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a b s t r a c t

In this paper, a new limiter using weighted essentially non-oscillatory (WENO) method-
ology is investigated for the Runge–Kutta discontinuous Galerkin (RKDG) methods for
solving hyperbolic conservation laws. The idea is to use the high-order DG solution
polynomial itself in the target cell and the linear polynomials which are reconstructed
by the cell averages of solution in the target cell and its neighboring cells to reconstruct
a new high-order polynomial in a manner of WENO methodology. Since only the linear
polynomials need to be prepared for reconstruction, this limiter is very simple and
compact with a stencil including only the target cell and its immediate neighboring
cells. Numerical examples of various problems show that the new limiting procedure can
simultaneously achieve uniform high-order accuracy and sharp, non-oscillatory shock
transitions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the hyperbolic conservation laws

ut + ∇ · f (u) = 0, (1.1a)

u(x, 0) = u0(x) (1.1b)

where u and f (u) can be either scalars or vectors. For both one-dimensional (x = x) and two-dimensional (x = (x, y)) cases,
we investigate a new limiter based on weighted essentially non-oscillatory (WENO) methodology for the Runge–Kutta
discontinuous Galerkin (RKDG) methods, with the goal of obtaining a simple, robust, high-order and compact limiting
procedure to simultaneously maintain uniform high-order accuracy in smooth regions and control spurious numerical
oscillations near discontinuities.

Discontinuous Galerkin (DG) methods are a class of finite element methods using completely discontinuous piecewise
polynomial space for the numerical solutions and the test functions. The first DG method was originally introduced in 1973
by Reed and Hill [1] for the neutron transport problem. A major development of this method was carried out by Cockburn
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et al. in a series of papers [2–6], in which a framework to solve nonlinear time-dependent hyperbolic conservation laws
was established. They adopted explicit, nonlinearly stable high-order Runge–Kutta time discretizations [7], DG space
discretizations with exact or approximate Riemann solvers as interface fluxes and TVB (total variation bounded) nonlinear
limiter [8] to achieve non-oscillatory properties. This method has the advantage of flexibility in handling complicated
geometry, h-p adaptivity, and efficiency of parallel implementation.

Solutions of nonlinear hyperbolic conservation laws usually develop discontinuities even though the initial conditions
are smooth enough, which leads to great difficulty in numerical simulation. An important component of the RKDG
method for solving conservation laws with strong shocks in the solution is a nonlinear limiter, which is applied to
detect discontinuities and control spurious oscillations near the discontinuities. Many such limiters have been developed
for the RKDG method. Cockburn et al. developed the minmod-type TVB limiter [2–6], which is a slope limiter using a
technique borrowed from the finite volume methodology. Biswas et al. proposed a moment limiter [9] which works on
the moments of the numerical solution. This moment limiter was later improved by Burbeau et al. [10]. Although these
limiters can control spurious numerical oscillations near discontinuities, they tend to degrade accuracy when mistakenly
used in smooth regions of the solution. It is usually difficult to design limiters to achieve both high-order accuracy and
a non-oscillatory property near discontinuities. Such an attempt has been made in [11–13] using WENO methodology
[14–17] as the limiter for the RKDG method. However, this limiter uses a reconstruction stencil of same width as the
WENO methodology which includes not only the immediate neighboring cells but also neighbors’ neighbors, making
it complicated to implement in multi-dimensions, especially for unstructured meshes [12,13]. To reduce the spread of
reconstruction stencils, Qiu and Shu [18,19] and Zhu and Qiu [13,20] constructed Hermite type WENO approximations on
both structured and unstructured meshes, which use the information of not only the cell averages but also the lower order
moments such as slopes. Unfortunately, information of neighbors’ neighbors is still needed for higher-order methods.
Later Zhong and Shu [21] proposed a simple WENO limiter with a very compact stencil including only the target cell and
its immediate neighbors. Another advantage of their limiter is the simplicity in implementation, even for unstructured
meshes [22]. This limiter was further modified in [23,24] to improve the robustness in the computation of problems with
strong shocks or contact discontinuities, at the cost of adding a least-square process [25]. In addition to the aforementioned
references, we would also like to bring the reader’s attention to the recent interesting work [26–29] on limiters. Among
them, it is worth mentioning the work of Dumbser et al. [26] where an alternative family of DG limiters was proposed.
They introduced a novel a posteriori subcell limiter which involves recomputing the discrete solution from the old time
level using a different and more robust numerical scheme on a subgrid level.

The current work determines on further improvement of existing WENO type limiters. We have designed a new WENO
limiter on uniform meshes that still maintains the advantages of high-order accuracy, high compactness and simplicity
in implementation as the simple WENO limiter [21,22], and is even easier and more efficient in the computation. WENO
type limiters are closely connected with the development of WENO methods. This work is mainly attributed to a newly
introduced WENO method by Zhu and Qiu [30–33] and Dumbser et al. [34], where the reconstruction is the combination of
a high-order polynomial and linear polynomials. The ideas are also similar to the WENO works including [35–38] in which
the reconstruction is the combination of a 2r degree polynomial and r degree polynomials. In Zhu and Qiu’s work [30–33],
their WENO method uses linear constructed polynomials and only one high-order constructed polynomial to reconstruct
point values so that it is more efficient and easier than classical WENO methods, yet it still maintains high-order accuracy.
We will apply this method to the DG methods to design a new WENO limiter, expecting these good features.

This paper is organized as follows. We first review the RKDG method in Section 2 and then in Section 3 we present
our new WENO limiter. Numerical results are reported in Section 4 and concluding remarks are followed in Section 5.

2. Review of the RKDG methods

In this section, we give an overview of the algorithm formulation of the RKDG method for solving hyperbolic
conservation laws (1.1). For simplicity, we do that for u being a scalar. If u is vector-valued, one simply proceeds in the
component by component way. For the detailed description of the RKDG method, the readers are referred to the review
paper [39].

One-dimensional DG space discretization. To define the DG scheme for (1.1) in one dimension, the computational
domain [a, b] is discretized with N cells as follows

a = x 1
2

< x 3
2

< · · · < xN+
1
2

= b. (2.1)

Denote the center of cell Ii = [xi− 1
2
, xi+ 1

2
] by xi, the length of cell Ii by ∆xi, and the maximum cell length by h = maxi ∆xi.

The solution as well as the test function space is defined as V k
h = {v : v|Ii∈ Pk(Ii), 1 ≤ i ≤ N}, where Pk(Ii) is the space of

polynomials of degree up to k defined on the cell Ii. (In the computation of this paper k is at most three.) The semi-discrete
DG scheme for solving (1.1) is defined as follows: find the unique function u = u(t) ∈ V k

h such that∫
Ii

utvdx −

∫
Ii

f (u)vxdx + f̂i+ 1
2
v(x−

i+ 1
2
) − f̂i− 1

2
v(x+

i− 1
2
) = 0, i = 1, . . . ,N (2.2)

holds for all test functions v ∈ V k
h . Here, the superscripts ‘±’ indicate the left and right limits of the corresponding

functions with respect to x. The integral terms are computed either exactly or by a numerical quadrature with sufficiently
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Table 2.1
Parameters of Runge–Kutta schemes (2.6).
DG Order αil βil

P2 3
1
3
4

1
4

1
3 0 2

3

1
0 1

4
0 0 2

3

P3 4

1
1 0
1 0 0

−
1
3

1
3

2
3

1
3

1
2
0 1

2
0 0 1
0 0 0 1

6

high order of accuracy. f̂i+ 1
2

= f̂ (u−

i+ 1
2
, u+

i+ 1
2
) is the so-called monotone numerical fluxes. In this paper we use the global

