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In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme 
with artificial linear weights is proposed for one and two dimensional hyperbolic 
conservation laws, where the zeroth-order and the first-order moments are used in the 
spatial reconstruction. We construct the HWENO methodology using a nonlinear convex 
combination of a high degree polynomial with several low degree polynomials, and the 
associated linear weights can be any artificial positive numbers with only requirement that 
their summation equals one. The one advantage of the HWENO scheme is its simplicity and 
easy extension to multi-dimension in engineering applications for we can use any artificial 
linear weights which are independent on geometry of mesh. The another advantage is 
its higher order numerical accuracy using less candidate stencils for two dimensional 
problems. In addition, the HWENO scheme still keeps the compactness as only immediate 
neighbor information is needed in the reconstruction and has high efficiency for directly 
using linear approximation in the smooth regions. In order to avoid nonphysical oscillations 
nearby strong shocks or contact discontinuities, we adopt the thought of limiter for 
discontinuous Galerkin method to control the spurious oscillations. Some benchmark 
numerical tests are performed to demonstrate the capability of the proposed scheme.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we develop a fifth order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial 
linear weights for one and two dimensional nonlinear hyperbolic conservation laws. The idea of HWENO scheme is similar 
to that of weighted essentially non-oscillatory (WENO) scheme which have been widely applied for computational dynamics 
fluids. In 1994, the first WENO scheme was proposed by Liu, Osher and Chan [25] mainly in terms of ENO scheme [19,17,18], 
in which they combined all candidate stencils by a nonlinear convex manner to obtain higher order accuracy in smooth 
regions, then, in 1996, Jiang and Shu [22] constructed the third and fifth-order finite difference WENO schemes in multi-
space dimension, where they gave a general definition for smoothness indicators and nonlinear weights. Since then, WENO 
schemes have been further developed in [21,26,37,6,46]. However, if we design a higher order accuracy WENO scheme, we 
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need to enlarge the stencil. In order to keep the compactness of the scheme, Qiu and Shu [31,32] gave a new option by 
evolving both with the solution and its derivative, which were termed as Hermite WENO (HWENO) schemes.

HWENO schemes would have higher order accuracy than WENO schemes with the same reconstructed stencils. As the 
solutions of nonlinear hyperbolic conservation laws often contain discontinuities, its derivatives or first order moments 
would be relatively large nearby discontinuities. Hence, the HWENO schemes presented in [31,32,45,39,29,43,40,11] used 
different stencils to discretize the space for the original and derivative equations, respectively. In one sense, these HWENO 
schemes can be seen as an extension by DG methods, and Dumbser et al. [13] gave a general and unified framework to 
define the numerical scheme extended by DG method, termed as P N P M method. But the derivatives or the first order mo-
ments were still used straightforwardly nearby the discontinuities, which would be less robust for problems with strong 
shocks. Such as the first HWENO schemes [31,32] failed to simulate the double Mach and the step forward problems, then, 
Zhu and Qiu [45] solved this problem by using a new procedure to reconstruct the derivative terms, while Cai et al. [11]
employed additional positivity-preserving manner. Overall, only using different stencils to discretize the space is not enough 
to overcome the effect of the derivatives or the first order moments near the discontinuities. Hence, we took the thought 
of limiter for discontinuous Galerkin (DG) method [10] to modify the first order moments nearby the discontinuities of the 
solution in [44], meanwhile, we also noticed that many hybrid WENO schemes [30,20,7,8,28,51] employed linear schemes 
directly in the smooth regions, while still used WENO schemes in the discontinuous regions, which can increase the effi-
ciency obviously, therefore, in [44], we directly used high order linear approximation in the smooth regions, while modified 
the first order moments on the troubled-cells and employed HWENO reconstruction on the interface. The methodology for 
the modification is similar to the priori finite volume WENO [33,2,50] and HWENO [31,32,24,52] limiters, while the poste-
riori limiter technique can refer to the Multidimensional Optimal Order Detection (MOOD) methods [9,14,15,3]. The hybrid 
HWENO scheme [44] had high efficiency and resolution with non-physical oscillations, but it still had a drawback of that 
the linear weights were dependent on geometry of the mesh and point where the reconstruction was performed, and they 
were not easy to be computed, especially for multi-dimensional problems with unstructured meshes. For example, in [44]
we needed to compute the linear weights at twelve points in one cell by a least square methodology with eight small 
stencils for two dimensional problems, in which the numerical accuracy was only the fourth order. Moreover, if we solve 
the problems for unstructured meshes, the linear weights would be more difficult to calculate, and the negative weights 
may appear or there is non-existence of the linear weights for some cases. In order to overcome the drawback, Zhu and Qiu 
[46] presented a new simple WENO scheme in the finite difference framework, which had a convex combination of a fourth 
degree polynomial and other two linear polynomials by using any artificial positive linear weights (the sum equals one). 
Then the method was extended to finite volume methods both in structured and unstructured meshes [5,47,12,48,49,4].

In this paper, following the idea of the new type WENO [46,5,47,12,48,49,4], hybrid WENO [30,20,7,8,28,51] and hybrid 
HWENO [44] schemes, we develop the new hybrid HWENO scheme in which we use a nonlinear convex combination of a 
high degree polynomial with several low degree polynomials and the linear weights can be any artificial positive numbers 
with the only constraint that their sum is one. The procedures of the new hybrid HWENO scheme are: firstly, we modify the 
first order moments using the new HWENO limiter methodology in the troubled-cells, which are identified by the KXRCF 
troubled-cell indicator [23]. Then, for the space discretization, if the cell is identified as a troubled-cell, we would use the 
new HWENO reconstruction at the points on the interface; otherwise we employ linear approximation at the interface 
points straightforwardly. And we directly use high order linear approximation at the internal points for all cells. Finally, 
the third order TVD Runge-Kutta method [38] is applied for the time discretization. Particularly, only the new HWENO 
reconstructions need to be performed on local characteristic directions for systems. In addition, the new hybrid HWENO 
scheme inherits the advantages of [44], such as non-physical oscillations for using the idea of limiter for discontinuous 
Galerkin (DG) method, high efficiency for employing linear approximation straightforwardly in the smooth regions, and 
compactness as only immediate neighbor information is needed, meanwhile, it gets smaller numerical errors on the same 
meshes and has higher order numerical accuracy for two dimensional problems.

The organization of the paper is as follows: in Section 2, we introduce the detailed implementation of the new hybrid 
HWENO scheme in the one and two dimensional cases. In Section 3, some benchmark numerical are performed to illustrate 
the numerical accuracy, efficiency, resolution and robustness of proposed scheme. Concluding remarks are given in Section 4.

2. Description of Hermite WENO scheme with artificial linear weights

In this section, we present the construction procedures of the hybrid HWENO scheme with artificial linear weights 
for one and two dimensional hyperbolic conservation laws, which is the fifth order accuracy both in the one and two 
dimensional cases.

2.1. One dimensional case

At first, we consider one dimensional scalar hyperbolic conservation laws{
ut + f (u)x = 0,

u(x,0) = u (x).
(2.1)
0
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The computing domain is divided by uniform meshes Ii = [xi−1/2, xi+1/2] for simplicity, and the mesh center xi is 
xi−1/2+xi+1/2

2 with the mesh size �x = xi+1/2 − xi−1/2.
As the variables of our designed HWENO scheme are the zeroth and first order moments, we multiply the governing 

equation (2.1) by 1
�x and x−xi

(�x)2 , respectively, then, integrate them over Ii , and apply the integration by parts, having⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

�x

∫
Ii

utdx = − 1

�x

[
f
(
u(xi+1/2, t)

) − f
(
u(xi+1/2, t)

)]
,

1

�x

∫
Ii

ut
x − xi

�x
dx = − 1

2�x

[
f
(
u(xi−1/2, t)

) + f
(
u(xi+1/2, t)

)] + 1

(�x)2

∫
Ii

f (u)dx.

