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Abstract. In this paper, a new type of third-order and fourth-order weighted essen-
tially non-oscillatory (WENO) schemes is designed for simulating the Hamilton-Jacobi
equations on triangular meshes. We design such schemes with the use of the nodal in-
formation defined on five unequal-sized spatial stencils, the application of monotone
Hamiltonians as a building block, the artificial set of positive linear weights to make
up high-order approximations in smooth regions simultaneously avoiding spurious
oscillations nearby discontinuities of the derivatives of the solutions. The spatial re-
constructions are convex combinations of the derivatives of a modified cubic/quartic
polynomial defined on a big spatial stencil and four quadratic polynomials defined on
small spatial stencils, and a third-order TVD Runge-Kutta method is used for the time
discretization. The main advantages of these WENO schemes are their efficiency, sim-
plicity, and can be easily implemented to higher dimensional unstructured meshes.
Extensive numerical tests are performed to illustrate the good performance of such
new WENO schemes.

AMS subject classifications: 65M60, 35L65

Key words: Unequal-sized stencil, weighted essentially non-oscillatory scheme, high-order ap-
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1 Introduction

In this paper, we design a class of new third-order and fourth-order weighted essentially
non-oscillatory (WENO) schemes for solving the Hamilton-Jacobi equations

{

φt+H(x,y,t,φ,φx,φy)=0,

φ(x,y,0)=φ0(x,y),
(1.1)
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on triangular meshes. It is well known that the Hamilton-Jacobi (HJ) equations are often
used in the applications of differential games, geometric optics, computer vision, varia-
tional calculus, control theory, etching, robotic navigation, and crystal growth [11,33,43].
The solution of (1.1) is continuous but the derivatives of the solution may have disconti-
nuities or generate singularities via time approaching.

The concepts of the entropy conditions and the definition of the viscosity solution
were formulated in [13–15, 47]. Abgrall and Sonar [2] pointed out that the viscosity
solutions of the HJ equations may not be unique with the consideration of the phys-
ical implications. The HJ equations show very close relationship to the conservation
laws and the numerical methods for HJ equation are similar to those for the conserva-
tion laws [4, 39, 40]. In 1984, Crandall and Lions [16] proposed first-order monotone
finite difference schemes and then indicated that such schemes could converge to the
viscosity solution of (1.1). Osher and Sethian [35] proposed a second-order essentially
non-oscillatory (ENO) scheme for solving the HJ equations. Osher and Shu [36] de-
signed high-order accurate ENO schemes for solving the HJ equations. Lafon and Os-
her [25] proposed unstructured ENO schemes for solving the HJ equations. In 2000, Jiang
and Peng [21] proposed finite difference high-order weighted ENO (WENO) [22, 31, 34]
scheme for solving the HJ equations on structured meshes which used the similar frame-
work proposed by Jiang and Shu [22] for the conservation laws. Li and Chan [30], and
Zhang and Shu [49] also proposed unstructured different finite difference high-order
WENO schemes for solving the HJ equations in two dimensions. Herein, Qiu [37, 38],
and Qiu and Shu [41] designed Hermite WENO (HWENO) schemes based on the fi-
nite volume and finite difference frameworks for solving the HJ equations on structured
meshes. The central high resolution schemes for the HJ equations were presented by a
series of literature, e.g. [7–9, 24, 27, 32]. Some schemes, such as weighted power ENO
schemes [42], mapped WENO schemes [9, 18], discontinuous Galerkin schemes [12] and
relaxation schemes [23] et al., were also used to solve for the HJ equations. In [3,5,19,26],
some finite element methods were constructed on unstructured meshes. Hu and Shu [19]
proposed discontinuous Galerkin methods for solving the HJ equations. In 2011, Yan and
Osher [48] gave a local discontinuous Galerkin method for solving the HJ equations.

This paper is a new extension of [54] from finite volume schemes for the conserva-
tion laws to finite difference schemes for the HJ equations, based on the similar spirit
of WENO methodologies specified in [49]. The major advantage of such new WENO
schemes is their easy implementation in the computation. These new WENO schemes
have convex combinations of x- or y-directional derivatives of one modified high degree
polynomial and four low degree polynomials. The essential merits of such methodology
are its robustness in spatial field by the definition of any positive linear weights, and
only one central big spatial stencil and four biased or central small stencils are used to
reconstruct five different degree polynomials. Therefore, we apply the derivatives of the
high degree polynomial defined on central big spatial stencil for obtaining high-order
numerical approximations of ∇φ at different vertexes in smooth regions and switch to
the derivatives of quadratic degree polynomials defined on biased or central small spa-
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tial stencils near discontinuities. Thereafter, the new nonlinear weight formulas are pre-
sented for such five unequal degree polynomials on triangular meshes. Generally speak-
ing, the primary innovations of this paper lie in three aspects: the new way to reconstruct
x- and y-directional derivatives of one high degree polynomial and four quadratic poly-
nomials, a robust WENO type communications among such five unequal degree poly-
nomials for obtaining high-order approximations to the derivative quantities at different
vertexes, and the new formulations of the nonlinear weights for unequal degree polyno-
mials on triangular meshes.