Lax–Friedrichs flux

f̂ (u−, u+) =
1
2
[f (u−) + f (u+) − α(u+

− u−)] (2.3)

where α = maxu |f ′(u)| with the maximum taken over the whole range of u.
Two-dimensional DG space discretization. Since rectangular cells are used in this work, it is required that the

computational domain Ω can be covered by a rectangular mesh without hanging nodes. For simplicity of notations and
formulation of the scheme, we assume for this part that Ω = [ax, bx]× [ay, by] is rectangular. Under this assumption, the
mesh consists of cells

Ii,j = {(x, y) : xi− 1
2

≤ x ≤ xi+ 1
2
, yj− 1

2
≤ y ≤ yj+ 1

2
}, i = 1, . . . ,Nx, j = 1, . . . ,Ny. (2.4)

As before, we define a finite element space consisting of piecewise polynomials W k
h = {v : v|Ii,j∈ Pk(Ii,j), 1 ≤ i ≤ Nx, 1 ≤

j ≤ Ny}, where Pk(Ii,j) is the space of polynomials of degree up to k defined on the cell Ii,j. The semi-discrete DG scheme
for solving (1.1) in two dimensions is defined as follows: find the unique function u = u(t) ∈ W k

h such that, for all test
functions v ∈ W k

h and i = 1, . . . ,Nx, j = 1, . . . ,Ny,∫
Ii,j

utvdxdy −

∫
Ii,j

f (u)vxdxdy +

∫ y
j+ 1

2

y
j− 1

2

f̂i+ 1
2
(y)v(x−

i+ 1
2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

f̂i− 1
2
(y)v(x+

i− 1
2
, y)dy

−

∫
Ii,j

g(u)vydxdy +

∫ x
i+ 1

2

x
i− 1

2

ĝj+ 1
2
(x)v(x, y−

j+ 1
2
)dx −

∫ x
i+ 1

2

x
i− 1

2

ĝj− 1
2
(x)v(x, y+

j− 1
2
)dx = 0. (2.5)

Again, the integral terms are computed either exactly or by a numerical quadrature. The numerical fluxes f̂ and ĝ are
computed by the global Lax–Friedrichs flux (2.3). The readers are referred to [5,6] for more details.

Time discretization. The semi-discrete schemes (2.2) and (2.5) are systems of ordinary differential equations, and can
be written as ut = L(u) where L(·) is the spatial discretization operator. To discretize the time variable, we apply the
(k + 1)th order Runge–Kutta method [7,40] for Pk(2 ≤ k ≤ 3) DG discretization

u(i)
=

i−1∑
l=0

[
αilu(l)

+ βil∆tL(u(l))
]
, i = 1, . . . , k + 1, (2.6a)

u(0)
= un, un+1

= u(k+1) (2.6b)

with un corresponding to the solution at time level tn. The parameters in (2.6) are listed in Table 2.1.

3. A new WENO limiter

In this section, we introduce our new WENO limiter in detail for the RKDG methods. We adopt the same framework
of limiters as in [11], that is, we first identify the ‘‘troubled cells’’, namely those cells which might need the limiting
procedure; then we replace the solution polynomials in those troubled cells by reconstructed polynomials which should
maintain the original cell averages (conservation) and order of accuracy, but should be less oscillatory. The first step,
how to identify troubled cells by the troubled-cell indicator, is a very important issue for a limiter. However, the
focus of this paper is on the new way to reconstruct the polynomial in a troubled cell (the second step). We have no
intention of comparing the pros and cons of various troubled-cell indicators. We will simply use the shock detection
technique developed in [41], termed as the KXRCF troubled-cell indicator, to identify the troubled cells. This is one of the
recommended troubled-cell indicators in the work of comparison among different troubled-cell indicators [42]. Of course
the other troubled-cell indicators can also be used.
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3.1. Identification of troubled cells

The KXRCF troubled-cell indicator [41] works in the following way. We take the two-dimensional case as an example
to describe the procedure. The procedure for the one-dimensional case can be obtained analogously. Firstly, the boundary
of the target cell Ii,j is partitioned into two portions ∂ I−i,j and ∂ I+i,j , where the flow is into (v⃗ · n⃗ < 0, n⃗ is the outward
normal vector to ∂ Ii,j) and out of (v⃗ · n⃗ > 0) cell Ii,j, respectively. For the scalar case, we define v⃗ = (f ′(u), g ′(u)) with u
being the solution. For the Euler system (4.3), v⃗ is the vector of velocity. We compute v⃗ based on cell averages. Then cell
Ii,j is believed to contain a discontinuity and identified as a troubled cell if⏐⏐⏐∫∂ I−i,j (uh

|Ii,j−uh
|Il )ds

⏐⏐⏐
h

k+1
2

Ii,j

⏐⏐∂ I−i,j⏐⏐∥uh|Ii,j∥

> Ck. (3.1)

Here, Ck is usually taken to be one, but it is also adjustable so that the number of troubled cells can be increased or
decreased accordingly. hIi,j is the radius of the circumscribed circle in cell Ii,j. Il denotes the neighboring cell of Ii,j on the
side of ∂ I−i,j . The norm ∥uh

|Ii,j∥ is based on the maximum norm taken from the interior of Ii,j. The indicator variable u is
the scalar solution itself for the scalar case and density and energy solution components for the Euler system (4.3).

3.2. WENO reconstruction of the new polynomials

In this subsection, we give the detailed procedure of reconstructing the new polynomials in the troubled cells using
our new WENO limiter. The idea of this WENO limiter is to reconstruct a new polynomial in the target cell which is a
combination of the polynomial of the target cell and the linear polynomials constructed from several small stencils using
cell averages of the target cell and its immediate neighbors.

One-dimensional scalar case. Let Ii be the target cell which means that it is a troubled cell. Denote the DG solution
on this cell by p0(x), which is a kth-degree polynomial. Choose two small stencils T1 = {Ii−1, Ii} and T2 = {Ii, Ii+1}. Their
union forms the big stencil of the WENO limiter which consists of exactly the target cell and its immediate neighbors.
Denote the cell average of the solution u in cell Ir as ūr =

1
∆xr

∫
Ir
udx. It is very easy to get the linear polynomial p1(x)

from stencil T1 which satisfies
1

∆xr

∫
Ir
p1(x)dx = ūr , r = i − 1, i. (3.2)

Similarly, we can get the linear polynomial p2(x) from stencil T2 which satisfies
1

∆xr

∫
Ir
p2(x)dx = ūr , r = i, i + 1. (3.3)

Similar to the ideas in [30,31,34–38], for a given positive linear weights γ0, γ1, γ2 with their sum being unity, we rewrite
p0(x) as

p0(x) = γ0

(
1
γ0

p0(x) −
γ1

γ0
p1(x) −

γ2

γ0
p2(x)

)
+ γ1p1(x) + γ2p2(x), (3.4)

and introduce the modified polynomials

p̃0(x) =
1
γ0

p0(x) −
γ1

γ0
p1(x) −

γ2

γ0
p2(x), (3.5)

p̃1(x) =p1(x), (3.6)

p̃2(x) =p2(x). (3.7)

Then compute the smoothness indicators βl, l = 0, 1, 2, which measure how smooth the functions p̃l(x), l = 0, 1, 2 are in
the target cell. We use the same recipe for the smoothness indicators as in [15], that is,

βl =

k∑
q=1

∫
Ii

(∆xi)2q−1
(

∂qp̃l(x)
∂xq

)2

dx, l = 0, 1, 2. (3.8)

Let

τ =

(
|β0 − β1| + |β0 − β2|

2

)2

(3.9)

and define the following nonlinear weights

ωl =
ω̄l∑
q ω̄q

, ω̄l = γl

(
1 +

τ

ϵ + βl

)
, l = 0, 1, 2. (3.10)
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Here ϵ is a small positive number to avoid the denominator to become zero. Finally, the new reconstructed polynomial
in the target cell is given by

pnew0 (x) = ω0p̃0(x) + ω1p̃1(x) + ω2p̃2(x). (3.11)

One-dimensional system case. Consider Eq. (1.1) with u and f being vectors with m components. In order to achieve
better non-oscillatory qualities, our WENO reconstruction is performed with a local characteristic field decomposition.
Suppose that the Jacobian matrix is denoted by Ai =

∂ f
∂u |ūi and its left and right eigenvectors are denoted by l(p)i , r (p)i , p =

1, . . . ,m. They are normalized so that l(p)i ·r (q)i = δpq. Let R(ūi) be the m×m matrix with the right eigenvectors as columns,
i.e.

