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a b s t r a c t 

In [28], a simple fifth order weighted essentially non-oscillatory (WENO) scheme was presented in the 

finite difference framework for the hyperbolic conservation laws, in which the reconstruction of fluxes 

is a convex combination of a fourth degree polynomial with two linear polynomials. In this follow-up 

paper, we propose a new fifth order hybrid weighted essentially non-oscillatory (WENO) scheme based 

on the simple WENO. The main idea of the hybrid WENO scheme is that if all extreme points of the 

reconstruction polynomial for numerical flux in the big stencil are located outside of the big stencil, then 

we reconstruct the numerical flux by upwind linear approximation directly, otherwise use the simple 

WENO procedure. Compared with the simple WENO, the major advantage is its higher efficiency with less 

numerical errors in smooth regions and less computational costs. Likewise, the hybrid WENO scheme still 

keeps the simplicity and robustness of the simple WENO scheme. Extensive numerical results for both 

one and two dimensional equations are performed to verify these good performance of the proposed 

scheme. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In this paper, we propose a hybrid weighted essentially non-

oscillatory (WENO) scheme in the finite difference framework. This

work can be regarded as a combination of the simple WENO

scheme [28] and the modified WENO scheme [29] for solving hy-

perbolic conservation laws. The hybrid WENO scheme in this pa-

per is easy to implement and costs less CPU time than the sim-

ple WENO scheme [28] , which can also be utilized to simulate

the rather extreme test cases such as the Sedov blast wave prob-

lem, the Leblanc problem and the high Mach number astrophysical

jet problem, etc., with normal CFL number, without any additional

positivity preserving procedure. 

Recently, many successful numerical schemes have been ap-

plied for hyperbolic conservation laws. Among them, the finite

difference or finite volume essentially non-oscillatory (ENO) and

WENO schemes are widely used for nonlinear hyperbolic conser-

vation laws which often contain shock, contact discontinuities and

sophisticated smooth structures in fairly localized regions. It is well
∗ Corresponding author. 

E-mail addresses: zzhao@stu.xmu.edu.cn (Z. Zhao), zhujun@nuaa.edu.cn (J. Zhu), 
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nown that a good numerical method should obtain high order ac-

uracy in smooth regions and avoid spurious oscillations nearby

iscontinuities simultaneously. Hence, Harten and Osher [8] gave

 weaker version of the total variation diminishing (TVD) crite-

ion [7] and on which they established a framework for the re-

onstruction of high order ENO type schemes. Then, Harten et al.

10] developed the finite volume ENO schemes to solve one di-

ensional problems, which gave the most important thought of

NO schemes by using an adaptive stencil based on the local

moothness. Therefore, ENO schemes can maintain high-order ac-

uracy as the function is smooth, while avoid the Gibbs phenom-

na at discontinuities simultaneously. Next, Shu and Osher pro-

osed a class finite difference ENO schemes [24,25] . Then, Liu,

sher and Chan [18] constructed the first WENO scheme mainly

ased on ENO scheme, which used a nonlinear convex combina-

ion of all the candidate stencils, and it was a third-order finite

olume method in one space dimension. In [16] , the third and

fth-order finite difference WENO schemes in multi-space dimen-

ions were proposed by Jiang and Shu, which gave a general frame-

ork to design the smoothness indicators and nonlinear weights.

n general, WENO schemes have the ability to simulate the prob-

ems, which contain both strong discontinuities and sophisticated

mooth structures. Likewise, these various finite difference and

nite volume ENO and WENO schemes were presented in the
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iterature [2,3,9,11,16,18,24,25,27] working well for these complex

roblems. 

A key idea of WENO schemes is a linear combination of lower

rder numerical fluxes or reconstruction to obtain a higher order

pproximation, and for the system cases, the WENO schemes are

ased on local characteristic decomposition method to avoid spu-

ious oscillations. However, the cost of computing the nonlinear

eights and local characteristic decompositions is very high. To

vercome these drawbacks, Jiang and Shu [16] computed the non-

inear weights from pressure and entropy instead of the charac-

eristic values for hyperbolic conservations laws. Pirozzoli [21] de-

eloped an efficient hybrid compact-WENO scheme, which se-

ected compact up-wind schemes to treat smooth regions, while

hose WENO schemes to handle discontinuities regions. Hill and

ullin [12] developed a hybrid scheme combing the tuned center-

ifference schemes with WENO schemes, to expect the nonlinear

eights would be achieved automatically in smooth regions away

rom shocks, but a switching principle was still necessary. Then,

i and Qiu [20] constructed the hybrid WENO schemes using dif-

erent switching principles with Runge-Kutta time discretization,

hile Huang and Qiu [15] used the Lax-Wendroff time discretiza-

ion procedure to design the hybrid WENO scheme. They both se-

ected the different troubled-cell indicators listed by Qiu and Shu

22] from discontinuous Galerkin (DG) schemes, which identified

he discontinuity, then reconstructed the numerical flux by up-

ind linear approximation in smooth regions and WENO approx-

mation in discontinuous regions. However, different troubled-cell

ndicators may have different effects for the hybrid WENO scheme,

oreover, many troubled-cell indicators need to adjust parame-

ers for different problems to keep better non-oscillations near

iscontinuous and less computational cost. Hence, Zhu and Qiu

29] chose a new simple switching principle, which was just to use

ifferent reconstruction method by identifying the locations of all

xtreme points of the big reconstruction polynomial for numeri-

al flux, and we will adopt this new methodology in this paper.

hough the classical WENO schemes proposed by Jiang and Shu

16] work well for hyperbolic conversation laws, the linear weights

ave to rely on the specific points and meshes, furthermore, the

inear weights may be negative or not exist in some cases for finite

olume version on unstructured meshes. Therefore, Zhu and Qiu

28] presented a new simple WENO scheme in the finite difference

ramework, which had a convex combination of a fourth degree

olynomial and other two linear polynomials by using any linear

eights (the sum is equal to one), and they also extended this

ethod to rectangular meshes [30] , triangular meshes [32] and

etrahedral meshes [31] in finite volume framework. These finite

ifference and finite volume methods illustrate the simplicity, effi-

iency and robustness of the simple WENO scheme simultaneously.