The organization of the paper is as follows. In Section 2, we review and construct
the new third-order and fourth-order accurate nodal based WENO schemes in detail for
solving the HJ equations on triangular meshes and present extensive numerical results in
Section 3 to verify the accuracy and easy implementation. Concluding remarks are given
in Section 4.

2 The construction of WENO schemes for HJ equations

In this section, we give the framework of solving the HJ equations briefly and then de-
velop the procedures of high-order WENO schemes for the HJ equations on triangular
meshes.

2.1 The framework

We consider the governing equation (1.1) in the field Ω, which is partitioned into several
non-overlapped triangles ∆ℓℓ, ℓℓ= 1,··· ,N. We define φi(t)=φ(xi,yi,t) as the numerical
approximation to the viscosity solution of (1.1) at vertex i of the triangle ∆ℓℓ and abbre-
viate as φi in the following if it does not cause confusion. For every node i, we define
the angular sectors T0,··· ,Tki

, which meet at vertex (xi,yi). They are the inner angles de-
fined at node i of the triangles which contain it as a vertex. The index of the angular
sectors is ordered anticlockwise in this paper. nσ+1/2 is the unit vector of the half-line
Dσ+1/2 = Tσ

⋂

Tσ+1, and θσ is the inner angle of sector Tσ, 0 ≤ σ ≤ ki (see Fig. 1). So
∇φ0,··· ,∇φki

are the numerical approximations of ∇φ at node i in each angular sector
T0,··· ,Tki

, respectively. The two-dimensional governing equation is

{

d
dt φi(t)=−H(∇φi),

φ(xi,yi,0)=φ0(xi,yi).
(2.1)

Then the right term of (2.1) is approximated by

d

dt
φi(t)=−Ĥi = L(φi). (2.2)
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Figure 1: Node i and its inner angular sectors.

Ĥi is a global Lax-Friedrichs monotone Hamiltonian [1, 36] (see Fig. 1) and is defined as

Ĥi =H

(

∑
ki
σ=0θσ(∇φi)σ

2π

)

− α

π

ki

∑
σ=0

βσ+1/2

(

(∇φi)σ+(∇φi)σ+1

2

)

·nσ+1/2, (2.3)

where βσ+1/2 = tan( θσ
2 )+tan( θσ+1

2 ). θσ, σ = 0,··· ,ki are the anticlockwise inner angle of
sectors, and θki

= θ0. Then we set α=max{αx,αy}=max{max|H1|,max|H2|}. Here H1

and H2 are the partial derivatives of H with respect to φx and φy, otherwise, are the
Lipschitz constants of H globally (if they are not differentiable). If we could obtain high-
order spatial nodal approximations of ∇φ at node i in every angular sector, the numerical
Hamiltonian H will get a high-order approximation with respect to H as defined in [49].

Then a third-order TVD Runge-Kutta time discretization method [46]














φ
(1)
i =φn

i +△tL(φn
i ),

φ
(2)
i = 3

4 φn
i +

1
4 φ

(1)
i + 1

4△tL(φ
(1)
i ),

φn+1
i = 1

3 φn
i +

2
3 φ

(2)
i + 2

3△tL(φ
(2)
i ),

(2.4)

is applied to obtain a full discretization scheme both in space and time. And the variable
t in φ(x,y,t) is also omitted in the following if it does not cause confusion.

We now give the crucial procedures of two high-order finite difference WENO schemes
using the point values φi defined on the vertexes to approximate the point values of ∇φ
at the same vertexes on triangular meshes. These reconstructions should be both high-
order accurate in smooth regions and keep essentially non-oscillatory property near the
discontinuities of the derivatives of the solutions. We take into account the procedures of
third-order and fourth-order cases in the following.
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2.2 The third-order spatial reconstruction

The third-order reconstructions of ∇(φ) at the vertexes (xℓ,yℓ), ℓ= i, j,k of the target cell
∆0 (in the relevant angular sectors) are addressed in the following (see Figs. 1 and 2).

Step 1.1. Select a central spatial stencil containing at least ten nodes. For example (as
shown in Fig. 2), we choose a target cell ∆0 and form a spatial stencil S1={1,2,3} (nodes
1, 2, 3 coincide with nodes i, j, k, respectively). Then we search three immediate neigh-
boring triangles of ∆0 as ∆01, ∆02, ∆03 and add new nodes (which are the vertexes of these
triangles) to S1 and form the spatial stencil S1 ≡ S1∪{4,··· ,N1}, where 5≤ N1 ≤ 6. After
that, we search the neighboring triangles of such three triangles as ∆011, ∆012, ∆021, ∆022,
∆031, and ∆032 (some of them may coincide with each other), add new vertexes of these
triangles to S1, and form the spatial stencil S1 ≡ S1∪{N1+1,··· ,N2}. If 10≤ N2, we can
use these N2 point values to reconstruct a cubic polynomial. Otherwise, such as shown in
Fig. 2, we need to search new triangles of the next layer of such triangles as ∆0111, ∆0112,
∆0121, ∆0122, ∆0211, ∆0212, ∆0221, ∆0222, ∆0311, ∆0312, ∆0321, and ∆0322 (some of them may
coincide with each other once again), respectively. Then we could add new vertexes of
such triangles to S1 and form the nodal spatial stencil S1≡S1∪{N2+1,··· ,N3}. Such pro-
cedure is fulfilled sequentially until the big nodal stencil S1 contains at least ten nodes for
the spatial reconstruction. It is well known that the interpolating polynomial based on
the information on such nodes is not always easy to be solved. Associated linear system
to calculate the polynomial can be an ill-conditioned problem or a singular problem, such
that we need to add new nodes to the chosen central spatial stencil from the neighboring
triangles around the target triangle ∆0 and its immediate neighbors, so as to form a new