Later, we exchange the space and the time derivatives, and employ the numerical flux to approximate the value of the flux 
at the interface, then, the semi-discrete finite volume HWENO scheme is⎧⎪⎪⎨

⎪⎪⎩
dui(t)

dt
= − 1

�x

(
f̂ i+1/2 − f̂ i−1/2

)
,

dvi(t)

dt
= − 1

2�x

(
f̂ i−1/2 + f̂ i+1/2

)
+ 1

�x
Fi(u),

(2.2)

where ui(t) is the zeroth order moment in Ii as 1
�x

∫
Ii

u(x, t)dx and vi(t) is the first order moment in Ii as 
1

�x

∫
Ii

u(x, t) x−xi
�x dx. The initial conditions are ui(0) = 1

�x

∫
Ii

u0(x)dx and vi(0) = 1
�x

∫
Ii

u0(x) x−xi
�x dx. Fi(u) is the integra 

average value for the flux f (u) over Ii as 1
�x

∫
Ii

f (u)dx. f̂ i+1/2 is the numerical flux to approximate the value of the flux 
f (u) at the interface point xi+1/2, which is defined by the Lax-Friedrichs numerical flux method, and the explicit expression 
is

f̂ i+1/2 = 1

2

(
f (u−

i+1/2) + f (u+
i+1/2)

)
− α

2

(
u+

i+1/2 − u−
i+1/2

)
,

in which α = maxu | f ′(u)|. Fi(u) is approximated by a four-point Gauss-Lobatto quadrature formula:

Fi(u) = 1

�x

∫
Ii

f (u)dx ≈
4∑

l=1

ωl f (u(xG
l , t)),

where the weights are ω1 = ω4 = 1
12 and ω2 = ω3 = 5

12 , and the quadrature points on the cell Ii are

xG
1 = xi−1/2, xG

2 = xi−√
5/10, xG

3 = xi+√
5/10, xG

4 = xi+1/2,

in which xi+a is xi + a�x.
Now, we first present the detailed procedures of the spatial reconstruction for HWENO scheme in Steps 1 and 2, then, 

we introduce the method of time discretization in Step 3.
Step 1. Identify the troubled-cell and modify the first order moment in the troubled-cell.
Troubled-cell means that the solution of the equation in the cell may be discontinuous, and in [34], Qiu and Shu in-

vestigated different troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods, then, we choose the KXRCF 
troubled-cell indicator [23] to identify the troubled-cell suggested by [34]. The construction of the KXRCF troubled-cell in-
dicator [23] was based on the strong super-convergence phenomena for the smooth DG solutions at outflow boundaries, 
which is desirable for hyperbolic conservation laws as it can balance the ability of capturing discontinuities and the effi-
ciency of the DG scheme well shown in [34], and its parameter Ck is insensitive usually taken as 1. Meanwhile, it would 
mark a lot more troubled cells than necessary for high-order DG methods, but it seems to mark the troubled cells appropri-
ately for our scheme shown in the numerical results as the degree of the polynomial uh used in the troubled-cell indicator 
is 2. Actually, the KXRCF troubled-cell indicator [23] is only a choice, other troubled-cell indicators are possible. Such as 
the relaxed Discrete Maximum Principle (RDMP) as the troubled-cell indicator for Multi-dimensional Optimal Order Detec-
tion (MOOD) method [3], the multi-wavelet troubled-cell indicator [41], the troubled-cell indication without PDE sensitive 
parameters [16], the artificial neural network troubled-cell indicator [35], and the flattener troubled-cell indicator [1] for 
Arbitrary-Lagrangian-Eulerian (ALE) P N P M scheme [2]. In addition, the explicit procedures for the KXRCF troubled-cell indi-
cator were given in the hybrid HWENO scheme [44], then, if the cell Ii is identified as a troubled cell, we would also mark 
its neighbors as troubled cells as [44], then, we modify the first order moment vi in the troubled cells by the following 
procedures.

We use the thought of HWENO limiter [31] to modify the first order moment, but the modification for the first order 
moment is based on a convex combination of a fourth degree polynomial with two linear polynomials. Firstly, we give a 
large stencil S0 = {Ii−1, Ii, Ii+1} and two small stencils S1 = {Ii−1, Ii}, S2 = {Ii, Ii+1}, then, we obtain a quartic polynomial 
p0(x) on S0, as
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1

�x

∫
Ii+ j

p0(x)dx = ui+ j, j = −1,0,1,
1

�x

∫
Ii+ j

p0(x)
x − xi+ j

�x
dx = vi+ j, j = −1,1,

and get two linear polynomials p1(x), p2(x) on S1, S2, respectively, satisfying

1

�x

∫
Ii+ j

p1(x)dx = ui+ j, j = −1,0,

1

�x

∫
Ii+ j

p2(x)dx = ui+ j, j = 0,1.

We use these three polynomials to reconstruct vi = 1
�x

∫
Ii

u(x) x−xi
�x dx, and their explicit results are

1

�x

∫
Ii

p0(x)
x − xi

�x
dx = 5

76
ui+1 − 5

76
ui−1 − 11

38
vi−1 − 11

38
vi+1,

1

�x

∫
Ii

p1(x)
x − xi

�x
dx = 1

12
ui − 1

12
ui−1,

1

�x

∫
Ii

p2(x)
x − xi

�x
dx = 1

12
ui+1 − 1

12
ui .

For simplicity, we define qn as 1
�x

∫
Ii

pn(x) x−xi
�x dx in the next procedures. With the similar idea of the central WENO schemes 

[26,27] and the new WENO schemes [46–49], we rewrite q0 as:

q0 = γ0

(
1

γ0
q0 − γ1

γ0
q1 − γ2

γ0
q2

)
+ γ1q1 + γ2q2. (2.3)

We can notice that equation (2.3) is always satisfied for any choice of γ0, γ1, γ2 with γ0 �= 0. To make the next WENO 
procedure be stable, the linear weights would be positive with γ0 +γ1 +γ2 = 1, then, we calculate the smoothness indicators 
βn to measure how smooth the functions pn(x) in the cell Ii , and we use the same definition as in [22],

βn =
r∑

α=1

∫
Ii

�x2α−1(
dα pn(x)

dxα
)2dx, n = 0,1,2, (2.4)

where r is the degree of the polynomials pn(x), then, the expressions for the smoothness indicators are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 =(
29

38
ui−1 − 29

38
ui+1 + 60

19
vi−1 + 60

19
vi+1)

2 + (
9

4
ui−1 − 9

2
ui + 9

4
ui+1 + 15

2
vi−1 − 15

2
vi+1)

2+
3905

1444
(ui−1 − ui+1 + 12vi−1 + 12vi+1)

2 + 1

12
(

5

2
ui−1 − 5ui + 5

2
ui+1 + 9vi−1 − 9vi+1)

2+
109341

448
(ui−1 − 2ui + ui+1 + vi−1 − vi+1)

2,

β1 =(ui − ui−1)
2,

β2 =(ui+1 − ui)
2.

Later, we use a new parameter τ to measure the absolute difference between β0, β1 and β2, which is also can be seen in 
these new WENO schemes [46–49],

τ = (
|β0 − β1| + |β0 − β2|

2
)2, (2.5)

and the nonlinear weights are defined as

ωn = ω̄n∑2
�=0 ω̄�

, with ω̄n = γn(1 + τ

βn + ε
), n = 0,1,2,

where ε = 10−6 is to avoid the denominator by zero. Finally, the first order moment vi is modified by

vi = ω0

(
1

γ0
q0 −

2∑ γn

γ0
qn

)
+

2∑
ωnqn.
n=1 n=1

Jianxian Qiu
打字机
6

Jianxian Qiu
打字机
6
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Notice that we just replace the linear weights in equation (2.3) by the nonlinear weights, and the accuracy of the modifica-
tion depends on the accuracy of the high degree reconstructed polynomial. The modification for the first order moment vi
would be the fifth order accuracy in the smooth regions, and more detailed derivation can refer to the literature [47].

Step 2. Reconstruct the values of the solutions u at the four Gauss-Lobatto points.
We use the same stencils S0, S1, S2 as Step 1, then, if the cell Ii is identified as a troubled cell, we would reconstruct 

u±
i∓1/2 using the HWENO methodology in Step 2.1; otherwise we directly reconstruct u±

i∓1/2 by the linear approximation 
method described in Step 2.2. And the reconstruction procedure for ui±√

5/10 is given in Step 2.3.

Step 2.1. The new HWENO reconstruction for u±
i∓1/2.

If the cell Ii is identified as a troubled cell, u±
i∓1/2 is reconstructed by the next HWENO procedure. For simplicity, we 

only present the detailed procedure of the reconstruction for u−
i+1/2, while the reconstruction for u+

i−1/2 is mirror symmetric 
with respect to xi . Notice that we have modified the first order moment in the troubled-cells, then, we would use these 
information here. We now reconstruct three polynomials p0(x), p1(x), p2(x) on S0, S1, S2, respectively, satisfying

1

�x

∫
Ii+ j

p0(x)dx = ui+ j,
1

�x

∫
Ii+ j

p0(x)
x − xi+ j

�x
dx = vi+ j, j = −1,0,1,

1

�x

∫
Ii+ j

p1(x)dx = ui+ j, j = −1,0,
1

�x

∫
Ii

p1(x)
x − xi

�x
dx = vi,

1

�x

∫
Ii+ j

p2(x)dx = ui+ j, j = 0,1,
1

�x

∫
Ii

p2(x)
x − xi

�x
dx = vi .

