
HWENO-ZQ (1) scheme HWENO-ZQ (2) scheme

Grid points L' error Order L error Order L! error Order L error Order

100x 100 8.10E-9 3.72E-8 2.10E-8 291E-7

120x 120 3.18E-9 5.13 1.50E-8 4.97 5.59E-9 7.27 6.16E-8 8.51

140x 140 1.46E-9 5.05 7.22E-9 4.76 2.02E-9 6.59 1.53E-8 9.03

160x 160 7.44E-10 5.04 3.64E-9 5.13 8.95E-10 6.10 4.08E-9 9.90

180x 180 4.11E-10 5.03 2.07E-9 4.79 4.60E-10 5.65 2.07E-9 5.76
HWENO-ZQ (3) scheme

Grid points L' error Order L®° error Order
100x100 2.77E-8 4.34E-7

120120 6.88E-9 7.65 9.30E-8 8.45

140% 140 2.34E-9 6.98 2.36E-8 8.90

160x160 9.93E-10 6.44 6.55E-9 9.60
180x180 4.93E-10 5.94 2.16E-9 9.40

HWENO-ZSQ scheme HWENO-QS scheme
Grid points L! error Order L error Order L! error Order L° error Order
100% 100 3.34E-8 4.51E-7 5.81E-8 7.94E-7

120x120 1.31E-8 5.13 1.92E-7 4.70 2.32E-8 5.03 3.22E-7 495
140x 140 6.13E-9 4.94 8.85E-8 5.01 1.09E-8 4.87 1.50E-7 4.94
160x160 3.17E-9 4.94 4.51E-8 5.06 5.80E-9 4.76 7.54E-8 5.17
180x180 1.75E-9 5.03 2.45E-8 5.17 3.30E-9 4.79 4.10E-8 5.18

with the initial condition ¢ (x, y,0) = —cos(w(x + y)/2) and periodic boundary condi-
tions. The final time is # = 0.5/72 and the solution is still smooth at that time. The errors
and numerical orders of accuracy by the HWENO-ZQ scheme, HWENO-ZSQ scheme, and
HWENO-QS scheme are shown in Table 2, respectively. The numerical errors against CPU
time graphs are presented in Fig. 2. It is obvious that HWENO-ZQ scheme needs less CPU
time than the results of HWENO-ZSQ scheme and HWENO-QS scheme to obtain the same
quantities of L! and L errors, so HWENO-ZQ scheme is more efficient than other two
HWENO schemes in this two-dimensional test case.

Example 3.3 We solve the following two-dimensional Hamilton—Jacobi equation:
¢ —cos(pxr +¢y+1) =0, -2=<x,y<2, (3.3)

with the initial condition ¢ (x, y,0) = —cos(w(x + y)/2) and periodic boundary condi-
tions in two directions. The final time is r = 0.5/72. The errors and numerical orders of
accuracy by the HWENO-ZQ scheme with different linear weights in comparison with that
of HWENO-ZSQ scheme and HWENO-QS scheme are shown in Table 3 and the numerical
errors against CPU time graphs are in Fig. 3. HWENO-ZQ scheme with different types of
linear weights perform better results than that of other two high-order HWENO schemes in
this two-dimensional test case.
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=0.¢(x,y,0) = —cos(m(x +y)/2). Computing time and error. Number signs and

a solid line denote the results of HWENO-ZQ scheme with different linear weights (1), (2), and (3); circles
and a solid line denote the results of HWENO-ZSQ scheme; squares and a solid line denote the results of
HWENO-QS scheme

Table 3 ¢; — cos(¢x + ¢y + 1) = 0. ¢(x,y,0) = —cos(w(x + y)/2). Periodic boundary conditions.

T =0.5/72

HWENO-ZQ (1) scheme

HWENO-ZQ (2) scheme

Grid points
100% 100
120x 120
140x 140
160% 160
180% 180

Grid points
100x100
120x120
140x 140
160x160
180x180

Grid points
100x 100
120120
140% 140
160x 160
180% 180

L' error
3.41E-8
1.39E-8
6.43E-9
3.21E-9
1.72E-9

L' error
3.74E-8
1.45E-8
6.54E-9
3.24E-9
1.73E-9

L' error
6.52E-8
2.92E-8
1.44E-8
7.77E-9
4.55E-9

Order L error
4.94E-7
4.89 1.82E-7
5.05 9.29E-8
5.19 4.90E-8
5.28 2.56E-8
HWENO-ZQ (3) scheme
Order L error
4.90E-7
5.17 1.81E-7
5.20 9.23E-8
5.25 4.88E-8
5.32 2.56E-8
HWENO-ZSQ scheme
Order L error
1.98E-6
4.40 8.84E-7
4.57 4.33E-7
4.65 2.28E-7
4.53 1.26E-7