R(ūi) =

(
r (1)i , r (2)i , . . . , r (m)

i

)
. (3.12)

Hence R−1(ūi) is a m × m matrix with the left eigenvectors as rows, that is

R−1(ūi) =

(
l(1)i , l(2)i , . . . , l(m)

i

)T
. (3.13)

The procedure of our WENO reconstruction for one-dimensional system case is presented below. We use the same
notations as in the one-dimensional scalar case but all the variables are now vectors except the linear weights γ0, γ1, γ2.

1. For l = 0, 1, 2, find p̃l(x) component by component in the same way as the one-dimensional scalar case.
2. Project p̃l(x) into the characteristic fields µl(x) = R−1p̃l(x) for l = 0, 1, 2.
3. For each component of µl(x), l = 0, 1, 2, compute smoothness indicators via (3.8), nonlinear weights via (3.10) and

the reconstructed polynomial via (3.11). The resulting updated vector of µ0(x) is denoted by µnew
0 (x).

4. The final reconstructed polynomial of p0(x) is pnew0 (x) = Rµnew
0 (x).

Remark 3.1. Another equivalent procedure is that we can first project all the involved data (DG solution polynomial
in the target cell and cell averages in its immediate neighboring cells) into the characteristic fields, and then perform
the whole WENO reconstruction procedure in the one-dimensional scalar case componentwisely, and finally project back
(Step 4) to obtain the new polynomial of WENO reconstruction.

Two-dimensional scalar case on rectangular meshes. Suppose that Ii,j is the target cell in which the DG solution is
a kth degree polynomial p0(x, y). Four small stencils,

T1 = {Ii,j, Ii,j−1, Ii−1,j}, T2 = {Ii,j, Ii,j−1, Ii+1,j}, (3.14)

T3 = {Ii,j, Ii,j+1, Ii−1,j}, T4 = {Ii,j, Ii,j+1, Ii+1,j}, (3.15)

are carefully chosen so that we can define the linear polynomials pl(x, y), l = 1, 2, 3, 4 for reconstruction. Similar choices
of such stencils and polynomial degrees can be found in [32,34,43]. pl(x, y) is defined on stencil Tl such that

1
∆xr∆ys

∫
Ir,s

pl(x, y)dxdy = ūr,s (3.16)

where (r, s) goes over the indexes of all cells in stencil Tl, and ūr,s =
1

∆xr∆ys

∫
Ir,s

udxdy is again the cell average of solution
u in cell Ir,s. Similar to the procedure of the one-dimensional scalar case, for a given positive linear weights γl, l = 0, . . . , 4
with their sum being unity, we rewrite p0(x, y) as

p0(x, y) = γ0

(
1
γ0

p0(x, y) −

4∑
l=1

γl

γ0
pl(x, y)

)
+

4∑
l=1

γlpl(x, y), (3.17)

and introduce the modified polynomials

p̃0(x, y) =
1
γ0

p0(x, y) −

4∑
l=1

γl

γ0
pl(x, y), (3.18)

p̃l(x, y) =pl(x, y), l = 1, 2, 3, 4. (3.19)

Then compute the smoothness indicators

βl =

k∑
q1+q2=1

∫
Ii,j

(∆xi)2q1−1(∆yj)2q2−1
(

∂q1+q2 p̃l(x, y)
∂xq1∂yq2

)2

dxdy, l = 0, . . . , 4. (3.20)

Define

τ =

(∑4
l=1 |β0 − βl|

4

)2

(3.21)
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Table 3.1
Settings of linear weights.
Settings One-dimensional case Two-dimensional case

LW-1 γ0 = 0.98, γ1 = γ2 = 0.01 γ0 = 0.96, γ1 = γ2 = γ3 = γ4 = 0.01
LW-2 γ0 = 0.8, γ1 = γ2 = 0.1 γ0 = 0.8, γ1 = γ2 = γ3 = γ4 = 0.05
LW-3 γ0 = 0.5, γ1 = γ2 = 0.25 γ0 =

1
3 , γ1 = γ2 = γ3 = γ4 =

1
6

LW-4 γ0 = 0.02, γ1 = γ2 = 0.49 γ0 = 0.04, γ1 = γ2 = γ3 = γ4 = 0.24

and compute the nonlinear weights

ωl =
ω̄l∑
q ω̄q

, ω̄l = γl

(
1 +

τ

ϵ + βl

)
, l = 0, . . . , 4. (3.22)

The new reconstructed polynomial in the target cell is given by

pnew0 (x, y) =

4∑
l=0

ωlp̃l(x, y). (3.23)

Two-dimensional system case on rectangular meshes.We consider the two-dimensional system (1.1) in which u, f (u)
and g(u) are m-component vectors. Since there are two Jacobian matrices corresponding to fluxes in the x and y directions
respectively and therefore two sets of eigenspaces, we need to be careful when using the characteristic-wise WENO
reconstruction procedure. The recipe proposed in [21,23] is used. Suppose that Ii,j is a troubled cell in which the DG
solution polynomial is p0(x, y),

1. In the x-direction, based on the Jacobian matrix ∂ f
∂u , the involved data is first projected into the characteristic field.

Then the two-dimensional scalar WENO reconstruction procedure is performed component by component. A new
polynomial px,new0 (x, y) is finally obtained by projecting back the resulting reconstructed polynomial.

2. Similarly, in the y-direction, a new polynomial py,new0 (x, y) can be obtained separately based on the Jacobian matrix
∂g
∂u .

3. The final reconstructed polynomial is pnew0 (x, y) = (px,new0 (x, y) + py,new0 (x, y))/2.

For this WENO limiter procedure, the DG solution polynomial in the target cell, i.e. p0, is the key component to obtain
a high-order reconstructed polynomial. However, if p0 itself is a linear polynomial (the case of k = 1), there is no benefit
to include p0 in our WENO reconstruction procedure since the linear polynomials from the small stencils are sufficient to
reconstruct a linear solution approximation. The WENO limiters in [11] and [12] are more efficient than our new WENO
limiter when k = 1. Our WENO limiter is advantageous when k ≥ 2. As a result, the case of k = 1 is not considered.