3(k)

1(i) 2(j)

5

4

9

8

6

0 01

02

03
011
(032)

012

021

022

031

7

12

14

10

11

13

0112

0121

0122

0211
0212

0221

0312

Figure 2: The first type of central spatial stencil.
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linear system. We remark that this ill-conditioned problem comes from both the geomet-
ric distribution of the nodes, for which we could do nothing but change the nodes of the
computing mesh, and from the choice of basis functions in the interpolation [49]. Then
we construct a cubic polynomial

q1(x,y) ∈ span

{

1,
(x−x0)
√

|∆0|
,
(y−y0)
√

|∆0|
,
(x−x0)2

|∆0|
,
(x−x0)(y−y0)

|∆0|
,
(y−y0)2

|∆0|
,

(x−x0)3

√

|∆0|3
,
(x−x0)2(y−y0)

√

|∆0|3
,
(x−x0)(y−y0)2

√

|∆0|3
,
(y−y0)3

√

|∆0|3

}

by requiring it has the same point values of φ at nodes 1, 2, 3, and matches the same point
values of φ in the set A=S1\{1,2,3} in a least square sense [19, 20, 49]:

q1(xℓ,yℓ)=φ(xℓ,yℓ), ℓ=1,2,3, (2.5)

and
min ∑

ℓ∈A

(q1(xℓ,yℓ)−φ(xℓ,yℓ))
2
, A=S1\{1,2,3}. (2.6)

Then the reconstructed polynomial ∇q1(x,y) will be a third-order approximation to ∇φ
over ∆0.

Step 1.2. Select three small biased stencils and one small central stencil. For example (as
shown in Fig. 2), We choose three biased stencils S2, S3, S4, and one central stencil S5,
which contain the vertexes of ∆ℓℓ, ℓℓ= 0,01,011,012; ℓℓ= 0,02,021,022; ℓℓ= 0,03,031,032
and ℓℓ= 0,01,02,03, respectively. And we should confirm a fact that each of them con-
tains at least six distinct nodes (otherwise, the vertexes of the neighboring triangles of
∆ℓℓ,ℓℓ=011,012; ℓℓ=021,022; ℓℓ=031,032 and ℓℓ=01,02,03 are added to associated sten-
cils Sl,l = 2,··· ,5 if necessary, and such searching algorithm can be fulfilled sequentially
until each of these stencils contains enough nodes). Then we construct quadratic polyno-

mials ql(x,y) ∈ span{1, (x−x0)√
|∆0|

,
(y−y0)√

|∆0|
, (x−x0)

2

|∆0| ,
(x−x0)(y−y0)

|∆0| ,
(y−y0)

2

|∆0| }, l=2,··· ,5 by requiring

ql(xℓ,yℓ)=φ(xℓ,yℓ), ℓ=1,2,3,

min ∑
ℓ∈Al

(ql(xℓ,yℓ)−φ(xℓ,yℓ))
2 , Al =Sl\{1,2,3}, l=2,··· ,5. (2.7)

Remark 2.1. We apply the values of at least six nodes for constructing quadratic poly-
nomials ql(x,y), l = 2,··· ,5, since each of them has six degrees of freedom. We should
choose at least three nodes from the neighboring triangles of the target triangle ∆0, other
than node 1 (target node i), node 2 (node j), and node 3 (node k). For example (as shown
in Fig. 2), we choose such three biased stencils S2 = {1,2,3,4,6,7}, S3 = {1,2,3,5,8,9}, and
S4 = {1,2,3,4,6,9}, respectively. By doing so, we could keep essentially non-oscillatory
property of the scheme in case that there are discontinuities. And we could also main-
tain such property by applying a central stencil S5={1,2,3,4,5,6} which is often wrongly
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omitted. Such four small spatial stencils (three small biased stencils and one small central
stencil) are indispensable here. And we would like to point out a fact that the nodes on
such small stencils Sl, l=2,··· ,5 do not need to coincide with the nodes in the big stencil
S1.

Step 1.3. Set any positive linear weights γ1,··· ,γ5 with one requirement ∑
5
κ=1γκ=1. With

the similar idea in [28, 29], we rewrite ∇q1(x,y) as

∇q1(x,y)=γ1

(

1

γ1
∇q1(x,y)−

5

∑
κ=2

γκ

γ1
∇qκ(x,y)

)

+
5

∑
κ=2

γκ∇qκ(x,y). (2.8)

In this paper, following the practice in [17, 50–53, 55, 56], one type of such linear weights
is defined as γ1=0.96 and γ2=γ3=γ4=γ5=0.01.