In terms of the above requirements, we first give the values of these polynomials at the point xi+1/2, following as

p0(xi+1/2) = 13

108
ui−1 + 7

12
ui + 8

27
ui+1 + 25

54
vi−1 + 241

54
vi − 28

27
vi+1,

p1(xi+1/2) = 1

6
ui−1 + 5

6
ui + 8vi,

p2(xi+1/2) = 5

6
ui + 1

6
ui+1 + 4vi .

Using the next new HWENO methodology, we can use any positive linear weights satisfying γ0 + γ1 + γ2 = 1, then, we 
compute the smoothness indicators βn in the same ways, and the formula of the smoothness indicators has been given in 
(2.4) of Step 1, then, their expressions are given as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 =(
19

108
ui−1 − 19

108
ui+1 + 31

54
vi−1 − 241

27
vi + 31

54
vi+1)

2 + (
9

4
ui−1 − 9

2
ui + 9

4
ui+1+

15

2
vi−1 − 15

2
vi+1)

2 + (
70

9
ui−1 − 70

9
ui+1 + 200

9
vi−1 + 1280

9
vi + 200

9
vi+1)

2+
1

12
(

5

2
ui−1 − 5ui + 5

2
ui+1 + 9vi−1 − 9vi+1)

2 + 1

12
(

175

18
ui−1 − 175

18
ui+1 + 277

9
vi−1+

1546

9
vi + 277

9
vi+1)

2 + 1

180
(

95

18
ui−1 − 95

18
ui+1 + 155

9
vi−1 + 830

9
vi + 155

9
vi+1)

2+
109341

175
(

5

8
ui−1 − 5

4
ui + 5

8
ui+1 + 15

4
vi−1 − 15

4
vi+1)

2 + 27553933

1764
(

35

36
ui−1 − 35

36
ui+1+

77

18
vi−1 + 133

9
vi + 77

18
vi+1)

2,

β1 =144v2
i + 13

3
(ui−1 − ui + 12vi)

2,

β2 =144v2
i + 13

3
(ui − ui+1 + 12vi)

2.

We bring the same parameter τ to define the absolute difference between β0, β1 and β2, and the formula is given in (2.5), 
then, the nonlinear weights are computed as

ωn = ω̄n∑2
�=0 ω̄�

, with ω̄n = γn(1 + τ

βn + ε
), n = 0,1,2.

Here, ε is a small positive number taken as 10−6. Finally, the value of u− is reconstructed by
i+1/2
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u−
i+1/2 = ω0

(
1

γ0
p0(xi+1/2) −

2∑
n=1

γn

γ0
pn(xi+1/2)

)
+

2∑
n=1

ωn pn(xi+1/2).

Step 2.2. The linear approximation for u∓
i±1/2.

If the cell Ii is not a troubled cell, we will use the linear approximation for u∓
i±1/2, which means we only need to use 

the high degree polynomial p0(x) obtained in Step 2.1, then, we have

u+
i−1/2 = p0(xi−1/2) = 8

27
ui−1 + 7

12
ui + 13

108
ui+1 + 28

27
vi−1 − 241

54
vi − 25

54
vi+1,

and

u−
i+1/2 = p0(xi+1/2) = 13

108
ui−1 + 7

12
ui + 8

27
ui+1 + 25

54
vi−1 + 241

54
vi − 28

27
vi+1.

Step 2.3. The linear approximation for ui±√
5/10.

We would reconstruct ui±√
5/10 using the linear approximation for all cells, then, ui±√

5/10 are approximated by

ui−√
5/10 = p0(xi−√

5/10) = −(
101

5400

√
5 + 1

24
)ui−1 + 13

12
ui + (

101

5400

√
5 − 1

24
)ui+1−

(
3

20
+ 841

13500

√
5)vi−1 − 10289

6750

√
5vi + (

3

20
− 841

13500

√
5)vi+1,

and

ui+√
5/10 = p0(xi+√

5/10) = (
101

5400

√
5 − 1

24
)ui−1 + 13

12
ui − (

101

5400

√
5 + 1

24
)ui+1+

(
841

13500

√
5 − 3

20
)vi−1 + 10289

6750

√
5vi + (

3

20
+ 841

13500

√
5)vi+1.

Step 3. Discretize the semi-discrete scheme (2.2) in time by the third order TVD Runge-Kutta method [38]

⎧⎨
⎩

u(1) = un + �tL(un),

u(2) = 3
4 un + 1

4 u(1) + 1
4 �tL(u(1)),

u(n+1) = 1
3 un + 2

3 u(2) + 2
3 �tL(u(2)).

(2.6)

Remark 1. The KXRCF troubled-cell indicator can catch the discontinuities well. For one dimensional scalar equation, the 
solution u is defined as the indicator variable, then −→v is f ′(u). For one dimensional Euler equations, the density ρ and the 
energy E are set as the indicator variables, respectively, then −→v is the velocity μ of the fluid.

Remark 2. For the systems, such as the one dimensional compressible Euler equations, all HWENO procedures are per-
formed on the local characteristic directions to avoid the oscillations nearby discontinuities, while the linear approximation 
procedures are computed in each component straightforwardly.

2.2. Two dimensional case

We first consider two dimensional scalar hyperbolic conservation laws

{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y),
(2.7)

then, we divide the computing domain by uniform meshes Ii, j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] for simplicity. The mesh 
sizes are �x = xi+1/2 − xi−1/2 in the x direction and �y = y j+1/2 − y j−1/2 in the y direction. The cell center (xi, y j) is 
(

xi−1/2+xi+1/2
2 , y j−1/2+y j+1/2

2 ). xi + a�x is simplified as xi+a and y j + b�y is set as y j+b .
Since the variables of the HWENO scheme are the zeroth and first order moments, we multiply the governing equation 

(2.7) by 1
�x�y , x−xi

(�x)2�y
and y−y j

�x(�y)2 on both sides, respectively, then, we integrate them over Ii, j and apply the integration 
by parts, having
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�x�y

∫
Ii, j

utdxdy = − 1

�x�y

y j+1/2∫
y j−1/2

[
f
(
u(xi+1/2, y, t)

) − f
(
u(xi−1/2, y, t)

)]
dy

− 1

�x�y

xi+1/2∫
xi−1/2

[
g
(
u(x, y j+1/2, t)

) − g
(
u(x, y j−1/2, t)

)]
dx,

1

�x�y

∫
Ii, j

ut
x − xi

�x
dxdy = − 1

2�x�y

y j+1/2∫
y j−1/2

[
f
(
u(xi−1/2, y, t)

) + f
(
u(xi+1/2, y, t)

)]
dy

+ 1

(�x)2�y

∫
Ii, j

f (u)dxdy − 1

�x�y

xi+1/2∫
xi−1/2

[
g
(
u(x, y j+1/2, t)

) − g
(
u(x, y j−1/2, t)

)] (x − xi)

�x
dx,

1

�x�y

∫
Ii, j

ut
y − y j

�y
dxdy = − 1

�x�y

y j+1/2∫
y j−1/2

[
f
(
u(xi+1/2, y, t)

) − f
(
u(xi−1/2, y, t)

)] (y − y j)

�y
dy

− 1

2�x�y

xi+1/2∫
xi−1/2

[
g
(
u(x, y j−1/2, t)

) + g
(
u(x, y j+1/2, t)

)]
dx + 1

�x(�y)2

∫
Ii, j

g(u)dxdy.

Next, we exchange the space and the time derivatives, and approximate the values of the fluxes at the points on the 
interface of Ii, j by the numerical fluxes, then, the semi-discrete finite volume HWENO scheme is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui, j(t)

dt
= − 1

�x�y

y j+1/2∫
y j−1/2

[
f̂
(
u(xi+1/2, y)

) − f̂
(
u(xi−1/2, y)

)]
dy

− 1

�x�y

xi+1/2∫
xi−1/2

[
ĝ
(
u(x, y j+1/2)

) − ĝ
(
u(x, y j−1/2)

)]
dx,

dvi, j(t)

dt
= − 1

2�x�y

y j+1/2∫
y j−1/2

[
f̂
(
u(xi−1/2, y)

) + f̂
(
u(xi+1/2, y)

)]
dy + 1

�x
Fi, j(u)

− 1

�x�y

xi+1/2∫
xi−1/2

[
ĝ
(
u(x, y j+1/2)

) − ĝ
(
u(x, y j−1/2)

)] (x − xi)

�x
dx,

dwi, j(t)

dt
= − 1

�x�y

y j+1/2∫
y j−1/2

[
f̂
(
u(xi+1/2, y)

) − f̂
(
u(xi−1/2, y)

)] (y − y j)

�y
dy

− 1

2�x�y

xi+1/2∫
xi−1/2

[
ĝ
(
u(x, y j−1/2)

) + ĝ
(
u(x, y j+1/2)

)]
dx + 1

�y
Gi, j(u).