To complete our WENO limiter, we need to discuss the specification of linear weights. For the WENO schemes in [30,31],
the only requirements imposed on these weights are that they are positive and their sum equals one. As to our WENO
limiter, based on our numerical tests, these requirements are sufficient when the solution is smooth. When the solution
contains discontinuities and a limiter is needed to control spurious oscillations, we find that our limiter cannot control
oscillations effectively if the value of γ0 is close enough to unity. Therefore, γ0 cannot be too close to unity in this
discontinuous case, but such additional requirement is rather weak. Let us assume that equal values are assigned to
the weights other than γ0, which is reasonable and usual. According to our numerical tests, for most of the test examples
in Section 4 the scheme works well even when γ0 reaches 0.98. The numerical results in this paper are obtained with
four representative settings of linear weights listed in Table 3.1. γ0 is close to one in the setting of LW-1, close to zero in
LW-4, 0.8 in LW-2 and twice as large as the other weights in LW-3. All of the four settings are used to run the accuracy
and convergence test for smooth solutions. When the solution is continuous, the closer to one γ0 is, the better. When the
solution contains discontinuities, it is better to assign relatively less weights to γ0, so LW-2 is mainly used to generate
the numerical results. More settings have been tested but the results are not included because of space limitation.

3.3. The entire algorithm

Let PV k
h
denote the operator of standard L2-projection into the finite element space V k

h and W denote the operator of

the above WENO limiter. Suppose that {tn}
Nt
n=0 is a temporal discretization with ∆tn = tn+1

− tn. Introducing the WENO
limiter to the time-marching scheme (2.6), the resulting entire algorithm can be described as follows:

• Set u0
= W{PV k

h
(u0(x))};

• For n = 0, . . . ,Nt − 1 compute un+1 as follows:

1. set u(0)
= un;
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2. for i = 1, . . . , k + 1, compute the intermediate quantities:

u(i)
= W

{
i−1∑
l=0

[
αilu(l)

+ βil∆tnL(u(l))
]}

;

3. set un+1
= u(k+1).

The determination of time step ∆t should satisfy the so called CFL condition for stability reason. In this paper, for the
one-dimensional scalar case

∆t =
CFLk∆x

max |f ′(u)|
. (3.24)

For the two dimensional scalar case

∆t =
CFLk

max |f ′(u)|/∆x + max |g ′(u)|/∆y
. (3.25)

For both one-dimensional and two-dimensional system cases, max |f ′(u)| and max |g ′(u)| in (3.24) and (3.25) are replaced
by the maximum value of the largest eigenvalue (in absolute value) of the corresponding Jacobian matrix. We take the
CFL numbers CFL2 = 0.18 and CFL3 = 0.1 in the computation according to paper [39] where a table of such numbers for
a wide variety of time and space discretizations is given.

4. Numerical tests

In this section, we provide a series of numerical examples to demonstrate the performance of the new WENO limiter.
All the results are obtained with uniform (rectangular in two dimensions) meshes.

As to the parameter ϵ in the nonlinear weights (3.10) and (3.22), it is known that its choice can not only avoid zero
denominators but also influence the order of convergence of the method. Kolb [44] discussed the advantage of choosing
this parameter in a finite volume WENO scheme on uniform meshes, and Cravero and Semplice [45] extended the results
to non-uniform meshes. In this paper, we will not carry out a deep analysis of the role of ϵ. Instead, we just take ϵ = 10−6

in all test examples except that in Example 4.1, we take two more choices [43–45], ϵ = ∆x and ϵ = ∆x2, to make a brief
comparison.

4.1. Accuracy and convergence results for smooth solutions

In this subsection, we take various examples with smooth solutions to test the accuracy and convergence order of the
new WENO limiter. In order to see the effect of the WENO limiter on the accuracy of the RKDG method, every cell is
forcibly identified as a troubled cell. As a result, the WENO reconstruction procedure is applied to every cell.

Example 4.1. We solve the following one-dimensional Burgers equation

ut +

(
u2

2

)
x
= 0, 0 ≤ x ≤ 2 (4.1)

with the initial condition u0(x) = 0.5 + sin(πx) and periodic boundary conditions. When t = 0.5/π the solution is still
smooth. The computation of this example was performed using 128-bit arithmetic (quadruple precision) so that the actual
errors and orders can be obtained on very fine meshes. We first list the errors and numerical orders of accuracy with a
fixed value of ϵ = 10−6 in Tables 4.1 and 4.2. It can be seen that the WENO limiter maintains the optimal (k+ 1)th order
of accuracy for all four settings of linear weights in the Pk case, but only asymptotically for small values of γ0. Since for
smooth solutions the DG solution polynomial in the target cell is usually the best approximation, γ0 should be as close
to unity as possible. When γ0 is away from unity, we can see in the tables that there is a decrease of order on coarse
meshes. When the meshes are fine enough, the order is then recovered.

These results can be improved by choosing an h-dependent ϵ as in [43–45]. We show the L∞ errors and orders with
ϵ = ∆x and ϵ = ∆x2 in Tables 4.3 and 4.4, respectively. Comparing these results with Table 4.2, we can find that both
choices, ϵ = ∆x and ϵ = ∆x2, can decrease the errors notably on coarse meshes and in general provide a much more
regular pattern of error decay. Moreover, the former choice is better than the latter one on this smooth test. Similar
conclusions can be found in [44,45].

Remark 4.1. The degradation of the L∞ convergence order (Tables 4.2–4.4) in the P2 case also arises in the RKDG method
without a limiter and hence is not caused by our WENO limiter.
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Table 4.1
Example 4.1 (one-dimensional Burgers equation). L1 errors and orders at t = 0.5/π with ϵ = 10−6 .

N LW-1 LW-2 LW-3 LW-4

L1 error Order L1 error Order L1 error Order L1 error Order

P2 20 1.69E−03 7.76E−03 9.72E−03 1.75E−02
40 4.30E−05 5.30 1.54E−04 5.65 1.09E−03 3.16 4.51E−03 1.96
80 6.14E−06 2.81 6.22E−06 4.63 1.26E−05 6.43 9.50E−04 2.25

160 8.70E−07 2.82 8.70E−07 2.84 8.70E−07 3.86 8.95E−05 3.41
320 1.21E−07 2.85 1.21E−07 2.85 1.21E−07 2.85 2.45E−06 5.19
640 1.65E−08 2.87 1.65E−08 2.87 1.65E−08 2.87 1.62E−08 7.24

1 280 2.23E−09 2.89 2.23E−09 2.89 2.23E−09 2.89 2.23E−09 2.87
2 560 2.99E−10 2.90 2.99E−10 2.90 2.99E−10 2.90 2.99E−10 2.90
5 120 3.97E−11 2.91 3.97E−11 2.91 3.97E−11 2.91 3.97E−11 2.91

10 240 5.22E−12 2.93 5.22E−12 2.93 5.22E−12 2.93 5.22E−12 2.93
20 480 6.81E−13 2.94 6.81E−13 2.94 6.81E−13 2.94 6.81E−13 2.94

P3 20 1.30E−02 1.70E−02 1.76E−02 1.77E−02
40 1.40E−05 9.87 3.36E−03 2.34 4.15E−03 2.08 4.54E−03 1.96
80 8.55E−08 7.35 9.77E−07 11.75 2.56E−04 4.02 1.08E−03 2.07

160 3.44E−09 4.64 4.33E−09 7.82 2.50E−08 13.32 2.08E−04 2.37
320 2.14E−10 4.01 2.14E−10 4.34 2.17E−10 6.85 1.44E−05 3.85
640 1.34E−11 4.00 1.34E−11 4.00 1.34E−11 4.02 5.69E−09 11.31

1 280 8.35E−13 4.00 8.35E−13 4.00 8.35E−13 4.00 8.17E−12 9.45
2 560 5.22E−14 4.00 5.22E−14 4.00 5.22E−14 4.00 5.34E−14 7.26
5 120 3.26E−15 4.00 3.26E−15 4.00 3.26E−15 4.00 3.26E−15 4.03

10 240 2.04E−16 4.00 2.04E−16 4.00 2.04E−16 4.00 2.04E−16 4.00
20 480 1.28E−17 4.00 1.28E−17 4.00 1.28E−17 4.00 1.28E−17 4.00

Table 4.2
Example 4.1 (one-dimensional Burgers equation). L∞ errors and orders at t = 0.5/π with ϵ = 10−6 .