Order

5.48
4.39
4.78
5.51

Order

5.46
4.38
4.77
5.47

Order

4.42
4.63
4.82
5.00

L error
3.62E-8
1.43E-8
6.50E-9
3.23E-9
1.73E-9

L error
1.05E-7
4.58E-8
2.19E-8
1.16E-8
6.68E-9

Order

5.07
5.14
5.23
5.31

L error
4.92E-7
1.81E-7
9.25E-8
4.89E-8
2.56E-8

HWENO-QS scheme

Order

4.60
4.76
4.77
4.70

L®° error
2.87E-6
1.28E-6
6.33E-7
3.35E-7
1.88E-7

Order

5.47
4.38
4.77
5.49

Order

4.40
4.59
4.76
491
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Fig.3 ¢; —cos(¢x + ¢y +1) = 0. ¢(x, y,0) = —cos(r(x + y)/2). Computing time and error. Number
signs and a solid line denote the results of HWENO-ZQ scheme with different linear weights (1), (2), and (3);
circles and a solid line denote the results of HWENO-ZSQ scheme; squares and a solid line denote the results
of HWENO-QS scheme

Example 3.4 We solve the linear equation:

¢r +dx =0, (34

with the initial condition ¢ (x, 0) = ¢o(x — 0.5) together with the periodic boundary condi-
tion:

2005(3” ) — /3, —1 §x<—%,
V3.9 2m 3 +3cos(2mx), -l<x<o,
$o() =—(5-+ 7+ )+ D+ TS 3 1
3 —3cos(2mx), 0<x< 3
w—k@m(}c—l), %§x<1.

(3.5)
We plot the results with 100 cells at ¢+ = 2 and r = 12 in Fig. 4. It is observed that the
results by the HWENO-ZQ scheme have good resolution at the right corner singularity and
HWENO-QS scheme gives a bigger offset at the left corner singularity especially at t = 12.
So we find a fact that the HWENO-ZQ scheme have good resolutions for this benchmark
test.

Example 3.5 We solve the one-dimensional nonlinear Burgers’ equation:

v+ D?
g+ Pt 5 " o, (3.6)

with the initial condition ¢ (x, 0) = — cos(wx) and the periodic boundary condition. The
final time is # = 3.5/72. We find that the discontinuous derivative appears at that time. The
solutions of the HWENO-ZQ scheme are given in Fig. 5. We can see the new fifth-order
HWENO scheme gives good resolutions for this one-dimensional test.
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Fig. 4 One-dimensional linear equation. 200 grid points. Left: r = 2; right: + = 12. Solid line: the exact
solution; cross symbols: HWENO-ZQ scheme; square symbols: HWENO-QS scheme

-0.2 -0.2

-0.4 -0.4

©-0.6 -4 < -0.6

=

-0.8 -0.8

Fig.5 One-dimensional Burgers’ equation. Left: 40 grid points; right: 80 grid points. 7 = 3.5/7r2. Solid line:
the exact solution; cross symbols: HWENO-ZQ scheme; square symbols: HWENO-QS scheme
Example 3.6 We solve the nonlinear equation with a non-convex flux:

¢ —cos(¢px +1) =0, 3.7

with the initial data ¢ (x, 0) = — cos(;rx) and the periodic boundary condition. The numerical
results are plotted at r = 1.5/ in Fig. 6 when the discontinuous derivative appears. It is
observed that the new fifth-order HWENO-ZQ scheme and classical HWENO-QS scheme
could obtain similar good results for this problem.