n this paper, we propose the fifth order hybrid WENO scheme in

he finite difference framework for solving the hyperbolic conser-

ation laws in one and two dimensions, and we choose the simple

ENO method [28] as the WENO procedure. Compared with the

imple WENO scheme, the hybrid WENO scheme is more efficient

ith less numerical errors in smooth regions and less computa-

ional costs. The hybrid WENO scheme still keeps the simplicity

nd robustness of the simple WENO method. The WENO proce-

ure of these two schemes seeks out a smaller TVD-like stencil,

ence, these two schemes would operate like a TVD scheme with

 Albada-like limiter, which makes them closer to a monotonic-

ty preserving scheme, so these two schemes have the ability to

imulate some extreme examples, such as the Sedov blast wave,

he Leblanc and the high Mach number astrophysical jet problems

t al. using CFL number as usual and without any additional pos-

tivity preserving procedure. The main procedures of the hybrid

ENO scheme are given as follows, at first, we reconstruct the

uartic polynomial based on the nodal point information of the
ig spatial stencil, and identify the locations of all extreme points

f the reconstruction polynomial for numerical flux. If all of the

xtreme points are outside of the big stencil, then reconstruct the

umerical flux by upwind linear approximation straightforwardly,

therwise choose the simple WENO procedure [28] . The numerical

esults in Section 3 and [29] show that the quartic polynomial has

t least one extreme point inside the big stencil near discontinu-

us regions, and the reconstruction of numerical flux is switched

o the simple WENO procedure, the methods work well for all test

ases in Section 3 and [29] . For the system cases, WENO recon-

truction is based on local characteristic decompositions and flux

plitting to avoid spurious oscillations just like the classical WENO

chemes [16] . From the procedures of the hybrid WENO scheme

s mentioned above, the scheme saves CPU time for reducing the

omputations of smoothness indicators, nonlinear weights and lo-

al characteristic decompositions by using the linear upwind ap-

roximation in smooth regions. The hybrid WENO scheme also has

he advantage of less numerical errors in smooth regions, for the

inear upwind approximation has higher accuracy than the WENO

rocedure. In short, the hybrid WENO scheme still keeps the ro-

ustness of the simple WENO scheme [28] , while it is very easy to

mplement in practice and has higher efficiency. 

The organization of the paper is as follows: in Section 2 , we

resent the detailed procedures of the finite difference hybrid

ENO scheme. In Section 3 , some benchmark numerical tests are

resented to illustrate the numerical accuracy, efficiency and ro-

ustness of the new hybrid WENO scheme. Concluding remarks are

iven in Section 4 . 

. Hybrid WENO scheme 

We consider one dimensional scalar hyperbolic conservation

aws 

u t + f x (u ) = 0 , 

u (x, 0) = u 0 (x ) . 
(2.1) 

he semi-discrete finite difference scheme of (2.1) is 

du i (t) 

dt 
= L (u ) i , (2.2)

here u i ( t ) is the numerical approximation to the point value of

 ( x i , t ) and L ( u ) i is the fifth order spatial discrete formulation of

f x (u ) at the target point x i . The spatial domain is divided with

niform grid points { x i }, with x i +1 − x i = h, x i +1 / 2 = x i + h/ 2 , and

he cells are denoted by I i = [ x i −1 / 2 , x i +1 / 2 ] , then, the right hand

ide of (2.2) can be written as 

 (u ) i = −1 

h 

( ̂  f i +1 / 2 − ˆ f i −1 / 2 ) . (2.3)

Here ˆ f i +1 / 2 is a numerical flux which is a fifth order approxi-

ation of v i +1 / 2 = v (x i +1 / 2 ) , where v ( x ) is defined implicitly as in

16] : 

f (u (x )) = 

1 

h 

∫ x + h/ 2 

x −h/ 2 

v (x ) dx. (2.4)

To keep the stability in the finite difference framework, we

eed to split the flux f ( u ) into two parts: f (u ) = f + (u ) + f −(u ) ,

here df + (u ) 
du 

≥ 0 and 

df −(u ) 
du 

≤ 0 . Here, a globe Lax-Friedrichs flux

plitting method is applied as 

f ±(u ) = 

1 

2 

( f (u ) ± αu ) , (2.5)

n which α is taken as max u | f 
′ ( u )| over the whole relevant range

f u . 

In the step 1 to 3, we will only introduce the reconstruction

rocedure of numerical flux ˆ f + 
i +1 / 2 

in detail, which is the fifth or-

er approximation of the positive part of flux f ( u ) at x = x i + 1 / 2 ,
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while the formulas for the negative part of numerical flux ˆ f −
i +1 / 2 

are mirror symmetric with respect to x i +1 / 2 of that for ˆ f + 
i +1 / 2 

and

will not be presented again, then the numerical flux ˆ f i +1 / 2 is set as

ˆ f + 
i +1 / 2 

+ 

ˆ f −
i +1 / 2 

. In the step 4, the semi-discrete scheme (2.2) is then

discretized by a fourth order Runge-Kutta method [24] , when we

have finished the spatial discretization by using the step 1 to 3. 

Step 1. We choose the following big stencil: T 0 = { I i −2 , . . . , I i +2 } ,
then reconstruct the fourth degree polynomial p 0 ( x ) based on the

nodal point information of the positive part of flux f + (u ) as 

1 

h 

∫ 
I j 

p 0 (x ) dx = f + (u j ) , j = i − 2 , . . . , i + 2 . (2.6)

Let ξ = 

(x −x i ) 

h 
, then we have the polynomial p 0 ( x ): 

p 0 (x ) = 

1 

1920 

[(−116 f + 
i −1 

+ 9 f + 
i −2 

+ 2134 f + 
i 

− 116 f + 
i +1 

+ 9 f + 
i +2 

) 

− 40(34 f + 
i −1 

− 5 f + 
i −2 

− 34 f + 
i +1 

+ 5 f + 
i +2 

) ξ + 120(12 f + 
i −1 

− f + 
i −2 

− 22 f + 
i 

+ 12 f + 
i +1 

− f + 
i +2 

) ξ 2 + 160(2 f + 
i −1 

− f + 
i −2 

− 2 f + 
i +1

+ f + 
i +2 

) ξ 3 − 80(4 f + 
i −1 

− f + 
i −2 

− 6 f + 
i 

+ 4 f + 
i +1 

− f + 
i +2 

) ξ 4 )] , 

(2.7

and its first derivative polynomial p ′ 
0 
(x ) is 

p ′ 0 (x ) = 

1 

48 h 

[(−34 f + 
i −1 

+ 5 f + 
i −2 

+ 34 f + 
i +1 

− 5 f + 
i +2 

) + 6(12 f + 
i −1 

− f + 
i −2 

− 22 f + 
i 

+ 12 f + 
i +1 

− f + 
i +2 

) ξ + 12(2 f + 
i −1 

− f + 
i −2 

− 2 f + 
i +1 

+ f + 
i +2 

) ξ 2 

+ 8(−4 f + 
i −1 

+ f + 
i −2 

+ 6 f + 
i 

− 4 f + 
i +1 

+ f + 
i +2 

) ξ 3 )] (2.8)

Step 2. Determine the extreme points of the reconstruction

polynomial p 0 ( x ). Firstly, we find the zero points of p ′ 
0 
(x ) , then

identify whether these zero points of p ′ 
0 
(x ) are extreme points of

p 0 ( x ) or not. As the degree of p ′ 0 (x ) is at most three, we can solve

the real zero points of p ′ 
0 
(x ) based on [5] easily, and the explicit

solving steps are shown in Appendix A. One is the extreme point

of p 0 ( x ) if and only if it is the real zero point and not doubled zero

point of p ′ 0 (x ) . 