N LW-1 LW-2 LW-3 LW-4

L∞ error Order L∞ error Order L∞ error Order L∞ error Order

P2 20 9.01E−03 3.24E−02 4.29E−02 6.99E−02
40 5.24E−04 4.10 1.59E−03 4.35 7.68E−03 2.48 2.17E−02 1.69
80 1.02E−04 2.36 1.02E−04 3.96 2.13E−04 5.17 7.52E−03 1.53

160 1.65E−05 2.62 1.65E−05 2.62 1.65E−05 3.69 1.42E−03 2.40
320 2.52E−06 2.72 2.52E−06 2.72 2.52E−06 2.72 7.34E−05 4.28
640 3.56E−07 2.82 3.56E−07 2.82 3.56E−07 2.82 3.56E−07 7.69

1 280 4.81E−08 2.89 4.81E−08 2.89 4.81E−08 2.89 4.81E−08 2.89
2 560 6.34E−09 2.92 6.34E−09 2.92 6.34E−09 2.92 6.34E−09 2.92
5 120 8.94E−10 2.83 8.94E−10 2.83 8.94E−10 2.83 8.94E−10 2.83

10 240 1.37E−10 2.71 1.37E−10 2.71 1.37E−10 2.71 1.37E−10 2.71
20 480 2.19E−11 2.64 2.19E−11 2.64 2.19E−11 2.64 2.19E−11 2.64

P3 20 6.43E−02 7.05E−02 6.80E−02 6.74E−02
40 1.70E−04 8.57 1.89E−02 1.90 1.95E−02 1.80 2.20E−02 1.62
80 1.01E−06 7.38 2.60E−05 9.51 3.88E−03 2.33 7.83E−03 1.49

160 5.38E−08 4.24 5.43E−08 8.90 1.03E−06 11.88 2.17E−03 1.85
320 3.42E−09 3.98 3.42E−09 3.99 3.43E−09 8.23 1.67E−04 3.70
640 2.15E−10 3.99 2.15E−10 3.99 2.15E−10 3.99 2.14E−07 9.61

1 280 1.35E−11 3.99 1.35E−11 3.99 1.35E−11 4.00 5.71E−10 8.55
2 560 8.46E−13 4.00 8.46E−13 4.00 8.46E−13 4.00 1.07E−12 9.06
5 120 5.30E−14 4.00 5.30E−14 4.00 5.30E−14 4.00 5.30E−14 4.33

10 240 3.31E−15 4.00 3.31E−15 4.00 3.31E−15 4.00 3.31E−15 4.00
20 480 2.07E−16 4.00 2.07E−16 4.00 2.07E−16 4.00 2.07E−16 4.00

Example 4.2. We solve the following two-dimensional Burgers equation

ut +

(
u2

2

)
x
+

(
u2

2

)
y
= 0, −2 ≤ x, y ≤ 2 (4.2)

with the initial condition u0(x, y) = 0.5 + sin( π (x+y)
2 ) and periodic boundary conditions. When t = 0.5/π the solution is

still smooth. We list the errors and numerical orders of accuracy in Tables 4.5 and 4.6. The usual double precision was
used to perform the computation. We can observe that the expected order of k + 1 is actually achieved for different
settings of linear weights.
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Table 4.3
Example 4.1 (one-dimensional Burgers equation). L∞ errors and orders at t = 0.5/π with ϵ = ∆x.

N LW-1 LW-2 LW-3 LW-4

L∞ error Order L∞ error Order L∞ error Order L∞ error Order

P2 20 3.13E−03 3.38E−03 6.00E−03 3.27E−02
40 5.24E−04 2.58 5.25E−04 2.69 5.26E−04 3.51 5.83E−03 2.49
80 1.02E−04 2.36 1.02E−04 2.37 1.02E−04 2.37 1.14E−03 2.35

160 1.65E−05 2.62 1.65E−05 2.62 1.65E−05 2.62 9.79E−05 3.54
320 2.52E−06 2.72 2.52E−06 2.72 2.52E−06 2.72 2.51E−06 5.28
640 3.56E−07 2.82 3.56E−07 2.82 3.56E−07 2.82 3.56E−07 2.82

1 280 4.81E−08 2.89 4.81E−08 2.89 4.81E−08 2.89 4.81E−08 2.89
2 560 6.34E−09 2.92 6.34E−09 2.92 6.34E−09 2.92 6.34E−09 2.92
5 120 8.94E−10 2.83 8.94E−10 2.83 8.94E−10 2.83 8.94E−10 2.83

10 240 1.37E−10 2.71 1.37E−10 2.71 1.37E−10 2.71 1.37E−10 2.71
20 480 2.19E−11 2.64 2.19E−11 2.64 2.19E−11 2.64 2.19E−11 2.64

P3 20 2.93E−04 1.95E−03 2.81E−02 3.71E−02
40 1.48E−05 4.31 1.64E−05 6.90 3.98E−05 9.46 8.48E−03 2.13
80 8.43E−07 4.13 8.50E−07 4.27 8.64E−07 5.53 1.74E−03 2.28

160 5.37E−08 3.97 5.37E−08 3.98 5.38E−08 4.01 4.66E−04 1.90
320 3.42E−09 3.98 3.42E−09 3.98 3.42E−09 3.98 1.69E−06 8.11
640 2.15E−10 3.99 2.15E−10 3.99 2.15E−10 3.99 1.18E−09 10.49

1 280 1.35E−11 3.99 1.35E−11 3.99 1.35E−11 3.99 1.35E−11 6.45
2 560 8.46E−13 4.00 8.46E−13 4.00 8.46E−13 4.00 8.46E−13 4.00
5 120 5.30E−14 4.00 5.30E−14 4.00 5.30E−14 4.00 5.30E−14 4.00

10 240 3.31E−15 4.00 3.31E−15 4.00 3.31E−15 4.00 3.31E−15 4.00
20 480 2.07E−16 4.00 2.07E−16 4.00 2.07E−16 4.00 2.07E−16 4.00

Table 4.4
Example 4.1 (one-dimensional Burgers equation). L∞ errors and orders at t = 0.5/π with ϵ = ∆x2 .