(2.8)

Here, ui, j(t) is the zeroth order moment defined as 1
�x�y

∫
Ii, j

u(x, y, t)dxdy; vi, j(t) and wi, j(t) are the first order moments 

in the x and y directions taken as 1
�x�y

∫
Ii, j

u(x, y, t) x−xi
�x dxdy and 1

�x�y

∫
Ii, j

u(x, y, t) y−y j
�y dxdy, respectively. The initial con-

ditions are ui, j(0) = 1
�x�y

∫
Ii, j

u0(x, y)dxdy, vi, j(0) = 1
�x�y

∫
Ii, j

u0(x, y)
x−xi
�x dxdy and wi, j(0) = 1

�x�y

∫
Ii, j

u0(x, y)
y−y j
�y dxdy. 

Fi, j(u) and Gi, j(u) are the integra average values for the fluxes f (u) and g(u) over Ii, j as 1
�x�y

∫
Ii, j

f (u)dxdy and 
1

�x�y

∫
Ii, j

g(u)dxdy, respectively. f̂
(
u(xi+1/2, y)

)
and ĝ

(
u(x, y j+1/2)

)
are the numerical fluxes to approximate the values 

of f
(
u(xi+1/2, y, t)

)
and g

(
u(x, y j+1/2, t)

)
, respectively.
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Fig. 2.1. The big stencil S0 and its new labels.

Now, we approximate the integral terms of equations (2.8) by 3-point Gaussian numerical integration. For example,

Fi, j(u) = 1

�x�y

∫
Ii, j

f (u)dxdy ≈
3∑

k=1

3∑
l=1

ωkωl f (u(xGk , yGl )),

y j+1/2∫
y j−1/2

f̂ (u(xi+1/2, y))dy ≈ �y
3∑

k=1

ωk f̂ (u(xi+1/2, yGk )),

in which ω1 = 5
18 , ω2 = 4

9 and ω3 = 5
18 are the quadrature weights, and the coordinates of the Gaussian points are

xG1 = x
i−

√
15

10
, xG2 = xi, xG3 = x

i+
√

15
10

; yG1 = y
j−

√
15

10
, yG2 = y j, yG3 = y

j+
√

15
10

.

The numerical fluxes at the interface points in each directions are approximated by the Lax-Friedrichs method:

f̂ (u(Gb)) = 1

2
[ f (u−(Gb)) + f (u+(Gb))] − α

2
(u+(Gb) − u−(Gb)),

and

ĝ(u(Gb)) = 1

2
[g(u−(Gb)) + g(u+(Gb))] − β

2
(u+(Gb) − u−(Gb)).

Here, α = maxu | f ′(u)|, β = maxu |g′(u)|, and Gb is the Gaussian point on the interface of the cell Ii, j .
Now, we first present the detailed spatial reconstruction for the semi-discrete scheme (2.8) in Steps 4 and 5, then, we 

introduce the methodology of time discretization in Step 6.
Step 4. Identify the troubled-cell and modify the first order moments in the troubled-cell.
We also use the KXRCF troubled-cell indicator [23] to identify the discontinuities, and the detailed implementation 

procedures for two dimensional problems had been introduced in the hybrid HWENO scheme [44].
If the cell Ii, j is identified as a troubled cell, we would mark its neighbor cells as troubled cells too as [44], then, we 

modify the first order moments in the troubled cells as following description. We can modify the first order moments 
employing dimensional by dimensional manner. For example, we use these information ui−1, j , ui, j , ui+1, j , vi−1, j , vi+1, j
to modify vi, j , but employ ui, j−1, ui, j , ui, j+1, wi, j−1, wi, j+1 to reconstruct wi, j , and the procedures are the same as one 
dimensional case.

Step 5. Reconstruct the point values of the solutions u at the Gaussian points.
Based on the formula of the semi-discrete scheme (2.8), it means that we need to reconstruct the point values of 

u±(xi∓1/2, yG1,2,3), u±(xG1,2,3 , y j∓1/2) and u(xG1,2,3 , yG1,2,3) in the cell Ii, j . If the cell Ii, j is identified as a troubled cell 
in Step 4, we would reconstruct the points values of solutions u at the interface points of the cell Ii, j by the HWENO 
methodology in Step 5.1; otherwise we directly use linear approximation at these interface points in Step 5.2. And we 
employ linear approximation straightforwardly for internal reconstructed points introduced in Step 5.3.

Step 5.1. Reconstruct the point values of the solutions u at the interface points by a new HWENO methodology.
If the cell Ii, j is identified as a troubled cell, the points values of solutions u at the interface points of the 

cell Ii, j are reconstructed by the next new HWENO methodology. We first give the big stencil S0 in Fig. 2.1, and 
we rebel the cell Ii, j and its neighboring cells as I1, ..., I9 for simplicity. Particularly, the new label of the cell Ii, j

is I5. In the next procedures, we take Gk to represent the specific points where we want to reconstruct. We also 
give four small stencils S1, ..., S4 shown in Fig. 2.2. Notice that we only use five candidate stencils, but the hy-
brid HWENO scheme [44] needed to use eight small stencils. Now, we construct a quartic reconstruction polynomial 
p0(x, y) ∈ span{1, x, y, x2, xy, y2, x3, x2 y, xy2, y3, x4, x3 y, x2 y2, xy3, y4} on the big stencil S0 and four quadratic polynomials 
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Fig. 2.2. The four small stencils and these respective labels. From left to right and bottom to top are the stencils: S1, ..., S4.

p1(x, y), ..., p4(x, y) ∈ span{1, x, y, x2, xy, y2} on the four small stencils S1, ..., S4, respectively. These polynomials satisfy the 
following conditions:

1
�x�y

∫
Ik

pn(x, y)dxdy = uk,

1
�x�y

∫
Ikx

pn(x, y)
(x−xkx )

�x dxdy = vkx ,
1

�x�y

∫
Iky

pn(x, y)
(y−yky )

�y dxdy = wky ,

for

n = 0, k = 1, ...,9, kx = ky = 2,4,5,6,8;
n = 1, k = 1,2,4,5, kx = ky = 5; n = 2, k = 2,3,5,6, kx = ky = 5;
n = 3, k = 4,5,7,8, kx = ky = 5; n = 4, k = 5,6,8,9, kx = ky = 5.

For the quartic polynomial p0(x, y), we can obtain it by requiring that it matches the zeroth order moments on the cell 
I1, ..., I9, the first order moments on the cell I5 and others are in a least square sense [21]. For the four quadratic polynomi-
als, we can directly obtain the expressions of pn(x, y) (n = 1, ..., 4) by the above corresponding requirements, respectively.

Similarly as in the one dimensional case, the new HWENO method can use any artificial positive linear weights (the 
sum equals 1), while the hybrid HWENO scheme [44] needed to calculate the linear weights for 12 points using 8 small 
stencils determined by a least square methodology, and the linear weights were not easy to be obtained especially for high 
dimensional problems or unstructured meshes. In addition, it only had the fourth order accuracy in two dimension, but 
the new HWENO methodology can achieve the fifth order numerical accuracy. Next, to measure how smooth the function 
pn(x, y) in the target cell Ii, j , we compute the smoothness indicators βn as the same way listed by [21], following as

βn =
r∑

|l|=1

|Ii, j||l|−1
∫

Ii, j

(
∂ |l|

∂xl1∂ yl2
pn(x, y)

)2

dxdy, n = 0, ...,4, (2.9)

where l = (l1, l2), |l| = l1 + l2 and r is the degree of pn(x, y). Similarly, we bring a new parameter τ to define the overall 
difference between βl , l = 0, ..., 4 as

τ =
( |β0 − β1| + |β0 − β2| + |β0 − β3| + |β0 − β4|

4

)2

, (2.10)

then, the nonlinear weights are defined as

ωn = ω̄n∑4
�=0 ω̄�

, with ω̄n = γn(1 + τ

βn + ε
), n = 0, ...,4, (2.11)

in which ε is taken as 10−6. The final reconstruction of the solutions u at the interface point Gk is

u∗(Gk) = ω0

(
1

γ0
p0(Gk) −

4∑ γn

γ0
pn(Gk)

)
+

4∑
ωn pn(Gk),
n=1 n=1
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where “∗” is “+” when Gk is located on the left or bottom interface of the cell Ii, j , while “∗” is “−” on the right or top 
interface of Ii, j .