Step 1.4. We compute the smoothness indicators βl , l = 1,··· ,5 which measure how
smooth the functions ql(x,y), l=1,··· ,5 are in the triangle ∆0. The smaller these smooth-
ness indicators, the smoother the functions are in the triangle ∆0. We use the similar
recipe for the smoothness indicators as in [19, 22]:

βl = ∑
|ℓ|≥2

∫

∆0

|∆0||ℓ|−2

(

∂|ℓ|

∂xℓ1 ∂yℓ2
ql(x,y)

)2

dxdy, l=1,··· ,5, (2.9)

where ℓ = (ℓ1,ℓ2) and |ℓ| = ℓ1+ℓ2. Their expansions in Taylor series at (x0,y0) of the
barycenter of the target triangle ∆0 are

β1=

(

∑
|ℓ|=2

(
∂|ℓ|

∂xℓ1 ∂yℓ2
φ(x,y)|(x0,y0))

2

)

|△0|(1+O(|△0|))=O(|△0|), (2.10)

and

βl =

(

∑
|ℓ|=2

(
∂|ℓ|

∂xℓ1 ∂yℓ2
φ(x,y)|(x0 ,y0))

2

)

|△0|(1+O(|△0|
1
2 ))=O(|△0|), l=2,··· ,5. (2.11)

Step 1.5. Compute the nonlinear weights based on the linear weights and the smoothness
indicators. For instance, we use τ [51] which is simply defined as the absolute difference
between β1, β2, β3, β4, and β5, and is similar to that in [6, 10]. The difference expansions
in Taylor series at (x0,y0) are

β1−βl =O(|△0|
3
2 ), l=2,··· ,5. (2.12)

So it satisfies

τ=
( |β1−β2|+|β1−β3|+|β1−β4|+|β1−β5|

4

)2
=O(|△0|3). (2.13)
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Then the associated nonlinear weights are defined as

ωl =
ω̄l

∑
5
κ=1 ω̄κ

, ω̄l =γl

(

1+
τ

ε+βl

)

, l=1,··· ,5. (2.14)

Here ε is a small positive number to avoid the denominator of (2.14) to become zero. By
the implementation of (2.13) in smooth regions, they satisfy

τ

ε+βl
=O(|△0|2), l=1,··· ,5, (2.15)

on condition that ε≪βℓ . Therefore, the nonlinear weights ωl, l=1,··· ,5 satisfy the order
accuracy condition ωl = γl+O(|△0|) [6, 10], providing the third-order accuracy to the
WENO schemes narrated in [22, 45]. We set ε=10−6 in all simulations in this paper.

Step 1.6. The final reconstruction formulation of ∇φ in the target cell ∆0 is given by

∇φ(x,y)≈ω1

(

1

γ1
∇q1(x,y)−

5

∑
κ=2

γκ

γ1
∇qκ(x,y)

)

+
5

∑
κ=2

ωκ∇qκ(x,y), (2.16)

and ∇φ at vertexes i, j, k of the target cell ∆0 are given by

∇(φℓ)≈ω1

(

1

γ1
∇q1(xℓ,yℓ)−

5

∑
κ=2

γκ

γ1
∇qκ(xℓ,yℓ)

)

+
5

∑
κ=2

ωκ∇qκ(xℓ,yℓ), ℓ= i, j,k. (2.17)

Remark 2.2. There are two major advantages in this paper. The first, we only use five
unequal degree polynomials defined on associated unequal-sized spatial stencils for the
reconstruction, the linear weights are independent of the meshes and can be any positive
numbers with only one requirement that their summation is one, in comparison with the
sophisticated computations of the linear weights specified in [49] et al.. The second, we
only need to compute the nonlinear weights one time for the vertexes i, j, k of the target
cell ∆0 and the nonlinear weights specified in [49] need to be computed for each vertex.

2.3 The fourth-order spatial reconstruction

The fourth-order reconstructions of ∇(φ) at the vertexes (xℓ,yℓ), ℓ= i, j,k of the target cell
∆0 (in the relevant angular sectors) are addressed in the following (see Figs. 1 and 3).

Step 2.1. Select a central spatial stencil containing at least fifteen nodes. For example, as
shown in Fig. 3, we also choose the target triangle ∆0 including the target node i and other
two nodes j, k as before. Then we apply the previous triangles and apply their vertexes
to form a spatial stencil S1 = {1,2,3,··· ,N3}. If N3 is less than fifteen, we should search
other immediate neighboring triangles other than that mentioned above. Similarly, we
should renumber vertexes of triangles ∆01111, ∆01112, ∆01121, ∆01122, ∆01211, ∆01212, ∆01221,
∆01222, ∆02111, ∆02112, ∆02121, ∆02122, ∆02211, ∆02212, ∆02221, ∆02222, ∆03111, ∆03112, ∆03121,
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Figure 3: The second type of central spatial stencil.