N LW-1 LW-2 LW-3 LW-4

L∞ error Order L∞ error Order L∞ error Order L∞ error Order

P2 20 3.19E−03 3.97E−03 8.74E−03 4.71E−02
40 5.24E−04 2.60 5.25E−04 2.92 5.28E−04 4.05 1.24E−02 1.92
80 1.02E−04 2.36 1.02E−04 2.37 1.02E−04 2.38 1.74E−03 2.84

160 1.65E−05 2.62 1.65E−05 2.62 1.65E−05 2.62 1.97E−04 3.14
320 2.52E−06 2.72 2.52E−06 2.72 2.52E−06 2.72 1.25E−05 3.97
640 3.56E−07 2.82 3.56E−07 2.82 3.56E−07 2.82 3.56E−07 5.14

1 280 4.81E−08 2.89 4.81E−08 2.89 4.81E−08 2.89 4.81E−08 2.89
2 560 6.34E−09 2.92 6.34E−09 2.92 6.34E−09 2.92 6.34E−09 2.92
5 120 8.94E−10 2.83 8.94E−10 2.83 8.94E−10 2.83 8.94E−10 2.83

10 240 1.37E−10 2.71 1.37E−10 2.71 1.37E−10 2.71 1.37E−10 2.71
20 480 2.19E−11 2.64 2.19E−11 2.64 2.19E−11 2.64 2.19E−11 2.64

P3 20 3.92E−04 4.30E−02 4.35E−02 4.58E−02
40 1.55E−05 4.66 5.42E−05 9.63 2.65E−04 7.36 1.24E−02 1.88
80 8.48E−07 4.19 1.04E−06 5.70 2.02E−06 7.03 2.67E−03 2.22

160 5.38E−08 3.98 5.42E−08 4.27 5.51E−08 5.20 5.54E−04 2.27
320 3.42E−09 3.98 3.42E−09 3.99 3.43E−09 4.01 7.03E−05 2.98
640 2.15E−10 3.99 2.15E−10 3.99 2.15E−10 3.99 1.99E−07 8.46

1 280 1.35E−11 3.99 1.35E−11 3.99 1.35E−11 3.99 5.41E−10 8.52
2 560 8.46E−13 4.00 8.46E−13 4.00 8.46E−13 4.00 1.11E−12 8.93
5 120 5.30E−14 4.00 5.30E−14 4.00 5.30E−14 4.00 5.30E−14 4.39

10 240 3.31E−15 4.00 3.31E−15 4.00 3.31E−15 4.00 3.31E−15 4.00
20 480 2.07E−16 4.00 2.07E−16 4.00 2.07E−16 4.00 2.07E−16 4.00

Example 4.3. We solve the following two-dimensional Euler system⎛⎜⎝ ρ

ρu
ρv

E

⎞⎟⎠
t

+

⎛⎜⎝ ρu
ρu2

+ p
ρuv

u(E + p)

⎞⎟⎠
x

+

⎛⎜⎝ ρv

ρuv
ρv2

+ p
v(E + p)

⎞⎟⎠
y

= 0 (4.3)

in which ρ, E and p represent the density, total energy and pressure, and u and v are the velocity components in the x-
and y-directions, respectively. The system is completed by the equation of state

p = (γ − 1)
(
E −

1
2
ρ(u2

+ v2)
)
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Fig. 4.1. Example 4.4 (Buckley–Leverett problem), solutions (upper row) at t = 0.4 and time history of the troubled cells (lower row), N = 200, P2

(left) and P3 (right).

Table 4.5
Example 4.2 (two-dimensional Burgers equation). L1 errors and orders at t = 0.5/π .

N LW-1 LW-2 LW-3 LW-4

L1 error Order L1 error Order L1 error Order L1 error Order

P2 200 1.62E−05 1.62E−05 1.65E−05 5.31E−04
400 2.10E−06 2.94 2.10E−06 2.94 2.10E−06 2.97 5.71E−06 6.54
600 6.42E−07 2.92 6.42E−07 2.92 6.42E−07 2.92 6.45E−07 5.38
800 2.77E−07 2.92 2.77E−07 2.92 2.77E−07 2.92 2.76E−07 2.95

1000 1.44E−07 2.92 1.44E−07 2.92 1.44E−07 2.92 1.44E−07 2.90
1200 8.48E−08 2.92 8.48E−08 2.92 8.48E−08 2.92 8.48E−08 2.92
1400 5.41E−08 2.92 5.41E−08 2.92 5.41E−08 2.92 5.40E−08 2.92
1600 3.66E−08 2.92 3.66E−08 2.92 3.66E−08 2.92 3.66E−08 2.92
1800 2.59E−08 2.92 2.59E−08 2.92 2.59E−08 2.92 2.59E−08 2.92

P3 200 2.35E−07 2.49E−07 2.74E−06 1.29E−03
400 1.48E−08 3.99 1.48E−08 4.07 1.55E−08 7.46 7.14E−05 4.18
600 2.93E−09 3.99 2.93E−09 3.99 2.93E−09 4.11 1.28E−07 15.60
800 9.30E−10 3.99 9.30E−10 3.99 9.30E−10 3.99 7.19E−09 10.01

1000 3.81E−10 4.00 3.81E−10 4.00 3.81E−10 4.00 9.81E−10 8.93
1200 1.84E−10 4.00 1.84E−10 4.00 1.84E−10 4.00 2.56E−10 7.37
1400 9.94E−11 4.00 9.94E−11 4.00 9.94E−11 4.00 1.07E−10 5.65
1600 5.83E−11 4.00 5.83E−11 4.00 5.83E−11 4.00 5.86E−11 4.53
1800 3.64E−11 4.00 3.64E−11 4.00 3.64E−11 4.00 3.63E−11 4.08

with gas constant γ = 1.4. We solve (4.3) in the domain [0, 2] × [0, 2] up to t = 2 with the initial condition
(ρ, u, v, p)T = (1.0 + 0.2 ∗ sin(π (x + y)), 0.5, 0.5, 1)T and periodic boundary conditions. The exact solution of ρ is
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Table 4.6
Example 4.2 (two-dimensional Burgers equation). L∞ errors and orders at t = 0.5/π .

N LW-1 LW-2 LW-3 LW-4

L∞ error Order L∞ error Order L∞ error Order L∞ error Order

P2 200 2.27E−05 2.27E−05 2.27E−05 6.20E−04
400 3.07E−06 2.88 3.07E−06 2.88 3.07E−06 2.88 9.21E−06 6.07
600 9.37E−07 2.93 9.37E−07 2.93 9.37E−07 2.93 9.37E−07 5.64
800 4.02E−07 2.94 4.02E−07 2.94 4.02E−07 2.94 4.02E−07 2.94

1000 2.08E−07 2.96 2.08E−07 2.96 2.08E−07 2.96 2.08E−07 2.96
1200 1.21E−07 2.96 1.21E−07 2.96 1.21E−07 2.96 1.21E−07 2.96
1400 7.67E−08 2.97 7.67E−08 2.97 7.67E−08 2.97 7.67E−08 2.97
1600 5.15E−08 2.97 5.15E−08 2.97 5.15E−08 2.97 5.15E−08 2.97
1800 3.63E−08 2.97 3.63E−08 2.97 3.63E−08 2.97 3.63E−08 2.97

P3 200 5.84E−07 5.84E−07 7.38E−06 9.20E−04
400 3.77E−08 3.96 3.77E−08 3.96 3.77E−08 7.61 1.56E−04 2.56
600 7.52E−09 3.97 7.52E−09 3.97 7.52E−09 3.97 2.72E−07 15.67
800 2.39E−09 3.98 2.39E−09 3.98 2.39E−09 3.98 1.03E−08 11.38

1000 9.83E−10 3.99 9.83E−10 3.99 9.83E−10 3.99 1.11E−09 9.98
1200 4.75E−10 3.99 4.75E−10 3.99 4.75E−10 3.99 4.73E−10 4.68
1400 2.57E−10 3.99 2.57E−10 3.99 2.57E−10 3.99 2.56E−10 3.97
1600 1.51E−10 3.99 1.51E−10 3.99 1.51E−10 3.99 1.51E−10 3.98
1800 9.42E−11 3.99 9.42E−11 3.99 9.42E−11 3.99 9.42E−11 3.99

Fig. 4.2. Example 4.5 (Lax problem), density solutions (upper row) at t = 1.3 and time history of the troubled cells (lower row), N = 200, P2 (left)
and P3 (right).