Step 5.2. Reconstruct the point values of the solutions u at the interface points using linear approximation.
If the cell Ii, j is not identified as a troubled cell, the point value of the solution u at the interface point Gk is directly 

approximated by p0(Gk), and we use the same polynomial p0(x, y) given in Step 5.1.
Step 5.3. Reconstruct the point values of the solutions u at the internal points by linear approximation straightforwardly.
We would use linear approximation for the point values of the solutions u at the internal points in all cells, then, we 

directly employ the same quartic polynomial p0(x, y) obtained in Step 5.1 to approximate these point values.
Step 6. Discretize the semi-discrete scheme (2.8) in time by the third order TVD Runge-Kutta method [38].
The semi-discrete scheme (2.8) is discretized by the third order TVD Runge-Kutta method in time, and the formula is 

given in (2.6) for the one dimensional case.

Remark 3. The KXRCF indicator is suitable for two dimensional hyperbolic conservation laws. For two dimensional scalar 
equation, the solution u is the indicator variable. −→v is set as f ′(u) in the x direction, while it is taken as g′(u) in the 
y direction. For two dimensional Euler equations, the density ρ and the energy E are defined as the indicator variables, 
respectively. −→v is the velocity μ in the x direction of the fluid, while it is the velocity ν in the y direction.

Remark 4. For the systems, such as the two dimensional compressible Euler equations, all HWENO reconstruction proce-
dures are performed on the local characteristic decompositions, while linear approximation procedures are performed on 
component by component.

3. Numerical tests

In this section, we present the numerical results of the new hybrid HWENO scheme which is described in Section 2. 
In order to fully assess the influence of the modification of the first order moment upon accuracy, all cells are marked as 
troubled-cells in Step 1 and Step 4 for one and two dimensional cases, respectively, and we denote this method as New 
HWENO scheme. We also denote HWENO scheme and the hybrid HWENO scheme which are presented in [44]. In addition, 
we present the numerical results of the classical fifth order WENO schemes in the accuracy tests for comparison, and the 
schemes were introduced in [22] and [36] for one and two dimensional problems, respectively. The CFL number is set as 
0.6 expect for the hybrid HWENO scheme in the two dimensional non-smooth tests.

3.1. Accuracy tests

We will present the results of HWENO, New HWENO, Hybrid HWENO, New hybrid HWENO and WENO schemes in the 
one and two dimensional accuracy tests. In addition, to evaluate whether the choice of the linear weights would affect the 
order of the new HWENO methodology or not, we use random positive linear weights (the sum equals one) at each time 
step for New HWENO and New hybrid HWENO schemes. Moreover, to survey the effect of the mesh for the accuracy, we 
would also present the numerical results of New HWENO scheme on non-uniform meshes in one dimensional accuracy tests 
for simplicity, and the non-uniform meshes are obtained by making the interface points of the uniform meshes to move 
0-20% length randomly.

Example 3.1. We solve the following scalar Burgers’ equation:

ut + (
u2

2
)x = 0, 0 < x < 2. (3.1)

The initial condition is u(x, 0) = 0.5 + sin(πx) with periodic boundary condition. The computing time is t = 0.5/π , in which 
the solution is still smooth. We give the numerical errors and orders in Table 3.1 with N uniform meshes for HWENO, 
New HWENO, Hybrid HWENO, New hybrid HWENO and WENO schemes. At first, we know that Hybrid HWENO and New 
hybrid HWENO schemes have same results for there are not cells which are identified as troubled-cells, therefore, they 
both directly use linear approximation for the spatial reconstruction. Although these HWENO and WENO schemes all have 
the designed fifth order accuracy, HWENO schemes have smaller numerical errors than WENO scheme starting with 80 
cells, and the hybrid schemes have better numerical performances with smaller numerical errors than the corresponding 
HWENO schemes, meanwhile, we can see that New HWENO scheme has smaller numerical errors than HWENO scheme 
starting with 80 cells, which illustrates the new HWENO methodology has better numerical performance than the original 
HWENO method. In addition, the choice of the linear weights would not affect the order of the new HWENO methodology. 
We also find New HWENO scheme has the fifth order accuracy on the non-uniform meshes, which illustrates the new 
HWENO methodology is not particularly dependent on the meshes, and we don’t need to calculate the linear weights in 
this case. Finally, we show numerical errors against CPU times by these HWENO and WENO schemes on the uniform meshes 
in Fig. 3.1, which shows two hybrid HWENO schemes have much higher efficiency than other HWENO schemes, and New 
HWENO scheme also has higher efficiency than HWENO scheme. New hybrid HWENO scheme also has higher efficiency 
than WENO scheme with smaller numerical errors and less computational time.
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Table 3.1
1D-Burgers’ equation: initial data u(x, 0) = 0.5 + sin(πx). HWENO and WENO schemes. T = 0.5/π . L1 and L∞ errors 
and orders.

Uniform 
meshes

HWENO scheme New HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

40 4.23E-05 5.25E-04 6.42E-04 6.89E-03
80 1.24E-06 5.09 1.70E-05 4.95 4.20E-07 10.58 4.91E-06 10.45
120 1.72E-07 4.88 2.08E-06 5.17 3.97E-08 5.82 6.04E-07 5.17
160 4.26E-08 4.85 4.84E-07 5.08 8.83E-09 5.23 1.40E-07 5.08
200 1.34E-08 5.17 1.72E-07 4.64 2.80E-09 5.15 4.47E-08 5.12
240 5.21E-09 5.20 7.22E-08 4.76 1.10E-09 5.14 1.75E-08 5.16

Uniform 
meshes

Hybrid HWENO scheme New Hybrid HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

40 8.51E-07 1.14E-05 8.51E-07 1.14E-05
80 1.46E-08 5.87 2.26E-07 5.65 1.46E-08 5.87 2.26E-07 5.65
120 1.39E-09 5.80 2.04E-08 5.94 1.39E-09 5.80 2.04E-08 5.94
160 2.66E-10 5.75 3.59E-09 6.03 2.66E-10 5.75 3.59E-09 6.03
200 7.46E-11 5.70 9.58E-10 5.92 7.46E-11 5.70 9.58E-10 5.92
240 2.68E-11 5.62 3.27E-10 5.90 2.68E-11 5.62 3.27E-10 5.90

Uniform 
meshes

WENO scheme

L1 error Order L∞ error Order

40 1.24E-04 1.04E-03
80 4.42E-06 4.82 4.73E-05 4.46
120 6.52E-07 4.72 6.06E-06 5.07
160 1.64E-07 4.79 1.39E-06 5.12
200 5.43E-08 4.96 6.25E-07 3.58
240 2.15E-08 5.09 3.00E-07 4.02

Non-uniform 
meshes

New HWENO scheme

L1 error Order L∞ error Order

40 5.95E-04 5.42E-03
80 5.33E-07 10.13 5.12E-06 10.05
120 4.62E-08 6.03 7.71E-07 4.67
160 9.41E-09 5.53 1.79E-07 5.07
200 3.17E-09 4.88 5.33E-08 5.43
240 1.17E-09 5.46 2.39E-08 4.40

Fig. 3.1. 1D-Burgers’ equation: initial data u(x, 0) = 0.5 + sin(πx). T = 0.5/π . Computing times and errors. Triangle signs and a green solid line: the results 
of HWENO scheme; circle signs and a black solid line: the results of New HWENO scheme; plus signs and a blue solid line: the results of Hybrid HWENO 
scheme; rectangle signs and a red solid line: the results of New hybrid HWENO scheme; “w” signs and a purple line: the results of WENO scheme. Uniform 
meshes. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Table 3.2
1D-Euler equations: initial data ρ(x, 0) = 1 + 0.2 sin(πx), μ(x, 0) = 1 and p(x, 0) = 1. HWENO and WENO schemes. 
T = 2. L1 and L∞ errors and orders.