∆03122, ∆03211, ∆03212, ∆03221, ∆03222 (some of them coincide with each other), and add
new vertexes of these triangles to S1 and form a big stencil as S1 ≡ S1∪{N3+1,··· ,N4}
and confirm that N4 is no less than fifteen. Then we construct a quartic polynomial

q1(x,y) ∈ span

{

1,
(x−x0)
√

|∆0|
,
(y−y0)
√

|∆0|
,
(x−x0)2

|∆0|
,
(x−x0)(y−y0)

|∆0|
,
(y−y0)2

|∆0|
,
(x−x0)3

√

|∆0|3
,

(x−x0)2(y−y0)
√

|∆0|3
,
(x−x0)(y−y0)2

√

|∆0|3
,
(y−y0)3

√

|∆0|3
,
(x−x0)4

|∆0|2
,
(x−x0)3(y−y0)

|∆0|2
,

(x−x0)2(y−y0)2

|∆0|2
,
(x−x0)(y−y0)3

|∆0|2
,
(y−y0)4

|∆0|2
}

by requiring it has the same point values of φ at nodes 1, 2, 3 (nodes i, j, k), and matches
the same point values of φ in the set S1\{1,2,3} in a least square sense [19, 20, 49]:

q1(xℓ,yℓ)=φ(xℓ,yℓ), ℓ=1,2,3, (2.18)

and
min ∑

ℓ∈A

(q1(xℓ,yℓ)−φ(xℓ,yℓ))
2 , A=S1\{1,2,3}. (2.19)

Then the reconstructed polynomial ∇q1(x,y) will be a fourth-order approximation to ∇φ
over ∆0. We obey the same renumbering principle of all necessary nodes [49]. Since
only three nodes are distinct points in Fig. 3, it is very crucial to rank and detect at least
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fifteen distinct nodes in spatial stencil S1 for constructing the quartic polynomial q1(x,y).
Otherwise, the stencil S1 might not contain enough nodes for designing the fourth-order
reconstruction and new nodes lie in neighboring triangles around the target triangle ∆0

and its neighbors are searched sequentially.

Step 2.2. Select three biased and one central stencils Sl , l=2,··· ,5 which are the same as
those noted in Step 1.2, and then construct four quadratic polynomials ql(x,y), l=2,··· ,5.

Step 2.3. Set any positive linear weights γ1,··· ,γ5 with the same restriction as in Step 1.3.

Step 2.4. Compute the smoothness indicators by (2.9). Their expansions in Taylor series
at (x0,y0) of the barycenter of the target triangle ∆0 are

β1=

(

∑
|ℓ|=2

(
∂|ℓ|

∂xℓ1 ∂yℓ2
φ(x,y)|(x0 ,y0))

2

)

|△0|(1+O(|△0|
3
2 ))=O(|△0|), (2.20)

and βl , l=2,··· ,5 are given in (2.11).

Step 2.5. Compute the nonlinear weights. The difference expansions in Taylor series at
(x0,y0) are (2.12) and satisfy (2.13). Then associate nonlinear weights are defined as (2.14).
By the implementation of (2.13) in smooth regions, they satisfy (2.15). Therefore, the

nonlinear weights ωl, l=1,··· ,5 satisfy the order accuracy requirement ωl=γl+O(|△0|
3
2 )

[6, 10], providing the fourth-order accuracy to the WENO schemes [22, 45].

Step 2.6. The new final reconstruction formulations of ∇φ at vertexes i, j, k of the target
cell ∆0 are also given as narrated in (2.17).

Remark 2.3. Roughly speaking, to construct the third-order and fourth-order WENO
schemes, we need to find a big central spatial stencil S1 containing enough distinct nodes
and keep nodes 1, 2, and 3 in all stencils Sl, l=1,··· ,5. We also need to confirm these nodes
are central in the big stencil S1, so as to avoid S1 to be seriously downwind biased, which
might result in the appearance of linear instability [49]. One crucial innovation in this
paper is the application of x- and y-directional derivatives using only five unequal degree
polynomials to approximate ∇φ at vertexes of all triangles avoiding the sophisticated
calculation of different types of optimal linear weights. Such new WENO schemes use the
derivatives of a high degree polynomial to obtain high-order approximation at any nodes
in smooth regions and switch to the derivatives of either of four low degree polynomials
to keep essentially non-oscillatory property in non-smooth regions.

3 Numerical tests

In this section, we present the results of numerical tests for third-order and fourth-order
WENO schemes which are termed as WENO3 and WENO4 schemes, respectively. The
CFL number is 0.6. For the temporal discretization, the third-order TVD Runge-Kutta
time discretization method [46] is used here for all examples. Only for the accuracy tests,
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we set time step as ∆t=minℓ(|∆ℓ|
1
2 )

κ
3 , and κ = 3 (for the third-order WENO scheme) or

κ=4 (for the fourth-order WENO scheme) to confirm that spatial error dominates. Other-
wise, we recover κ=3 for other examples in this paper. For the sake of evaluating whether
the random choice of the linear weights would pollute the optimal order accuracy of such
new WENO schemes or not, we set four different types of linear weights in the numerical
accuracy examples as: (1) γ1=0.96 and γ2=γ3=γ4=γ5=0.01; (2) γ1=γ2=γ3=γ4=γ5=0.2;
(3) γ1=0.01 and γ2=γ3=γ4=γ5=0.2475; (4) γ1=γ2=γ3=γ4=0.01 and γ5=0.96. And
then we apply the first type of the linear weights for the latter examples, unless specified
otherwise.