ρ(x, t) = 1.0 + 0.2 ∗ sin(π (x + y − t)). The computation was also performed in double precision. In Tables 4.7 and 4.8
we present the errors and numerical orders of accuracy of ρ. We can see that the WENO limiter maintains the optimal
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Table 4.7
Example 4.3 (two-dimensional Euler system). L1 errors and orders of the density at t = 2.

N LW-1 LW-2 LW-3 LW-4

L1 error Order L1 error Order L1 error Order L1 error Order

P2 10 3.73E−02 8.02E−02 2.68E−01 3.89E−01
20 1.14E−03 5.03 5.55E−03 3.85 4.57E−02 2.55 9.96E−02 1.96
40 4.39E−05 4.70 8.12E−05 6.09 2.13E−03 4.42 2.71E−02 1.88
80 5.33E−06 3.04 5.35E−06 3.93 1.94E−05 6.78 1.99E−03 3.77

160 6.63E−07 3.01 6.63E−07 3.01 6.67E−07 4.87 3.86E−05 5.69
320 8.28E−08 3.00 8.28E−08 3.00 8.28E−08 3.01 1.05E−07 8.53
640 1.03E−08 3.00 1.03E−08 3.00 1.03E−08 3.00 1.03E−08 3.34

P3 10 3.03E−01 3.56E−01 3.89E−01 3.94E−01
20 2.61E−02 3.54 4.49E−02 2.99 9.56E−02 2.02 1.10E−01 1.84
40 1.78E−05 10.52 1.84E−04 7.93 9.54E−03 3.33 3.25E−02 1.76
80 6.57E−08 8.08 4.16E−07 8.79 4.40E−05 7.76 4.72E−03 2.78

160 2.65E−09 4.63 2.68E−09 7.28 3.45E−08 10.32 3.21E−04 3.88
320 1.65E−10 4.00 1.65E−10 4.02 1.66E−10 7.70 6.77E−08 12.21
640 1.03E−11 4.00 1.03E−11 4.00 1.03E−11 4.00 1.89E−11 11.81

Table 4.8
Example 4.3 (two-dimensional Euler system). L∞ errors and orders of the density at t = 2.

N LW-1 LW-2 LW-3 LW-4

L∞ error Order L∞ error Order L∞ error Order L∞ error Order

P2 10 2.00E−02 4.70E−02 1.16E−01 1.58E−01
20 9.73E−04 4.36 4.29E−03 3.46 2.32E−02 2.33 5.88E−02 1.43
40 4.22E−05 4.53 8.50E−05 5.66 2.58E−03 3.16 1.61E−02 1.87
80 5.46E−06 2.95 5.46E−06 3.96 3.99E−05 6.02 2.43E−03 2.73

160 6.88E−07 2.99 6.88E−07 2.99 6.88E−07 5.86 1.12E−04 4.44
320 8.62E−08 3.00 8.62E−08 3.00 8.62E−08 3.00 1.22E−07 9.84
640 1.08E−08 3.00 1.08E−08 3.00 1.08E−08 3.00 1.08E−08 3.50

P3 10 1.28E−01 1.46E−01 1.58E−01 1.60E−01
20 1.54E−02 3.06 2.32E−02 2.66 5.61E−02 1.50 6.20E−02 1.37
40 3.77E−05 8.67 3.73E−04 5.96 7.88E−03 2.83 1.94E−02 1.68
80 1.74E−07 7.76 1.53E−06 7.93 1.41E−04 5.80 4.18E−03 2.22

160 2.97E−09 5.87 3.99E−09 8.58 1.75E−07 9.65 4.73E−04 3.14
320 1.80E−10 4.04 1.80E−10 4.47 2.03E−10 9.75 2.48E−07 10.90
640 1.13E−11 3.99 1.13E−11 3.99 1.13E−11 4.17 3.73E−11 12.70

(k+ 1)th order of accuracy for LW-1, LW-2 and LW-3 cases. For LW-4 case, we can expect that the correct orders will be
recovered on finer meshes.

4.2. Numerical results for discontinuous solutions

This subsection gives the numerical results of classical test examples that have discontinuous solutions. Note that the
linear weights LW-2 (γ0 = 0.8) is used unless otherwise specified. Although the KXRCF parameter Ck in Eq. (3.1) was taken
to be one originally [41], some later numerical results [29,42,46] indicated that this troubled-cell indicator with fixed Ck
tended to mark more troubled cells than necessary for higher-order DG methods. When more cells than necessary are
limited, higher-order DG method may produce inferior solutions. This problem also arise in the test examples in this
section. One remedy is to adjust the value of Ck for different values of k and different test examples. However, we will
discuss this in detail in the blast wave problem (Example 4.6) alone as an example because this is not the emphasis of
the paper and the space is limited. In the following test examples Ck is equal to one if it is not stated explicitly.

Example 4.4. We solve the following Buckley–Leverett problem

ut +

(
4u2

4u2 + (1 − u)2

)
x
= 0 (4.4)

with the initial condition u0 = 1 for −0.5 ≤ x ≤ 0 and u0 = 0 elsewhere. We plot the numerical solutions using 200 cells
at t = 0.4 in Fig. 4.1. Here and below, the solid line is for the exact solution or grid converged solution, and the symbols
‘‘+’’ are for the numerical solution (cell averages). We also present the time history of the troubled cells (denoted by tiny
squares) in Fig. 4.1. Note that such plots in this paper display only the troubled cells on at most 100 time-levels. From
the figure we can see that the KXRCF troubled-cell indicator marks the cells as troubled cells not only near the shocks
but also near the rarefaction corners, and the solutions of both orders are oscillatory free.
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Fig. 4.3. Example 4.6 (blast wave problem), density solutions (upper row) at t = 0.038 and time history of the troubled cells (lower row), N = 800,
P2 (left) and P3 (right).

Example 4.5. In this example we solve the Lax problem which is governed by the one-dimensional Euler system of gas
dynamics(

ρ

ρv

E

)
t

+

⎛⎝ ρv

ρv2
+ p

v(E + p)

⎞⎠
x

= 0 (4.5)

where ρ is the density, v is the velocity, E is the total energy, p is the pressure, related to the total energy by E =
p

γ−1 +
1
2ρv2 with γ = 1.4. The initial condition is given by

(ρ, v, p) =

{
(0.445, 0.698, 3.528) if x ≤ 0,
(0.5, 0, 0.571) if x > 0. (4.6)

Numerical solutions of density at t = 1.3 with 200 cells and the corresponding time history of the troubled cells are
presented in Fig. 4.2. We again see the good performance of our schemes in controlling the oscillations.

Example 4.6. We solve the blast wave problem which is also governed by the one-dimensional Euler system (4.5). The
initial condition is

(ρ, v, p) =

{(1, 0, 1000) if 0 ≤ x < 0.1,
(1, 0, 0.01) if 0.1 ≤ x < 0.9,
(1, 0, 100) if 0.9 ≤ x ≤ 1.

(4.7)

A reflecting boundary condition is applied to both ends. Numerical solutions of density at t = 0.038 and the time history
of the troubled cells using 800 cells are presented in Fig. 4.3. The numerical oscillations are well controlled by both P2
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Fig. 4.4. Example 4.6 (blast wave problem), density solutions (top row) at t = 0.038 and time history of the troubled cells (middle row for P2 and
bottom row for P3), N = 800, Ck = 102 (left column) and 103 (right column).

and P3 schemes. However, the P3 solution is worse than the P2 one which is mainly due to the overidentification of the
troubled cells. Similar phenomenons were reported in [4] and can be seen in some other examples in this paper. We can
see in Fig. 4.3 that the KXRCF troubled-cell indicator identifies many more troubled cells in the P3 scheme than the P2

one.
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Fig. 4.5. Example 4.6 (blast wave problem), density solutions (upper row) at t = 0.038 and time history of the troubled cells (lower row) for P3 ,
N = 800, Ck = 104 (left column) and 105 (right column).