Uniform 
meshes

HWENO scheme New HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

40 4.00E-06 8.18E-06 9.09E-07 4.85E-06
80 1.22E-07 5.04 2.43E-07 5.08 7.89E-09 6.85 3.76E-08 7.01
120 1.59E-08 5.03 3.05E-08 5.11 1.04E-09 5.01 2.44E-09 6.75
160 3.73E-09 5.03 6.71E-09 5.26 2.46E-10 5.00 4.54E-10 5.84
200 1.21E-09 5.04 2.12E-09 5.17 8.05E-11 5.00 1.37E-10 5.37
240 4.82E-10 5.06 8.35E-10 5.10 3.23E-11 5.00 5.25E-11 5.26

Uniform 
meshes

Hybrid HWENO scheme New hybrid HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

40 1.02E-09 1.60E-09 1.02E-09 1.60E-09
80 3.10E-11 5.05 4.86E-11 5.04 3.10E-11 5.05 4.86E-11 5.04
120 4.06E-12 5.01 6.37E-12 5.01 4.06E-12 5.01 6.37E-12 5.01
160 9.61E-13 5.01 1.51E-12 5.01 9.61E-13 5.01 1.51E-12 5.01
200 3.15E-13 5.00 4.94E-13 5.00 3.15E-13 5.00 4.94E-13 5.00
240 1.26E-13 5.00 1.98E-13 5.00 1.26E-13 5.00 1.98E-13 5.00

Uniform 
meshes

WENO scheme

L1 error Order L∞ error Order

40 2.04E-05 3.72E-05
80 6.45E-07 4.98 1.21E-06 4.94
120 8.49E-08 5.00 1.58E-07 5.03
160 2.01E-08 5.01 3.67E-08 5.07
200 6.55E-09 5.02 1.16E-08 5.17
240 2.61E-09 5.04 4.46E-09 5.25

Non-uniform 
meshes

HWENO scheme

L1 error Order L∞ error Order

40 9.70E-07 5.21E-06
80 7.95E-09 6.93 2.80E-08 7.54
120 1.05E-09 5.00 2.14E-09 6.35
160 2.49E-10 4.99 4.22E-10 5.64
200 8.01E-11 5.09 1.33E-10 5.18
240 3.33E-11 4.81 5.33E-11 5.01

Example 3.2. One dimensional Euler equations:

∂

∂t

⎛
⎝ ρ

ρμ
E

⎞
⎠ + ∂

∂x

⎛
⎝ ρμ

ρμ2 + p
μ(E + p)

⎞
⎠ = 0, (3.2)

where ρ is density, μ is velocity, E is total energy and p is pressure. The initial conditions are ρ(x, 0) = 1 + 0.2 sin(πx), 
μ(x, 0) = 1, p(x, 0) = 1 and γ = 1.4 with periodic boundary condition. The computing domain is x ∈ [0, 2π ]. The exact 
solution is ρ(x, t) = 1 + 0.2 sin(π(x − t)), μ(x, 0) = 1, p(x, 0) = 1, and the computing time is up to T = 2. We present 
the numerical errors and orders of the density for the HWENO and WENO schemes in Table 3.2, then, we first can see 
these HWENO and WENO schemes achieve the fifth order accuracy, but HWENO schemes have smaller numerical errors 
with more compact spatial stencil, and two hybrid HWENO schemes have same performances as they both directly use 
linear approximation for the spatial reconstruction, meanwhile, the hybrid schemes have smaller numerical errors than 
the corresponding HWENO schemes. In addition, New HWENO scheme has smaller numerical errors than HWENO scheme, 
which shows the new HWENO methodology has better performance than the original HWENO method, and random positive 
linear weights at each time step would not affect the order accuracy of New HWENO scheme. We also can see New HWENO 
scheme has the fifth order accuracy on the non-uniform meshes, and any random positive linear weights (the sum equals 
one) can be used, while the HWENO scheme [44] must calculate the linear weights in advance, and the linear weights 
wouldn’t be easily obtained especially for the non-uniform meshes. Finally, we give the numerical errors against CPU times 
by these HWENO and WENO schemes on the uniform meshes in Fig. 3.2, which shows Hybrid HWENO schemes have 
much higher efficiency with smaller numerical errors and less CPU times than other HWENO schemes, and we can see 
New HWENO scheme has higher efficiency with smaller errors than HWENO scheme. In addition, all HWENO schemes have 
higher efficiency than WENO scheme with smaller numerical errors.
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Fig. 3.2. 1D-Euler equations: initial data ρ(x, 0) = 1 + 0.2 sin(πx), μ(x, 0) = 1 and p(x, 0) = 1. T = 2. Computing times and errors. Triangle signs and a 
green solid line: the results of HWENO scheme; circle signs and a black solid line: the results of New HWENO scheme; plus signs and a blue solid line: the 
results of Hybrid HWENO scheme; rectangle signs and a red solid line: the results of New hybrid HWENO scheme; “w” signs and a purple line: the results 
of WENO scheme. Uniform meshes.

Table 3.3
2D-Burgers’ equation: initial data u(x, y, 0) = 0.5 + sin(π(x + y)/2). HWENO and WENO schemes. T = 0.5/π . L1 and 
L∞ errors and orders. Uniform meshes with Nx × N y cells.

Nx × N y

cells
HWENO scheme New HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

40 × 40 8.21E-05 7.02E-04 1.28E-04 1.10E-03
80 × 80 4.67E-06 4.14 4.42E-05 3.99 2.86E-07 8.81 2.25E-06 8.94
120 × 120 8.70E-07 4.15 7.76E-06 4.29 2.52E-08 5.99 3.04E-07 4.95
160 × 160 2.66E-07 4.13 2.26E-06 4.29 5.60E-09 5.22 7.19E-08 5.00
200 × 200 1.06E-07 4.12 8.73E-07 4.26 1.79E-09 5.12 2.39E-08 4.95
240 × 240 5.02E-08 4.09 4.04E-07 4.23 7.12E-10 5.05 9.53E-09 5.03

Nx × N y

cells
Hybrid HWENO scheme New Hybrid HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

40 × 40 7.03E-05 6.32E-04 2.70E-06 2.49E-05
80 × 80 3.93E-06 4.16 4.28E-05 3.88 5.01E-08 5.75 8.91E-07 4.81
120 × 120 7.27E-07 4.16 7.61E-06 4.26 4.15E-09 6.14 7.81E-08 6.00
160 × 160 2.18E-07 4.19 2.30E-06 4.16 7.00E-10 6.18 1.27E-08 6.32
200 × 200 8.61E-08 4.16 8.95E-07 4.23 1.94E-10 5.74 3.26E-09 6.09
240 × 240 4.05E-08 4.14 4.18E-07 4.18 7.65E-11 5.12 1.17E-09 5.63

Nx × N y

cells
WENO scheme

L1 error Order L∞ error Order

40 × 40 8.21E-05 6.74E-04
80 × 80 4.06E-06 4.34 3.91E-05 4.11
120 × 120 6.29E-07 4.60 5.67E-06 4.76
160 × 160 1.66E-07 4.64 1.42E-06 4.81
200 × 200 5.64E-08 4.82 4.96E-07 4.71
240 × 240 2.27E-08 4.99 2.23E-07 4.40

Example 3.3. Two dimensional Burgers’ equation:

ut + (
u2

2
)x + (

u2

2
)y = 0, 0 < x < 4, 0 < y < 4. (3.3)

The initial condition is u(x, y, 0) = 0.5 + sin(π(x + y)/2) and periodic boundary conditions are applied in each direction. 
We compute the solution up to T = 0.5/π , where the solution is smooth, and we present the numerical errors and orders 
of HWENO and WENO schemes in Table 3.3, which illustrates that New HWENO, New hybrid HWENO and WENO schemes 
have the fifth order accuracy, and the HWENO and hybrid HWENO schemes only have the fourth order accuracy, but all 
HWENO schemes are more compact for only using the immediate neighbor information. We also can see that different 
choice of the linear weights has no influence on the numerical accuracy for the new HWENO methodology. In addition, 
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Fig. 3.3. 2D-Burgers’ equation: initial data u(x, y, 0) = 0.5 + sin(π(x + y)/2). T = 0.5/π . Computing times and errors. Triangle signs and a green solid line: 
the results of HWENO scheme; circle signs and a black solid line: the results of New HWENO scheme; plus signs and a blue solid line: the results of Hybrid 
HWENO scheme; rectangle signs and a red solid line: the results of New hybrid HWENO scheme; “w” signs and a purple line: the results of WENO scheme. 
Uniform meshes.

Table 3.4
2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), μ(x, y, 0) = 1, ν(x, y, 0) = 1 and p(x, y, 0) = 1. 
HWENO and WENO schemes. T = 2. L1 and L∞ errors and orders. Uniform meshes with Nx × N y cells.