Example 3.7 We solve the one-dimensional Riemann problem with a nonconvex flux:

G+ 1@ - D@ -4 =0, —1<x<l,
{¢(x,3) = —2|x|. (3.8)
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05 05
© o © 0
0.5 -0.5

Fig.6 Problem with the non-convex flux H (¢x) = — cos(¢x + 1). Left: 40 grid points; right: 80 grid points.
T =35 /rr2. Solid line: the exact solution; cross symbols: HWENO-ZQ scheme; square symbols: HWENO-
QS scheme

_2““|““|““|““ _2““|““|““|““
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

X X

Fig. 7 Problem with the non-convex flux H(¢yx) = %(@% - l)(qb% — 4). Left: 40 grid points; right: 80
grid points. 7 = 1. Solid line: the exact solution; cross symbols: HWENO-ZQ scheme; square symbols:
HWENO-QS scheme

It is a demanding test case, because of many high-order schemes have poor resolutions or
could even converge to a non-viscosity solution for this example. The final time is t=1 and
the numerical results are computed by the HWENO-ZQ scheme with 40 and 80 grid points
in Fig. 7, respectively. It is a fact that two fifth-order HWENO schemes could give similar
numerical results for this problem.

Example 3.8 We solve the same two-dimensional nonlinear Burgers’ equation (3.2) as in
Example 3.3 with the same initial condition ¢ (x, y, 0) = — cos(z (x + y)/2), except that the
results are plotted at 7 = 1.5/7 in Fig. 8. The discontinuous derivative has already appeared
in the solution at that time. It is obvious that the new fifth-order HWENO-ZQ scheme could
give good resolutions for this example.
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Fig. 8 Two-dimensional Burgers’ equation. 40 x 40 grid points. 7 = 1.5 /nz. HWENO-ZQ scheme. Left:
contours of the solution; right: the surface of the solution
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Fig.9 Two-dimensional Riemann problem with a non-convex flux H (¢, ¢y) = sin(@x + ¢y). 40 x 40 grid
points. 7 = 1. HWENO-ZQ scheme. Left: contours of the solution; right: the surface of the solution

Example 3.9 The two-dimensional Riemann problem with a nonconvex flux:

{¢I+Sin(¢x+¢y)=0a _15x9y<17 (39)
¢(x,y,0) =7m(|yl — |xD). '

For this example, we use a uniform rectangular mesh with 40 x 40 grid points and associated
numerical solutions of the HWENO-ZQ scheme are plotted at = 1 in Fig. 9. We can also
observe good numerical results which converge towards an entropy solution.

Example 3.10 A problem from optimal control:

{qs, +sin(y)gx + (sin(x) + sign(@y)py — 4 sin?(y) — (1 —cos(x)) =0, m <x,y <7, (3.10)
(b(x’ s O) = 0; ’

with periodic conditions in two directions [25]. The solutions of the new fifth-order HWENO-
ZQ scheme are plotted at # = 1 and the optimal control @ =sign(¢,) is also shown in Fig. 10.
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Fig. 10 The optimal control problem. 60 x 60 grid points. 7 = 1. HWENO-ZQ scheme. From left to right:
contours of the solution; the surface of the solution; right: the optimal control @ =sign(¢y)
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Fig. 11 Eikonal equation with a non-convex Hamiltonian. 80 x 80 grid points. 7 = 0.6. HWENO-ZQ scheme.
Left: contours of the solution; right: the surface of the solution

It is found that such new HWENO scheme could get good numerical resolutions for this two-
dimensional test.

Example 3.11 A two-dimensional Eikonal equation with a nonconvex Hamiltonian, which
arises in geometric optics [16]:

¢+ o2 +¢2+1=0, 0<x,y<]l,
¢(x,y,0) = %(cos(an) — 1D(cosry) —1) — 1,

The final time is ¢+ = 0.6. The numerical solutions of the HWENO-ZQ scheme are plotted
in Fig. 11. We observe good resolutions of the new fifth-order HWENO scheme for this
example.

(3.11)

Example 3.12 A two-dimensional combustion problem [17]:

¢ —\J1+¢2+¢2=0, 0<x,y<1,

(3.12)
¢(x,y,0) =cos(Qmx) — cos(2my).

The final time is t = 0.36. The numerical solution of the HWENO-ZQ scheme is plotted in
Fig. 12. We observe good resolutions of the new HWENO-ZQ scheme for this example.
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Fig. 12 A combustion problem. 40 x 40 grid points. 7 = 0.36. HWENO-ZQ scheme. Left: contours of the
solution; right: the surface of the solution
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Fig. 13 A computer vision problem. 40 x 40 grid points. HWENO-ZQ scheme. Left: contours of the solution;
right: the surface of the solution

Example 3.13 A problem from computer vision [31] is:

2 2 1 — _
¢+ 106, ) J1+¢2+¢7—1=0, -1 <x,y <1, (3.13)
¢(x,y,0) =0,
1

in which 1 =
in which 7(x. y) V1H+A=1x)2+(1—y])?