Example 3.1. We solve the following HJ equation [30]:

φt−cos(φx+φy+1)=0, −2≤ x,y<2, (3.1)

with the initial condition φ(x,y,0) =−cos(π(x+y)/2) and the periodic boundary con-
ditions in two directions. When t= 0.5/π2 the solution is still smooth. A sample mesh
with boundary triangle size h=0.4 is shown in Fig. 4. The errors and orders of accuracy
by WENO3 and WENO4 schemes are shown in Table 1. We can see that both schemes
achieve their designed order of accuracy.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X
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0.5

1

1.5

2
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Figure 4: The sample mesh.

Example 3.2. We solve the following two dimensional Burgers’ equation:

φt+
(φx+φy+1)2

2
=0, −2≤ x,y<2, (3.2)
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Table 1: φt−cos(φx+φy+1)=0. φ(x,y,0)=−cos(π(x+y)/2). Periodic boundary conditions. T=0.5/π2.

WENO3 (1) WENO3 (2)

points L1 error order L∞ error order L1 error order L∞ error order

137 2.31E-3 7.10E-3 4.14E-3 1.40E-2

505 4.13E-4 2.49 2.15E-3 1.72 4.79E-4 3.11 3.17E-3 2.15

1937 6.40E-5 2.69 4.98E-4 2.11 6.41E-5 2.90 4.98E-4 2.67

7585 8.32E-6 2.94 9.12E-5 2.45 8.32E-6 2.95 9.12E-5 2.45

30017 1.03E-6 3.00 1.20E-5 2.92 1.03E-6 3.00 1.20E-5 2.92

WENO3 (3) WENO3 (4)

points L1 error order L∞ error order L1 error order L∞ error order

137 4.43E-3 1.48E-2 3.76E-3 9.81E-3

505 4.94E-4 3.16 3.45E-3 2.10 4.72E-4 2.99 2.25E-3 2.12

1937 6.43E-5 2.94 4.98E-4 2.79 6.44E-5 2.87 4.98E-4 2.18

7585 8.32E-6 2.95 9.12E-5 2.45 8.32E-6 2.95 9.12E-5 2.45

30017 1.03E-6 3.00 1.20E-5 2.92 1.03E-6 3.00 1.20E-5 2.92

WENO4 (1) WENO4 (2)

points L1 error order L∞ error order L1 error order L∞ error order

137 1.84E-3 8.57E-3 3.49E-3 1.33E-2

505 2.38E-4 2.95 1.14E-3 2.90 3.06E-4 3.51 3.03E-3 2.14

1937 2.00E-5 3.57 1.70E-4 2.75 2.10E-5 3.86 1.71E-4 4.15

7585 1.11E-6 4.17 1.77E-5 3.26 1.12E-6 4.23 1.77E-5 3.27

30017 4.61E-8 4.59 9.89E-7 4.16 4.61E-8 4.60 9.89E-7 4.16

WENO4 (3) WENO4 (4)

points L1 error order L∞ error order L1 error order L∞ error order

137 3.77E-3 1.43E-2 2.66E-3 8.42E-3

505 3.21E-4 3.55 3.31E-3 2.11 2.96E-4 3.17 1.31E-3 2.68

1937 2.13E-5 3.91 1.71E-4 4.27 2.11E-5 3.81 1.71E-4 2.94

7585 1.12E-6 4.25 1.77E-5 3.28 1.11E-6 4.24 1.77E-5 3.27

30017 4.61E-8 4.60 9.89E-7 4.16 4.61E-8 4.60 9.89E-7 4.16

with the initial condition φ(x,y,0)=−cos(π(x+y)/2) and periodic boundary conditions
in two directions. When t= 0.5/π2 the solution is still smooth. The same sample mesh
with boundary triangle size h = 0.4 is also shown in Fig. 4. The errors and orders of
accuracy by two new WENO schemes are shown in Table 2 and the numerical errors
against number of points graphs are presented in Fig. 5. We can observe that the optimal
order of accuracy is actually achieved and WENO schemes can get better results than
that of WENO-ZS schemes in [49] for this two-dimensional test case.
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Table 2: φt+
(φx+φy+1)2

2 =0. φ(x,y,0)=−cos(π(x+y)/2). Periodic boundary conditions. T=0.5/π2.

WENO3 (1) WENO3 (2)

points L1 error order L∞ error order L1 error order L∞ error order

137 1.00E-2 3.11E-2 1.72E-2 6.92E-2

505 1.15E-3 3.12 4.21E-3 2.89 1.31E-3 3.72 5.47E-3 3.66

1937 1.43E-4 3.00 5.76E-4 2.87 1.40E-4 3.22 5.76E-4 3.25

7585 1.75E-5 3.03 7.20E-5 3.00 1.75E-5 3.00 7.20E-5 3.00

30017 2.17E-6 3.01 8.98E-6 3.00 2.17E-6 3.01 8.98E-6 3.00

WENO3 (3) WENO3 (4)