Nx × N y

cells
HWENO scheme New HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

30 × 30 8.85E-05 1.63E-04 6.78E-06 2.86E-05
60 × 60 4.39E-06 4.33 7.09E-06 4.52 6.64E-08 6.67 2.71E-07 6.72
90 × 90 8.08E-07 4.17 1.29E-06 4.20 8.73E-09 5.00 2.04E-08 6.38
120 × 120 2.48E-07 4.11 3.95E-07 4.11 2.07E-09 5.00 3.88E-09 5.77
150 × 150 1.00E-07 4.07 1.59E-07 4.07 6.78E-10 5.00 1.14E-09 5.48
180 × 180 4.77E-08 4.05 7.59E-08 4.05 2.72E-10 5.00 4.44E-10 5.18

Nx × N y

cells
Hybrid HWENO scheme New hybrid HWENO scheme

L1 error Order L∞ error Order L1 error Order L∞ error Order

30 × 30 2.37E-05 3.72E-05 3.11E-07 4.87E-07
60 × 60 7.76E-07 4.93 1.22E-06 4.93 4.55E-09 6.09 7.14E-09 6.09
90 × 90 1.07E-07 4.89 1.68E-07 4.89 3.95E-10 6.03 6.20E-10 6.03
120 × 120 2.67E-08 4.82 4.20E-08 4.82 7.01E-11 6.01 1.10E-10 6.00
150 × 150 9.27E-09 4.75 1.46E-08 4.75 1.84E-11 5.99 3.00E-11 5.84
180 × 180 3.95E-09 4.68 6.21E-09 4.67 6.19E-12 5.98 9.71E-12 5.98

Nx × N y

cells
WENO scheme

L1 error Order L∞ error Order

30 × 30 2.45E-05 4.70E-05
60 × 60 5.57E-07 5.46 1.40E-06 5.07
90 × 90 6.29E-08 5.38 1.76E-07 5.11
120 × 120 1.38E-08 5.26 3.79E-08 5.34
150 × 150 4.31E-09 5.23 1.09E-08 5.58
180 × 180 1.68E-09 5.16 3.77E-09 5.83

we present the numerical errors against CPU times by these HWENO and WENO schemes in Fig. 3.3, which illustrates New 
hybrid HWENO scheme has higher efficiency than Hybrid HWENO scheme with smaller numerical errors and higher order 
numerical accuracy, and the hybrid schemes both have less CPU times than the corresponding schemes. Meanwhile, New 
HWENO scheme has higher efficiency than HWENO scheme, and all HWENO schemes have higher efficiency than WENO 
scheme.

Example 3.4. Two dimensional Euler equations:
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Fig. 3.4. 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), μ(x, y, 0) = 1, ν(x, y, 0) = 1 and p(x, y, 0) = 1. T = 2. Computing times and 
errors. Triangle signs and a green solid line: the results of HWENO scheme; circle signs and a black solid line: the results of New HWENO scheme; plus 
signs and a blue solid line: the results of Hybrid HWENO scheme; rectangle signs and a red solid line: the results of New hybrid HWENO scheme; “w” 
signs and a purple line: the results of WENO scheme. Uniform meshes.

∂

∂t

⎛
⎜⎜⎝

ρ
ρμ
ρν
E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎞
⎟⎟⎠ + ∂

∂ y

⎛
⎜⎜⎝

ρν
ρμν

ρν2 + p
ν(E + p)

⎞
⎟⎟⎠ = 0, (3.4)

in which ρ is the density; (μ, ν) is the velocity; E is the total energy; and p the is pressure. The initial conditions are 
ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), μ(x, y, 0) = 1, ν(x, y, 0) = 1, p(x, y, 0) = 1 and γ = 1.4. The computing domain is (x, y) ∈
[0, 2] × [0, 2] with periodic boundary conditions in x and y directions, respectively. The exact solution of ρ is ρ(x, y, t) =
1 + 0.2 sin(π(x + y − 2t)) and the computing time is T = 2. We give the numerical errors and orders of the density for 
HWENO, New HWENO, Hybrid HWENO, New hybrid HWENO and WENO schemes in Table 3.4, then, we can find the New 
HWENO, New hybrid HWENO and WENO schemes achieve the fifth order accuracy, and the HWENO and Hybrid HWENO 
scheme only have the fourth order accuracy. However, HWENO schemes use more compact spatial reconstructed stencil than 
WENO scheme. Meanwhile, we can see that random positive linear weights (the sum equals one) would have no impact on 
the order accuracy of New HWENO scheme. Finally, we also show their numerical errors against CPU times in Fig. 3.4, which 
illustrates New hybrid HWENO scheme has higher efficiency than other four schemes, meanwhile, New HWENO scheme has 
better performance with less numerical errors and higher order accuracy than HWENO scheme. In addition, New HWENO 
and New Hybrid HWENO schemes have higher efficiency than WENO scheme with smaller numerical errors.

3.2. Non-smooth tests

We present the results of the new hybrid HWENO scheme here, meanwhile, the linear weights for the low degree 
polynomials are set as 0.01 and the linear weight for the high degree polynomial is the rest (the sum of their linear weights 
equals one), and we also show the performance of the new hybrid HWENO scheme with random positive linear weights on 
the uniform meshes in one dimensional non-smooth tests. In addition, we present the numerical results of the new hybrid 
HWENO scheme with fixed and random positive linear weights on the non-uniform meshes for one dimensional problems, 
and the non-uniform meshes are obtained by the same way as the one dimensional accuracy tests. For comparison, we also 
present the numerical results of the hybrid HWENO scheme [44]. From the results of the non-smooth tests, two schemes 
have similar performances in one dimension, but the new hybrid HWENO scheme has better numerical performances in two 
dimension for the new hybrid HWENO scheme has higher order numerical accuracy. In addition, the new hybrid HWENO 
scheme uses more simpler HWENO methodology, where any artificial positive linear weights (the sum equals 1) can be 
used, which is easier to implement in the computation, and it also uses less candidate stencils and bigger CFL number for 
two dimensional problems.

Example 3.5. We solve the one-dimensional Burgers’ equation (3.1) as introduced in Example 3.1 with same initial and 
boundary conditions, but the final computing time is t = 1.5/π , in which the solution is discontinuous. In Fig. 3.5, we 
present the numerical solution of the HWENO schemes and the exact solution, and we can see that two schemes have 
similar numerical results with high resolutions. In addition, the performances are similar for the new hybrid HWENO scheme 
with fixed and random positive linear weights on the uniform and non-uniform meshes.
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Fig. 3.5. 1D-Burgers’ equation: initial data u(x, 0) = 0.5 + sin(πx). T = 1.5/π . From left to right: the results of HWENO schemes on the uniform and non-
uniform meshes. Black solid line: exact solution; blue plus signs: the results of the hybrid HWENO scheme; red squares and purple circles: the results of 
the new hybrid HWENO scheme with fixed positive linear weights; green triangles and brown diamonds: the results of the new hybrid HWENO scheme 
with random positive linear weights. 80 cells.

Example 3.6. The Lax problem for 1D Euler equations with the next Riemann initial condition:

(ρ,μ, p, γ )T =
{

(0.445,0.698,3.528,1.4)T , x ∈ [−0.5,0),

(0.5,0,0.571,1.4)T , x ∈ [0,0.5].
The computing time is T = 0.16. In Fig. 3.6, we plot the exact solution against the computed density ρ obtained with the 
HWENO schemes, the zoomed in picture and the time history of the cells where the modification procedure is used in the 
new hybrid HWENO scheme with fixed and random positive linear weights on the uniform and non-uniform meshes. We 
can first see the results computed by the new hybrid HWENO scheme with random positive linear weights on the uniform 
meshes is closer to the exact solution, and we also find that only 13.41% cells in this case where we use the new HWENO 
methodology, which means that most regions directly use linear approximation with no modification for the first order 
moments and no HWENO reconstruction for the spatial discretization. For the new hybrid HWENO scheme in other cases, 
similar cells are identified as the troubled cells, which shows the KXRCF troubled-cell indicator doesn’t rely on the cells or 
the linear weights. The new hybrid HWENO scheme keeps good resolutions too, and the performances are also similar in 
this numerical test for the new hybrid HWENO scheme with fixed and random positive linear weights on the uniform and 
non-uniform meshes.

Example 3.7. The Shu-Osher problem, which has a shock interaction with entropy waves [36]. The initial condition is

(ρ,μ, p, γ )T =
{

(3.857143,2.629369,10.333333,1.4)T , x ∈ [−5,−4),

(1 + 0.2 sin(5x),0,1,1.4)T , x ∈ [−4,5].
This is a typical example both containing shocks and complex smooth region structures, which has a moving Mach=3 shock 
interacting with sine waves in density. The computing time is up to T = 1.8. In Fig. 3.7, we plot the computed density ρ
by HWENO schemes against the referenced “exact” solution, the zoomed in picture and the time history of the troubled-
cells for the new hybrid HWENO scheme with fixed and random positive linear weights on the uniform and non-uniform 
meshes. The referenced “exact” solution is computed by the fifth order finite difference WENO scheme [22] with 2000 grid 
points. We can see two schemes have similar numerical results with high resolutions, but the new hybrid HWENO scheme 
doesn’t need to calculate the linear weights in advance. In addition, only 3.54% cells are identified as the troubled-cells 
where we need to modify their first order moments for the new hybrid HWENO scheme with the fixed linear weights 
on the uniform meshes, and similar cells are identified as the troubled-cells for the new hybrid HWENO scheme in other 
cases, which illustrates the KXRCF troubled-cell indicator is suitable for our scheme even though the cells or the linear 
weights are different. From Fig. 3.7, we first find the performances are similar for the original hybrid HWENO scheme and 
the new hybrid HWENO scheme on the uniform meshes with fixed linear weights. We also notice that the new hybrid 
scheme with fixed positive linear weights has better performance than the scheme with random positive linear weights. 
The reason may be that the linear weight of the high degree polynomial would be very small in some time steps for the 
scheme with random positive linear weights, and it means the reconstruction would use more information from the low 
degree polynomial, which would affect the performance especially for the test both containing shocks and complex smooth 
region structures.