Step 3. Identify the locations of all extreme points of the re-

construction polynomial p 0 ( x ) and choose different reconstruction

procedure according to the locations of the extreme points. If all

of the extreme points of the polynomial p 0 ( x ) are outside of the

big spatial stencil T 0 , or the polynomial p 0 ( x ) doesn’t have the ex-

treme point, we take the final reconstruction of the numerical flux
ˆ f + 
i +1 / 2 

as p 0 (x i +1 / 2 ) directly, otherwise, there is at least one of the

extreme points of the reconstruction polynomial p 0 ( x ) inside the

big spatial stencil T 0 , then reconstruct the numerical flux ˆ f + 
i +1 / 2 

by using the simple and efficient WENO method [28] to avoid

spurious oscillations, and we will review this simple and efficient

WENO method in the following procedures. At first, we choose two

smaller stencils T 1 = { I i −1 , I i } and T 2 = { I i , I i +1 } , then construct two

polynomials p 1 ( x ) and p 2 ( x ) according to the nodal point informa-

tion of the positive flux f + (u ) on the stencils T 1 and T 2 respec-

tively. Similarly as specified in step 1, it is easy to obtain the two

smaller reconstructed polynomials satisfying 

1 

h 

∫ 
I j 

p 1 (x ) dx = f + (u j ) , j = i − 1 , i, (2.9)

and 

1 

h 

∫ 
I j 

p 2 (x ) dx = f + (u j ) , j = i, i + 1 . (2.10)

Their explicit expressions are 

p 1 (x ) = f + 
i 

+ ( f + 
i 

− f + 
i −1 

) 
(

x − x i 
h 

)
, (2.11)
nd 

p 2 (x ) = f + 
i 

+ ( f + 
i +1 

− f + 
i 
) 
(

x − x i 
h 

)
. (2.12)

n this paper, we take the linear weights are γ0 = 0 . 8 , γ1 = 0 . 1

nd γ2 = 0 . 1 for all test cases, as the random choice of the lin-

ar weights would not pollute the optimal order accuracy of the

imple WENO scheme, then, we compute the smoothness indica-

ors β l , which measure how smooth the functions p l ( x ) are in the

arget cell I i , and we use the same definition for the smoothness

ndicators as in [2,16,26] 

l = 

r ∑ 

α=1 

∫ 
I i 

h 

2 α−1 

(
d α p l (x ) 

dx α

)2 

dx. (2.13)

he explicit expressions are shown respectively, 

0 = 

( f + 
i −2 

− 8 f + 
i −1 

+ 8 f + 
i +1 

− f + 
i +2 

) 2 

144 

+ 

781(− f + 
i −2 

+ 2 f + 
i −1 

− 2 f + 
i +1 

+ f + 
i +2 

) 2 

2880 

+ 

(−11 f + 
i −2 

+ 174 f + 
i −1 

− 326 f + 
i 

+ 174 f + 
i +1 

− 11 f + 
i +2 

) 2 

15600 

+ 

1421461( f + 
i −2 

− 4 f + 
i −1 

+ 6 f + 
i 

− 4 f + 
i +1 

+ f + 
i +2 

) 2 

1310400 

, (2.14)

1 = ( f + 
i −1 

− f + 
i 
) 2 , (2.15)

nd 

2 = ( f + 
i 

− f + 
i +1 

) 2 . (2.16)

hen we take a new parameter τ to measure the absolute defer-

nce between β0 , β1 and β2 , which is different to the formula set

n [1,4] , 

= 

( | β0 − β1 | + | β0 − β2 | 
2 

)2 

, (2.17)

nd the nonlinear weights are formulated as 

 n = 

ω̄ n ∑ 2 
� =0 ω̄ � 

, with ω̄ n = γn 

(
1 + 

τ

ε + βn 

)
, n = 0 , 1 , 2 . (2.18)

ere ε is a small positive number to avoid the denominator by

ero, and we take ε = 10 −6 in our computation as usual. Hence,

he final reconstruction of the numerical flux f + (u ) at x = x i + 1 / 2 is
iven by 

ˆ f + 
i + 1 / 2 = ω 0 

(
1 

γ0 

p 0 (x i +1 / 2 ) −
γ1 

γ0 

p 1 (x i +1 / 2 ) −
γ2 

γ0 

p 2 (x i +1 / 2 ) 

)
+ ω 1 p 1 (x i +1 / 2 ) + ω 2 p 2 (x i +1 / 2 ) . (2.19)

Step 4. The semi-discrete scheme (2.2) is discretized in time by

 fourth order Runge-Kutta method [24] 
 

 

 

 

 

 

 

 

 

u 

(1) = u 

n + 

1 
2 

tL (u 

n ) , 

u 

(2) = u 

n + 

1 
2 

tL (u 

(1) ) , 

u 

(3) = u 

n + 
tL (u 

(2) ) , 

u 

n +1 = − 1 
3 

u 

n + 

1 
3 

u 

(1) + 

2 
3 

u 

(2) + 

1 
3 

u 

(3) + 

1 
6 

tL (u 

(3) ) . 

(2.20)

Remark: For the system cases, such as the compressible Eu-

er equations, all of the WENO reconstruction procedure is imple-

ented with a local characteristic field decomposition listed by

16] , while the upwind linear approximation is performed by com-

onent by component. For the two dimensional cases, the recon-

truction for numerical fluxes is constructed by dimension by di-

ension. 
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Table 3.1 

Computing time of numerical examples: the total CPU time of example 3.1 to 3.11 for the hybrid 

WENO scheme and the simple WENO scheme; the ratios of the total CPU time by the hybrid 

WENO scheme over the simple WENO scheme on the same numerical example. 

Numerical example CPU time of hybrid CPU time of simple Ratio 

WENO scheme(S) WENO scheme (S) 

3.1 ρ(x, 0) = 1 + 0 . 99 sin (x ) 13222.0 18979.2 69.7% 

3.1 ρ(x, 0) = 1 + 0 . 999 sin (x ) 38623.3 56730.0 68.1% 

3.1 ρ(x, 0) = 1 + 0 . 99999 sin (x ) 295441.2 442528.6 66.7% 

3.2 ρ(x, y, 0) = 1 + 0 . 99 sin (x + y ) 7323.03 11864.8 61.7% 

3.2 ρ(x, y, 0) = 1 + 0 . 999 sin (x + y ) 22758.2 33925.9 67.1% 

3.2 ρ(x, y, 0) = 1 + 0 . 99999 sin (x + y ) 205910.3 309802.6 66.5% 

3.3 Lax problem 0.04680 0.09360 50.0% 

3.4 Shu-Osher problem 0.3120 0.4836 64.5% 

3.5 Two blast waves 2.0904 3.3384 62.6% 

3.6 1D sedov blast wave 0.5772 0.6240 92.5% 

3.7 Double rarefaction wave 0.1092 0.2184 50.0% 

3.8 Leblanc problem 51.4803 79.5449 64.7% 

3.9 Double Mach reflection 13980.0 18208.2 76.8% 

3.10 2D sedov blast wave 454.766 585.919 77.6% 

3.11 80 Mach astrophysical jet 785.785 916.224 85.8% 

3.11 20 0 0 Mach astrophysical jet 1861.49 2133.82 87.2% 

Table 3.2 

1D-Euler equations: initial data ρ(x, 0) = 1 + 0 . 99 sin (x ) , μ(x, 0) = 1 and p(x, 0) = 1 . Hybrid WENO and 