The steady-state solution of this problem is the shape lighted by a source located at infinity
with vertical direction. The solution is not unique if there are points at which 7 (x, y)=1 and
conditions should be given at those points [38]. The exact steady solution is ¢ (x, y, 00) =
(1—1x])(1—]y|). The numerical solution of the HWENO-ZQ scheme is plotted in Fig. 13. We
observe good resolutions of the new HWENO-ZQ scheme for this benchmark steady-state
problem.

together with ¢ = 0 as the boundary condition.

@ Springer



7 Page 18 of 21 Journal of Scientific Computing (2020) 83:7

0.585484 1.26225
0.520968
0456452
0391935
0.327419 ~°
0.262903
0.198387
0.133871
0.0693548)
0.00483871
-0.0596774
-0.1241
-0.18871
-0.253226 0.4 \ 7
0317742 0.732421

0.0855718 0.838047
0.0211441 0.796503
-0.0432836 0.754959
0107711 0.71341

-0.172139 0.67187

-0.236567 0.630327
-0.300994 0588783
-0.365422 0547239

042985 0.50569:
-0.494278 0.46415
0. 556735_ u.422$7
-0.6231 0.381383
-0.687561 0.339519
-0.751988 0, 0.29797%)

0.816416 0.256431

1.22831 1.50104
1.21575 1.49723
1.20319 1.49342
1.19063 1.48961
1.17807 1.48579
1.16552 1.48198
1.15296 1.47817
1.1404 1.47436
1.12784 1.47055
1.11528 1.46674
1.10272 1.46293
109018 1.4591%
1.0776 1.4553
1.06504 1.45149
1.05248 1.44768

Fig. 14 Propagating surface. 60 x 60 grid points. From left to right and top to bottom: contours of the solution
with ¢ = 0 at t=0, t=0.3, t=0.6, and t=0.9; contours of the solution with ¢ = 0.1 at t=0, t=0.1, t=0.3, and t=0.6.
HWENO-ZQ scheme

@ Springer



Journal of Scientific Computing (2020) 83:7 Page 19 of 21 7

t=0.6 t=0.3

t=0.3

)

=

=

e

—————

===

777
A1
=
A
===
==
===
ooy

==

e

=

e

————

===

————

=

——

—

==

==

=
=
= =
S
————

=

——

==
e
———

=

=

S
——

Fig. 15 Propagating surface. 60 x 60 grid points. Left: ¢ = 0; right: ¢ = 0.1. HWENO-ZQ scheme

Example 3.14 The problem of a propagating surface [24]:

¢ — (1 —eK) /¢ +¢7+1=0, 0<x,y <1,

(3.14)
o(x,y,00=1-— %(cos(an) — 1) (cos(2ry) — 1),

where K is the mean curvature defined by:

DL+ 0y)° = 2ypuhy + pyy (1 + ¢7)
(1 +¢7 + 902

K =

’

and ¢ is a small constant. A periodic boundary conditions are used in different directions,
respectively. The approximation of K is constructed by the methods similar to the first-
order derivative terms and three different second order derivatives of associated Hermite
reconstruction polynomials are needed. The results of ¢ = 0O (pure convection) and ¢ = 0.1
by HWENO-ZQ scheme are presented in Figs. 14 and 15, respectively. The surfaces att = 0
for ¢ = 0 and for ¢ = 0.1, and at r = 0.1 for ¢ = 0.1 are shifted downward in order to show
the detail of the solution at later time. It is observed that the new fifth-order HWENO-ZQ
scheme could get good resolutions for this example with different ¢ numbers.
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4 Concluding Remarks

In this paper, we design new finite difference HWENO schemes for simulating the Hamilton—
Jacobi equations in one and two dimensions on structured meshes. The constructions of such
HWENO schemes are based on new Hermite interpolation with a series of unequal-sized spa-
tial stencils and a third-order TVD Runge-Kutta time discretization method [34]. The original
idea of the spatial reconstructions for the HWENO schemes comes from [27-30]. In design-
ing such new HWENO schemes, the solution and its first derivatives are evolved and used in
the HWENO reconstructions and high-order linear reconstructions, respectively, in contrast
to the classical HWENO schemes [27-30,39,41] where only the HWENO reconstructions
are used. Comparing with all the other existing HWENO schemes et al. [27-30,39,41], the
major advantages of such new HWENO schemes are their simplicity, effectiveness, and could
fast converge to non-viscosity solutions.
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