Example 3.8. We solve the next interaction of two blast waves problem. The initial conditions are:
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Fig. 3.6. The Lax problem. T = 0.16. From left to right: the results of HWENO schemes on the uniform and non-uniform meshes. From top to bottom: 
density; density zoomed in; the cells where the modification for the first order moments are computed in the new hybrid HWENO scheme with fixed and 
random positive linear weights. Black solid line: exact solution; blue plus signs: the results of the hybrid HWENO scheme; red squares and purple circles: 
the results of the new hybrid HWENO scheme with fixed positive linear weights; green triangles and brown diamonds: the results of the new hybrid 
HWENO scheme with random positive linear weights. 200 cells.
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Fig. 3.7. The shock density wave interaction problem. T = 1.8. From left to right: the results of HWENO schemes on the uniform and non-uniform meshes. 
From top to bottom: density; density zoomed in; the cells where the modification for the first order moments are computed in the new hybrid HWENO 
scheme with fixed and random positive linear weights. Black solid line: exact solution; blue plus signs: the results of the hybrid HWENO scheme; red 
squares and purple circles: the results of the new hybrid HWENO scheme with fixed positive linear weights; green triangles and brown diamonds: the 
results of the new hybrid HWENO scheme with random positive linear weights. 400 cells.
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Fig. 3.8. The blast wave problem. T = 0.038. From left to right: the results of HWENO schemes on the uniform and non-uniform meshes. From top to 
bottom: density; density zoomed in; the cells where the modification for the first order moments are computed in the new hybrid HWENO scheme with 
fixed and random positive linear weights. Black solid line: exact solution; blue plus signs: the results of the hybrid HWENO scheme; red squares and 
purple circles: the results of the new hybrid HWENO scheme with fixed positive linear weights; green triangles and brown diamonds: the results of the 
new hybrid HWENO scheme with random positive linear weights. 800 cells.
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Fig. 3.9. 2D-Burgers’ equation: initial data u(x, y, 0) = 0.5 + sin(π(x + y)/2). T = 1.5/π . From left to right: the numerical solution at x = y computed by 
HWENO schemes; the surface of the numerical solution for the new hybrid HWENO scheme. Black solid line: exact solution; blue plus signs: the results of 
the hybrid HWENO scheme; red squares: the results of the new hybrid HWENO scheme. Uniform meshes with 80 × 80 cells.

(ρ,μ, p, γ )T =
⎧⎨
⎩

(1,0,103,1.4)T , 0 < x < 0.1,

(1,0,10−2,1.4)T , 0.1 < x < 0.9,

(1,0,102,1.4)T , 0.9 < x < 1.

The computing time is T = 0.038, and the reflective boundary condition is applied here. In Fig. 3.8, we also plot the 
computed density against the reference “exact” solution, the zoomed in picture and the time history of the troubled-
cells for the new hybrid HWENO scheme with fixed and random positive linear weights on the uniform and non-uniform 
meshes. The reference “exact” solution is also computed by the fifth order finite difference WENO scheme [22] with 2000 
grid points. We notice that the hybrid HWENO scheme has better performance than the new hybrid HWENO scheme with 
fixed positive linear weights on the uniform meshes. The reason maybe that the modification for the first order moments 
uses more information provided by the two linear polynomials in this example, but the new HWENO methodology is 
easy to implement in the computation. Similarly, only 13.94% cells are identified as the troubled-cells in this case, and 
we directly use high order linear approximation on other cells. Similar cells are identified as the troubled cells for the 
new hybrid HWENO scheme in other cases, which shows the cells or the linear weights wouldn’t affect the ability of 
the KXRCF troubled-cell indicator. In addition, we also find the new hybrid scheme with fixed positive linear weights has 
better performance than the scheme with random positive linear weights as the Shu-Osher problem, and in practice, we 
recommend that the ratio between the linear weight of the high degree polynomial and the linear weights of the low 
degree polynomials is approximately 100 to 1.

Example 3.9. We solve the two-dimensional Burgers’ equation (3.3) given in Example 3.3. The same initial and bound-
ary conditions are applied here, but the computing time is up to T = 1.5/π , in which the solution is discontinuous. In 
Fig. 3.9, we present the numerical solution computed by HWENO schemes against the exact solution and the surface of 
the numerical solution by the new hybrid HWENO scheme. Similarly, we can see the HWENO schemes have high resolu-
tions.

Example 3.10. We now solve double Mach reflection problem [42] modeled by the two-dimensional Euler equations (3.4). 
The computational domain is [0, 4] × [0, 1]. The boundary conditions are: a reflection wall lies at the bottom from x = 1

6 , 
y = 0 with a 60o angle based on x-axis. For the bottom boundary, the reflection boundary condition are applied, but the 
part from x = 0 to x = 1

6 imposes the exact post-shock condition. For the top boundary, it is the exact motion of the Mach 
10 shock. γ = 1.4 and the final computing time is up to T = 0.2. In Fig. 3.10, we plot the pictures of region [0, 3] × [0, 1], 
the locations of the troubled-cells at the final time and the blow-up region around the double Mach stems. The new hybrid 
HWENO scheme has better density resolutions than the hybrid HWENO scheme, in addition, the hybrid HWENO scheme 
needs to use smaller CFL number taken as 0.45, but the CFL number for the new hybrid HWENO scheme is 0.6, moreover, 
the new hybrid HWENO scheme uses less candidate stencils but has higher order numerical accuracy.

Example 3.11. We finally solve the problem of a Mach 3 wind tunnel with a step [42] modeled by the two-dimensional 
Euler equations (3.4). The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length units high and 
is located 0.6 length units from a right-going Mach 3 flow. Reflective boundary conditions are applied along the wall of the 
tunnel. In flow and out flow boundary conditions are applied at the entrance and the exit, respectively. The computing time 
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Fig. 3.10. Double Mach reflection problem. T = 0.2. From top to bottom: 30 equally spaced density contours from 1.5 to 22.7; the locations of the troubled-
cells at the final time; zoom-in pictures around the Mach stem. The hybrid HWENO scheme (left); the new hybrid HWENO scheme (right). Uniform meshes 
with 1920 × 480 cells.

Fig. 3.11. Forward step problem. T = 4. From top to bottom: 30 equally spaced density contours from 0.32 to 6.15; the locations of the troubled-cells at the 
final time. The hybrid HWENO scheme (left); the new hybrid HWENO scheme (right). Uniform meshes with 960 × 320 cells.

is up to T = 4, then, we present the computed density and the locations of the troubled-cells at the final time in Fig. 3.11. 
We notice that the new hybrid HWENO scheme has high resolutions than the hybrid HWENO scheme, and it also has bigger 
CFL number, less candidate stencils, higher order numerical accuracy and simpler HWENO methodology. Similarly, only a 
small part of cells are identified as troubled-cells, and it means that most regions directly use linear approximation, which 
can increase the efficiency obviously.
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4. Concluding remarks

In this paper, a new fifth-order hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme with 
artificial linear weights is designed for solving hyperbolic conservation laws. Compared with the hybrid HWENO scheme 
[44], we employ a nonlinear convex combination of a high degree polynomial with several low degree polynomials in the 
new HWENO reconstruction, and the associated linear weights can be any artificial positive numbers (their sum is one), 
which would have the advantages of its simplicity and easy extension to multi-dimension. Meanwhile, different choice of 
the linear weights would not affect the numerical accuracy, and it gets smaller numerical errors than the original HWENO 
methodology. In addition, the new hybrid HWENO scheme has higher order numerical accuracy in two dimension. Moreover, 
the scheme still keeps the non-oscillations as we apply the limiter methodology for the first order moments in the troubled-
cells and use new HWENO reconstruction on the interface. In the implementation, only a small part of cells are identified as 
troubled-cells, which means that most regions directly use linear approximation. For the spatial discretization, the HWENO 
schemes are more compact than the classical fifth order WENO schemes [22,36] as only immediate neighbor information 
is needed in the reconstruction, and the new hybrid HWENO scheme also has higher efficiency than WENO scheme with 
smaller numerical errors. In short, the new hybrid HWENO scheme has high resolution, efficiency, non-oscillation and ro-
bustness, simultaneously, and these numerical results also show its good performances. The extension of the method to 
unstructured meshes is going on.
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