Simple WENO schemes. T = 0 . 1 . L 1 and L ∞ errors. 

grid points Hybrid WENO scheme Simple WENO scheme 

L 1 error order L ∞ error order L 1 error order L ∞ error order 

40 7.167E-04 4.540E-03 7.841E-04 5.045E-03 

80 9.877E-06 6.18 8.962E-05 5.66 9.764E-06 6.33 8.973E-05 5.81 

160 5.729E-08 7.43 1.232E-06 6.18 5.488E-08 7.47 1.241E-06 6.18 

320 2.150E-10 8.06 6.018E-09 7.68 1.913E-10 8.16 6.384E-09 7.60 

640 1.350E-12 7.32 2.124E-12 11.47 1.658E-12 6.85 3.477E-11 7.52 

1280 4.223E-14 5.00 6.637E-14 5.00 4.223E-14 5.30 1.643E-13 7.73 

2560 1.320E-15 5.00 2.074E-15 5.00 1.320E-15 5.00 2.287E-15 6.17 

5120 4.126E-17 5.00 6.482E-17 5.00 4.126E-17 5.00 6.510E-17 5.13 

10,240 1.289E-18 4.99 2.026E-18 4.99 1.289E-18 4.99 2.026E-18 5.00 

20,480 4.030E-20 5.00 6.330E-20 5.00 4.030E-20 5.00 6.330E-20 5.00 
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. Numerical tests 

In this section, we perform the results and the total CPU time

f numerical tests of the hybrid WENO scheme which is out-

ined in the previous section comparing with the simple WENO

cheme [28] . The CFL number is set as 0.6 for these two schemes

s usual. Simple WENO and Hybrid WENO are termed as the

wo schemes respectively. Since the random choice of the linear

eights would not pollute the optimal order accuracy of the sim-

le WENO scheme, we take γ 0 = 0.8, γ 1 = 0.1 and γ 2 = 0.1 for all nu-

erical tests. 

At the first, we list the CPU time for all test cases to show that

he hybrid WENO scheme costs less CPU time than simple WENO.

n the Table 3.1 , we present the total cpu time for all test cases

y the hybrid WENO scheme and the simple WENO scheme. Com-

ared with the simple WENO scheme, the hybrid WENO scheme

ay almost save 50% CPU time in one dimensional problems and

ave 40% CPU time in two dimensional problems, when the numer-

cal examples have many smooth regions, but in some extreme nu-

erical example, like the Sedov blast wave problem and the high

ach number astrophysical jet problem, the hybrid WENO scheme

ay only save 15% CPU time. In short, the hybrid WENO scheme

ses less CPU time than the simple WENO scheme in the same

umerical test. 

xample 3.1. 

∂ 

∂t 

( 

ρ
ρμ
E 

) 

+ 

∂ 

∂x 

( 

ρμ
ρμ2 + p 
μ(E + p) 

) 

= 0 . (3.1) 
ere ρ is density, μ is the velocity, E is total energy and p

s pressure. The initial conditions are set to be (1) ρ(x, 0) =
 + 0 . 99 sin (x ) ; (2) ρ(x, 0) = 1 + 0 . 999 sin (x ) ; (3) ρ(x, 0) = 1 +
 . 99999 sin (x ) ; and μ(x, 0) = 1 , p(x, 0) = 1 , γ = 1 . 4 . The com-

uting domain is x ∈ [0, 2 π ], with a periodic boundary con-

ition. The exact solutions are: (1) ρ(x, t) = 1 + 0 . 99 sin (x − t) ;

2) ρ(x, t) = 1 + 0 . 999 sin (x − t ) ; (3) ρ(x, t ) = 1 + 0 . 99999 sin (x −
) , respectively. We compute the solution up to T = 0 . 1 . The nu-

erical errors and orders of the density for the hybrid WENO

cheme and the simple WENO scheme are shown in Table 3.2 ,

able 3.3 and Table 3.4 , respectively. From these tables, we can see

he numerical errors of the hybrid WENO scheme are smaller than

he simple WENO on the same meshes. Usually, we only can ob-

ain the designed accuracy order when meshes are small enough.

e find that both two schemes finally achieve the designed fifth

rder for case (1) and (2) in Table 3.2 and Table 3.3 , respectively,

hen the meshes are small enough. In Table 3.4 , the hybrid WENO

cheme achieve the fifth order on 10,240 and 20,480 grid points,

hile the simple WENO scheme exceed the designed fifth order

or case (3). In Fig. 3.1 , Fig. 3.2 and Fig. 3.3 , we show numerical er-

ors against CPU times by using the hybrid WENO scheme and the

imple WENO scheme for case (1), (2) and (3), which illustrate the

ybrid WENO scheme uses less CPU times and has smaller numer-

cal errors than the simple WENO scheme on the same meshes.

n Table 3.1 , compared with the simple WENO scheme, the hy-

rid WENO scheme saves almost 30% CPU time with different ini-

ial conditions in this numerical example. Hence, the hybrid WENO

cheme is more efficient than the simple WENO scheme in this

ne dimensional benchmark test case with different extreme ini-

ial conditions. 
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Table 3.3 

1D-Euler equations: initial data ρ(x, 0) = 1 + 0 . 999 sin (x ) , μ(x, 0) = 1 and p(x, 0) = 1 . Hybrid WENO and 

Simple WENO schemes. T = 0 . 1 . L 1 and L ∞ errors. 

grid points Hybrid WENO scheme Simple WENO scheme 

L 1 error order L ∞ error order L 1 error order L ∞ error order 

40 1.243E-03 7.436E-03 1.215E-03 7.454E-03 

80 7.663E-05 4.02 6.042E-04 3.62 7.563E-05 4.01 6.071E-04 3.62 

160 2.542E-06 4.91 4.979E-05 3.60 2.514E-06 4.91 5.020E-05 3.60 

320 9.815E-09 8.02 2.778E-07 7.49 1.002E-08 7.97 2.937E-07 7.42 

640 4.188E-11 7.87 1.886E-09 7.20 4.908E-11 7.67 2.429E-09 6.92 

1280 1.275E-13 8.36 2.004E-13 13.20 3.113E-13 7.30 1.560E-11 7.28 

2560 3.988E-15 5.00 6.266E-15 5.00 4.019E-15 6.28 5.132E-14 8.25 

5120 1.246E-16 5.00 1.958E-16 5.00 1.246E-16 5.01 2.964E-16 7.44 

10,240 3.896E-18 5.00 6.120E-18 5.00 3.896E-18 5.00 6.307E-18 5.55 

20,480 1.217E-19 5.00 1.912E-19 5.00 1.217E-19 5.00 1.913E-19 5.04 

Table 3.4 

1D-Euler equations: initial data ρ(x, 0) = 1 + 0 . 99999 sin (x ) , μ(x, 0) = 1 and p(x, 0) = 1 . Hybrid WENO and 