Table 4.9
Example 4.6 (blast wave problem). Data on troubled cells with N = 800.
Ck 1 100 1000

Order P2 P3 P2 P3 P2 P3

η1 8.70 17.26 2.22 4.59 1.33 2.88
η2 0.15 4.24 1.47E−4 0.23 8.71E−5 0.23

Increasing the value of Ck in Eq. (3.1) can decrease the number of troubled cells and hence improve the solution quality.
We show both P2 and P3 results with Ck = 102 and 103 in Fig. 4.4, and P3 results with Ck = 104 and 105 in Fig. 4.5 (P2

scheme with Ck = 104 or higher blew up). As Ck goes larger, fewer troubled cells are identified and better solutions are
obtained. When Ck becomes too large such as 105 for P3 scheme with 800 cells, oscillations start to appear. With the same
choice of Ck we always observe that the P3 solution is poorer than the P2 one because P3 scheme identifies more troubled
cells. To be more precise, we give the average (over time) percentage of troubled cells η1 in Table 4.9. We also give η2,
the average percentage of troubled cells in which solutions are actually limited to linear order by the WENO limiter. By
saying that a troubled cell is limited to linear order, we mean that the second and higher-order degrees of freedom of ρ

in this cell are limited to close to zero, which is ρ
(l)
i ≤ 10−4 for l = 2, . . . , k in our computation. In Table 4.9, both η1 and

η2 are greater in the P3 scheme than in the P2 one. It means that the P3 scheme always identifies more troubled cells,
and more cells that are actually untroubled but are mistakenly identified as troubled cells are unnecessarily limited in
the P3 scheme and hence the whole solution is affected.

To sum up, the performance of our new WENO limiter depends on the accuracy of the troubled-cell indicator. Since
the emphasis of this paper is not on the troubled-cell indicator, we will try no more for a better troubled-cell indicator
to improve the solution quality.
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Fig. 4.6. Example 4.7 (Sedov blast wave problem), density solutions (upper row) at t = 0.001 and time history of the troubled cells (lower row),
N = 400, γ0 = 0.8, P2 (left) and P3 (right).

Example 4.7. Consider the Sedov blast wave problem which is a typical low density problem involving shocks. We
solve the one-dimensional Euler system (4.5) in the domain [−2, 2] till t = 0.001. The initial conditions are (ρ, v, E) =

(1, 0, 10−12) everywhere except that the energy E in the center cell is the constant 3,200,000
∆x (emulating a δ-function at the

center). The exact solution formula can be found in [47,48]. Numerical solutions of density with 400 cells are presented
in Fig. 4.6, along with the time history of the troubled cells. We can see that the solutions are overall fine except that
a dent appears in both of the flat regions next to the discontinuities in the P2 solution. Decreasing the value of γ0 can
overcome this problem, see the solutions in Fig. 4.7 obtained with γ0 = 0.02.

Example 4.8. This test example is an extreme Riemann problem called the Leblanc shock tube problem. We again solve
the one-dimensional Euler system (4.5) in the domain [−10, 10] with the initial condition

(ρ, v, p) =

{
(2, 0, 109) if x ≤ 0,
(0.001, 0, 1) if x > 0. (4.8)

In the computation, the scheme ends up with a blow-up when γ0 ≥ 0.57. We are able to obtain a converged solution
with LW-3 (γ0 = 0.5) although small oscillations are spotted, see Fig. 4.8 where the numerical solutions of density at
t = 0.0001 with 6400 cells and the time history of the troubled cells are presented.

Example 4.9. Consider the double Mach reflection problem [49] which is governed by the two-dimensional Euler system
(4.3). We use exactly the same setup as in [49]. The computational domain is [0, 4] × [0, 1]. The reflecting wall lies at
the bottom of the computational domain starting from x =

1
6 . Initially a right-moving Mach 10 shock is positioned at

x =
1
6 , y = 0, making a 60◦ angle with the x-axis. The undisturbed air ahead of the shock has a density of 1.4 and a

pressure of 1. On the left and right boundaries, the inflow and outflow boundary conditions are used, respectively. For
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Fig. 4.7. Example 4.7 (Sedov blast wave problem), density solutions at t = 0.001, N = 400, γ0 = 0.02, P2 (left) and P3 (right).

Fig. 4.8. Example 4.8 (Leblanc shock tube problem), density solutions (upper row) at t = 0.0001 and time history of the troubled cells (lower row),
N = 6400, γ0 = 0.5, P2 (left) and P3 (right).

the bottom boundary, the reflective boundary condition is applied at the wall and the exact post-shock condition is used
for the rest. Boundary conditions at the top correspond to the exact motion of a Mach 10 shock. The problem is run till
a simulation time of 0.2 is reached. Density contours and the troubled cells are plotted in Fig. 4.9 using 960 × 240 cells.
We can see that both schemes with different orders produce non-oscillatory solutions.



334 H. Zhu, J. Qiu and J. Zhu / Computers and Mathematics with Applications 79 (2020) 317–336

Fig. 4.9. Example 4.9 (double Mach reflection problem), thirty equally spaced density contours from 1.3 to 23 and the troubled cells at t = 0.2,
Nx = 960,Ny = 240, P2 (the upper two) and P3 (the lower two).

Example 4.10. Our last example is the forward facing step problem [49] which is also governed by the two-dimensional
Euler equations (4.3). The problem starts with a uniform, right-going Mach 3 flow in a wind tunnel of 3 units long and 1
unit wide which contains a 0.2 units high step located 0.6 units from the left-hand end of the tunnel. Reflecting boundary
conditions are used along the walls of the tunnel, and inflow and outflow boundary conditions are applied on the left and
right boundaries, respectively. The problem is run until a simulation time of 4.0. We plot the density contours and the
troubled cells in Fig. 4.10 with Nx = 600 and Ny = 200. Once again, it is shown that the shocks are well captured without
oscillations.

5. Conclusion

In this paper, we have developed a new limiter for the RKDG method solving hyperbolic conservation laws using the
WENO methodology. This limiter employs a general framework of limiters where troubled cells are first identified by
the KXRCF troubled-cell indicator, and then the newly proposed WENO solution reconstruction procedure is applied in
these troubled cells to control the spurious oscillations. Our WENO limiter uses the high-order DG solution polynomial
in the target cell and the linear polynomials obtained from small stencils to reconstruct a new high-order polynomial.
As a result, this limiter has a very compact stencil which includes only the target cell and its immediate neighbors, and
still maintains the high-order accuracy and advantage of simplicity. These are demonstrated by extensive numerical tests
including both one- and two-dimensional problems and both scalar and systematic problems.
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Fig. 4.10. Example 4.10 (forward facing step problem), thirty equally spaced density contours from 0.32 to 6.15 and the troubled cells at t = 4,
Nx = 600,Ny = 200, P2 (the upper two) and P3 (the lower two).

Future work of this subject should certainly look at extending this WENO limiter to unstructured triangular meshes
for two-dimensional problems and to tetrahedral or parallelepipedal meshes for three-dimensional problems. The
reconstruction procedure will be similar to those in [32–34].
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