points L1 error order L∞ error order L1 error order L∞ error order

137 1.80E-2 7.12E-2 1.46E-2 6.11E-2

505 1.39E-3 3.69 6.01E-3 3.57 1.24E-3 3.56 5.32E-3 3.52

1937 1.39E-4 3.32 5.77E-4 3.38 1.42E-4 3.13 5.76E-4 3.21

7585 1.75E-5 2.99 7.20E-5 3.00 1.75E-5 3.02 7.20E-5 3.00

30017 2.17E-6 3.01 8.98E-6 3.00 2.17E-6 3.01 8.98E-6 3.00

WENO4 (1) WENO4 (2)

points L1 error order L∞ error order L1 error order L∞ error order

137 5.14E-3 3.19E-2 1.34E-2 6.67E-2

505 2.36E-4 4.45 3.92E-3 3.02 6.21E-4 4.44 4.14E-3 4.01

1937 1.05E-5 4.49 4.01E-4 3.29 1.41E-5 5.45 4.07E-4 3.35

7585 4.00E-7 4.72 3.10E-5 3.69 4.09E-7 5.11 3.10E-5 3.71

30017 1.49E-8 4.74 2.07E-6 3.90 1.48E-8 4.78 2.07E-6 3.90

WENO4 (3) WENO4 (4)

points L1 error order L∞ error order L1 error order L∞ error order

137 1.43E-2 6.84E-2 9.85E-3 5.43E-2

505 7.29E-4 4.30 4.75E-3 3.85 4.62E-4 4.41 4.10E-3 3.73

1937 1.53E-5 5.57 4.08E-4 3.54 1.43E-5 5.01 4.07E-4 3.33

7585 4.15E-7 5.21 3.10E-5 3.72 4.16E-7 5.10 3.10E-5 3.71

30017 1.48E-8 4.80 2.07E-6 3.90 1.49E-8 4.80 2.07E-6 3.90

Example 3.3. We solve one-dimensional Burgers’ equation:

φt+
(φx+1)2

2
=0, −1≤ x≤1, (3.3)

with the initial condition φ(x,0)=−cos(πx) and periodic boundary condition. We con-
sider the solution of (3.3) in a domain of [−1,1]×[−0.25,0.25] (see Fig. 6) with a trian-
gulation of 41 vertices in x- and y-direction. Periodic boundary condition is used in the
y-direction. We plot the results at t=3.5/π2 when discontinuous derivative appears. The
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Figure 5: φt+
(φx+φy+1)2

2 = 0. φ(x,y,0)=−cos(π(x+y)/2). Number of points and error. Number signs and
a solid line denote the results of WENO scheme with different linear weights (1), (2), (3), and (4); squares
and a solid line denote the results of WENO-ZS scheme in [49]. Left: WENO3 and WENO3-ZS scheme; right:
WENO4 and WENO4-ZS scheme.
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Figure 6: One-dimensional Burgers’ equation. The sample mesh.

pictures shown below in Fig. 7 are obtained by extracting the data along the central cut
line y=0. We can see the schemes give good results for this problem.

Example 3.4. We solve the nonlinear equation with a non-convex flux:

φt−cos(φx+1)=0, −1≤ x≤1, (3.4)

with the initial data φ(x,0)=−cos(πx) and periodic boundary condition. We consider
the solution of (3.4) in the same domain of [−1,1]×[−0.25,0.25] (see Fig. 6) with a tri-
angulation of 41 vertices in x- and y-direction. Periodic boundary condition is used in
the y-direction. Then we plot the results at t= 1.5/π2 in Fig. 8 when the discontinuous
derivative appears in the solution. The pictures shown in Fig. 8 are obtained by extract-
ing the data along the central cut line y= 0. We can see that two WENO schemes give
good results for this problem once again.
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Figure 7: One-dimensional Burgers’ equation. Boundary triangle size h= 2
40 in x-direction. T=3.5/π2. Solid

line: the exact solution; square symbols: WENO scheme. Left: WENO3 scheme; right: WENO4 scheme.
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Figure 8: Problem with the non-convex flux H(φx)=−cos(φx+1). Boundary triangle size h= 2
40 in x-direction.

T = 1.5/π2. Solid line: the exact solution; square symbols: WENO scheme. Left: WENO3 scheme; right:
WENO4 scheme.

Example 3.5. We solve the same two dimensional Burgers’ equation (3.2) as in Exam-
ple 3.2 with the same initial condition φ(x,y,0)=−cos(π(x+y)/2), except that we now
plot the results at t = 1.5/π2 with boundary triangle size h = 0.1 (see Fig. 9) in Fig. 10
and Fig. 11, respectively, when the discontinuous derivative has already appeared in the
solution. We observe that two new WENO schemes could get good resolutions for this
example.
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Figure 9: Two dimensional Burgers’ equation. The sample mesh.
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Figure 10: Two dimensional Burgers’ equation. Boundary triangle size: h=0.1. T=1.5/π2. WENO3 scheme.
Left: contours of the solution; right: the surface of the solution.
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Figure 11: Two dimensional Burgers’ equation. Boundary triangle size: h=0.1. T=1.5/π2. WENO4 scheme.
Left: contours of the solution; right: the surface of the solution.