Simple WENO schemes. T = 0 . 1 . L 1 and L ∞ errors. 

grid points Hybrid WENO scheme Simple WENO scheme 

L 1 error order L ∞ error order L 1 error order L ∞ error order 

40 1.368E-03 8.025E-03 1.330E-03 8.055E-03 

80 1.221E-04 3.49 9.432E-04 3.09 1.213E-04 3.46 9.600E-04 3.07 

160 1.549E-05 2.98 2.758E-04 1.77 1.531E-05 2.99 2.810E-04 1.77 

320 1.178E-06 3.72 2.399E-05 3.52 1.226E-06 3.64 2.589E-05 3.44 

640 4.537E-08 4.70 1.581E-06 3.92 5.274E-08 4.54 1.862E-06 3.80 

1280 4.206E-10 6.75 2.647E-08 5.90 6.241E-10 6.40 3.910E-08 5.57 

2560 1.845E-12 7.83 1.996E-10 7.05 5.361E-12 6.86 5.560E-10 6.14 

5120 1.215E-15 10.57 1.908E-15 16.67 3.570E-14 7.23 4.900E-12 6.83 

10,240 3.805E-17 5.00 5.978E-17 5.00 1.591E-16 7.81 1.433E-14 8.42 

20,480 1.190E-18 4.99 1.869E-18 4.99 1.340E-18 6.88 3.596E-17 8.64 

Table 3.5 

2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0 . 99 sin (x + y ) , μ(x, y, 0) = 1 , ν(x, y, 0) = 1 and 

p(x, y, 0) = 1 . Hybrid WENO and Simple WENO schemes. T = 0 . 1 . L 1 and L ∞ errors. 

grid points Hybrid WENO scheme Simple WENO scheme 

L 1 error order L ∞ error order L 1 error order L ∞ error order 

40 × 40 6.06E-04 2.86E-03 6.69E-04 3.19E-03 

80 × 80 2.65E-05 4.51 3.08E-04 3.21 2.63E-05 4.67 3.09E-04 3.37 

160 × 160 8.92E-08 8.22 1.46E-06 7.72 8.62E-08 8.26 1.48E-06 7.70 

320 × 320 3.73E-10 7.90 9.24E-09 7.30 3.60E-10 7.90 1.03E-08 7.18 

640 × 640 2.70E-12 7.11 4.25E-12 11.09 3.31E-12 6.77 6.54E-11 7.29 

1280 × 1280 8.46E-14 5.00 1.48E-13 4.85 8.46E-14 5.29 3.27E-13 7.65 

Fig. 3.1. 1D-Euler equations: initial data ρ(x, 0) = 1 + 0 . 99 sin (x ) , μ(x, 0) = 1 and p(x, 0) = 1 . T = 0 . 1 . Computing time and error. Plus signs and a solid line denote the 

results of the hybrid WENO scheme; square and a solid line denote the results of the simple WENO scheme. 
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Fig. 3.2. 1D-Euler equations: initial data ρ(x, 0) = 1 + 0 . 999 sin (x ) , μ(x, 0) = 1 and p(x, 0) = 1 . T = 0 . 1 . Computing time and error. Plus signs and a solid line denote the 

results of the hybrid WENO scheme; square and a solid line denote the results of the simple WENO scheme. 

Fig. 3.3. 1D-Euler equations: initial data ρ(x, 0) = 1 + 0 . 99999 sin (x ) , μ(x, 0) = 1 and p(x, 0) = 1 . T = 0 . 1 . Computing time and error. Plus signs and a solid line denote the 

results of the hybrid WENO scheme; square and a solid line denote the results of the simple WENO scheme. 

Table 3.6 

2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0 . 999 sin (x + y ) , μ(x, y, 0) = 1 , ν(x, y, 0) = 1 and 

p(x, y, 0) = 1 . Hybrid WENO and Simple WENO schemes. T = 0 . 1 . L 1 and L ∞ errors. 

grid points Hybrid WENO scheme Simple WENO scheme 

L 1 error order L ∞ error order L 1 error order L ∞ error order 

40 × 40 1.26E-03 5.61E-03 1.25E-03 5.68E-03 

80 × 80 1.57E-04 3.00 1.52E-03 1.89 1.56E-04 3.00 1.52E-03 1.90 

160 × 160 3.23E-06 5.61 4.51E-05 5.07 3.24E-06 5.59 4.60E-05 5.05 

320 × 320 1.66E-08 7.60 4.09E-07 6.78 1.75E-08 7.54 4.45E-07 6.69 

640 × 640 7.08E-11 7.87 2.79E-09 7.20 9.04E-11 7.59 3.92E-09 6.83 

1280 × 1280 2.55E-13 8.12 4.29E-13 12.67 6.18E-13 7.19 2.97E-11 7.04 

Table 3.7 

2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0 . 99999 sin (x + y ) , μ(x, y, 0) = 1 , ν(x, y, 0) = 1 and 

p(x, y, 0) = 1 . Hybrid WENO and Simple WENO schemes. T = 0 . 1 . L 1 and L ∞ errors. 

grid points Hybrid WENO scheme Simple WENO scheme 

L 1 error order L ∞ error order L 1 error order L ∞ error order 

40 × 40 1.41E-03 6.21E-03 1.40E-03 6.30E-03 

80 × 80 2.12E-04 2.73 1.96E-03 1.67 2.06E-04 2.76 1.98E-03 1.67 

160 × 160 1.90E-05 3.48 2.21E-04 3.14 1.93E-05 3.42 2.31E-04 3.10 

320 × 320 1.64E-06 3.53 3.04E-05 2.86 1.75E-06 3.47 3.32E-05 2.80 

640 × 640 7.01E-08 4.55 2.22E-06 3.78 8.39E-08 4.38 2.68E-06 3.63 

1280 × 1280 6.83E-10 6.68 3.90E-08 5.83 1.08E-09 6.28 6.15E-08 5.45 
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Fig. 3.4. 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0 . 99 sin (x + y ) , μ(x, y, 0) = 1 , ν(x, y, 0) = 1 and p(x, y, 0) = 1 . T = 0 . 1 . Computing time and error. Plus signs and a 

solid line denote the results of the hybrid WENO scheme; square and a solid line denote the results of the simple WENO scheme. 
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Example 3.2. 

∂ 

∂t 

⎛ 

⎜ ⎝ 

ρ
ρμ
ρν
E 

⎞ 

⎟ ⎠ 

+ 

∂ 

∂x 

⎛ 

⎜ ⎝ 

ρμ
ρμ2 + p 

ρμν
μ(E + p) 

⎞ 

⎟ ⎠ 

+ 

∂ 

∂y 

⎛ 

⎜ ⎝ 

ρν
ρμν

ρν2 + p 
ν(E + p) 

⎞ 

⎟ ⎠ 

= 0 . (3.2)

In which ρ is density; μ and ν are the velocities in the x and

y directions, respectively; E is total energy; and p is pressure.

The initial conditions are: (1) ρ(x, y, 0) = 1 + 0 . 99 sin (x + y ) ; (2)

ρ(x, y, 0) = 1 + 0 . 999 sin (x + y ) ; (3) ρ(x, y, 0) = 1 + 0 . 99999 sin (x +
y ) ; and μ(x, y, 0) = 1 , ν(x, y, 0) = 1 , p(x, y, 0) = 1 , γ = 1 . 4 . The

computing domain is ( x, y ) ∈ [0, 2 π ] × [0, 2 π ], with a periodic

boundary conditions in both directions. The final computing time

is T = 0 . 1 . The numerical errors and orders of the density for the

hybrid WENO scheme and the simple WENO schemes are shown

in Table 3.5 , Table 3.6 and Table 3.7 , respectively. From these ta-

bles, we can know that the numerical errors of the hybrid WENO

scheme are smaller than the simple WENO scheme on the same

meshes. We also find these two schemes exceed the designed or-

der in case (2) and (3) shown in Table 3.6 and Table 3.7 , respec-

tively, while these two scheme achieve fifth order accuracy for case

(1) given in Table 3.5 . As in the Example 3.1 , we do think that

both two schemes can achieve the designed fifth order when the

meshes are small enough. In Fig. 3.4 , Fig. 3.5 and Fig. 3.6 , we show

numerical errors against CPU times for case (1), (2) and (3) with

different schemes, which illustrate the hybrid WENO scheme uses

less CPU times and has smaller numerical errors in comparison

with the simple WENO scheme on the same meshes, and we can

see that in Table 3.1 as well. Therefore, the hybrid WENO scheme

is more efficient than the simple WENO scheme in this two dimen-

sional test case with three extreme density initial conditions. 

Example 3.3. The Lax problem, and the initial condition is 

(ρ, μ, p, γ ) T = 

{
(0 . 445 , 0 . 698 , 3 . 528 , 1 . 4) T , x ∈ [ −0 . 5 , 0) , 
(0 . 5 , 0 , 0 . 571 , 1 . 4) T , x ∈ [0 , 0 . 5] . 

(3.3)

The final computing time is T = 0 . 16 , and we first compare the
performances of the exact solution and the computed density ρ
obtained with the hybrid WENO scheme and the simple WENO
scheme by using 200 grid points in Fig. 3.7 , then, the zoomed
in picture for different schemes and the time history of the
points where the simple WENO reconstruction procedure is used
in the hybrid WENO scheme are also given in Fig. 3.7 . These
two schemes also have similar computational results, however,
a  
he hybrid WENO scheme saves almost 50% computational time
hich can be seen in Table 3.1 . 

xample 3.4. The Shu-Osher problem, which describes shock in-

eraction with entropy waves [26] , and the initial condition is 

(ρ, μ, p, γ ) T 

= 

{
(3 . 857143 , 2 . 629369 , 10 . 333333 , 1 . 4) 

T 
, x ∈ [ −5 , −4) , 

(1 + 0 . 2 sin (5 x ) , 0 , 1 , 1 . 4) T , x ∈ [ −4 , 5] . 
(3.4)

his is a typical problem with a moving Mach = 3 shock interacting

ith sine waves in density, which means that the solution con-

ains both shocks and complex smooth region structures, and the

nal time is T = 1 . 8 . In Fig. 3.8 , we present the computed density

against the referenced “exact” solution, the zoomed in picture

or different schemes and the time history of the points where the

imple WENO reconstruction procedure is used in hybrid WENO

cheme, and the referenced “exact” solution is computed by the

fth order finite difference WENO scheme [16] with 20 0 0 grid

oints. Again, we all see that the computational results by the hy-

rid WENO scheme are similar to the simple WENO scheme, but

e find the hybrid WENO scheme uses less CPU time from the

able 3.1 . 

xample 3.5. The interaction of two blast waves, and the initial

onditions are: 

(ρ, μ, p, γ ) T = 

{ 

(1 , 0 , 10 

3 , 1 . 4) T , 0 < x < 0 . 1 , 

(1 , 0 , 10 

−2 , 1 . 4) T , 0 . 1 < x < 0 . 9 , 

(1 , 0 , 10 

2 , 1 . 4) T , 0 . 9 < x < 1 . 

(3.5)

n Fig. 3.9 , we show the computed density at the final time T =
 . 038 against the reference “exact” solution, the zoomed in picture

or different schemes and the time history of the points by using

he simple WENO reconstruction procedure in the hybrid WENO

cheme. Again, the reference “exact” solution is a converged solu-

ion computed by the fifth order finite difference WENO scheme

16] with 20 0 0 grid points. The computational results by these

chemes are similar as well, and their CPU time are shown in

able 3.1 similarly as the hybrid WENO scheme saves near 40% CPU

ime. 

xample 3.6. The Sedov blast wave problem, which contains very

ow density with strong shocks. The exact solution is specified in

17,23] . The computational domain is [ −2 , 2] and initial conditions

re: ρ = 1 , μ = 0 , E = 10 −12 everywhere except that the energy is



Z. Zhao, J. Zhu and Y. Chen et al. / Computers and Fluids 179 (2019) 422–436 429 

Fig. 3.5. 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0 . 999 sin (x + y ) , μ(x, y, 0) = 1 , ν(x, y, 0) = 1 and p(x, y, 0) = 1 . T = 0 . 1 . Computing time and error. Plus signs and a 

solid line denote the results of the hybrid WENO scheme; square and a solid line denote the results of the simple WENO scheme. 

Fig. 3.6. 2D-Euler equations: initial data ρ(x, y, 0) = 1 + 0 . 99999 sin (x + y ) , μ(x, y, 0) = 1 , ν(x, y, 0) = 1 and p(x, y, 0) = 1 . T = 0 . 1 . Computing time and error. Plus signs and 

a solid line denote the results of the hybrid WENO scheme; square and a solid line denote the results of the simple WENO scheme. 