J. Zhu and J. Qiu / Commun. Comput. Phys., 27 (2020), pp. 897-920 913

Example 3.6. The two dimensional Riemann problem with a non-convex flux:

{

φt+sin(φx+φy)=0, −1≤ x,y<1,

φ(x,y,0)=π(|y|−|x|). (3.5)

The solution of the WENO3 and WENO4 schemes plotted at t=1 with boundary triangle
size h = 0.05 (see Fig. 9) are shown in Fig. 12 and Fig. 13. We can also observe good
resolutions of these schemes.
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Figure 12: Two dimensional Riemann problem with a non-convex flux H(φx,φy) = sin(φx+φy). Boundary
triangle size: h=0.05. T=1. WENO3 scheme. Left: contours of the solution; right: the surface of the solution.
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Figure 13: Two dimensional Riemann problem with a non-convex flux H(φx,φy) = sin(φx+φy). Boundary
triangle size: h=0.05. T=1. WENO4 scheme. Left: contours of the solution; right: the surface of the solution.
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Example 3.7. A problem from optimal control:

{

φt+sin(y)φx+(sin(x)+sign(φy))φy− 1
2 sin(y)2−(1−cos(x))=0, −π≤ x,y<π,

φ(x,y,0)=0,

(3.6)
with periodic boundary conditions, see [36] for detail. The solutions of the WENO3 and
WENO4 schemes are plotted at t= 1 with boundary triangle size h= 2π

40 (see Fig. 9) to-
gether with the optimal control ω=sign(φy) in Fig. 14 and Fig. 15.
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Figure 14: The optimal control problem. Boundary triangle size: h= 2π
40 . T= 1. WENO3 scheme. Left: the

surface of the solution; right: the optimal control ω=sign(φy).
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40 . T= 1. WENO4 scheme. Left: the
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Example 3.8. A two dimensional Eikonal equation with a non-convex Hamiltonian, which
arises in geometric optics [23] is given by:

{

φt+
√

φ2
x+φ2

y+1=0, 0≤ x,y<1,

φ(x,y,0)= 1
4(cos(2πx)−1)(cos(2πy)−1)−1,

(3.7)

The solutions of the two WENO schemes are plotted at t=0.6 with boundary triangle size
h= 0.025 (see Fig. 9) in Fig. 16 and Fig. 17, respectively. Good resolutions are observed
with the different two WENO schemes.
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Figure 16: Eikonal equation with a non-convex Hamiltonian. Boundary triangle size: h=0.025. T=0.6. WENO3
scheme. Left: contours of the solution; right: the surface of the solution.
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Figure 17: Eikonal equation with a non-convex Hamiltonian. Boundary triangle size: h=0.025. T=0.6. WENO4
scheme. Left: contours of the solution; right: the surface of the solution.
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Example 3.9. The problem of a propagating surface [35]:

{

φt−(1−εK)
√

φ2
x+φ2

y+1=0, 0≤ x,y<1,

φ(x,y,0)=1− 1
4 (cos(2πx)−1)(cos(2πy)−1),

(3.8)

where K is the mean curvature which is defined as

K=−φxx(1+φy)2−2φxyφxφy+φyy(1+φ2
x)

(1+φ2
x+φ2

y)
3/2

,

and ε is a small constant. Periodic boundary conditions are used in two directions. The
results of ε= 0 (pure convection) and ε= 0.1 by the WENO3 and WENO4 schemes with
boundary triangle size h= 0.025 (see Fig. 9) are presented in Fig. 18 and Fig. 19, respec-
tively. The surfaces at t= 0 for ε= 0 and for ε= 0.1, and at t= 0.1 for ε= 0.1, are shifted
downward in order to show the detail of the solution at later time.
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Figure 18: Propagating surface. Boundary triangle size: h=0.025. ε=0. Left: WENO3 scheme; right: WENO4
scheme.
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Figure 19: Propagating surface. Boundary triangle size: h = 0.025. ε = 0.1. Left: WENO3 scheme; right:
WENO4 scheme.

4 Concluding remarks

In this paper we investigate designing third-order and fourth-order nodal based WENO
schemes for solving the HJ equations on triangular meshes, which use a new WENO
type combination of a cubic/quartic polynomial and four quadratic polynomials defined
on five unequal-sized spatial stencils to obtain their x- and y-directional derivatives for
obtaining high order approximations at three vertices of all triangles in two dimensions.
The main advantages of such methodology are its simplicity in applying the information
on only five spatial stencils and easy definition of positive linear weights with one minor
constraint without taking into account the appearance of negative linear weights [44]
to keep high-order accuracy in smooth regions and essentially non-oscillatory property
near discontinuities. By performing such new procedures, only one big spatial stencil and
four small stencils are applied in constructing different degree polynomials at associated
vertexes. In order to confirm the new WENO schemes converge to the optimal third-
order or fourth-order accuracy in smooth regions, we modify the derivatives of high
degree polynomials by subtracting four parameterized low degree polynomials which
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are the derivatives of associated four quadratic polynomials. Thereafter, positive linear
weights are arbitrarily chosen for these modified polynomials of different degrees based
on the nodal information defined on unequal-sized stencils. Generally speaking, such
new spatial reconstruction methodology is simple, effective, and could be easily extended
to higher dimensions on unstructured meshes.
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