Fig. 3.7. The Lax problem. T = 0.16. From left to right: density; density zoomed in; the points where the simple WENO reconstruction procedure is used in the hybrid WENO 

scheme. Solid line: the exact solution; plus signs: the results of the hybrid WENO scheme; squares: the results of the simple WENO scheme. Grid points: 200. 
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Fig. 3.8. The shock density wave interaction problem. T = 1.8. From left to right: density; density zoomed in; the points where the simple WENO reconstruction procedure is 

used in the hybrid WENO scheme. Solid line: the exact solution; plus signs: the results of the hybrid WENO scheme; squares: the results of the simple WENO scheme. Grid 

points: 400. 

Fig. 3.9. The blast wave problem. T = 0.038. From left to right: density; density zoomed in; the points where the simple WENO reconstruction procedure is used in the hybrid 

WENO scheme. Solid line: the exact solution; plus signs: the results of the hybrid WENO scheme; squares: the results of the simple WENO scheme. Grid points: 800. 

Fig. 3.10. The Sedov blast wave problem. T = 0.001. From left to right: density; velocity; pressure. Solid line: the exact solution; plus signs: the results of the hybrid WENO 

scheme; squares: the results of the simple WENO scheme. Grid points: 400. 
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in the center cell. The final time is T = 0 . 001 .

In Fig. 3.10 , we present the computational results including the

density, velocity and pressure, which are computed by the hybrid

WENO scheme and the simple WENO scheme respectively, and the

time history of the points where the simple WENO reconstruction

procedure is used in the hybrid WENO schemes are illustrated in

the left of Fig. 3.13 . Likewise, these schemes work well for this ex-

treme test case, while the hybrid WENO scheme saves more than

30% CPU time than the simple WENO scheme given in Table 3.1 . 
xample 3.7. The double rarefaction wave problem [19] . This test

ase has the low pressure and low density regions, which is hard

o be simulated precisely. The initial conditions are: (ρ, μ, p, γ ) T =
(7 , −1 , 0 . 2 , 1 . 4) T for x ∈ [ −1 , 0) ; (ρ, μ, p, γ ) T = (7 , 1 , 0 . 2 , 1 . 4) T for

 ∈ [0, 1]. The final computing time is T = 0 . 6 . The computational

esults by the hybrid WENO scheme and the simple WENO scheme

ncluding the density, velocity and pressure are shown in Fig. 3.11

nd the time history of the points by using the simple WENO re-

onstruction procedure in the hybrid WENO scheme are illustrated
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Fig. 3.11. The double rarefaction wave problem. T = 0.6. From left to right: density; velocity; pressure. Solid line: the exact solution; plus signs: the results of the hybrid 

WENO scheme; squares: the results of the simple WENO scheme. Grid points: 400. 

Fig. 3.12. The Leblanc problem. T = 0.0 0 01. From left to right: log plot of density; velocity; log plot of pressure. Solid line: the exact solution; plus signs: the results of the 

hybrid WENO scheme; squares: the results of the simple WENO scheme. Grid points: 6400. 

Fig. 3.13. From left to right: the points where the simple WENO reconstruction procedure is used in the hybrid WENO scheme for the Sedov blast wave problem, the double 

rarefaction wave problem and the Leblanc problem, respectively. 

i  

h  

s

E  

 

 

p  

t  

W  

t  

t  

t  

b  

T  

c

E  

d  

4  
n the middle of Fig. 3.13 . We can also see that these two schemes

ave similar computational results, but the hybrid WENO scheme

aves almost 50% CPU time from the Table 3.1 . 

xample 3.8. The Leblanc problem [19] . The initial conditions are:

(ρ, μ, p, γ ) T = (2 , 0 , 10 9 , 1 . 4) T for x ∈ [ −10 , 0) ; (ρ, μ, p, γ ) T =
(0 . 001 , 0 , 1 , 1 . 4) T for x ∈ [0, 10]. In Fig. 3.12 , we present the com-

utational results including the density, velocity and pressure at

he final time T = 0 . 0 0 01 , which are computed by the hybrid

ENO scheme and the simple WENO scheme respectively, and the
ime history of the points where the simple WENO reconstruc-

ion procedure is used in the hybrid WENO schemes are illus-

rate in the right of Fig. 3.13 . Likewise, the computational results

y these schemes are similar, and their CPU time are shown in

able 3.1 similarly as the hybrid WENO scheme saves almost 36%

omputational costs. 

xample 3.9. Double Mach reflection problem. We solve the two-

imensional Euler Eqs. (3.2) in a computational domain of [0,

] × [0, 1]. The reflecting wall lies at the bottom, starting from
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Fig. 3.14. Double Mach reflection problem. T = 0.2. 30 equally spaced density contours from 1.5 to 22.7. From top to bottom: the results of the hybrid WENO scheme; the 

results of the simple WENO scheme; squares denote the points where the simple WENO reconstruction procedure is used in the hybrid WENO scheme; zoomed of the 

hybrid WENO scheme and the simple WENO scheme. Grid points: 1600 × 400. 
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Fig. 3.15. The 2D Sedov problem. T = 1. From top to bottom: 30 equally spaced density contours from 0.95 to 5 for two schemes; density is projected to the radical coordinates 

and the simple WENO reconstruction procedure is used in the hybrid WENO scheme for the 2D Sedov blast wave problem. Solid line: the exact solution; plus signs: the 

results of the hybrid WENO scheme; squares: the results of the simple WENO scheme. Grid points: 160 × 160. 
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E  
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1 
6 , y = 0, making a 60 o angle with the x-axis. For the bottom

oundary, the exact post-shock condition is imposed for the part

rom x = 0 to x = 

1 
6 , while the reflection boundary condition is

sed for the rest. At the top boundary is the exact motion of the

ach 10 shock and γ = 1 . 4 . The final computing time is T = 0 . 2 .

e present the results of two schemes in region [0, 3] × [0, 1],

he points by using the simple WENO reconstruction procedure in

he hybrid WENO scheme at the final time and the blow-up re-

ion around the double Mach stems in Fig. 3.14 . Again, the hybrid

ENO scheme and the simple WENO scheme have the same com-

utational results, while the hybrid WENO scheme saves near 25%

PU time shown in Table 3.1 . 
F  
xample 3.10. The two dimensional Sedov problem [17,23] . The

nitial conditions are: ρ= 1, μ= 0, ν= 0, E = 10 −12 , γ = 1 . 4 every-

here except that the energy is the constant 0 . 244816 

x 
y 

in the lower

eft corner cell, and the final time is T = 1 . In Fig. 3.15 , we show

he computational results by the hybrid WENO and the simple

ENO scheme about the density, and the final time of the points

here the simple WENO methodology is used in the hybrid WENO

cheme are also shown. Again, we can see these two schemes have

he same numerical results for this extreme test case, however, the

ybrid WENO scheme saves less CPU time illustrated in Table 3.1 . 

xample 3.11. The high Mach number astrophysical jet problem.

or solving the gas and shocks which are discovered by using the
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Fig. 3.16. Simulation of Mach 80 jet without radiative cooling problem. T = 0.07. Scales are logarithmic. From top to bottom: 40 equally spaced density contours from -2 to 3; 

40 equally spaced pressure contours from -0.5 to 5; 40 equally spaced temperature contours from -2 to 4.5. From left to right: Hybrid WENO scheme; Simple WENO scheme. 

Grid points: 448 × 224. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

i  

o  

t  

s  

c  

m  

 

f  

a  

a  

p  

a  

s  

l  

s  

w  

u

Hubble space telescope, one can implement theoretical models in

a gas dynamics simulator [6,13,14] . A Mach 80 problem (i.e. the

Mach number of the jet inflow is Mach 25 with respect to the

sound speed in the light ambient gas and Mach 80 with respect

to the sound speed in the heavy jet gas) is proposed without the

radiative cooling. The initial conditions are: the computational do-

main is [0,2] × [-0.5,0.5] and is full of the ambient gas with

(ρ, μ, ν, p, γ ) T = (0 . 5 , 0 , 0 , 0 . 4127 , 5 / 3) T . The boundary conditions

for the right, top and bottom are outflow. For the left boundary

(ρ, μ, ν, p, γ ) T = (5 , 30 , 0 , 0 . 4127 , 5 / 3) T for y ∈ [ −0 . 05 , 0 . 05] and

(ρ, μ, ν, p, γ ) T = (0 . 5 , 0 , 0 , 0 . 4127 , 5 / 3) T otherwise. The final com-

puting time is T = 0 . 07 . In Fig. 3.16 , we show the numerical results

computed by the hybrid WENO scheme and the simple WENO

scheme including the density, pressure and temperature, and we

also present the final time of the points using the simple WENO

reconstruction procedure for the hybrid WENO scheme in the left
f Fig. 3.18 . The total CPU time of these two schemes is shown

n Table 3.1 . Then a Mach 20 0 0 problem (i.e. the Mach number

f the jet inflow is Mach 25 with respect to the sound speed in

he light ambient gas and Mach 20 0 0 with respect to the sound

peed in the heavy jet gas) is proposed without the radiative

ooling again. The initial conditions are: the computational do-

ain is [0,1] × [-0.25,0.25] and is full of the ambient gas with

(ρ, μ, ν, p, γ ) T = (0 . 5 , 0 , 0 , 0 . 4127 , 5 / 3) T . The boundary conditions

or the right, top and bottom are outflow. For the left bound-

ry (ρ, μ, ν, p, γ ) T = (5 , 800 , 0 , 0 . 4127 , 5 / 3) T for y ∈ [ −0 . 05 , 0 . 05]

nd (ρ, μ, ν, p, γ ) T = (0 . 5 , 0 , 0 , 0 . 4127 , 5 / 3) T otherwise. We com-

ute this problem till T = 0 . 001 . The density, pressure and temper-

ture are shown in Fig. 3.17 . The final time of the points using the

imple WENO methodology for the hybrid WENO scheme are il-

ustrated in the right of Fig. 3.18 . The total CPU time of these two

chemes is given in Table 3.1 . Likewise, these two schemes work

ell for this extreme test case, while the hybrid WENO scheme

ses less CPU time than the simple WENO scheme. 
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Fig. 3.17. Simulation of Mach 20 0 0 jet without radiative cooling problem. T = 0.001. Scales are logarithmic. From top to bottom: 40 equally spaced density contours from -2 

to 3; 40 equally spaced pressure contours from -2 to 11; 40 equally spaced temperature contours from -3 to 12.5. From left to right: Hybrid WENO scheme; Simple WENO 

scheme. Grid points: 640 × 320. 

Fig. 3.18. The high Mach number astrophysical jet problem. From left to right: the points where the simple WENO reconstruction procedure is used in the hybrid WENO 

scheme for the Mach 80 problem and Mach 20 0 0 problem, respectively. 
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t  
. Concluding remarks 

In this paper, a new type of fifth order accurate finite difference

ybrid WENO scheme is designed for solving the hyperbolic con-

ervation laws. Compared with the simple WENO scheme [28] , the

ybrid WENO scheme is more efficient with less numerical errors
n smooth region and less computational costs, and it still keeps

he simplicity and robustness of the simple WENO scheme. The

ybrid WENO scheme introduced in the previous section and the

imple WENO scheme both have the ability to simulate rather ex-

reme test cases such as the Sedov blast wave, the Leblanc and

he high Mach number astrophysical jet problems et al. by using a
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normal CFL number without any further positivity preserving pro-

cedure, while the hybrid WENO scheme uses less CPU time than

the simple WENO scheme. In general, these numerical results all

illustrate the good performance of the hybrid WENO scheme. 
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Appendix A. The steps to solve the cubic equation’s real root 

In this paper we use the following procedure which is pre-

sented in [5] to solve the cubic equation’s real root. For arbitrary

real coefficient cubic equation ax 3 + bx 2 + cx + d = 0 , it’s real zero

points are solved following the steps. Step 1. If a = 0 , b = 0 and

c � = 0, the real zero point x = −d/c; while a = 0 , b = 0 and c = 0 ,

there is no need to solve it’s zero point. 

Step 2. If a = 0 and b � = 0, the cubic equation is reduced to

a quadratic equation. If 
 = c 2 − 4 bd < 0 , the quadratic equation

doesn’t have real zero point; while 
≥ 0, it have two real zero

point x 1 , 2 = 

−c±
√ 

c 2 −4 bd 
2 b 

Step 3. If a � = 0, we firstly bring in four discriminations, includ-

ing three multiple root discriminations A, B, C and a total discrim-

ination 
. Their explicit expressions are ⎧ ⎪ ⎨ 

⎪ ⎩ 

A = b 2 − 3 ac 
B = bc − 9 ad 

C = c 2 − 3 bd 


 = B 

2 − 4 AC 

1. If A = 0 and B = 0 , the cubic equation has three multiple

real roots x 1 , 2 , 3 = − b 
3 a . 

2. If 
< 0, it has three unequal real roots, and the explicit for-

mulas are given as follows, 

x 1 = 

−b − 2 

√ 

A cos θ
3 

3 a 
, 

x 2 , 3 = 

−b + 

√ 

A ( cos θ
3 

± √ 

3 sin 

θ
3 
) 

3 a 
, 

where θ = arccos T and T = (2 Ab − 3 aB ) / (2 A 

3 
2 ) . 

3. If 
 = 0 , it has three real roots, and one is single root and

others are repeated roots. The real roots x 1 = −b/a + K and

x 2 , 3 = −K/ 2 , where K is set as B / A . 

4. If 
> 0, it has one real root and two conjugated imagi-

nary roots, and the explicit expression of the real root x 1 is

− b+ 3 
√ 

Y 1 + 3 
√ 

Y 2 
3 a , in which Y 1 , 2 = Ab + 3 a ( −B ±

√ 

B 2 −4 AC 
2 ) , while

the formulas of the imaginary roots don’t need to be pre-

sented here. 
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